
Research Article

A Rolling Bearing Fault Diagnosis-Optimized Scale-Space
Representation for the Empirical Wavelet Transform

Zechao Liu, Jianming Ding , Jianhui Lin, and Yan Huang

State Key Laboratory of Traction Power, Southwest Jiaotong University, Chengdu 610031, China

Correspondence should be addressed to Jianming Ding; fdingjianming@126.com

Received 24 July 2018; Revised 15 September 2018; Accepted 27 September 2018; Published 1 November 2018

Academic Editor: Adam Glowacz

Copyright © 2018 Zechao Liu et al. /is is an open access article distributed under the Creative Commons Attribution License,
which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Rolling element bearings have been widely used in mechanical systems, such as electric motors, generators, pumps, gearboxes,
railway axles, and turbines, etc. /erefore, the detection of rolling bearing faults has been a hot research topic in engineering
practices. Envelope demodulation represents a fundamental method for extracting effective fault information from measured
vibration signals. However, the performance of envelope demodulation depends heavily on the selection of the filter band and
central frequencies. /e empirical wavelet transform (EWT), a new signal decomposition method, provides a framework for
arbitrarily segmenting the Fourier spectrum of an analysed signal. Scale-space representation (SSR) can adaptively detect the
boundaries of the EWT; however, it has two shortcomings: slow calculation speeds and invalid boundary detection results.
Accordingly, an EWTmethod based on optimized scale-space representation (OSSR), namely, the EWTOSSR, is proposed. /e
effectiveness of the EWTOSSR is verified by comparisons between the simulation and the experimental signals. /e results show
that the EWTOSSR can automatically and effectively segment the EWT spectrum to extract fault information. Compared with
three well-knownmethods (the traditional EWT, ensemble empirical mode decomposition (EEMD), and the fast kurtogram), the
EWTOSSR exhibits a much better fault detection performance.

1. Introduction

Rolling element bearings have been widely used in me-
chanical systems, such as electric motors, generators, pumps,
gearboxes, railways, and turbines [1]. /ey are closely as-
sociated with the reliability of a mechanical system [2],
which is therefore a necessity to monitor their condition.
Many methods are used to monitor bearing faults, such as
vibration, acoustic, and temperature measurement tech-
niques [3–7]. However, the use of temperature measure-
ments can delay the detection of faults, and acoustic
measurements are easily obscured by noise. As a result,
vibration monitoring has become a commonly usedmethod.

Bearing defects can evoke a sharp impulse with a wide
frequency range, and such evoked impulses modulate other
vibration signals. /erefore, to obtain the modulated fault
information, a high-frequency resonance technique, also
known as envelope analysis, was proposed [8]; the key of
envelope analysis is to determine two filter parameters:
the bandwidth and the centre frequency. In addition, the

concept of the spectral kurtosis was proposed to select one
sub-band with a maximal kurtosis to detect bearing faults
[9]. However, the computational cost required for a short-
time Fourier transform in spectral kurtosis is high [10].
Consequently, a fast kurtogram algorithm was developed
[11]. Unfortunately, the bandwidths of the spectral kurtosis
and the fast kurtogram are fixed, being incapable of covering
the entire sideband surrounding the resonance frequency.
To resolve the fixed bandwidth problem associated with
the spectral kurtosis and fast kurtogram approaches, the
adaptive spectral kurtosis (ASK) technique was proposed
[12]. However, the performance of the ASK method heavily
depends on the initial superposition window width [13].

/e empirical wavelet transform (EWT) [14], which
possesses the fast computational properties of the wavelet
transform [15, 16] and the adaptive characteristic of em-
pirical mode decomposition (EMD) [17, 18], provides
a framework for arbitrarily determining the bandwidth and
centre frequency of a filter. /e EWT has been widely ap-
plied in the field of rotational mechanical fault detection, and
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it obtains excellent fault detection results [19–23]./e key of
the EWT is to determine the proper boundaries of spectrum
segments associated with arbitrary bandwidths. Many
methods for determining these boundaries have been de-
veloped, including operational modal analysis [24], order
statistics filters [25], sparsity guides [26], Pearson’s corre-
lation coefficient [27], and SSR [28]. However, with the
exception of SSR, all boundary-determining methods re-
quire a priori knowledge, such as the fault characteristic
frequency and order information. In contrast, SSR-based
EWTismore adaptive and can therefore extract bearing fault
information. However, it is computationally expensive, and
some overly noisy spectrum segments exist that are subject
to the presence of strong noise [29].

