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Abstract: Aiming at the difficulty of rolling bearing fault diagnosis in a strong noise environment, this
paper proposes an enhanced integrated filter network. In the method, we firstly design an enhanced
integrated filter, which includes the filter enhancement module and the expression enhancement
module. The filter enhancement module can not only filter the high-frequency noise to extract useful
features of medium and low-frequency signals but also maintain frequency and time resolution to
some extent. On this basis, the expression enhancement module analyzes fault features intercepted
by the upper network at multiple scales to get deep features. Then we introduce vector neurons to
integrate scalar features into vector space, which mine the correlation between features. The feature
vectors are transmitted by dynamic routing to establish the relationship between low-level capsules
and high-level capsules. In order to verify the diagnostic performance of the model, CWRU and
IMS bearing datasets are used for experimental verification. In the strong noise environment of
SNR = −4 dB, the fault diagnosis precisions of the method on CWRU and IMS reach 94.85% and
92.45%, respectively. Compared with typical bearing fault diagnosis methods, the method has higher
fault diagnosis precision and better generalization ability in a strong noise environment.

Keywords: fault diagnosis; enhanced integrated filter; vector neuron; dynamic routing

1. Introduction

Rolling bearings are widely used in transmission devices of mechanical equipment
and play a key role in energy, power, transportation, aerospace, and other fields [1]. Due to
the complex operating environment and long working time of mechanical equipment, the
bearing has become an easily damaged component. Once faults occur, it may lead to shut
down, and even cause property loss and casualties [2]. Therefore, health inspection should
be carried out for the whole life cycle of the bearing [3,4]. Immediate fault diagnosis can
avoid more losses. Fault diagnosis requires the signal data collected by sensors. However,
the vibration signal collected usually contains various noises in the actual operation of
mechanical equipment. Especially in a strong noise environment, the fault features of the
vibration signal will be weakened or distorted, or even drowned by the noise. It has become
a key problem to filter noise and extract bearing fault information from bearing vibration
signals effectively.

Bearing vibration signal is a periodic time series with non-stationary and non-linear
features. Traditional bearing fault diagnosis methods usually use signal processing tech-
niques, which identify faults by determining signal components related to the fault [5]. For
example, Qin et al. [6] proposed an improved empirical wavelet transform strategy to pro-
cess signals, which improved the bearing fault diagnosis performance of signals with low
SNR. Cheng et al. [7] improved comprehensive ensemble empirical mode decomposition to
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reduce the impact of noise. It can effectively reveal the fault information of bearings. How-
ever, the bearing operation is complex, and the vibration features of the signal are easily
submerged by strong noise. Signal processing technology relies on expert experience and
cannot achieve real-time bearing fault diagnosis. Therefore, traditional signal processing
technologies are arduous to achieve effective diagnosis in a strong noise environment.

In recent years, intelligent fault diagnosis methods have gradually become a research
hotspot in the field. The bearing intelligent diagnosis algorithm based on machine learning
can diagnose fault without prior physical knowledge. Many scholars have carried out ex-
tensive and in-depth research on intelligent bearing fault diagnosis in noise environments.
These methods train models to identify fault types by learning fault features, including
support vector machines (SVM) [8], artificial neural networks (ANN) [9], Bayesian clas-
sifiers (BC) [10], and deep learning (DL) [11]. Deep learning is widely used to achieve
end-to-end bearing fault diagnosis mode by integrating feature extraction and classifica-
tion. It can automatically learn useful features for fault diagnosis to improve diagnostic
accuracy, including deep neural network [12], convolutional neural network [13–15], sparse
autoencoder [16,17], transfer learning [18,19], long short-term memory network [20,21],
and deep residual network [22,23]. Although the above methods have good fault diagnosis
performance when the noise intensity is low, the precision of fault diagnosis is not high in
a strong noise environment. The main reason is that strong noises submerge the periodic
shock features of signals, and these methods filter out useful information in the filtering
process. Many scholars gradually tend to use signal processing technology to reduce noise
before using deep learning algorithms to identify faults. For example, Chen et al. [24] used
cyclic spectrum coherent processing signals to reduce the difficulty of feature learning.
Then the CNN model was built to learn advanced features and fault diagnosis. The com-
bination of the two improved the fault diagnosis performance. Xu et al. [25] combined
variable mode decomposition and deep convolutional neural networks to solve the problem
of insufficient feature extraction from a single source. This method enhanced the fault
diagnosis accuracy of the model in a noisy environment by obtaining multi-source features.
The above research also has the following problems: (1) Signal processing requires a lot of
expert knowledge and experience; (2) these in-depth learning methods use scalar neuronal
transmission feature scalar, losing time, space, overall and local related information.

