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Abstract

Inflammasomes are cytosolic multiprotein complexes that orchestrate inflammation in response to pathogens and endogenous

danger signals. Herein, we determined whether the chorioamniotic membranes from women in spontaneous preterm labor with

acute histologic chorioamnionitis (1) express major inflammasome components; (2) express caspase (CASP)-1 and CASP-4 as

well as their active forms; (3) exhibit apoptosis-associated speck-like protein containing a CARD (ASC)/CASP-1 complex for-

mation; and (4) release the mature forms of interleukin (IL)-1b and IL-18. We utilized quantitative reverse transcription poly-

merase chain reaction, enzyme-linked immunosorbent assay, immunoblotting, and immunohistochemistry to determine the
messenger RNA (mRNA) and protein expression of major inflammasome components, nucleotide-binding oligomerization

domain (NOD) proteins, and the pro- and mature/active forms of CASP-1, CASP-4, IL-1b, and IL-18. The ASC/CASP-1 complex

formation was determined using an in situ proximity ligation assay. When comparing the chorioamniotic membranes from women

in spontaneous preterm labor with acute histologic chorioamnionitis to those without this placental lesion, we found that (1) the

mRNA of NLR family pyrin domain-containing protein (NLRP)1, NLRP3, NLR family CARD domain-containing protein 4 (NLRC4),

and NOD2 were higher; (2) the NLRP3 protein was increased; (3) the mRNA and active form (p10) of CASP-1 were greater; (4)

the mRNA and active form of CASP-4 were increased; (5) the mRNA and mature form of IL-1b were higher; (6) the mature form

of IL-18 was elevated; and (7) ASC/CASP-1 complex formation was increased. In conclusion, spontaneous preterm labor with
acute histologic chorioamnionitis is characterized by an upregulation of NLRP3 and the active form of CASP-4, as well as

increased ASC/CASP-1 complex formation, which may participate in the activation of CASP-1 and the maturation of IL-1b and

IL-18 in the chorioamniotic membranes. These findings provide the first evidence that supports a role for the inflammasome in the

pathological inflammation implicated in spontaneous preterm labor with acute histologic chorioamnionitis.
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Introduction

Preterm birth is one of the most common, yet detrimental, ob-

stetrical syndromes1-6 and the leading cause of perinatalmorbidity

and mortality worldwide.7-10 Approximately 70% of all preterm

births are preceded by spontaneous preterm labor,1,5,11-13

a syndrome of multiple pathological processes.14 Of all the puta-

tive causes associated with spontaneous preterm labor, only

intraamniotic inflammation/infection has been causally linked to

pretermbirth.15-38 Intraamniotic inflammation/infectiongenerally

results in acute histologic chorioamnionitis;39-48 thus, this placen-

tal lesion is strongly associatedwith preterm labor and birth.40,49-53

Acute histologic chorioamnionitis can also occur in the setting of

sterile intraamniotic inflammation,54-58an inflammatoryprocess in

whichmicroorganisms cannot be detected using both cultivation

and molecular microbiology techniques.54-63 Sterile inflam-

mation is induced by danger signals, termed damage-

associated molecular patterns (DAMPs)64,65 or alarmins,66

derived from necrotic cells or cellular stress.67 Therefore,

acute histologic chorioamnionitis is evidence of intraamniotic

inflammation regardless of the presence of infection.68

Acute histologic chorioamnionitis is defined by the infiltra-

tion of neutrophils and monocytes/macrophages into the chor-

ioamniotic membranes,45,48,68-72which is mediated by a gradient

of potent chemokines, including interleukin (IL)-8,68,73,74C-X-C

motif chemokine ligand 6 (CXCL6),68,75 and C-C motif chemo-

kine ligand 2 (CCL2)76 (also known as monocyte chemoattrac-

tant protein orMCP-1). This pathological activation of the innate

immune system is observed in spontaneous preterm labor and

includes high concentrations of pro-inflammatory cytokines,

such as IL-1a, IL-1b, tumor necrosis factor a, and IL-6 in the

amniotic fluid,77-89 decidua,90,91 and umbilical cord blood.92-94

Elevated concentrations of these cytokines are linked to adverse

neonatal outcomes.80,82,83,92,95-111 Therefore, the study herein

focuses on the mechanisms implicated in the patho-

physiology of acute histologic chorioamnionitis in sponta-

neous preterm labor.

The inflammasome is implicated in physiological112-114 and

pathological inflammation (ie, acute histologic chorioamnionitis115)

during human parturition at term; however, its role in sponta-

neous preterm labor is unknown. Inflammasomes are cytoplas-

mic multiprotein complexes that promote an inflammatory

response through the release of the mature forms of IL-1b and

IL-18.116-150 The inflammasome complex contains: (1) a pat-

tern recognition receptor (PRR or sensor molecule), (2) the

adaptor protein ASC (apoptosis-associated speck-like protein

containing a CARD), and (3) pro-caspase-1 (pro-CASP-1).116-152

Inflammasome activation prompts the release of active

CASP-1 which, in turn, can participate in the processing

of mature IL-1b and IL-18.153-163 These events induce a

pro-inflammatory programmed cell death termed pyropto-

sis.164-166 In addition, active CASP-4 participates in the

noncanonical activation of the inflammasome by activating

CASP-1149,167-171, which can lead to pyroptosis and the release

of alarmins (eg, high mobility group box-1 or HMGB1) in a

CASP-1-independent manner.172

Herein, we propose that the inflammasome is implicated in

the pathological inflammation (acute histologic chorioamnioni-

tis) associated with spontaneous preterm labor. Such a hypoth-

esis is supported by the fact that amniotic fluid concentrations of

CASP-1,113 IL-1b,78 and IL-18173 are greater in women who

undergo spontaneous preterm labor with intraamniotic infec-

tion/inflammation than in those without this clinical condition.