To solve the two problemsmentioned above, an optimized
scale-space representation (OSSR) and an effective scale-space
curve (SSC) selection method are proposed in this paper. /e
calculation cost of the SSR is closely related to the initial scale;
the larger the initial scale value, the faster the calculation
efficiency of the SSR, and vice versa. However, with an in-
crease in the initial scale value, low-scale information will be
lost, resulting in the failure of the boundary detection process.
It has been discovered that the minimum number of the SSR
conforms to a logarithmic distribution; therefore, a function
of this minimum number is used to adaptively adjust the scale
value to achieve a faster calculation of the SSR./e differences
in the lengths of the SSCs are used to determine the significant

boundaries, and a novel EWT (EWTOSSR) fault detection
method based on OSSR is proposed.

/e contents followed are organized as follows: the EWT
and SSR techniques are introduced in Section 2; Section 3
introduces an OSSR and the boundary selection method; in
Section 4, the procedure of the proposed EWTOSSRmethod
is introduced, and the proposedmethod is verified by a noisy
mechanical fault simulation signal in Section 5, and then an
experimental verification of the proposed method is con-
ducted in Section 6; finally, the conclusions of this study are
drawn in Section 7.

2. Theoretical Background

2.1. Empirical Wavelet Transform. /e fundamental prin-
ciple of EWT, which was introduced by Gilles in 2013 to
achieve the adaptive decomposition of signals, is to establish
a set of filters covering all resonant frequency bands. /e
EWT includes a low-pass filter representation approxima-
tion and N-1 bandpass filters to describe signals in greater
detail. If (N+1) divided boundaries are obtained, the Fourier
spectrum of the analysed signal will be divided into N
corresponding intervals. /e empirical wavelet functions
associated with each divided interval are generated using
Littlewood–Paley and Meyer’s wavelets [14]. As a result, the
empirical scale function ϕ̂n(ω) and empirical wavelet
function ψ̂n(ω) are written as follows [30]:

ϕ̂n(ω) �

1 if |ω|≤ωn − τn,

cos
π

2
η

1

2τn
|ω|−ωn + τn( )( )[ ] if ωn − τn ≤ |ω|≤ωn + τn,

0 otherwise,



ψ̂n(ω) �

1 if ωn + τn ≤ |ω|≤ωn+1 − τn+1,

cos
π

2
η

1

2τn+1
|ω|−ωn+1 + τn+1( )( )[ ] if ωn+1 − τn+1 ≤ |ω|≤ωn+1 + τn+1,

sin
π

2
η

1

2τn
|ω−ωn + τn( )( )[ ] if ωn − τn ≤ |ω|≤ωn + τn,

0 otherwise,



(1)

where ωn denotes a detected boundary; a transition phase Tn
with a width 2τn is defined for each ωn. η(x) is an arbitrary
Ck([0, 1]) function which satisfies [13]:

η(x) �
0 if x≤ 0 and η(x) + η(1−x) � 1∀x ∈[0, 1],
1 if x≥ 1,

{
(2)

and the most used function η(x) is

η(x) � x4 35− 84x + 70x2 − 20x3( ). (3)

/e transition phase between two adjacent wavelets can
be calculated from the linear relationship τn � cωn, where
0< c< 1. An empirical wavelet with a divided pattern is
shown in Figure 1.

/erefore, a key step of the EWT is to determine the
divided boundaries. To effectively obtain these boundaries,
as mentioned above, many methods have been proposed,
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including operational modal analysis [24], order statistics
filters [25], sparsity guides [26], Pearson’s correlation co-
efficient [27], and SSR [28].