In 2017, Sabour et al. [26] proposed a capsule network [27–31], which replaced tra-
ditional scalar neurons with vector neurons, so that a deep neural network could merge
the fault feature scalar of vibration signal into vector space. Dynamic routing is used to
establish the relationship between low-level features and high-level features. It can make
models extract fault feature information of time dimension or space dimension more com-
prehensively. Based on the peculiarity of vector neurons, the capsule network can make the
model mine useful information as much as possible and improve the fault diagnosis ability
in detecting signals with noise. Zhu et al. [32] proposed a capsule network-bearing fault
diagnosis method with strong generalization ability. The method uses STFT to transform
signals into feature maps and then uses convolution and inception modules to improve
capsule nonlinearity. It achieves a better fault classification effect. Sun et al. [33] con-
nected wide-kernel convolution, small-kernel convolution, and multi-scale convolution
in series to extract fault features of vibration signals layer by layer. This improves the
feature expression ability of the model. A new fault diagnosis method based on the capsule
neural network obtained the time-frequency diagram through wavelet time-frequency
analysis [34]. Then, the time-frequency diagrams are input into the Xception module and
combined with the capsule network. This method improves the reliability of the model.
Wang et al. [35] combined wide convolution with multi-scale convolution and introduced
an adaptive batch normalization algorithm [36] and capsule network, which improved the
anti-noise ability of the model. The above methods mainly improve the noise resistance
of the model in two ways: (1) The signal processing technology is combined with the im-
proved capsule network; (2) the first layer of the network adopts single-layer convolution
and then connects multiple network layers with the improved capsule network in series to
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form a deep network. The first way requires expert experience and knowledge, which is
time consuming. In the second way, because the first layer uses single-scale convolution,
the scale of feature information captured by these models is single. The small size setting
of the convolution kernel at the first layer results in that the network cannot pay attention
to the effective components of low and middle-frequency signals, so it cannot effectively
filter high-frequency noises. Serial networks cannot restore or compensate for features not
captured by the previous layer. When fault features of the signal are completely submerged
by strong noise, it is difficult to perform an accurate fault diagnosis.

Therefore, in order to solve the above problems and realize effective diagnosis in
a strong noise environment, a bearing fault diagnosis method based on an enhanced
integrated filter network (EIFN) is proposed in this paper. The main contributions of this
method are as follows:

1. This method is an end-to-end bearing fault diagnosis system that integrates noise
reduction, feature extraction, and fault recognition. It does not need signal processing
and does not rely on expert experience and knowledge.

2. The method integrates multiple convolutional layers (weak filters) with different
scales to form an enhanced integrated filter, which is connected in a parallel and
cascaded way to achieve the effect of the enhanced filter. It can capture useful signals
in the middle and low frequencies and filter high-frequency noise.

3. Finally, the method integrates the feature information of different receptive fields
into vector space. It uses the peculiarity of vector to mine correlations between fault
features at the time dimension, so as to improve the fault diagnosis precision of the
model in a strong noise environment.

The structure of the rest of this paper is as follows: The basic theory is introduced
in Section 2. Section 3 introduces the construction process and detailed architecture of
the proposed method. Experimental results and visual analysis are presented in Section 4.
Section 5 is the conclusion.

2. Basic Theory
2.1. One Dimensional Convolution and Signal Filtering

The original vibration signal of the rolling bearing is one-dimensional sequence data;
we can use one-dimensional convolution for signal processing. One-dimensional convo-
lution detects the local features of the signal data by using a convolution kernel. The
calculation process is shown in this formula.

yl
j = ∑

i=1
wl

i,j × xl−1
i + bl

j (1)

where yl
j represents the j-th convolution operation output of the l-th convolution layer;

wl
i,j is expressed as the weight of convolution kernel. xl−1

i represents the i-th feature to be

calculated as the (l − 1)-th layer. bl
j is the bias.

The output features of convolution operation are linear and inseparable. So, it is
necessary to map the features to another space through the activation function, which is
called nonlinear transformation. ReLU is the most commonly used activation function,
which can be represented by the equation.

al
j = max

(
0, yl

j

)
(2)

where al
j is the activation value of the convolution output yl

j.
In the industrial environment, bearing vibration signals collected by sensors are

inevitably interfered by noise. Useful signals are normally medium and low frequency
or some stationary signals, while noises are commonly high-frequency signals. Classical
rolling bearing fault diagnosis methods generally decompose signals into waveforms of
different frequencies through short-time Fourier transform or wavelet transform. The
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amplitude of the frequency higher than a set threshold is set to 0. Then the original signal
is reconstructed to achieve the effect of denoising. From the perspective of signal science,
signal denoising by short-time Fourier transform or wavelet transform is signal filtering
in essence. This method needs to be based on a certain scale of data and relies on expert
experience, so it is not universal. Most noises of bearing vibration signals collected by
sensors present a Gaussian distribution. A Gaussian filter is a typical low-pass filter, which
is suitable for eliminating gaussian noise. It scans each pixel of the signal or image through
a Gaussian template, then performs the process of weighted sum. This process is similar to
the convolution operation in the convolutional neural network. The Gaussian template is
similar to the convolution kernel and contains weight information. The convolution kernel
also scans pixels of signal or image, and the sum of products added as an output. Therefore,
a one-dimensional convolution kernel can also be used as a signal low-pass filter, which is
also suitable for eliminating Gaussian noise. It can process signals with complex frequency
information in the time domain to better realize dynamic filtering.

2.2. Vector Neuron and Dynamic Routing

As shown in Figure 1, the capsule network is mainly composed of a convolution layer,
primary capsule layer, and digital capsule layer. It is a high-performance neural network
classifier that integrates feature extraction and pattern recognition.
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Figure 1. The architecture of a capsule network. The transformation of scalar neurons into vector
neurons occurs in the primary capsule layer. Dynamic routing occurs between the primary capsule
layer and the digital capsule layer.

Firstly, the model extracts the features of vibration signals through the convolution
layer, and these features are used as the input data of the primary capsule layer. Secondly,
the scalar neurons are transformed into vector neurons in the primary capsule layer, and
the input feature scalar will also be reconstructed into feature vectors. The dynamic routing
algorithm [26] can train the capsule network and measure their similarity through the dot
products of capsule inputs and capsule outputs. It can transport low-level capsules to
similar high-level capsules. So, a dynamic routing algorithm is used to train the connection
weights between the primary capsule layer and digital capsule layer, and the output feature
vectors are input into the digital capsule layer. Finally, the mold of the output vector in the
digital capsule layer represents the probability of a certain fault type. The length of the
vector represents fault types of the rolling bearing.