The aims of this study were to determine whether the chorioam-

niotic membranes from women in spontaneous preterm labor

with acute histologic chorioamnionitis: (1) express major

inflammasome components; (2) express CASP-1 and CASP-4

as well as their active forms; (3) exhibit ASC/CASP-1 complex

formation; and (4) release the mature forms of IL-1b and IL-18.

Materials and Methods

Human Participants, Clinical Specimens, and Definitions

In order to conduct this case–control study, chorioamniotic

membrane samples from women who underwent spontaneous

preterm labor with (PTL-ACA) or without (PTL) acute histo-

logic chorioamnionitis were collected from the Bank of Biolo-

gical Specimens of the Detroit Medical Center, Wayne State

University, and the Perinatology Research Branch (Detroit,

Michigan), an intramural program of the Eunice Kennedy Shri-

ver National Institute of Child Health and Human Develop-

ment, National Institutes of Health, US Department of Health

and Human Services. The Institutional Review Boards of these

institutions approved the collection and use of biological mate-

rials for research purposes. Participants provided written

informed consent and samples were collected within 0.5 hour

after delivery. Table 1 includes the demographic and clinical

characteristics of the study population. Multiparous women or

women with neonates having congenital or chromosomal

abnormalities were excluded. Preterm labor was diagnosed

by the presence of regular uterine contractions (at least 3 in

30 minutes) and documented cervical changes in patients with

a gestational age between 20 and 36 6/7 weeks. Preterm deliv-

ery was defined as birth prior to week 37 of gestation.

Placental Histopathological Examinations

Five-mm-thick sections of formalin-fixed, paraffin-embedded

tissue specimens were cut and mounted on SuperFrost Plus
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microscope slides (Erie Scientific LLC, Portsmouth, New

Hampshire). In each case, several tissue sections of the chor-

ioamniotic membranes, umbilical cord, and placental disk were

examined. After deparaffinization, slides were rehydrated,

stained with hematoxylin–eosin, and evaluated by pathologists

who were blinded to the clinical outcome, according to pub-

lished criteria.68,69 The diagnosis of acute histologic chorioam-

nionitis was made when the infiltration of neutrophils into the

chorionic trophoblast layer or chorioamniotic connective tissue

was observed.68,69

RNA Isolation, cDNA Generation, and Quantitative

Reverse Transcription Polymerase Chain

Reaction Analysis

Total RNA was extracted from snap-frozen chorioamniotic

membrane samples (PTL, n¼ 33 and PTL-ACA, n¼ 37) using

TRIzol (Invitrogen, Life Technologies Corporation, Grand

Island, New York) and Qiagen RNeasy kits (Qiagen, Gaithers-

burg, Maryland). The purity, concentration, and integrity of the

RNA were assessed using the NanoDrop 1000 spectrophot-

ometer (Thermo Scientific, Wilmington, Delaware, USA) and

the Bioanalyzer 2100 (Agilent Technologies, Wilmington,

Delaware). cDNA was generated using the SuperScript III

First-Strand Synthesis System (Invitrogen) and oligo(dT)20

primers (Invitrogen). Gene expression profiling was performed

on the BioMark System for high-throughput quantitative

reverse transcription polymerase chain reaction (Fluidigm, San

Francisco, California) and the ABI 7500 FAST Real-Time PCR

System (Applied Biosystems, Life Technologies Corporation,

Foster City, California) with TaqMan gene expression assays

(Applied Biosystems) listed in Supplementary Table 1.

Chorioamniotic Membrane Tissue Lysates

Tissue lysates were prepared by homogenizing snap-frozen

chorioamniotic membranes (PTL and PTL-ACA, n ¼ 10 each)

in 2 mL of 1X phosphate-buffered saline (PBS; Invitrogen)

containing a complete protease inhibitor cocktail (Cat. No.

11697498001; Roche Applied Science, Mannheim, Germany).

Next, lysates were centrifuged at 15700�g for 5 minutes at

4�C, and the supernatant was collected and stored at �80�C.

Prior to enzyme-linked immunosorbent assay (ELISA) or

immunoblotting, total protein determination was determined

using the Quick Start Bradford Protein Assay Kit (Bio-Rad,

Hercules, California).

Enzyme-Linked Immunosorbent Assays

Protein concentrations of NLR family pyrin domain-containing

protein (NLRP)1, NLRP3, absent in melanoma 2 (AIM2),

nucleotide-binding oligomerization domain (NOD) 2 protein,

CASP-1, CASP-4, IL-18, pro-IL-1b, and mature IL-1b were

determined in chorioamniotic membrane tissue lysates by

immunoassays (NLRP1, NLRP3, and NOD2 ELISA kits from

Cusabio, Wuhan, Hubei, P.R. China; AIM2, CASP-1, and

CASP-4 ELISA kits from Cloud Clone, Houston, Texas; pro-

IL-1b and IL-1b ELISA kits from R&D Systems, Minneapolis,

Minnesota; and IL-18 ELISA kits from MBL International

Corporation, Woburn, Massachusetts), as previously

described.114 The sensitivities of the assays were <4.67 pg/mL

for NLRP1, <0.039 ng/mL for NLRP3, <0.056 ng/mL for AIM2,

<6.25 pg/mL forNOD2, <0.112 ng/mL for CASP-1, <0.053 ng/mL

for CASP-4, 3.3 pg/mL for pro-IL-1b, <1 pg/mL for mature

IL-1b, and <12.5 pg/mL for IL-18. The IL-1b ELISA kit

measured about 10% of the pro-IL-1b. The immunoassays

for NLR family CARD domain-containing protein

4 (NLRC4) and NOD1 did not meet our criteria for valida-

tion; instead, immunoblotting was performed.

