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Introduction

In plants, rigid cell walls restrict changes in cell shape and size. 

As a result, polarized secretion of cell wall components takes on 

particular importance during growth and development. Polar 

expansion in root hairs, a polarized plant cell type, is accompa-

nied by accumulation of secretory compartments behind the 

growing tips of these cells (for reviews see Schnepf, 1986; 

Dolan, 2001). The Arabidopsis thaliana Rab GTPase, RabA4b, 

speci� cally labels TGN-like compartments displaying polar-

ized localization in expanding root hair cells (Preuss et al., 2004). 

Although RabA4b-labeled compartments are thought to deliver 

new cell wall components to  expanding root hair tips, little is 

known about mechanisms for sorting and targeting  secretory 

vesicles. Rab GTPases regulate membrane traf� cking steps by 

recruiting cytosolic effector proteins to their speci� c subcellular 

compartment (for review see Zerial and McBride, 2001;  Vernoud 

et al., 2003). Therefore, to better understand the role RabA4b 

 GTPases play in traf� cking secretory cargo, we characterized 
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proteins that selectively interact with RabA4b in its active (GTP 

bound) conformation.

It is becoming increasingly clear that phosphoinositides 

play key roles in membrane traf� cking steps along the secretory 

pathway. Speci� c phosphoinositide isoforms, and proteins that 

speci� cally bind these lipids, preferentially mark different sub-

cellular membranes (Thorner, 2001; for reviews see Simonsen 

et al., 2001; Bankaitis and Morris, 2003). Despite their  impor-

tance in membrane traf� cking, little is known about how their 

generation and turnover is regulated upon speci� c  elements of 

the secretory system.

We show that the A. thaliana RabA4b GTPase speci� cally 

interacts with the phosphatidylinositol 4-OH kinase, PI-4Kβ1, and 

both colocalize to tip-localized membranes in growing root hairs. 

In transfer DNA (T-DNA) insertional mutants, where both 

PI-4Kβ1 and its close relative PI-4Kβ2 are disrupted, root hairs 

have aberrant morphology. The novel homology (NH)  domain, 

speci� c to this class of PI-4Ks, is suf� cient for interaction with 

RabA4b, and the NH2-terminal domain of PI-4Kβ1 speci� cally 

 interacts with A. thaliana calcineurin B–like protein (AtCBL1), 

a Ca2+- sensor protein. Finally, tip localization of RabA4b mem-

branes is disrupted by collapsing the tip-focused Ca2+ gradient in 

root hair cells. Based on these observations, we propose a model for 

RabA4b and PI-4Kβ1 action during polarized root hair expansion.
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T
he RabA4b GTPase labels a novel, trans-Golgi 
 network compartment displaying a developmentally 
regulated polar distribution in growing Arabidopsis 

thaliana root hair cells. GTP bound RabA4b selectively 
recruits the plant phosphatidylinositol 4-OH kinase, 
PI-4Kβ1, but not members of other PI-4K families. PI-4Kβ1 
colocalizes with RabA4b on tip-localized membranes in 
growing root hairs, and mutant plants in which both the 
PI-4Kβ1 and -4Kβ2 genes are disrupted display aberrant 

root hair morphologies. PI-4Kβ1 interacts with RabA4b 
through a novel homology domain, specifi c to eukaryotic 
type IIIβ PI-4Ks, and PI-4Kβ1 also interacts with a Ca2+ 
sensor, AtCBL1, through its NH2 terminus. We propose 
that RabA4b recruitment of PI-4Kβ1 results in Ca2+-
 dependent generation of PI-4P on this compartment, 
 providing a link between Ca2+ and PI-4,5P2–dependent 
signals during the polarized secretion of cell wall compo-
nents in tip-growing root hair cells.
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Results and discussion

Rab GTPases perform their regulatory activities through 

 speci� c recruitment of cytosolic proteins when the Rab GTPase 

is in its active (GTP bound) state (for reviews see Novick and 

Brennwald, 1993; Zerial and McBride, 2001). Therefore, we 

screened a yeast two-hybrid expression library for interaction 

with a constitutively active (GTP bound) form of RabA4b. This 

resulted in identi� cation of a clone containing the COOH-

 terminal portion of PI-4Kβ1 (PI-4Kβ1∆1-421), which inter-

acted with the constitutively active (GTP bound) form of RabA4b 

but not the dominant-negative (GDP bound) form (Fig. 1 A). 