The operation process of capsule module can be divided into three steps.
First step, the product of the neuron ui and weight Wij is expressed as a prediction

vector Uj|i, this process is shown below.

Uj|i = Wijui (3)
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In the second step, the prediction vector Uj|i is weighted, multiplied by the coupling
coefficient cij (weight), and then summed to obtain the output vector Sj. The weight cij is
determined by the dynamic routing algorithm. The formula is as follows:

Sj = ∑i cijUj|i (4)

In a capsule network, the low-level capsules UNi need to be delivered to the appropri-
ate high-level capsules VNj by a dynamic routing algorithm. The capsule network gathers
the predicted close lower layers UNi into a cluster in the higher layers VNj. The biased
forecasts will move away from the cluster. The weights are automatically adjusted by
dynamic routing. Sj stands for clustered cluster. The dynamic routing process is shown in
Figure 2.
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Figure 2. The dynamic routing of the capsule network.

In the third step, the output vector Sj obtains the final output Vj through the nonlinear
activation function, and the formula can be expressed as:

Vj =
‖Sj‖ 2

1 + ‖Sj‖ 2

Sj

‖Sj‖
(5)

The calculation of the coupling coefficient cij is determined by bij. In the dynamic
routing algorithm, bij are updated iteratively and then cij are adjusted, as shown in
the equations.

cij = so f tmax
(
bij

)
=

exp
(
bij

)
∑ exp

(
bij

) (6)

bij = bij + Uj|iVj (7)

where bij is initialized to 0, and the correlation is measured by the dot product of the
vectors Uj|i and Vj. The positive dot product means that vectors multiply to a positive
number. cij will increase as bij increases. On the contrary, the negative dot product is
going to make cij go down. After cyclic iteration of the dynamic routing algorithm, a set
of coupling coefficients of optimal matching between low-level capsules and high-level
capsules are obtained.
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3. Proposed Methodology

The capsule network can use vector neurons and a dynamic routing mechanism to
capture fault feature information in the signal and mine the potential correlation between
features. However, the traditional capsule network has only one convolution layer, and
the convolution kernel scale is fixed. The extracted features are single. In a strong noise
environment, the network is not sensitive to the periodic fault features of bearing vibration
signals. Therefore, EIFN builds an enhanced integrated filter combining parallel way and
cascaded way. It integrates feature extraction and noise filtering to improve the anti-noise
capability of the model. The extracted scalar features are integrated into vector space, and
the potential correlation between fault features of time-domain signals is mined.

3.1. Enhanced Integrated Filter

Section 2.1 shows that a one-dimensional convolution kernel can be used as a low-pass
filter, which achieves better dynamic filtering. Then, we need to set the size of the one-
dimensional convolution kernel. Short-time Fourier transform (STFT) divides the original
time-domain signal into segments and adds windows on the basis of Fourier transform
(FT) through a sliding window mechanism. It optimizes the problem that FT cannot handle
the frequency component. For time-varying unsteady signals, the wide window is suitable
for medium and low-frequency signals with high-frequency resolution. A narrow window
is suitable for a high-frequency signal with high time resolution. Therefore, the enhanced
integrated filter proposed in this paper uses a super-wide convolution kernel in the first
layer to extract features and performs low-pass filtering of input signals. The super-wide
convolution kernel pays more attention to the medium and low-frequency parts of the
signal in the process of feature extraction to reduce the interference of high-frequency
noise. The advantage of a super-wide convolution kernel is that it is obtained by an
optimization algorithm, whereas the window function of STFT is an infinite length trig
function. In summary, the super-wide convolution kernel automatically learns the features
that are useful for fault diagnosis and automatically removes the features that interfere with
diagnosis. It integrates feature extraction and low-pass filtering to improve the anti-noise
capability of the model.

In the first layer, a single convolution with a super-wide kernel still has a similar
problem to STFT. That is, a fixed window cannot ensure the resolution of frequency and
time at the same time. Although wavelet transform can obtain frequency and time by
changing the basis function, it is difficult to determine and change the wavelet basis
function. We need to improve the single-layer super-wide kernel convolution. Based on
experience, the first super-wide kernel convolution layer is set at the network entrance,
and its kernel size is set to three times the step size [13]. Subsequently, three super-wide
kernel convolution layers are added to the network entrance with successively increasing
kernel size. Concatenate technology is used to connect four super-wide kernel convolution
layers in parallel to achieve feature fusion in the channel dimension. Super-wide kernel
convolution of diverse sizes can filter and retain different feature information in various
visual fields. The fusion of extracted feature information can not only ensure time and
frequency resolution to a certain extent but also reduce the interference of high-frequency
noise by capturing the features of medium and low-frequency signals with super-wide
windows. The convolution operation of parallel super-wide kernel convolutions on the
original time-domain signal will intercept enough features. Further analysis of deep
semantic features from fused features is another issue.

EIFN integrates multiple primary filters in parallel and cascaded modes to form the
final strong filter, as shown in Figure 3.
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Figure 3. The structure of the enhanced integrated filter. K × 1 represents the sizes of the convolution
kernel. Concatenate stands for feature fusion. Sampling represents using the pooling layer.

