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An attempt is made to modify the Schwarzschild metric by the uncertainty principle in 
space regions of the linear size of the order of the Planck length L*= (hG/c3)112.-......10-a3 em, 
and the role of the modified metric in avoiding the unlimited gravitational collapse of 
superdense Fermion spheres is examined. It is seen that the effect of the uncertainty prin
ciple is to introduce, at the center of symmetry of the system, a "repulsive hole" in which 
the matter is energetically unstable against the escape to outer regions. The radius of this 
hole for a system of mass M and radius R is seen to be L* (R/ Rgr)112, where Rgr=2GM/c2 
is the gravitational radius associated with the mass M. The limiting radius and mass of the 
collapsing extreme relativistic Fermi gas are roughly given by N215£* and N215m*, respec
tively, where N is the number of particles in the gas and m*=h/cL*= (hc/G)li2 ......... 1Q-5 g is 
the Planck mass. 

§ 1. Introduction 

The equilibrium of a massive cold ideal Fermi gas m its own gravitational 
field has been studied by Landau/) Oppenheimer and Volkof£2

) and, more recently, 
by Zel'dovich.3

)'
4

) It has been shown that there exists no stable equilibrium 
configuration of the gas for masses greater than a certain critical value, all larger 
masses tending to collapse. It was further indicated that for any given number 
N of particles one can obtain a configuration with mass as close to zero as one 
pleases by prescribing a sufficiently high particle density (of the order of the 
Planck density "--' 1094 g/ cm3 for small N) .3

),
4
)'

5
) Such a configuration cannot go 

over into the state of the equilibrium (e.g., into the static solutions of Oppen
heimer and Volkoff with N<0.75N0 ), and can only contract without limit. 

In a previous paper6
) the idea of wavelike geodesics (the idea of using the 

wavelike test particle to determine the geodesic structure of space-time) was 
suggested in an attempt to imbed Nambu's mass spectrum or the elementary 
length of the order of I0-13 em into space-time geometry. In the present paper 
we apply the idea of using the wavelike test particle to the modification of the 
Schwarzschild metric at distances of the order of the Planck length "--' I0-33 em, 
and examine how the modified metric changes the classical (unquantized) general 
relativity picture of the unlimited gravitational collapse of superdense Fermion 
spheres. 

*) Present address: Hitachi Information Systems Laboratory, Totsuka, Yokohama. 
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A Role of the Uncertainty Principle in General Relativity 985 

§ 2. Modification of the Schwarzschild · met:ric by the uncertainty principle 

There have been attempts7
).-IS) to derive the Schwarzschild line element using 

only three postulates of special relativity, the equivalence principle and the New
ton's law of gravitation. From a strict logical stand point the simultaneous use 
of these postulates is self-contradictory.*) Nevertheless, it is remarkable that the 
correct form of the line element is obtainable for the specific example of the 
Schwarzschild field**) from a combination of conceptually inconsistent postulates 
by the addition of an extra postulate that the purely radial acceleration of a 
particle is a function only of its distance from the center of gravity.13

)'
12

) 

In order to see qualitatively how the Newton's law modified to the Einstein's 
law can be further modified to be consistent with the uncertainty principle, we 
attempt, in this section, to modify the Schwarzschild field from the above three 
postulates plus the correspondence principle. Now the line element of the 
Schwarzschild field generated by a spherically symmetric object of mass M in 
an otherwise empty space is 

(1) 

with 

a(r) = 1-2GMjc2r. (2) 

The simplified derivations of this line element are based on the observation that 
a- 1 (r) has the form of the square of the Einstein dilatation factor and a (r) has 
the form of the squared Lorentz contraction factor: 

(3) 

Here v (r) is the velocity of a test particle (of mass m) freely falling from rest 
at r= oo towards Mat r= 0.· According to the equivalence principle a coordinate 
system freely falling with the test particle is an inertial system, and all observa
tions (e.g., the measurement of line elements of a local inertial frame momentarily 
at rest with respect to M just as the freely falling system moves past it) in this 
system are subject to the ordinary rules of speci<l:l relativity. From (3) and the 
Newtonian expression for the energy conservation 

mv2 (r)/2=GmM/r, (4) 

we get (2). 