 Further, interaction of PI-4Kβ1∆1-421 with RabA4b was 

 selective, and no interaction with vacuole-localized RabG3c 

was detected (Fig. 1 A).

A. thaliana contains 12 PI-4Ks in three separate families: 

PI-4Kα, -β, and -γ (Stevenson et al., 2000; Mueller-Roeber and 

Pical, 2002). In yeast and animals, these PI-4K families localize to 

distinct subcellular compartments and have nonredundant func-

tions (Walch-Solimena and Novick, 1999; Hama et al., 2000; 

 Olsen et al., 2003). Consistent with this, we detected no interac-

tion of RabA4b with either PI-4Kα1 or -4Kγ6 (Fig. 1 A). Endo-

somal Rab GTPases from yeast (Ypt51) and mammals (Rab5) 

recruit phosphoinositide 3-OH kinases (PI-3Ks), which are 

 necessary for PI-3P accumulation on endosomes (Christoforidis 

et al., 1999; Gillooly et al., 2003; for review see Zerial and 

 McBride, 2001). AtVPS34, the plant PI-3K, also failed to inter-

act with either active or inactive RabA4b (Fig. 1 A). Collec-

tively, these results suggested that recruitment of PI-4Ks by 

RabA4b was selective for PI-4Kβ1.

We next determined which PI-4Kβ1 domains were 

 responsible for RabA4b interaction. PI-4Kβ1 contains several 

domains (Fig. 1 B; Mueller-Roeber and Pical, 2002), including 

the catalytic domain at the COOH terminus and a lipid kinase 

unique (LKU) domain that is conserved in type III PI-4Ks of 

both the α and β families (Balla, 1998; Mueller-Roeber and 

Pical, 2002). The NH domain is speci� c to β subfamily mem-

bers in yeast, animals, and plants (Xue et al., 1999), and a repe-

titive motif is unique to PI-4Kβ1 and -4Kβ2 in A. thaliana 

(Xue et al., 1999; Mueller-Roeber and Pical, 2002). Testing 

 different combinations of these domains indicated that the NH 

 domain interacted with RabA4b (Fig. 1 C). Surprisingly, in the 

yeast two-hybrid system, full-length PI-4Kβ1 was not able to 

interact with RabA4b. This occurred even though the full-length 

PI-4Kβ1 was expressed at levels similar to the PI-4Kβ1∆1-421 

construct that did interact with RabA4b (unpublished data).

Biochemical methods were used to con� rm the RabA4b–

PI-4Kβ1 interaction (Fig. 1 D). Af� nity columns were  generated 

using Escherichia coli–expressed GST-RabA4b, loaded with 

either GTPγS (active form) or GDP (inactive form). [35S]

Met-labeled, in vitro–translated PI-4Kβ1 was passed over the 

 column, and unlike the yeast two-hybrid assay, full-length 

PI-4Kβ1 was recruited to GST-RabA4b–GTPγS (Fig. 1 D). 

This indicated that the presence of the NH2 terminus did not 

 abrogate PI-4Kβ1 interaction with RabA4b. The minimal piece 

necessary for interaction in the yeast two-hybrid system, the 

NH domain, also associated with the GST-RabA4b–GTPγS 

at levels similar to the full-length construct. Speci� city of the 

PI-4Kβ1–RabA4b interaction was again demonstrated as 

PI-4Kγ6 and AtVPS34 were not recruited.