Immunohistochemistry

Tissue sections (5-mm thick) were prepared from the chorioam-

niotic membranes (PTL and PTL-ACA, n ¼ 10 each).

Table 1. Demographic and Clinical Characteristics of the Study Groups.

PTL (n ¼ 33) PTL-ACA (n ¼ 37) P Value

Maternal age, years, median (IQR)a 24.5 (19.8-32.3) 26 (21-31.3) NS
Race, n (%)b NS
African American 24 (72.7) 30 (81.1)
Caucasian 4 (12.1) 5 (13.5)
Other 5 (15.2) 2 (5.4)

Maternal weight, kg, median (IQR)a 65.5 (54-75.3) 69.5 (54-85) NS
Body mass index, kg/m2, median (IQR)a 24.6 (20.6-29) 24.4 (20.2-32.9) NS
Primiparity, n (%)b 5 (15.2) 5 (13.5) NS
Gestational age at delivery, weeks, median (IQR)a 31.7 (30-33) 31.8 (30.3-32.9) NS
Birth weight, g, median (IQR)a 1571.5 (1193.8-1928.8) 1560 (1218.8-1906.3) NS
Cesarean section, n (%)b 8 (24.2) 7 (18.9) NS
Acute histologic chorioamnionitis, n (%)b 0 (0) 37 (100) <.0001

Abbreviations: PTL, preterm labor without acute histologic chorioamnionitis; PTL-ACA, preterm labor with acute histologic chorioamnionitis; IQR, interquartile
range; NS, non-significant.
aMann-Whitney U test.
bFisher’s exact test.
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Immunohistochemistry for NLRP1, NLRP3, NLRC4, AIM2,

NOD1, NOD2, CASP-1, CASP-4, IL-1b, and IL-18 was per-

formed, as previously described.114 Supplementary Table 2

includes the utilized primary antibodies and immunostaining

conditions. Quantification of the intensity was performed using

a PerkinElmer Panoramic MIDI slide scanner (PerkinElmer,

Waltham, Massachusetts).

Immunoblotting

The protein quantity of NLRC4 and NOD1, as well as the

active/mature forms of CASP-1, CASP-4, and IL-18, was

determined by immunoblotting. Tissue lysates (50 mg per

well) were subjected to 4% to 12% sodium dodecyl

sulphate-polyacrylamide gel electrophoresis (Invitrogen).

Separated proteins were then transferred onto nitrocellulose

membranes (Bio-Rad). Next, membranes were submerged in

blocking solution (5% nonfat dry milk in Tris-buffered sal-

ine containing 0.1% Tween-20, Bio-Rad or StartingBlock

T20 Block Buffer, ThermoFisher Scientific, Inc, Rockford,

Illinois) and probed overnight at 4�C with the following

human antibodies: mouse anti-NLRC4 antibody (BioLeg-

end, San Diego, California), rabbit anti-NOD1 polyclonal

antibody (Enzo Life Sciences, Farmingdale, New York174),

mouse anti-CASP-1 monoclonal antibody (R&D Systems),

rabbit anti-CASP-4 polyclonal antibody (Abcam, Cam-

bridge, Massachusetts), or rabbit anti-IL-18 polyclonal

antibody (Santa Cruz Biotechnology, Dallas, Texas).

A horseradish peroxidase-conjugated anti-mouse or anti-

rabbit immunoglobulin G (IgG; Cell Signaling, Boston,

Massachusetts) was used as a secondary antibody. Chemi-

luminescence signals were detected with ChemiGlow West

Reagents (Protein Simple, Santa Clara, California), and

images were acquired using the FUJIFILM LAS-4000 Ima-

ging System (FUJIFILM North America Corporation, Val-

halla, New York). Finally, nitrocellulose membranes were

then stripped with Restore Plus Western Blot Stripping Buf-

fer (Pierce Biotechnology, ThermoFisher Scientific Inc) for

15 minutes, washed with 1X PBS, blocked, and reprobed for

1 hour at room temperature with a mouse anti-beta-actin

(ACTB) monoclonal antibody (Sigma-Aldrich). Chemilumi-

nescence signals were again detected with ChemiGlow West

Reagents, and images were acquired using the FUJIFILM

LAS-4000 Imaging System.

In Situ Proximity Ligation Assay

ASC/CASP-1 complex formation was detected by identifying

protein interactions between ASC and CASP-1 using a Duo-

link in situ proximity ligation assay kit (Olink Bioscience,

Uppsala, Sweden), following the manufacturer’s instructions.