Parallel super-wide kernel convolutions can effectively reduce noise, but the extracted
feature information is extensive. If the model only cascades a single convolution layer, it
is difficult to extract accurate signal features in each channel. Therefore, it is necessary to
construct various small-scale convolutions to enhance feature expression, so as to highlight
the features of the medium and low-frequency signals in the original signal.

3.2. The Architecture of EIFN

The model includes a filter enhancement layer, expression enhancement layer, con-
catenate layer, pooling layer, primary capsule layer, and digital capsule layer. The network
structure of EIFN is shown in Figure 4.
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EIFN firstly uses an enhanced integrated filter to perform noise filtering and feature
extraction for the original vibration signal and then inputs to the primary capsule layer.
The primary capsule layer reconstructs the input scalar feature layer into a vector neuron
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and transmits the feature in the way of dynamic routing. Finally, the length of the output
vector of the digital capsule layer corresponds to different types of rolling bearing faults.

The filter enhancement layer in EIFN adopts four super-wide kernel convolutions
of different scales to act on the original vibration signal. With different large receptive
fields, it pays more attention to the useful signal features of middle and low frequencies
and filters high-frequency noises to achieve multi-scale feature fusion. The expression
enhancement layer uses various small convolution kernels to further extract features from
the learning results of the upper layer. It can obtain better feature expression. The function
of two pooling layers is to reduce the number of parameters, prevent overfitting, and
optimize the network’s training speed. The leaky ReLU activation function is used for the
filter enhancement layer, expression enhancement layer, and primary capsule layer. It can
preserve the negative axis information in the feature vector, avoiding the constant zero
neuron gradient. L2 regularization is also introduced.

The loss function is to measure the advantages and disadvantages of the model
prediction. It describes the deviation between the model estimate and the observed value.
During training, the model updated the weight to minimize the loss through the back
propagation algorithm and optimized the weight in the process of continuous update and
iteration. Since a capsule network allows multiple classifications to exist simultaneously,
traditional cross-entropy cannot be used as the loss function in this paper. Therefore,
interval loss is adopted, and the equation is as follows:

Lc = Tcmax
(
0, m+ − ‖Vc‖

)2
+ λ(1− Tc)max

(
0, ‖Vc‖ −m−

)2 (8)

where Lc stands for classification indicator function, c refers to classification number.
Assuming that the correct label is 9, it can be considered that Tc of the 9-th capsule is 1
and Tc of other capsules is 0. ‖Vc‖ is the mold length of the output vector and represents
the classification probability. The upper bound m+ is proposed and the value is set to
0.9. When Tc is 0, the right-hand formula is calculated, and λ is 0.5 to ensure numerical
stability of training. The lower bound m− is set to 0.1. The closer ‖Vc‖ is to m+ or m−,
the smaller the loss value is. Square the formula to make the loss function Lc conform to
L2 regularization.

4. Experiments and Results
4.1. The Experimental Data
4.1.1. Case 1: CWRU Bearing Dataset

In this experiment, the bearing dataset of Case Western Reserve University is used as
a benchmark. The bearing data acquisition system is shown in Figure 5.
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Figure 5. The bearing data acquisition device. From left to right are fan end bearing, motor, drive
end bearing, torque sensor and encoder, and dynamometer. The place marked in the red box is the
drive end bearing we need to use.
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The sampling frequency of the driving end bearing is 12 KHz. The bearing designation
is SKF 6205-2RS. Single point damage is manufactured on the rolling ball, inner ring, and
outer ring of the bearing by electric spark technology. The damage diameter is 0.007 inches,
0.014 inches, and 0.021 inches, respectively.

There are about 120,000 sample points for each fault data. Two thousand and forty-
eight sample points are collected each time as a sample. The number of training samples
that can be collected is limited. Therefore, data expansion is required. The method of data
expansion is similar to the sliding window. One window contains 2048 sample points,
which represents one sample. Each time 128 sample points are moved from the starting
position, and the window of the new position is used as a new sample.

To ensure the integrity of signal features, we sequentially collected 2048 signal points
to form a bearing state sample. In the CWRU dataset, each fault dataset has only 120,000
sampling points, and the amount of signal data is limited. Therefore, we use sliding
window technology to expand the experimental data. As shown in Figure 6, the size of
the sliding window is 2048, and the sliding step size (offset) is 128. Starting from the
starting position, 128 sampling points are slid backward each time, and the sliding window
collected 2048 sampling points to construct data samples in turn. Through data expansion,
the construction of the sample library is completed. The process of data expansion is shown
in Figure 6.
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Samples at different speeds are selected to construct four groups of experimental data.
The training set and testing set are divided into a 7:3 ratio. Dataset C1 are samples of
1772 rpm, C2 are samples of 1750 rpm, C3 are samples of 1720 RPM, and C4 are mixed
samples of C1, C2, and C3. The dataset information is shown in Table 1.

Table 1. The experimental dataset of CWRU.

Fault Label Fault Category Fault Diameter Sample Size

0 Normal 0 1000
1 Ball fault 0.007 1000
2 Ball fault 0.014 1000
3 Ball fault 0.021 1000
4 Inner race fault 0.007 1000
5 Inner race fault 0.014 1000
6 Inner race fault 0.021 1000
7 Outer race fault 0.007 1000
8 Outer race fault 0.014 1000
9 Outer race fault 0.021 1000

Each dataset contains the samples of normal, ball fault, inner race fault, and outer
race fault. The fault diameters are 0.007 inches, 0.014 inches, and 0.021 inches, respectively.
Labels are made in one-hot encoding mode. One thousand samples are collected for each
of the 10 types of data.
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4.1.2. Case 2: IMS Bearing Dataset

The effectiveness of EIFN is further verified by using the IMS dataset, which is pro-
vided by the intelligent maintenance systems (IMS). The experimental platform is shown
in Figure 7.
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Figure 7. Experimental platform of IMS. The platform mainly consists of four Rexnord za-2115
double row bearings, thermocouples, an AC motor (at 2000 rpm), and vibration sensors (x-axis and
y-axis).