2.2. Scale-Space Representation. /e SSR L(f, s) of the
discrete Fourier transform (DFT) X(f) of a discrete signal
x(n) can be expressed as [31]:

L(f, s) � X(f)∗g(f, s) � ∑+M
m�−M

X(m−f)g(f, s), (4)

where g(f, s) � 1/
���
2πs

√
e−(f

2/2s) is a kernel function, s de-
notes the scale parameter, and M denotes the width of the
kernel function. To ensure the approximation error of the
kernel function during the discretization, the value of M is
set asM � C

�
s

√
+ 1, where 3 ≤ C ≤ 6 (with an increase in the

scale parameter, the width of the kernel function should also
increase) [32].

/e SSR can be interpreted as a global trend of the
Fourier spectrum under different scale parameters. /e scale
parameter will update by

�
s

√
� N ��

s0
√

, where
��
s0

√ � 0.5 is the
initial scale parameter corresponding to half of the distance
between two Fourier spectrum points, and N � 1, . . . Nmax

are integers. To perform a finite maximum number of steps,
Nmax is defined as twice the length of the signal. Detailed
local information of characteristic lengths smaller than

�
s

√

will be removed by the SSR L(f, s).WN denotes the number
of local minima in the N-th scale step; the number of local
minima with respect to f of L(f, s) is a decreasing function of
the step N (the relationship of N and s has been defined
previously), although no new minima will appear as the step
N increases. /e number of initial local minima of L(f, s)
(with an initial scale

��
s0

√
) will be denoted asW0, and each of

these local minima defines a scale-space curve Ci (i ∈ [1,
W0]) with a length Li (i ∈ [1,W0]), and Li can be regarded as
the life span of the i-th minimum [33]. /erefore, Li is
defined as

Li � max
N

the i-thminimum exists
{ }. (5)

/e supports of meaningful modes in Fourier spectra are
achievable by delimiting two long SSCs. /erefore, the se-
lection of the SSC is the fundamental step of the SSR, and it is

solved by finding a threshold T such that the SSCs with
lengths larger than T are the curves delimiting the supports
of meaningful modes. /is is a two-class clustering problem.
Many methods have been proposed to solve this problem,
including k-Means clustering [34] and probabilistic ap-
proaches [35] in addition to the mean value method and
Otsu’s method [36].

2.3. A Discussion of Scale-Space Representation Shortcomings.
A noisy simulated signal is employed to illustrate the
shortcomings of SSR when diagnosing a faulty bearing
signal. /e simulated signal is expressed as follows [37]:

s(t) �∑J
j�0
Aje
−β t−jTp( ) cos 2πfR t− jTP( )( )u t− jTP( ),

(6)
where Aj is the amplitude of the j-th fault impulse, Tp is the
time period corresponding to the characteristic fault fre-
quency, fR denotes the excited resonance frequency, β is the
structural damping coefficient, J is the number of impulses,
u(t) is a unit step function, and s(t) denotes the simulated
signal. /e fixed parameters are listed in Table 1.

/e sampling frequency is 4096Hz, and the length of the
simulated signal is 8192./e simulated signal and the noised
signal (SNR � −14 dB) are shown in Figures 2(a) and 2(b),
respectively. /e Fourier spectrum of the noised signal and
the Fourier spectrum of the squared envelope (i.e., the
squared envelope spectrum) of the noised signal are shown
in Figures 2(c) and 2(d), respectively.

Because of the large noise in the simulated signal, the
characteristic fault frequency cannot be identified from the
squared envelope spectrum of the noised signal. /e partial
discrete SSRs L(f, s) with different scale parameters s are
computed using Equation (3) and shown in Figure 3. Ob-
viously, with the s increase, the SSRs become smoother.
/e SSP and threshold T obtained by different two-class
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Figure 1: An empirical wavelet.

Table 1: Parameters of the simulated signal.