Briefly, chorioamniotic membrane tissues (PTL and PTL-

ACA, n ¼ 7 each) were frozen in Tissue-Plus O.C.T. com-

pound (Fisher HealthCare, Houston, Texas) immediately after

collection. Cryogenic sections were cut to 10 mm and placed

on glass microscope slides (Fisherbrand Superfrost Plus

slides; Thermo Scientific, Waltham, Massachusetts). The sec-

tions were fixed using 4% paraformaldehyde (Electron Micro-

scopy Sciences, Hatfield, Pennsylvania) for 20 minutes at

room temperature, rinsed with 1X PBS, and permeabilized

using 0.25% Triton X-100 (Promega, Madison, Wisconsin)

for 5 minutes at room temperature. Prior to staining, nonspe-

cific antibody interactions were blocked using serum-free

protein blocker (Cat#X09090; DAKO North America, Car-

pinteria, California) for 30 minutes at room temperature. The

sections were then stained at 4�C overnight with the following

antibodies: rabbit anti-human ASC (Cat#AG-25B-0006-

C100; Adipogen, San Diego, California) and mouse anti-

human CASP-1 (Cat#MAB6251, clone 661228; R&D Sys-

tems, Minneapolis, Minnesota). Rabbit IgG and mouse IgG2A

were used as negative controls, respectively. Following stain-

ing, slides were briefly washed with 1X Wash Buffer A from

the Duolink kit and incubated with the provided proximity

ligation assay probes for 1 hour at 37�C, followed by a second

wash with Wash Buffer A. The slides were then incubated

with Duolink ligase solution for 30 minutes at 37�C, washed

with Wash Buffer A, and incubated for 100 minutes with

Duolink polymerase solution. The slides were washed with

1X Wash Buffer B and mounted with Duolink mounting

media with DAPI (4’,6-diamidino-2-phenylindole). Immuno-

fluorescence was visualized using an Olympus BX60 fluores-

cence microscope (Olympus, Tokyo, Japan) at 400�

magnification. Images were acquired using an Olympus

DP71 camera and DP Controller software (Olympus). Semi-

quantification was performed using the Duolink image analy-

sis software. Images and a video were acquired using a Zeiss

LSM 800 laser scanning confocal microscope (Carl Zeiss

Microscopy, Jena, Germany) at the Microscopy, Imaging, and

Cytometry Resources Core at Wayne State University School

of Medicine (http://micr.med.wayne.edu/). ASC/CASP-1

complex formation was calculated by dividing the number of

signals over the area of the tissue, which was expressed as

pixels.

Statistical Analyses

The SPSS version19.0 software (SPSS Inc, Chicago, Illinois)

was used to analyze demographic and clinical data. Compar-

isons between the 2 groups (PTL vs PTL-ACA) were per-

formed using the Fisher’s exact test for proportions as well

as the Mann-Whitney U test for nonnormally distributed con-

tinuous variables. Gene expressions relative to ACTB/

GAPDH/RPLP0 were calculated as �DCt values, where DCt

(DCt ¼ Cttarget � Ctreference) was computed for each sample

after averaging the Ct values over the technical replicates.

Group means of gene expression were then compared using

t tests from an analysis of variance linear model and the

resulting P values were adjusted using the Benjamini-

Hochberg procedure. Spearman correlations were used to

examine the relationship between inflammasome components

and products. An adjusted P value of �.05 was considered

statistically significant.
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Results

mRNA Abundance and Protein Expression of

Inflammasome Components and NOD Proteins

in the Chorioamniotic Membranes in Spontaneous

Preterm Labor with and without Acute

Histologic Chorioamnionitis

First, the expression of major inflammasome components

(NLRP1, NLRP3, AIM2, and NLRC4) and NOD proteins

(NOD1 and NOD2) was determined in the chorioamniotic

membranes from women who had undergone spontaneous pre-

term labor. The chorioamniotic membranes from women who

had undergone spontaneous preterm labor with and without

acute histologic chorioamnionitis expressed all of the inflam-

masome components. The mRNA abundance of NLRP1,

NLRP3, NLRC4, and NOD2 was higher in the chorioamniotic

membranes from women who underwent spontaneous preterm

labor with acute histologic chorioamnionitis than in those with-

out this placental lesion (Figures 1A and 2A). The protein

concentrations of NLRP3 were greater in the chorioamniotic

membranes from women who underwent spontaneous preterm

labor with acute histologic chorioamnionitis than in those with-

out this placental lesion (Figure 1B). Whereas the protein

concentrations of AIM2 and NOD2 were lower in the chor-

ioamnioticmembranes fromwomenwhounderwent spontaneous

Figure 1. Inflammasome components and NOD2 protein in the chorioamniotic membranes. A, mRNA abundance of inflammasome compo-
nents and NOD2 protein in the chorioamniotic membranes from women in spontaneous preterm labor with (PTL-ACA, n ¼ 37) or without
(PTL, n ¼ 33) acute histologic chorioamnionitis. Relative gene expressions are presented as �DCt values. T tests from an analysis of variance
(ANOVA) linear model and the resulting P values were adjusted using the Benjamini-Hochberg procedure. B, Protein concentrations of
inflammasome components and NOD2 in chorioamniotic membrane tissue lysates (n ¼ 10 each). Mann-Whitney U tests. C, Representative
immunostainings for inflammasome components and NOD2 in the chorioamniotic membranes (n ¼ 10 each), 200� magnification. Circles
denote outlier values. mRNA indicates messenger RNA; NOD, nucleotide-binding oligomerization domain; PTL, preterm labor without acute
histologic chorioamnionitis; PTL-ACA, preterm labor with acute histologic chorioamnionitis.
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preterm labor with acute histologic chorioamnionitis than in

those without this placental lesion (Figure 1B). The protein

concentrations of NLRP1, NLRC4, and NOD1 were similar

between these 2 groups (Figures 1B, 2B and E).