In analogy to the construction of early quantum mechanics from the correspondence 

*) In short, the equivalence principle implies a curved space-time. This is inconsistent with 
special relativity which deals with the flat Minkovsky space-time, and with Newtonian gravitation 
which is itself inconsistent with special relativity.ll> 

**> The Einstein gravitational field is not a vector field (like Newtonian field), but has a ten
sor character. For the specific case of the spherically symmetric system, however, the exterior 
field is completely determined by four components of the metric tensor. This p®int was stressed 
by Sommerfeld. 7) 
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986 N. Hokkyo 

principle, we modify the Newtonian expression (4) so as to be consistent with 

the uncertainty principle: 

mv2 (r) /2c2 = GmMjrc2 -m(h/mc)2/2r2
• (5) 

Here m(h/m)2/2r2 = (h/r) 2/2m is the quantum mechanical repulsive potential as

sociated with the momentum uncertainty hjr. Using (5) in (3), we obtain 

(6) 

Here the usual difficulty arises that the quantized metric depends on the mass 

m of the test particle.14
) This violates the equivalence principle stating that all 

masses fall with the same acceleration in a given gravitational field. Let us there

fore restrict the mass m to the Planck value :6
) 

m* = (hc/GY12 r-..~10- 5 g. (7) 

With m equal to m* we find 

a(r) = 1-2GMjrc2 +L*2/r2
, (8) 

where 

(9) 

1s the Planck length. We notice that the expression (8) has the form of the 

Reissner-Nordstrom metric15
) generated by a spherically symmetric electrified matter 

of mass M and charge e0 : 

(10) 

The Reissner-Nordstrom field is known as the only static electromagnetic vacuum 

field which is asymptotically :flat and possesses nonsingular event horizon. Com

paring (8) with (10) we find that the quantity 

(L* 2c4/GYI2 = (hcYI2 (11) 

plays the role of the charge e0• This is suggestive of the quantum-gravitational 

origin of the unrenormalized electric charge (hcY/2 = J137e.16
) Further, if we put 

M=m* we get 

(12) 

This has the form of the metric considered by Papapetrou/7
) Bonner/8

) Arnowitt, 

Deser and Misner/9
) and in particular by Markov20

) as the geometry characterizing 

the external field of a static charged dust in which the gravitational attraction 

is balanced by the electrostatic repulsion. We may regard (12) as the geometry 

of the gravitational Bohr atom consisting of a pair of Planck masses. 

§ 3. The :role of the uncertainty principle in avoiding the 

unlimited gravitational collapse of Fermion spheres 

In order to see how the quantum principle affects the usual conclusion of 

the unlimited gravitational collapse of superdense Fermion spheres, let us first 
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modify the well-known internal solution of Einstein field equations for a motionless 

spherically symmetric matter characterized by the mass density p and the pressure 

P:*> 

- v (r) = 1oo [ (8rcG / c4
) (pc2 + P) reA.- dJ./ dr] dr, 

e-A.(r) = 1- (2G/rc2
) ir 4rcpr2dr+ L*2/r2

• 

(13) 

(14) 

(15) 

Here the usual expressiOn for e-A. is modified by the addition of the quantum 

mechanical potential L* 2/r2 arising from the use of the wavelike test particle of 

mass m*. 

Let us next consider an example of a spherical distribution of an extreme 

relativistic Fermi gas for which the particle density n and the mass-energy density 

p (>1015 g/ cm3 for neutrons) are related by the equation of state :1> 

p=,(3h/4c) (3rc 2)118n413
• (16) 

The equilibrium of such a system in its own gravitational field has been studied 

by Landau/> by Oppenheimer and Volkof£2> and, more recently, by Zel'dovich.3> 

It has been indicated that for any given number of particles one can obtain a 

configuration with mass as close to zero as one pleases by prescribing a suf

ficiently high density of particles.3>• 4>• 5> In order to see how our modified metric 

(15) changes the situation, let us choose the same distribution of p as Zel'dovich's: 