Unlike yeast and mammals, A. thaliana has two type IIIβ 

PI-4Ks. At the protein level, PI-4Kβ2 is 83% identical to 

PI-4Kβ1. Like PI-4Kβ1, the PI-4Kβ2 NH domain also interacted 

with the constitutively active form of RabA4b (Fig. 1 C). There-

fore, we concluded that both PI-4Kβ1 and -4Kβ2 proteins are 

Figure 1. RabA4b interacts specifi cally with PI-4K�1. (A) Yeast two-
 hybrid interaction of PI-4Kβ1∆1-421 with active GTP bound RabA4b (Q), 
but not inactive GDP bound RabA4b (S), was detected on high-stringency 
 media (−HisTrpLeu [HTL] + 3-AT). No interaction was observed with 
 vacuolar RabG3c; members of two other plant PI-4K classes, PI-4Kα1 and 
-4Kγ6; or the plant PI-3K AtVPS34. Presence of prey and/or bait vectors 
were monitored by growth in absence of tryptophan and leucine (−TL) 
or tryptophan (−T), respectively. (B) LKU, repetitive, NH, and catalytic 
 domains are  indicated. Deletion fragments of PI-4Kβ1 were constructed 
to determine the binding site of RabA4b. (C) Yeast two-hybrid interaction 
was seen between active RabA4b (Q) and PI-4Kβ1 fragments containing 
the NH domain (∆1-421 and NH) on selective media (−HisTrpLeu + 3-AT). 
No interaction was observed between RabA4b and other PI-4Kβ1 
 domains (LKU, repetitive, and catalytic). Surprisingly, full-length PI-4Kβ1 did 
not interact with RabA4b in the yeast two-hybrid system. (D) PI-4Kβ1 and 
its NH domain, but not PI-4Kγ6 and AtVPS34, were selectively recruited 
by active GST-RabA4b–GTPγS, confi rming the specifi city of the PI-4Kβ1–
RabA4b interaction.
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 effector proteins that are selectively recruited to the RabA4b 

GTPase in its active (GTP bound) form.

We next examined the intracellular localization of 

PI-4Kβ1. EYFP-RabA4b–labeled membranes localize to the 

tips of growing root hairs (Preuss et al., 2004). Therefore, if 

PI-4Kβ1 and RabA4b interact in vivo, they should colocalize at 

the tips of these cells. We generated anti–PI-4Kβ1 antibodies 

that recognized an endogenous plant protein band of �125 kD, 

the predicted size of PI-4Kβ1 (Fig. 2 A, arrow). PI-4Kβ1 was 

primarily membrane associated and was not detected in soluble 

protein fractions from whole plant tissue. Using immuno� uo-

rescence and confocal microscopy, we determined that PI-4Kβ1 

localized primarily to the tips of root hairs and overlapped with 

EYFP-RabA4b–labeled compartments (Fig. 2 B). This tip-

 localized PI-4Kβ1 � uorescence was speci� c, and no tip-localized 

� uorescence was detected when anti–PI-4Kβ1 antibodies were 

left out (Fig. 2, D and E). Further, these EYFP-RabA4b and 

PI-4Kβ1 membranes were distinct from plant Golgi compart-

ments in these cells, as no signi� cant overlap was observed 

 between PI-4Kβ1 and the plant Golgi marker EGFP-GmManI 

(Fig. 2 C; Nebenfuhr et al., 1999). These data are consistent 

with reports from the similar PI-4Ks in yeast and mammals. 

 Direct interaction between mammalian PI4KIIIβ and Rab11 

has been  reported (de Graaf et al., 2004). Also in yeast, Ypt31 

has been shown to interact genetically with Pik1p, although no 

physical interaction was demonstrated (Sciorra et al., 2004).

We then asked whether PI-4Kβ1 functions in the tip 

growth of root hair cells. We identi� ed SALK T-DNA inser-

tion lines for both PI-4Kβ1 and -4Kβ2 genes (Fig. 3 A). 

Plants homozygous for insertions in either the PI-4Kβ1 or 

-4Kβ2 genes alone showed no obvious phenotype (unpub-

lished data), even though by RT-PCR the appropriate PI-4Kβ 

transcript was not detected in either insertion line (Fig. 3 B). 

Using Western blot (Fig. 3 C) and immuno� uorescence (Fig. 

2 F), we were not able to detect a functional PI-4Kβ1 pro-

tein in the PI-4Kβ1/β2 double mutant. Surprisingly, the 

highly similar PI-4Kβ2 protein was not recognized by this 

antibody (see online supplemental material, available at http://

www.jcb.org/cgi/content/full/jcb.200508116/DC1). However, 

based on the lack of PI-4Kβ2 transcript (Fig. 3 B), no PI-4Kβ2 

protein should be present. Double-mutant plants were smaller 

than wild type (WT), and plants homozygous for the PI-4Kβ1 

T-DNA insertion but heterozygous for the PI-4Kβ2 T-DNA 

 insertion were intermediate in size (Fig. 3 D). The root hairs of 

PI-4Kβ1/β2 double mutants were shorter and were abnormal 

compared with WT root hairs (Fig. 3, E–G). The percentage 

of aberrant root hairs per root was much higher in PI-4Kβ1/β2 

double mutants than in WT plants (Fig. 3 G). This suggested 

that membrane traf� cking required for proper polarized growth 

is defective in the absence of PI-4Kβ1/β2 activity, and these 

effects are most pronounced in highly polarized cells, such as 

the root hair.