Immunohistochemistry analysis revealed that all of the

inflammasome components and NOD proteins were expressed

in the chorioamniotic membranes from women who had under-

gone spontaneous preterm labor with and without acute histo-

logic chorioamnionitis. The NLRP1, NLRP3, NLRC4, and

NOD2 proteins showed strong immunoreactivity in the chor-

ionic trophoblast cells, decidual stromal cells, and amniotic

mesodermal and epithelial cells (Figures 1C and 2C). However,

AIM2 and NOD1 showed weak immunoreactivity in the chor-

ionic trophoblast cells, decidual stromal cells, and amniotic

mesodermal and epithelial cells (Figures 1C and 2F).

The combined increase in the mRNA abundance and protein

expression of NLRP3 in the chorioamniotic membranes from

women who underwent spontaneous preterm labor with acute

histologic chorioamnionitis suggests that the inflammasome

may participate in the pathological activation of the innate

immune system, leading to preterm labor in the setting of

intraamniotic inflammation.

Activation of CASP-1 and CASP-4 in the Chorioamniotic

Membranes in Spontaneous Preterm Labor with Acute

Histologic Chorioamnionitis

Next, we examined whether the increased concentration of

NLRP3 was linked to the activation of CASP-1 and CASP-4

in the chorioamniotic membranes from women who had under-

gone spontaneous preterm labor with acute histologic chor-

ioamnionitis. The mRNA abundance of CASP1 and CASP4

was greater in the chorioamniotic membranes from women

who underwent spontaneous preterm labor with acute histolo-

gic chorioamnionitis than in those without this placental lesion

(Figure 3A). Although the protein concentrations of CASP-1

and CASP-4 were not significantly different between the

2 groups (Figure 3B), semiquantitative analysis of immunostaining

revealed that CASP-1 was increased in the chorioamniotic

membranes from women who underwent spontaneous preterm

labor with acute histologic chorioamnionitis (Figure 3C). Also,

the protein quantities of one of the active forms of CASP-1

(p10) and the active form of CASP-4 (p20) were increased in

the chorioamniotic membranes from women who had under-

gone spontaneous preterm labor with acute histologic

Figure 2. NLRC4 and NOD1 in the chorioamniotic membranes. (A and D) mRNA abundance of NLRC4 and NOD1 in the chorioamniotic
membranes from women in spontaneous preterm labor with (PTL-ACA, n ¼ 37) or without (PTL, n ¼ 33) acute histologic chorioamnionitis.
Relative gene expressions are presented as �DCt values. T tests from an analysis of variance (ANOVA) linear model and the resulting P values
were adjusted using the Benjamini-Hochberg procedure. (B and E) Protein quantity of NLRC4 and NOD1 in chorioamniotic membrane tissue
lysates (n ¼ 6-9 each). Mann-Whitney U tests. (C and F) Intensity of the immunostainings for NLRC4 and NOD1 in the chorioamniotic
membranes (n ¼ 10 each) and representative immunostainings, 200� magnifications. Mann-Whitney U tests. Circles denote outlier values.
mRNA indicates messenger RNA; NLRC4, NLR family CARD domain-containing protein 4; NOD, nucleotide-binding oligomerization domain;
PTL, preterm labor without acute histologic chorioamnionitis; PTL-ACA, preterm labor with acute histologic chorioamnionitis.
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chorioamnionitis (Figure 4A, D, E, and G). In contrast, pro-

CASP-1 was reduced in the chorioamniotic membranes from

women who had undergone spontaneous preterm labor with

acute histologic chorioamnionitis (Figure 4B). The active form

of CASP-1 (p20) in the chorioamniotic membranes from

women who had undergone spontaneous preterm labor with

acute histologic chorioamnionitis seemed to be lower than in

those without this placental lesion; yet, this reduction did not

reach statistical significance (P¼ .07, Figure 4C). The quantity

of the pro-CASP-4 was not different between these 2 groups

(Figure 4F). Altogether, these findings provide evidence that

there is activation of CASP-1 in the chorioamniotic mem-

branes, which is likely mediated by the inflammasome and

active CASP-4 during spontaneous preterm labor with acute

histologic chorioamnionitis.

Increased mRNA Abundance and Protein Expression of

IL-1b in the Chorioamniotic Membranes in Spontaneous

Preterm Labor with Acute Histologic Chorioamnionitis

Active forms of CASP-1 can convert pro-IL-1b into its mature

form.154-156,175,176 Active CASP-4 can also induce the nonca-

nonical activation of IL-1b.171,177-181 Hence, we determined

whether the activation of CASP-1 and CASP-4 was correlated

with the abundance of the mature form of IL-1b in the chor-

ioamniotic membranes from women who had undergone spon-

taneous preterm labor with acute histologic chorioamnionitis.