The speed of the four rolling bearings is 2000 rpm. They are subjected to a 6000 lbs
radial load applied by the spring mechanism. The original signals are collected by vertical
and horizontal accelerometers at a sampling frequency of 20 kHz. In order to be consistent
with the CWRU experimental dataset, a fault status sample still contains 2048 sample
points. The data expansion uses sliding window technology with a sliding step of 128.
Ultimately, the dataset contains four states: normal, ball fault, inner race fault, and outer
race fault. There are 1000 samples per bearing state. The training set and testing set are
divided into a 7:3 ratio. The experimental dataset of IMS is shown in Table 2.

Table 2. The experimental dataset of IMS.

Fault Label Fault Category Training Set Testing Set

0 Normal 700 300
1 Inner race fault 700 300
2 Ball fault 700 300
3 Outer race fault 700 300

4.2. Model Parameters of EIFN

The filter enhancement layer is composed of four one-dimensional convolutions with
scales of 96 × 1, 120 × 1, 144 × 1, and 168 × 1 in parallel. There are four one-dimensional
convolution layers with scales of 7 × 1, 10 × 1, 13 × 1, and 16 × 1, which are connected
in parallel to form the expression enhancement layer. The kernel sizes of the pooling
layer are set to 2 × 1. The output of the second pooling layer is converted from feature
scalar to feature vector by the primary capsule layer. The number of channels is 24. The
dimension of the vector neuron is set as 4, and finally, the digital capsule layer outputs ten
eight-dimensional vectors. With CWRU and IMS as datasets, the parameters of the model
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are essentially unchanged. The specific parameter settings are shown in Table 3. When the
dataset is IMS, only the kernel size and output size of the digital capsule layer change to 4
and 4 × 8, respectively.

Table 3. The network parameters of EIFN.

Layer Type Operation Kernel
Size Stride Kernel

Number Output Size Parallel
Output Size Padding

Filter enhancement layer

Convolution 1 96 × 1 32 32 64 × 32

64 × 128

Yes
Convolution 2 120 × 1 32 32 64 × 32 Yes
Convolution 3 144 × 1 32 32 64 × 32 Yes
Convolution 4 168 × 1 32 32 64 × 32 Yes

Pooling layer Sampling 2 × 1 2 32 32 × 128 No

Expression enhancement layer

Convolution 1 7 × 1 2 32 16 × 32

16 × 128

Yes
Convolution 2 10 × 1 2 32 16 × 32 Yes
Convolution 3 13 × 1 2 32 16 × 32 Yes
Convolution 4 16 × 1 2 32 16 × 32 Yes

Pooling layer Sampling 2 × 1 2 32 8 × 128 No

Primary capsule layer Construct of
vector neurons 4 × 1 2 32 24 × 4 No

Digital capsule layer Dynamic routing 10/4 1 10 × 8/4 × 8 No

In the model training process, the epoch is set to 100 times and the batch size is set to
64. Adam optimizer is applied to the network and the initial learning rate is set to 0.001.
Apply the learning rate decay strategy, which means a decrease of 10% after each iteration.
Using dropout technology in the primary capsule layer to reduce overfitting and enhance
the robustness.

4.3. Experimental Verification of EIFN’s Effectiveness
4.3.1. The Fault Diagnosis Result on CWRU Bearing Dataset

To verify the fault diagnosis effectiveness of EIFN, we use other models for com-
parison, such as SVM, DNN [12], wide-convolution deep convolutional neural network
(WDCNN) [13], and series convolutional capsule network (SC-CAPSNET) [28]. As a gen-
eral model, SVM combines with FFT and uses the radial basis function. The deep neural
network here is FFT-DNN, which is a representative bearing fault diagnosis model. WD-
CNN is a classical convolutional neural network fault diagnosis method, which has certain
anti-noise performance. SC-CAPSNET uses two single-scale convolution layers in series
and simultaneously applies vector neurons and dynamic routing. In addition, the key
modules of EIFN are ablated and replaced with conventional structures to explore the
impact of each module on diagnostic performance. For example, the filter enhancement
layer is replaced by a single-scale convolution with a kernel size of 127 × 1 (no FE). The
expression enhancement layer is replaced by a single-scale convolution with a kernel size
of 7 × 1 (no EE). The primary capsule layer and digital capsule layer are replaced by a
convolution layer with a kernel size of 4 × 1, a flatten layer, and a dense layer (no vector).

In order to reduce the influence of random initialization, each model repeats the
experiment five times on these datasets. We use the average of the five experimental results
as the final result.

As shown in Figure 8, all models are tested on the four datasets (C1, C2, C3, C4). The
fault diagnosis precisions of all models are about 99%, which shows that the intelligent fault
diagnosis methods can correctly identify various bearing faults in a noise-free environment.
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Figure 8. The result of bearing fault diagnosis on CWRU without noise. The abscissa is the dataset,
and the ordinate is the precision of fault diagnosis.