Present models suggest that recruitment of PI-4P interact-

ing proteins is essential for sorting and budding of transport 

vesicles from the Golgi/TGN (Levine and Munro, 2001, 2002). 

The secretion of cargo from the yeast Golgi complex requires 

 generation of PI-4P by Pik1p (Hama et al., 1999; Walch-Solimena 

and Novick, 1999). How does lack of PI-4Kβ1/β2 affect the 

organization of the TGN and the RabA4b compartment? We 

examined the morphology of TGNs in the PI-4Kβ1/β2 double 

mutants by electron microscopy. Compared with WT plants 

(Fig. 4 A, arrows), the TGN in PI-4Kβ1/β2 double mutants 

showed a lighter staining pattern and clustered budding pro� les 

(Fig. 4, B–D, arrowheads). This phenotype was consistently 

 observed in three independent samples from PI-4Kβ1/β2 dou-

ble mutants. Over 60% of TGN pro� les in PI-4Kβ1/β2 double 

Figure 2. PI-4K�1 colocalizes with EYFP-RabA4b on tip-localized compartments in root hair cells. (A) Anti-PI4Kβ1 recognized an �125-kD protein band 
(arrow) present in postnuclear supernatant (PNS) and membrane fractions (Pel) but not soluble fractions (Sol). The 40-kD band in soluble fractions is present 
only in green tissues and is not detected in isolated root protein fractions (not depicted). (B–E) A. thaliana seedlings were fi xed, processed for immuno-
fl uorescence, and analyzed by laser confocal microscopy to detect localization of EYFP-RabA4b or EGFP-GmManI fl uorescence (green) and PI-4Kβ1 (red). 
(B) PI-4Kβ1 was tip localized in root hairs. (C) PI-4Kβ1 localization (red) was distinct from Golgi membranes containing EGFP-GmManI (green). (D and E) 
Detection of tip-localized PI-4Kβ1 compartments was specifi c, as no tip-localized fl uorescence was observed if only anti–PI-4Kβ1 primary antibodies were 
left out (D) or no antibodies were used (E). (F) Only background fl uorescence was observed in root hairs of the PI-4Kβ1/β2 double mutant.
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mutants (n = 49) displayed this aggregated appearance, which 

was never observed in WT cells (n = 51). Using antibodies 

speci� c to RabA4b (Preuss et al., 2004), RabA4b labeled both 

WT TGN budding pro� les (Fig. 4 E, arrows) and the aberrant 

and aggregated structures in PI-4Kβ1/β2 double mutants (Fig. 

4 F, arrowheads). Additionally, even when aggregated struc-

tures were not apparent in the double mutant, we observed 

fewer TGN budding pro� les associated with Golgi complexes 

(Fig. 4 G). Although WT Golgi had a range of budding pro� les, 

the majority of pro� les had seven to nine distinct budding 

 pro� les per sample. In contrast, the PI-4Kβ1/β2 double mutant 

usually displayed only one to three budding pro� les per sample. 

Therefore, loss of PI-4Kβ1/β2 function resulted in morpholog-

ically altered RabA4b-labeled TGN compartments, consistent 

with the interference of proper targeting and delivery of cell 

wall material. From these results, we conclude that PI-4Kβ1/β2 

activity is necessary for proper organization of the TGN and 

post-Golgi secretion.

Finally, we examined the role Ca2+ binding proteins play 

in activation of PI-4Kβ1. Pik1p, the yeast (Saccharo myces 

cerevisiae) orthologue of PI-4Kβ1, is required for vesicular 

 traf� cking in the late secretory pathway (Hama et al., 1999; 

Walch-Solimena and Novick, 1999). Pik1p enzymatic activity 

is stimulated upon binding of frequenin, an EF-hand–containing 

Ca2+ binding protein (Hendricks et al., 1999; Huttner et al., 

2003). Similar Ca2+ sensors, AtCBLs, have been described 

in A. thaliana (Kudla et al., 1999). We tested four representa-

tive members of this family, AtCBL1, -2, -3, and -5 for inter-

action with PI-4Kβ1 by yeast two-hybrid analysis (Fig. 5 A).

AtCBL1 interacted with the NH2 terminus of PI-4Kβ1. 