The mRNA abundance of IL1B in the chorioamniotic mem-

branes from women who underwent spontaneous preterm labor

with acute histologic chorioamnionitis was increased compared

to those without this placental lesion (Figure 5A). The

Figure 3. mRNA and protein expression of inflammatory caspases in the chorioamniotic membranes. A, mRNA abundance of
caspase (CASP1) and CASP4 in the chorioamniotic membranes from women in spontaneous preterm labor with (PTL-ACA,
n ¼ 37) or without (PTL, n ¼ 33) acute histologic chorioamnionitis. Relative gene expressions are presented as �DCt values.
T tests from an analysis of variance (ANOVA) linear model and the resulting P values were adjusted using the Benjamini-Hochberg
procedure. B, Protein concentrations of CASP-1 and CASP-4 in the chorioamniotic membrane tissue lysates (n ¼ 10 each).
Mann-Whitney U tests. C, Intensity of the immunostainings for CASP-1 and CASP-4 in the chorioamniotic membranes (n ¼ 10 each)
and representative immunostainings, 200� magnifications. Mann-Whitney U tests. Circles denote outlier values. mRNA indicates
messenger RNA; PTL, preterm labor without acute histologic chorioamnionitis; PTL-ACA, preterm labor with acute histologic
chorioamnionitis.
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concentration of mature IL-1b was greater in the chorioamnio-

tic membranes from women who had undergone spontaneous

preterm labor with acute histologic chorioamnionitis than in

those without this placental lesion (Figure 5B). In contrast, the

concentration of pro-IL-1b was reduced in preterm cases with

acute histologic chorioamnionitis (Figure 5B). Furthermore,

IL-1b intensity was stronger in the chorioamniotic membranes

from women who underwent spontaneous preterm labor with

acute histologic chorioamnionitis than in those without this

placental lesion (Figure 5C). These data suggest that the active

forms of CASP-1 and CASP-4 may be involved in the pro-

cessing of mature IL-1b in the chorioamniotic membranes

during spontaneous preterm labor with acute histologic

chorioamnionitis.

An Increase in the Protein Expression and Mature

Form of IL-18 in the Chorioamniotic Membranes in

Spontaneous Preterm Labor with Acute

Histologic Chorioamnionitis

Active forms of CASP-1 can convert pro-IL-18 into its mature

form.157Also, CASP-4 plays a role in the activation and release

of IL-18 in response to enteric pathogens (eg, Salmonella typhi-

murium and enteropathogenic Escherichia coli) through intra-

cellular endotoxin sensing.179 Next, we examined whether the

activation of CASP-1 and CASP-4 was linked to the release of

mature IL-18 by the chorioamniotic membranes from women

who underwent spontaneous preterm labor with acute histolo-

gic chorioamnionitis. In line with previously published data,173

we found that the chorioamniotic membranes from women who

had undergone spontaneous preterm labor with acute histologic

chorioamnionitis had a greater protein concentration of IL-18

(Figure 6B) and a higher quantity of the mature form of this

cytokine (Figure 6D) than those without this placental lesion.

No significant differences were observed in the mRNA abun-

dance (Figure 6A) and immunoreactivity (Figure 6C) of IL-18

in the chorioamniotic membranes between these 2 groups.

These data demonstrate that the activation of CASP-1 and

CASP-4 is associated with an increase of the protein concen-

tration and mature form of IL-18 in the chorioamniotic mem-

branes from women who had undergone spontaneous preterm

labor with acute histologic chorioamnionitis.

A subanalysis of the protein data demonstrated positive and

significant correlations between (1) active CASP-1 and mature

IL-1b (Spearman r¼ .58, P¼ .032, Supplementary Figure 1A);

(2) NLRP3 and mature IL-1b (Spearman r ¼ .76, P < .001,

Supplementary Figure 1B); (3) active CASP-1 and NLRP3

(Spearman r ¼ .69, P ¼ .008, Supplementary Figure 1C); (4)

mature IL-18 and NLRP3 (Spearman r ¼ .53, P ¼ .036, Sup-

plementary Figure 1D); and (5) active CASP-4 andmature IL-1b

(Spearman r ¼ .61, P¼ .019, Supplementary Figure 1E). These

results suggest that all of these proteins are increased in chor-

ioamniotic membrane samples from women who underwent

spontaneous preterm labor with acute histologic chorioamnioni-

tis compared to those without this placental lesion.

Figure 4. Inflammatory caspases in the chorioamniotic membranes. Immunoblotting of caspase (CASP)-1 (A) in the chorioamniotic membranes
from women in spontaneous preterm labor with (PTL-ACA, n¼ 7) or without (PTL, n¼ 7) acute histologic chorioamnionitis. Quantification of
the zymogen (B) and its active forms (C and D). Immunoblotting of CASP-4 (E) in the chorioamniotic membranes from women in spontaneous
preterm labor with (PTL-ACA, n¼ 7) or without (PTL, n¼ 7) acute histologic chorioamnionitis. Quantification of the zymogen (F) and its active
form (G). ACTB was used as an internal control and for quantifications. Mann-Whitney U tests; PTL, preterm labor without acute histologic
chorioamnionitis; PTL-ACA, preterm labor with acute histologic chorioamnionitis.
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Increased ASC/CASP-1 Complex Formation in the