In order to increase the difference in fault diagnosis of various models, we added
Gaussian white noise with SNR = 0 dB to the C1, C2, C3, and C4 datasets. All methods are
evaluated with precision and recall. The fault diagnosis results are shown in Table 4.

Table 4. Fault diagnosis precision (%) and recall (%) of models.

Model C1 C2 C3 C4

Precision Recall Precision Recall Precision Recall Precision Recall

SVM 91.43 92.07 97.08 97.21 98.74 99.12 86.23 87.16
DNN 65.11 64.52 77.63 77.81 78.28 79.34 57.89 58.74

WDCNN 86.24 86.01 96.71 96.76 96.13 95.01 81.92 82.34
SC-CAPSNET 95.87 96.21 97.13 97.64 99.48 99.56 92.54 93.23
EIFN (no FE) 97.21 97.38 98.73 99.91 99.72 99.78 98.71 98.83
EIFN (no EE) 96.74 96.91 98.97 99.83 99.87 99.91 97.91 98.23

EIFN (no Vector) 96.56 96.73 99.76 99.92 100 100 98.54 98.62
EIFN 98.73 99.21 100 100 100 100 99.18 99.23

In Table 4, the fault diagnosis precision and recall of SC-CAPSNET with vector neuron
and dynamic routing on C1 and C4 are significantly better than that of WDCNN and SVM.
The diagnostic results of the three models on C2 and C3 are relatively close. DNN has
the worst performance, and the fault diagnosis precision on C2 and C3 is only about 78%.
However, EIFN can still maintain more than 98% diagnostic precision on four datasets.
The diagnostic precision and recall on C2 and C3 datasets with a lower rotation speed are
also maintained at 100%. In addition, EIFN without key modules has good performance
in fault diagnosis, but the precision and recall of fault diagnosis on the four datasets have
been impaired to varying degrees. To sum up, the enhanced integrated filter, vector neuron,
and dynamic routing all improve the noise resistance of the model to a certain extent and
combine them to achieve the best results. The filter enhancement layer and expression
enhancement layer of the enhanced integrated filter are indispensable.

The confusion matrixes for diagnostic accuracy of five models on dataset C4 are shown
in Figure 9. From the diagram, it can be seen that performance differences of the five models
are mainly reflected in the diagnostic accuracy of ball fault and outer race fault with a
damage diameter of 0.014 inches (the labels are 2 and 8, respectively). DNN and WDCNN
can hardly identify the two types of faults. The diagnostic performance of SC-CAPSNET
is slightly better than that of SVM. However, EIFN can distinguish between the normal
state and failure state samples correctly. The diagnostic accuracy of the inner race fault,
outer race fault, and ball fault is basically 100%. The diagnostic accuracy is 94% only for
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detecting ball fault with a damage diameter of 0.014 inches. The experimental results show
that EIFN can effectively extract fault features from the original signal and has a strong
fault diagnosis ability.
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4.3.2. The Fault Diagnosis Result on IMS Bearing Dataset

To increase the reliability of performance validation, the following experiments are
performed using the IMS experimental dataset. White Gaussian noise is added to the
testing set to make the SNR = 0 dB. We still use the above model for comparison. The
average of the five experiment results is used as the final result. The models described
in Section 4.3.1 are used to compare with EIFN. The fault diagnosis results are shown in
Figure 10.
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Figure 10. The result of bearing fault diagnosis on IMS. The figure contains two indicators: precision
and recall.
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It can be seen from the diagram that the fault diagnosis performances and recall of
the four EIFN models are all above 99%. SVM and SC-CAPSNET can reach more than
the precision and recall of 97% in fault diagnosis precision, which is slightly better than
SC-CAPSNET. The diagnosis precision of DNN is only 78% and susceptible to noise.

The confusion matrixes for diagnostic accuracy of the models are shown in Figure 11.
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In Figure 11, EIFN achieves a recognition accuracy of 100% for the four states. SC-
CAPSNET experiences a slight loss of accuracy in identifying the normal state with a label
of 0. The diagnostic accuracy of SVM is slightly better than that of WDCNN. DNN has a
greater loss of accuracy in identifying normal state and inner ring fault.

Based on the above experimental results, EIFN can still maintain a higher fault diagno-
sis accuracy compared with other models when subjected to low-intensity noise. The fault
diagnosis performances of EIFN on CWRU and IMS datasets verified the validity of EIFN.

4.3.3. Visual Analysis of Feature Extraction Process

To explore the feature extraction process of EIFN, T-SNE technology is used to reduce
the dimensionality of the features extracted from critical network layers of EIFN. The dataset
used is the mixed dataset C4 of CWRU. Shown in Figure 12a–d is the two-dimensional
distribution of extraction features in the filter enhancement layer, expression enhancement
layer, primary capsule layer, and digital capsule layer.

In Figure 12, the same bearing state samples aggregation appears to a certain extent
after the convolution operation of the original data in the filter enhancement layer. After
the convolution operation of the expression enhancement layer, obvious bearing state
classification has been shown, which fully demonstrates the feature expression ability of
the expression enhancement layer. The feature expressions of the primary capsule layer and
digital capsule layer show more significant classification features, and the feature expres-
sions of the ten bearing states are clearly distinguishable. The above feature visualization
effectively verified the rationality of the proposed method. EIFN improves the feature
expression capability of the model by means of an enhanced integrated filter and transmits
features in a dynamic routing mode combining with the features of vector neurons. It
enables the model to produce distinguishing feature distributions more quickly. It also
provides a basis for the model to detect signals with strong noise.
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Figure 12. The visualization of the feature extraction process in EIFN. Here, 0–9 are labels for bearing
status, where N represents normal state, B, IR, and OR represent ball, inner race, and outer race faults,
respectively. The numbers represent fault diameters.