AtCBL2  interaction was also sometimes detected, but growth 

rates were signi� cantly lower than those of AtCBL1 (unpub-

lished data). The AtCBL1–PI-4Kβ1 interaction was selective, 

as AtCBL3 and -5 did not interact with PI-4Kβ1. This sug-

gested that the AtCBL1–PI-4Kβ1 interaction is evolutionarily 

conserved and that AtCBL1, acting as a Ca2+ sensor, may 

modulate PI-4Kβ1 activity.

Proper tip growth in root hair cells requires a tip-focused 

Ca2+ gradient (for review see Dolan, 2001). The interaction 

between PI-4Kβ1 and AtCBL1 implicates a role for Ca2+ in the 

Figure 3. PI-4K�1/�2 function is essential for normal A. thaliana 
growth and root hair development. (A) Sequencing of β1-1 and 
β2-1 T-DNA insertion sites confi rmed the positions of the  
T-DNA inserts within PI-4Kβ1 (intron 7) and -4Kβ2 (intron 8) in 
these two lines. (B) Total RNA was extracted from seedlings 
 homozygous for a T-DNA insertion in PI-4Kβ1 (β1-1/β1-1), 
PI-4Kβ2 (β2-1/β2-1), or WT and used for RT-PCR. PI-4Kβ1 tran-
script was not detected in β1-1/β1-1, and PI-4Kβ2 transcript 
was not detected in β2-1/β2-1. Tubulin was amplifi ed as a load-
ing control. (C) Anti–PI-4Kβ1 antibodies detected an �125-kD 
protein band in immunoblots of total protein extracts from WT 
seedlings but not from PI-4Kβ1/PI-4Kβ2 double-mutant seed-
lings (β1-1/β1-1/β2-1/β2-1). (D) Double mutants (β1-1/β1-1/
β2-1/β2-1) were smaller than WT plants. Plants homozygous 
for the PI-4Kβ1 insertion but heterozygous for the PI-4Kβ2 inser-
tion (β1-1/β1-1/WT/β2-1) were intermediate in size. (E) Double-
mutant root hairs were shorter and growth was disorganized 
compared with WT. (F) Double-mutant root hairs were classifi ed 
into six classes based on their phenotype (normal, branched, 
bulged, popsicle, jagged, and wavy). Representative images of 
each class are shown. (G, left) WT root hairs were longer than 
in double mutants. wt, n = 817; β1/β2, n = 797. (right) Per-
centages of each root hair class were determined in mutant and 
WT plants. Most WT root hairs were normal in appearance 
(>90%). However, double mutants had <50% normal root hairs 
and much higher percentages of each class of deformed root 
hairs. Root hairs were counted from 19 WT and 21 β1-1/β1-1/
β2-1/β2-1 plants. Error bars indicate SD.
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regulation of PI-4Kβ1 activity. Therefore, we hypothesized that 

dissipation of the Ca2+ gradient in root hairs would alter the 

proper localization of EYFP-RabA4b compartments. Treatment 

of root hairs with A23187, a Ca2+ ionophore results in rapid 

loss of the tip-focused Ca2+ gradient (Wymer et al., 1997). 

When we treated growing root hair cells with A23187, a rapid 

dispersal of tip-localized EYFP-RabA4b was observed, accom-

panied by inhibition of root hair growth (Fig. 5, B and C). These 

results support our hypothesis that localization of RabA4b 

compartments is dependent on proper recruitment and activa-

tion of PI-4Kβ1 activity.

Initiation of tip growth in root hairs and pollen tubes is 

dependent on the formation of a tip-focused Ca2+ gradient (for 

reviews see Taylor and Hepler, 1997; Dolan, 2001; Yanagisawa 

et al., 2002). However, it is becoming increasingly clear that 

lipid-derived signaling molecules play important roles in estab-

lishing and maintaining these Ca2+ gradients. We have shown 

that the NH2 terminus of PI-4Kβ1, including the LKU domain, 

is capable of binding to AtCBL1, a plant homologue of 

 frequenin. In yeast, Pik1p activity is stimulated upon binding 

of frequenin to the LKU domain in a Ca2+-independent manner 

(Hendricks et al., 1999). But Ca2+ does enhance association of 

frequenin with membranes, which may promote the interaction 

of frequenin with Pik1p in vivo. If Ca2+ binding in the root hair 

tip stimulates AtCBL1 recruitment to RabA4b membranes, this 

would ultimately result in increased PI-4P production by 

PI-4Kβ1 on this compartment.