Chorioamniotic Membranes in Spontaneous Preterm

Labor with Acute Histologic Chorioamnionitis

Since there were positive correlations between the NLRP3

protein, the active form of CASP-1, and the mature forms of

IL-1b and IL-18, we next investigated whether there was

inflammasome assembly in the chorioamniotic membranes

from women who underwent spontaneous preterm labor with

acute histologic chorioamnionitis. Inflammasome assembly

includes the oligomerization of the NLR protein, adaptor pro-

tein ASC, and CASP-1;149,182 therefore, we used an in situ

proximity ligation assay in order to determine the formation

of ASC/CASP-1 complexes. ASC/CASP-1 complexes were

identified in the chorioamniotic membranes from women who

underwent spontaneous preterm labor with and without acute

histologic chorioamnionitis (Figure 7A and B). However, ASC/

CASP-1 complexes were greater in the chorioamniotic mem-

branes from women who had undergone spontaneous preterm

labor with acute histologic chorioamnionitis than in those with-

out this placental lesion (Figure 7C). ASC/CASP-1 com-

plexes were not detected in isotype controls (Figure 7D and

E). A 3D reconstruction shows that there are ASC/CASP-1

complexes in all of the layers of the chorioamniotic

membranes from women who underwent spontaneous

preterm labor with acute histologic chorioamnionitis

(Supplementary Video 1). These findings provide evidence

that there is inflammasome assembly in the chorioamniotic

Figure 5. Interleukin (IL)-1b in the chorioamniotic membranes. A, mRNA abundance of IL1B in the chorioamniotic membranes from women in
spontaneous preterm labor with (PTL-ACA, n ¼ 37) or without (PTL, n ¼ 33) acute histologic chorioamnionitis. Relative gene expressions are
presented as �DCt values. T tests from an analysis of variance (ANOVA) linear model and the resulting P values were adjusted using the
Benjamini-Hochberg procedure. Circles denote outlier values. B, Protein concentrations of the pro- and mature form of IL-1b in the chor-
ioamniotic membrane lysates (n ¼ 10 each). Mann-Whitney U tests. C, Intensity of the immunostainings for IL-1b in the chorioamniotic
membranes (n ¼ 10 each) and representative immunostainings, 200� magnifications. Mann-Whitney U tests. mRNA indicates messenger RNA;
PTL, preterm labor without acute histologic chorioamnionitis; PTL-ACA, preterm labor with acute histologic chorioamnionitis.
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membranes during spontaneous preterm labor with acute

histologic chorioamnionitis.

Discussion

Principal Findings of the Study

When comparing the chorioamniotic membranes from women

in spontaneous preterm labor with acute histologic chorioam-

nionitis to those without this placental lesion, we found that (1)

the mRNA expression of NLRP1, NLRP3, NLRC4, and NOD2

was higher; (2) the NLRP3 protein was increased; (3) the

mRNA and active form of CASP-1 were greater; (4) the mRNA

and active form of CASP-4 were increased; (5) the mRNA and

mature form of IL-1bwere higher; (6) the mature form of IL-18

was elevated; and (7) ASC/CASP-1 complexes were increased.

Altogether, these findings provide the first evidence that

supports a role for the inflammasome in the pathological

inflammatory process in the chorioamniotic membranes from

women who had undergone spontaneous preterm labor with

acute histologic chorioamnionitis.

A role for the inflammasome in the physiological112-114 and

pathological113,114 inflammatory process of term parturition

has been previously reported. Herein, we provided the first

evidence that the NLRP3 inflammasome is involved in the

pathological pro-inflammatory process of preterm parturition.

The NLRP3 inflammasome includes the NLRP3 protein, the

adaptor molecule ASC with 2 death-fold domains (1 pyrin

domain and 1 CARD), and pro-CASP-1.144,151,183,184 Several

stimuli185-191 including crystalline material,187,192 necrosis-

derived extracellular adenosine triphosphate,193 vaccine adju-

vants,194-198 phospholipid cardiolipin and mitochondrial

DNA,199-201 bacterial toxins,193,202,203 and other DAMPs189,190

and pathogen-associated molecular patterns (PAMPs)120,204-214

can induce the activation of the NLRP3 inflammasome. The

process of activation of this inflammasome includes 2 steps—

the priming and the oligomerization or assembly of the multi-

protein complex.182,215 The first step includes the sensing of

Figure 6. Interleukin (IL)-18 in the chorioamniotic membranes. A, mRNA abundance of IL18 in the chorioamniotic membranes from women in
spontaneous preterm labor with (PTL-ACA, n ¼ 37) or without (PTL, n ¼ 33) acute histologic chorioamnionitis. Relative gene expressions are
presented as �DCt values. T tests from an analysis of variance (ANOVA) linear model and the resulting P values were adjusted using the
Benjamini-Hochberg procedure. B, Protein concentrations of IL-18 in the chorioamniotic membrane tissue lysates (n¼ 10 each). Mann-Whitney
U tests. C, Intensity of the immunostainings for IL-18 in the chorioamniotic membranes (n¼ 10 each) and representative immunostainings, 200�
magnifications. Mann-Whitney U tests. D, Immunoblotting of IL-18 and its mature form in the chorioamniotic membranes and their quantifica-
tions (n¼ 7-9 each). ACTB was used as an internal control and for quantifications. Mann-Whitney U tests. Circles denote outlier values. mRNA
indicates messenger RNA; PTL, preterm labor without acute histologic chorioamnionitis; PTL-ACA, preterm labor with acute histologic
chorioamnionitis.
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the DAMP and/or PAMP via the PRR which, in turn, induces

the activation of the nuclear factor kappa B pathway, resulting

in the upregulation of the NLRP3 protein and the expression of

pro-IL-1b.182,215,216 The second step permits the oligomeriza-

tion or assembly of the inflammasome complex, which

includes the NLRP3, ASC, and CASP-1 proteins.182,215 The

current study provides evidence that there is priming and

assembly of the NLRP3 inflammasome complex in the chor-

ioamniotic membranes during spontaneous preterm labor with

acute histologic chorioamnionitis. It is worth mentioning that

there were some ASC/CASP-1 complexes (ie, inflammasome

assembly) in the chorioamniotic membranes from women who

underwent spontaneous preterm labor without acute chorioam-

nionitis. These data suggest that the inflammasome is also

involved in the process of preterm parturition in the absence

of acute histologic chorioamnionitis.