4.4. Comparative Analysis in Strong Noise Environment
4.4.1. Fault Diagnosis Results and Comparative Analysis

Gaussian white noise is added to the normal and fault state signals of rolling bearings,
and SNR = 4 dB, −4 dB. The smaller the SNR, the stronger the noise is. The signal
waveforms are shown in Figure 13.
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Figure 13. Original signal, the mixed signal with SNR = 4 dB, and the mixed signal with SNR = −4 dB
in different fault state. The abscissa is the number of samples, and the ordinate is the amplitude.

In Figure 13, Figure 13a is the bearing vibration signal in the normal state, and
Figure 13b–d are the signals of ball, inner race, and outer race with a fault diameter of
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0.007 inches, respectively. The amplitudes of original signals in four states show periodic
changes with obvious regularity. In the signal with SNR = 4 dB, the types of normal
state, ball fault, and inner race fault could not be distinguished. The signal features of the
outer race fault state are partially submerged by noise, but the fault type could still be
distinguished. In the signal with SNR = −4 dB, signal vibration features of four states are
completely submerged by noise. The fault types of signals with low SNR cannot be directly
identified. Therefore, the difficulty of rolling bearing fault diagnosis increases greatly in a
strong noise environment.

In order to verify the fault diagnosis performance of EIFN in a strong noise environ-
ment, Gaussian white noise with different SNR is added to the test dataset of C4 on CWRU
and the test dataset on IMS. The comparative experiment is conducted with SVM, DNN,
WDCNN, SC-CAPSNET, and EIFN (no key module). Experimental results are shown in
Tables 5 and 6 and Figure 14.

Table 5. Fault diagnosis results on CWRU.

Model −4 dB −2 dB 0 dB 2 dB 4 dB

Precision Recall Precision Recall Precision Recall Precision Recall Precision Recall

SVM 58.31 57.56 72.97 73.43 86.23 87.16 94.52 95.87 99.11 98.79
DNN 42.37 41.28 49.92 50.62 57.89 58.74 70.62 70.88 85.63 86.35

WDCNN 57.45 56.78 67.38 66.94 81.92 82.34 86.21 85.75 96.81 97.03
SC-CAPSNET 71.63 72.01 83.78 84.25 92.54 93.23 95.97 96.71 98.41 98.56
EIFN (no FE) 88.76 88,63 95.91 95.77 98.71 98.83 99.23 99.14 99.33 99.36
EIFN (no EE) 86.84 87.72 96.11 96.71 97.91 98.23 99.19 99.15 99.38 99.32

EIFN (no Vector) 87.21 88.19 96.22 96.81 98.54 98.62 99.18 99.21 99.42 99.44
EIFN 94.73 95.64 98.33 98.78 99.18 99.23 99.34 99.41 99.54 99.56

Table 6. Fault diagnosis results on IMS.

Model −4 dB −2 dB 0 dB 2 dB 4 dB

Precision Recall Precision Recall Precision Recall Precision Recall Precision Recall

SVM 57.24 56.87 84.71 83.24 97.46 98.01 99.17 100 100 100
DNN 39.87 40.26 61.27 60.62 78.54 77.97 85.59 85.72 91.52 90.87

WDCNN 56.23 55.32 77.32 76.54 96.21 95.25 98.16 97.64 100.00 100.00
SC-CAPSNET 69.67 68.43 83.51 82.97 97.33 97.38 99.56 100.00 100.00 100.00
EIFN (no FE) 74.58 75.45 90.33 91.43 99.25 100 99.75 100.00 100.00 100.00
EIFN (no EE) 74.63 75.88 91.21 90.75 99.72 100 99.78 100.00 100.00 100.00

EIFN (no Vector) 73.52 74.78 90.78 90.11 99.83 100.00 99.81 100.00 100.00 100.00
EIFN 92.45 93.81 97.82 98.54 100 100 100.00 100.00 100.00 100.00

In Table 5 and Figure 14a, the fault diagnosis precision and recall of SVM, WDCNN,
and SC-CAPSNET are around 90% in the environment with weak noise of 0–4 dB, while
that of EIFN is above 99%. The fault diagnosis precision of DNN can only achieve 85%
even in the noise environment with SNR = 4 dB. With the increase in noise intensity, the
fault diagnosis precision of SVM, DNN, WDCNN, and SC-CAPSNET decreases obviously.
When SNR is −2 dB, the diagnosis precision of the EIFN model remains at 98.33%, while
that of SC-CAPSNET is only 83.78%. The diagnostic precision and recall of SVM, DNN,
and WDCNN are all below 74%. In the strong noise environment with SNR = −4 dB,
EIFN still maintains a bearing fault classification recognition precision of 94.73%, while
that of SC-CAPSNET is only 71.63%. The fault diagnosis precision and recall of SVM,
DNN, and WDCNN are all below 59%. We can find that SVM and WDCNN can achieve
high fault diagnosis precision in a low-noise environment, but it is seriously disturbed in
high-intensity noise. DNN has poor fault diagnosis performance in a noisy environment.
The three types of EIFN without key modules have similar diagnostic performance. In the
strong noise environment, the fault diagnosis accuracies of the three models are better than
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SVM, DNN, WDCNN, and SC-CAPSNET, but the diagnosis performances are lower than
EIFN. Three key modules have improved the noise resistance of the model, and the best
effect can be achieved by integrating three modules.
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Figure 14. The comparison of diagnostic precision in different SNR noise environment. The abscissa
is the SNR, and the ordinate is the fault diagnosis precision.