In summary, the recruitment and activity of PI-4Kβ1 on 

RabA4b-labeled membranes plays an important role during 

 polarized expansion of root hairs. Previously, we showed that 

localization of RabA4b-labeled membranes at root hair tips is 

associated with tip-restricted expansion (Preuss et al., 2004). 

Our model hypothesizes that recruitment of PI-4Kβ1 and 

AtCBL1 to RabA4b-labeled membranes results in localized 

PI-4K activity and enrichment of PI-4P on these compartments. 

Enrichment of PI-4P may stimulate recruitment of PI-4P bind-

ing domain proteins (Levine and Munro, 2002; Godi et al., 

2004; Balla et al., 2005), or the PI-4P could be delivered to 

tip-localized plasma membrane domains via fusion of RabA4b-

 labeled secretory compartments. There it might be a targeting 

determinant itself, or plasma membrane–localized PIP-5Ks, 

 recruited to the root hair and pollen tube tips by Rop GTPases 

(Kost et al., 1999), may phosphorylate PI-4P to PI-4,5P2. This is 

supported by the observation that PI-4,5P2 is primarily associ-

ated with plasma membranes in the tips of root hairs and pollen 

tubes (Bubb et al., 1998; Kost et al., 1999; Vincent et al., 2005). 

Therefore, RabA4b-dependent recruitment of PI-4Kβ1 would 

integrate the perception of tip-focused Ca2+ gradients and gen-

eration of phosphoinositide-derived signaling molecules for the 

organization of post-Golgi secretory compartments at the tips of 

growing root hairs.

Materials and methods

Cloning, sequence analysis, and plasmid constructions
Constitutively active (GTP bound) and dominant-negative (GDP bound) 
forms of RabA4b and -G3c were made using PCR-based techniques 
and cloned into the pGBKT7 bait vector (CLONTECH Laboratories, Inc.). 

The GTP bound RabA4b mutated Q68→L (primers 5′-T A C C G T C T C T C T G-
G A A C G A T A C A G A G C C G T -3′ and 5′-T C T C G T C T C T C C A G A C C A G C G G-
T A T C C C A G -3′) and the GDP bound RabA4b mutated S23→N (primers 
5′-T G T C G T C T C A A A C -C A A C T A C T T G C T C G A T T -3′ and 5′-A G C A C G T C T C-
T G G T T T T T C C C A A C A G C C G A -3′). Constitutively active and dominant-
negative forms of RabG3c were made by mutating Q68→L (primers 
5′-T G G G A T A C T G C A G G G C T A G A G A G G T T C C A A A G T -3′ and 5 ′ -A C T-
T T G G A A C C T C T -C T A G C C C T G C A G T A T C C C A -3′) and T22→N (primers 
5′-T G G C G T C T C A A G A A -C T C C T T G A T G A A T C A G -3′ and 5′-C A T C G T C T C-
G T T C T T C C -C A A C C C C A C T G T C -3′), respectively.

Full-length clones from TAIR of PI-3K (C105027), PI-4Kβ1 
(U21445), and PI-4Kγ6 (U21028) in the pUNI51 vector were cloned 
into the pGAD vector for yeast two-hybrid analysis. The PI-4Kα1 se-
quence in the pFastBac HT vector (a gift from W. Boss, North Carolina 

Figure 4. RabA4b-labeled membranes have altered morphologies in 
PI-4K�1/�2 double mutants. (A–F) High-pressure frozen/freeze- substituted 
root tip cells from WT or PI-4Kβ1/β2 double-mutant A. thaliana plants 
 expressing EYFP-RabA4b were processed for EM analysis. (A) Golgi (G) 
and TGN compartments from WT cells. Note distinct TGN budding pro-
fi les  (arrows). (B–D). In PI-4Kβ1/β2 double mutants, TGN were often aber-
rant, with lighter staining and clustered budding profi les (arrowheads). 
(E and F) Affi nity-purifi ed anti-RabA4b antibodies labeled TGN budding 
profi les in both WT (E, arrows) and PI-4Kβ1/β2 double mutants (F, arrow-
heads). (G) The numbers of distinct TGN budding profi les associated with 
each sample (defi ned as a section containing at least one discernible 
Golgi stack and associated TGN) were counted. WT averaged seven to 
nine TGN budding profi les per sample (n = 51), whereas only one to 
three TGN budding profi les were usually observed per sample in double 
mutants (n = 49).
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State University, Raleigh, NC; Stevenson-Paulik et al., 2003) was 
cloned into the pGAD vector. Pieces of PI-4Kβ1 were PCR amplifi ed 
and cloned into either the pGAD or pGBK vector. The construction of 
AtCBL1, -2, -3, and -5 in the pAS vectors was described previously 
(a gift from Y. Guo, National Institute of Biological Sciences, Beijing, 
China, and J.K. Zhu, University of California, Riverside, Riverside, CA; 
Guo et al., 2001).