=0 

for r<R, 

for r>R, 
(17) 

where a is an arbitrary constant. For the gravitational mass M (measured by an 

external observer) and the proper total number N of particles of the Fermi gas we have 

(18) 

and 

N= iRndV=4rc iRn(r)eA.12r 2dr, (19) 

where dV = 4rc [ exp (A/2) J r 2dr is the invariant volume element. If we denote by 

m the mass of individual particles, then 

mN = 4rc S mneA.12r 2dr (20) 

Is the total proper mass, and the quantity 

*> In the crudest approximation in the analysis of the dynamics of the gravitational collapse, 
we can neglect the effect of the pressure and put P=0.21> 
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988 N. Hokkyo 

JM=mN-M=4n foR (mne-,12-p)r2dr 

expresses the mass defect. 
With the distribution (17) the expression for e_., becomes 

e_.,= 1-8nGa/c2 +L*2/r2
, 

so that 

N=4n SJ1-8nGa/c2 +L*2/r2
)-

112nr2dr. 

(21) 

(22) 

(23) 

The Planck's constant h enters two places in (23); in the particle density 

nrv (cp/hY14
rv (ca/r2hY14 of the gravitating matter through the equation of state 

(16) and in the term L*2/r2 arising from the use of the wavelike test particle 

of mass m*. In the absence of the term L*2/r2
, the expression (23) is readily 

integrated to give Zel'dovich's results: 

and 

N r-v (ca/fiY/4 (1- 8nGaj c2
)-

112R 312
, 

Rrv (h/ ca)112N 213 (1- 8-;rGa/ c2)113 

(24) 

(25) 

(26) 

On the basis of the expression (26), Zel'dovich concludes that M_,.O as 

a_,.c2/8nG, whatever the value of N. Such a state obviously cannot go over into 

the state of equilibrium (e.g., into the static solution of Oppenheimer and Volkoff 

with N<0.75N0 ), and can only contract without limit. In order to reduce ordinary 

matter, e.g., neutrons, to such a state, it is necessary to spend an enormous amount 

of energy to compress the matter to desired densities arvc2jG. The energy bar

rier that separates the equilibrium state with M<mN from the collapsing state 

(M _,.Q) is estimated from (26) as3
> 

M max rv N 213 
( ah/ C )112 

rv N 218 (he/ G)112
• 

Markov5
> rewrites (27) as 

(27) 

(28) 

and points out that for a system consisting of a small number (say 2) of particles 

of mass m * (" maximons "), *> there does not exist, within the framework of the 

classical general relativity, a density barrier for a transition into a collapsing 

state. 
Now we shall see that the presence of the term L* 2/r2 in the expressiOn 

(22) for e_., changes the situation in the limit of a_,.c2/8nG. In fact, from (23) 

*> Markov5> advanced a hypothesis that "maximons" play the role of the structural units (such 

as quarks) of elementary particles and that, in the first stage of the development of the universe, 

gravitational collapse of these quasiparticles had the character of quantum transitions into states hav

ing discrete mass values. 
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we have m case of a=c2/8rcG 

and 

N"" (c3/hGYI4 (R/L*) ""R512L*-512, 

R"" N215L * 
(29) 

(30) 

(31) 

It is thus seen that, after an initial rise from M = 0 with the increase in a from 
a=O, M reaches a maximum Mmax"-'N 213m* at R=Rmax"-'N213L*, then decreases 
with the further increase in a until the minimum value Mmin""N215m* is reached 
at Rmin""N 215L* when a=c2/8rcG. That further contraction of the system is not 
possible may be understood, if we notice the presence of a small central region 
("repulsive hole") of radius r0 =L*(c2/8rcGa)112=L*(Rc2/2MG) 112 at the center of 
symmetry of the system for which e->-12> 1 (c.£. (22)). Since the gravitational 
mass defect of the matter contained in this region is negative: 

£1M=4rc Saro (mne>-12 -p)r2dr<O (32) 

(note that p > mn), the matter is energetically unstable against the escape to outer 
regions and the central region tends to go over into a state of infinitesimally small 
density. 

The author is indebted to Professor K. Aizu for valuable suggestions. 
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