In Table 6 and Figure 14b, we can find that other models except DNN have a similar
fault diagnosis performance when SNR = 0 dB − 4 dB. When SNR is −4 dB, the fault
diagnosis precision and recall of SVM, DNN, and WDCNN decrease greatly. Compared
with SVM, SC-CAPSNET has less degradation in fault diagnosis performance, highlighting
the advantages of vector neurons. In addition, the diagnostic precision of the three types of
EIFN without key modules also declined significantly compared with the results on the
CWRU dataset. However, EIFN can still achieve 92.45% fault diagnosis precision without
much interference.

4.4.2. Discussion on Experimental Results

In Figure 13, the original signal can be represented as the data in the training set, and
the signal with SNR = −4 dB can be represented as the data in the test set. The periodic
shock features of the testing set with noise are entirely submerged, which is quite different
from the training set without noise. It can be seen from Figure 8 that most models can
achieve high fault diagnosis precision with no noise. At this point, the training set and
the testing set are the same dataset. In Figure 14, when Gaussian white noise is added to
the testing set to make SNR = −4 dB, the bearing fault diagnosis precision of SVM, DNN,
WDCNN, and SC-CAPSNET is less than 72%. At this point, the diversity of the training
set and testing set is large. The models trained by the above method using the training set
cannot achieve good results on the unknown dataset (the testing set), and the generalization
abilities are weak. However, EIFN can achieve more than 92% fault diagnosis precision on
both CWRU and IMS datasets. This shows that EIFN has a strong generalization ability
and has good fault diagnosis performance for both the known training set and unknown
testing set.

4.4.3. Feature Visualization Analysis

In order to explore the extraction process of bearing fault feature information by EIFN
in a strong noise environment, Gaussian white noise is added to the mixed dataset C4
in CWRU to make the SNR = −4 dB. T-SNE technology is used to visualize the features
extracted from the filter enhancement layer and the expression enhancement layer of EIFN,
and the results are compared with two serial convolution layers of SC-CAPSNET, as shown
in Figure 15.
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In Figure 15, Figure 15a is the extraction feature of SC-CAPSNET’s first convolution
layer to the original vibration signal, and Figure 15b is the extraction feature of EIFN’s
filter enhancement layer to the original vibration signal. In Figure 15b, B21, IR14, and
IR21 have clearly presented a crescent-shaped aggregation effect. While in Figure 15a,
only IR14 and IR21 have clustering and have more intersections and overlaps with other
categories. Figure 15c,d are the features extracted from the second convolution layer of
SC-CAPSNET and the expression enhancement layer of EIFN, respectively. In Figure 15d,
EIFN’s expression enhancement layer has clearly distinguished other fault categories except
N and B14. However, N, B07, B14, IR21, and OR14 in the features extracted by the second
convolution layer of SC-CAPSNET all converge. In summary, EIFN constructs an enhanced
integrated filter by cascading a filter enhancement layer, expression enhancement layer,
and sampling layers. The structure uses multi-scale filters to extract features and filter noise
of the original vibration signal with different visual fields, highlighting the key information
of fault features. Features in each field complement each other to highlight key information
of fault features. The visualization results show that the enhanced integrated filter can
maintain excellent feature extraction capability even when disturbed by strong noise.

As shown in Figure 16, the model classification results of the digital capsule layer (full
connection layer) of EIFN and SC-CAPSNET are visualized.

In Figure 16a, after feature visualization in SC-CAPSNET’s digital capsule layer,
IR07 and OR14 are confused, B21 and IR21 converge, and N overlaps with B14 and B07.
Obviously, when SC-CAPSNET detects vibration signals with low SNR, the classification
effect of the rolling bearing fault state is not ideal. It is difficult to distinguish normal states
and various faults. In Figure 16b, ten data samples in the digital capsule layer of EIFN
are obviously clustered into ten clusters. Only a small part of the fault state of the ball
labeled 2 intersected with the normal state of the bearing labeled 0. Other clusters have a
large degree of differentiation. The visualization results highlight the advantages of the
enhanced filter combined with vector neurons. The filtered features are integrated into
vector space and then transferred in dynamic routing. The feature expression of the model
is more explicit, and the interference of strong noise is reduced effectively.
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5. Conclusions

The paper proposes EIFN, which integrates feature extraction and signal filtering
by constructing an enhanced integrated filter set. The feature scalar filtered by the filter
is transformed into a feature vector and transmitted by a dynamic route. The combina-
tion of the two aspects improves the fault diagnosis precision of the model in a strong
noise environment.

(1) EIFN integrates multiple primary filters in parallel and cascaded mode to form the
enhanced integrated filter. It can not only filter high-frequency noise and extract
useful feature information of low and middle frequency but also maintain frequency
and time resolution to a certain extent.

(2) EIFN uses vector neurons to incorporate scalar feature information into vector spaces.
The relationship between low-level features and high-level features is established by
dynamic routing. The key information of multi-scale fault features of signal in the
time dimension is highlighted to improve the precision of bearing fault diagnosis in a
strong noise environment.

(3) The experimental results show that EIFN can effectively identify various types of
rolling bearing states, and the bearing fault diagnosis precisions are more than 92%
when strong noise of SNR = −4 dB. The visualization results verify that EIFN can
effectively extract low and medium-frequency feature information and filter high-
frequency noise through the enhanced integrated filter.
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