Yeast two-hybrid screens and interaction assays
The yeast strain AH109 (CLONTECH Laboratories, Inc.) was used 
for two-hybrid experiments. Using a LiAc transformation protocol 
( CLONTECH Laboratories, Inc.), the CD4-22 library (Arabidopsis 
 Biological Resource Center; Kim et al., 1997) was screened (�6 million 
trans formants) and plasmids were rescued from transformants surviving  
high- stringency selection conditions (−AdeHisLeuTrp + 7.5 mM 3-AT). 
Plasmids from 127 putative positive yeast colonies were rescued and 
 sequenced. Of these, 30 were tested for the ability to interact with the 
 active or inactive forms of RabA4b, and 4 showed nucleotide specifi city 
in the interaction.

Drop assays were performed by allowing inoculated cultures to 
grow for 2 d and diluting them to an OD600 of 0.02, of which 10 μl drops 
were spotted on selective and nonselective medium.

In vitro recruitment assay
RabA4b was PCR cloned into pGEX-6 (GE Healthcare) and transformed 
into BL21 cells. GST-RabA4b protein was expressed, and active or inac-
tive RabA4b affi nity columns were prepared as previously described 
(Christoforidis and Zerial, 2000). In vitro–translated proteins were gener-
ated using a TNT-coupled reticulocyte lysate system (Promega). 45 μl 
PI-4Kβ1 in vitro–translation product and 150 μl nucleotide stabilization 
buffer (NS; containing 1 mM GTPγS or GDP) were incubated with 20 μl 
(18 mg/ml) GST active or inactive RabA4b beads for 2 h at 4°C; washed 
twice with NS (10 μM nucleotide); washed once with NS (250 mM NaCl 
and 10 μM nucleotide); washed once with 20 mM Hepes, pH 7.5, 250 mM 
NaCl, and 1 mM DTT; and eluted with 40 μl elution buffer. 40 μl SB was 
added to the eluate and boiled for 5 min, and 30 μl was analyzed by 
SDS-PAGE followed by fl uorography. 5% of total in vitro–translation 
 product was also loaded.

Antibody production
A peptide (C T R Q Y D Y Y Q R V L N G I L ) corresponding to the COOH-terminal 
AtPI-4Kβ1 sequence was synthesized (Sigma-Aldrich) and used to generate 
rabbit polyclonal antibodies. Anti-peptide antibodies were affi nity purifi ed 
using the peptide immobilized on Sulfolink beads (Pierce Chemical Co.).

Protein fractionation
A. thaliana seedlings (10–14-d old) were ground in 20 mM Hepes, 
pH 7.5, 100 mM NaCl, 5 mM MgCl2, 1 mM DTT, 2.5 mM GTP, and pro-
tease inhibitors (Roche) and then spun at 2,000 g. The postnuclear super-
natant was collected and spun at 100,000 g for 1 h at 4°C. The supernatant 
 (soluble fraction) was separated from the pellet (membrane fraction), and 
each fraction was analyzed by immunoblotting.

Immunolocalization of PI-4K�1
EYFP-RabA4b (Preuss et al., 2004), EGFP-GmManI (a gift from A. Neben-
fuhr, University of Tennessee, Knoxville, TN; Nebenfuhr et al., 1999), and 
PI-4Kβ1/β2 double-mutant A. thaliana seedlings were processed for 
 immunolocalization as described in Preuss et al. (2003) and using a “freeze-
shattering” method (Wasteneys et al., 1997). After primary and secondary 
antibody incubations, slides were mounted with MOVIOL (Calbiochem). 
Samples were observed on a confocal microscope (LSM 510; Carl Zeiss 
MicroImaging, Inc.). Z stacks of root hairs were taken and three-
 dimensional projections from these stacks were used for the fi nal images.