Oligomerization of the inflammasome leads to the recruit-

ment of ASC, which binds and activates pro-CASP-1 via its

CARD.144,217 In the study herein, we found that the mRNA

abundance, immunoreactivity, and the active form of CASP-1

(p10) are increased in the chorioamniotic membranes in spon-

taneous preterm labor with acute histologic chorioamnionitis.

This finding is consistent with previous studies demonstrating

that: (1) amniotic fluid CASP-1 concentrations are greater in

women who underwent spontaneous preterm labor with

intraamniotic infection/inflammation than in those who under-

went preterm labor without this clinical condition;113 and (2)

CASP-1 concentration and the abundance of its mature form

are increased in the uteri of mice prior to inflammation-induced

preterm birth (mice injected with peptidoglycan and

polyinosinic-polycytidylic acid) compared to term controls.218

Together, these data suggest that during spontaneous preterm

labor with acute histologic chorioamnionitis, the chorioamnio-

tic membranes release abundant quantities of the active form of

CASP-1, which is most likely mediated by the inflammasome.

CASP-4 (murine homologue CASP-11) is implicated in the acti-

vation of CASP-1 and participates in the non-cannonical activation

of the inflammasome.149,172,213,219 In the current study, we found

that the mRNA abundance of CASP-4 and its mature form (p20)

were increased in the chorioamniotic membranes from women

who underwent spontaneous preterm labor with acute histologic

chorioamnionitis. These data indicate that CASP-4 could be

mediating the noncanonical activation of the inflammasome in

spontaneous preterm labor with acute histologic chorioamnio-

nitis. We suggest that the activation of CASP-4 is also impli-

cated in the induction of preterm parturition in the setting of

sterile intraamniotic inflammation. This concept is based on

2 observations—(1) CASP-4 can induce the release of alarmins

in a CASP-1–independent manner172 and (2) the intraamniotic

administration of HMGB1 (a classic alarmin220) can induce

preterm labor and birth.221

Following activation, CASP-1 converts inactive pro-IL-1b

into its mature and secreted form.155,222-228 IL-1b induces the

expression and release of different mediators implicated in the

Figure 7. ASC/caspase (CASP)-1 complex formation in the chorioamniotic membranes. In situ proximity ligation assays for ASC and CASP-1 in
the chorioamniotic membranes from women in spontaneous preterm labor with (PTL-ACA) or without (PTL) acute histologic chorioamnio-
nitis. (A and B) Representative images of ASC/CASP-1 complexes (red signal) in PTL and PTL-ACA groups. (D and E) Representative images of
isotype controls in PTL and PTL-ACA groups. The blue signal is DAPI (nuclei). 400� magnifications. C, Semi-quantification of the number of
ASC/CASP-1 complexes in the chorioamniotic membranes (PTL and PTL-ACA, n ¼ 7 each). ASC/CASP-1 complexes were calculated by
dividing the number of signals over the area of the tissue, which was expressed as pixels. Mann-Whitney U tests.
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process of labor.229-235 Indeed, the administration of IL-1b

causes preterm birth in mice 236,237 and monkeys,238-245 con-

firming an essential role for this cytokine in the pathological

process of labor. This effect can be abrogated by the adminis-

tration of the IL-1b receptor antagonist.237 In the study herein,

we demonstrated that the chorioamniotic membranes from

women in spontaneous preterm labor with acute histologic

chorioamnionitis released high amounts of mature IL-1b,

which is most likely mediated by the active forms of CASP-

1. This mature form of IL-1b will then participate in the patho-

logical pro-inflammatory milieu that accompanies the prema-

ture process of labor. It is worth mentioning that pro-IL-1b was

reduced in the chorioamniotic membranes from women in

spontaneous preterm labor with acute histologic chorioamnio-

nitis compared to those without this placental lesion, which is

most likely due to the processing of this zymogen into its

mature form.

The active forms of CASP-1157-160,163 and CASP-4179 can

also convert pro-IL-18 into its mature form. IL-18 is present in

the amniotic fluid, and its concentration is greater in women

who underwent spontaneous preterm labor with microbial inva-

sion of the amniotic cavity than in those without this clinical

condition.173,246 In the present study, the total concentration

and mature form of IL-18 was increased in the chorioamniotic

membranes from women who underwent spontaneous preterm

labor with acute histologic chorioamnionitis. IL-18 is a major

interferon g inducing factor that activates Th-1 responses in T

cells andnatural killer cells.247-254Therefore, it is likely that IL-

18 participates in the cellular pro-inflammatory milieu in

the chorioamniotic membranes during spontaneous preterm

labor with acute histologic chorioamnionitis.

Conclusion

Herein, we provide the first evidence that supports a role for the

NLRP3 inflammasome and CASP-4 in the activation of CASP-

1 and the consequent release of mature IL-1b and IL-18 by the

chorioamniotic membranes from women who underwent spon-

taneous preterm labor with acute histologic chorioamnionitis.

These findings provide insight into the mechanisms that are

implicated in the pathological pro-inflammatory process of

spontaneous preterm labor in acute inflammation of the chor-

ioamniotic membranes.
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