Characterization of PI-4K�1 and -4K�2 T-DNA insertion mutants
The PI-4Kβ1 and -4Kβ2 T-DNA insertion mutants were obtained from 
the SALK T-DNA collection (SALK_040479 and SALK_098069; Arabi-
dopsis Biological Resource Center). Root hairs of WT and mutant plants 
were imaged using a confocal microscope. The T-DNA insertion site in 
each line was confi rmed by sequencing (primers LBB1 5′-G C G T G G A C-
C G C T T G C T G C A A C T -3′, B1 5′-T C C A G G C C T T C C T C T C A A A G -3′, and B2 
5′-A A C C T A C C A G G T T G G G A C T T G -3′).

Electron microscopy
A. thaliana root tips were loaded in 0.1 M sucrose, frozen in a high-
 pressure freezer (Baltec HPM 010; Technotrade), and transferred to 
 liquid nitrogen. Substitution was performed in 0.1% uranyl acetate plus 

Figure 5. The Ca2+ sensor AtCBL1 interacts 
with NH2-terminal domains of PI-4K�1. 
(A) Yeast two-hybrid interaction between 
AtCBL1 and the NH2-terminal PI-4Kβ1 frag-
ment (∆C567-1121; Fig. 1 B) was observed 
on high-stringency media (−HisTrpLeu [HTL] + 
3-AT). (B–D) Disruption of tip-focused Ca2+ 
 gradient in root hairs abolished growth and 
tip-localized EYFP-RabA4b. (B) EYFP-RabA4b 
fl uorescence was visualized in root hairs  using 
time-lapse fl uorescence microscopy. Upon 
treatment with the Ca2+ ionophore A23187 
(20-min time point), root hair elongation was 
rapidly inhibited. This correlated with loss of 
EYFP-RabA4b tip localization and observa-
tion of EYFP-RabA4b along the entire root 
hair (24–30-min time points). When A23187 
was washed out, all EYFP-RabA4b fl uores-
cence was lost from the root hair. Neither 
EYFP-RabA4b tip localization nor root hair 
tip growth occurred after A23187 washout. 
The length of the root hair (C) and the per-
centage of tip fl uorescence (D) were measured 
over time.



LIPID KINASES IN POLAR GROWTH • PREUSS ET AL. 997

0.2% glutaraldehyde in acetone at −80°C for 72 h and warmed to 
−50°C for 24 h. After several acetone rinses, samples were infi ltrated 
with Lowicryl HM20 (Electron Microscopy Sciences) for 72 h and po-
lymerized at −50°C under UV light for 72 h. Sections were mounted on 
formvar-coated nickel grids and blocked for 20 min with 5% (wt/vol) 
nonfat milk in PBST (0.1% Tween 20). Sections were incubated with 
 primary antibody for 1 h at RT. The sections were rinsed with PBST (0.5% 
Tween 20) and transferred to the secondary antibody conjugated to 
15 nm gold particles for 1 h. Controls were performed by omitting the 
primary antibody. Sections were stained with 2% uranyl actetate in 
70% methanol for 10 min followed by Reynolds’s lead citrate (2.6% 
lead nitrate and 3.5% sodium citrate, pH 12) and observed in a trans-
mission electron microscope (CM120; Philips). Images of TGNs were 
used for quantifi cation of budding profi les and overall abnormality. 
Abnormal TGNs were defi ned as having aggregated budding profi les 
and a lighter staining pattern.

Analysis of root hairs with chemical inhibitors
A. thaliana seedlings were grown, treated, and analyzed as previously 
described (Preuss et al., 2004). A23187 (Sigma-Aldrich) was dissolved 
in DMSO and added at a concentration of 2 nM in 0.25× MS to 
 growing root hairs. Fluorescent signal located within the proximal 15% 
of the length of the root hair was defi ned as tip fl uorescence, and this 
was presented as a percentage of the fl uorescence detected in the 
 entire root hair.

Online supplemental material
Fig. S1 shows that purifi ed anti-PI-4Kβ1 antibodies do not recognize 
PI-4Kβ2. The supplemental text describes how in vitro transcription/
translation products of HA-tagged COOH-terminal domains or either 
PI-4Kβ1 or -4Kβ2 were separated and analyzed to test the specifi city of 
the anti–PI-4Kβ1 antibodies. Online supplemental material is available at 
http://www.jcb.org/cgi/content/full/jcb.200508116/DC1.
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