Aj 1/Tp fR β

1 64Hz 1000Hz 1500Ns/m
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clustering methods are shown in Figure 4(a). /ere is only
one resonance frequency band in the simulation signal;
hence, two boundaries are expected (i.e., one resonance
frequency between two boundaries). /e numbers of
boundaries determined by the SSR with the different two-
class clustering methods (i.e., the Otsu, k-means, mean, and
probabilistic methods) are 16, 16, 100, and 48, respectively.
/e minimum number of boundaries obtained by k-means
clustering (16) and the detected boundaries are shown in
Figure 4(b), from which too many false boundaries are
evident, thereby providing an incorrect determination of the
practical resonance frequency band.

/e number of minima declines with an increase in the
step according to a similar logarithmic law of attenuation, as

shown in Figure 5. /ere are two attenuation stages with
different slopes. However, during the calculation of L(f, s),
the scale parameter

�
s

√
(i.e., the smoothing effect is related to�

s
√

) increases linearly. As a result, Gaussian functions with
an excessive number of steps are used to smooth the Fourier
spectra of the analysed signal; consequently, the resulting
L(f, s) is so redundant that numerous error boundaries
without any information partitions are found.When the step
reaches a maximum number, the number of minimum of
L(f, s) is still 11, and it is greater than 2 (as expected).
/erefore, a fixed number of steps is not suitable for di-
agnosing fault bearing signals. In addition, the cost of
generating the SSR is fairly expensive. /erefore, traditional
SSRs have two main shortcomings:
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Figure 2: /e simulated signal: (a) raw signal, (b) simulated signal with added noise, (c) Fourier spectrum of the noised signal, and
(d) squared envelope spectrum of the noised signal.
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(1) Too many false boundaries are found, preventing
a determination of the actual boundaries

(2) /e cost of generating the SSR is fairly high

3. The Proposed OSSR Method for
Boundaries Selection

3.1. Optimized Scale-Space Representation. To overcome the
abovementioned shortcomings, a novel scale-updating
mechanism is proposed as follows:

�
s

√
�

N
��
s0

√
if WN−1 ≤WT,

N2 ��
s0

√
if WN−1 >WT,

 (7)

whereWN−1 denotes the number of local minima of L(f, s)
at the N-1 th step, and WT is the minimum threshold

number set as ten percent of the initial minimum number
(W0) according to experimental analysis. When the number
of local minima is less than the set threshold WT, the scale
parameter is updated linearly (

�
s

√
�N ��

s0
√

); when the
number of minima is greater than the set thresholdWT, it is
updated quadratically (

�
s

√
� N2 ��

s0
√

). /erefore, upon
reaching the stage of minimum rapid change (Figure 5), the
novel updating mechanism captures the crucial information
for the boundary partitions. Meanwhile, in the slow stage, it
not only eliminates the scale redundancy but also minimizes
the calculation cost with fewer steps.

Meanwhile, the traditional maximum number of steps
Nmax is replaced byNe corresponding to the nominimum in
L(f,N2

e

��
s0

√ ). /erefore, the dynamic determination of the
maximum step can expand the scale values to perform ef-
fectively with relatively few boundary divisions.
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To illustrate the advantages of this approach, the opti-
mized scale-space plane (OSSP) of a simulated signal is
shown in Figure 6. /e time required to calculate the OSSP
using the OSSR on a laptop computer (i5-4460 processor,
3.20GHz) is shown in Figure 7.

From Figure 7, it is obvious that the computational
cost of the OSSR is much less than that of the SSR.
/rough a comparison between Figures 6 and 4(a), the
number of false boundaries decreases obviously, and the
SSCs (B1 and B2) that delineate the practical resonance
band are clearer. /erefore, the OSSR exhibits not only
a better performance with regard to the determination of
boundaries but also a faster calculation speed than the SSR
approach.

3.2. 9e SSC Selection Method. In the OSSR approach, as
the length of the SSCs increase, the probability of becoming
a valid boundary increases. /erefore, the problem of
finding a meaningful mode can be solved by observing the
change in the lengths of SSCs. /e lengths Li of SSCs are
sorted in descending order (Ldi >Ldi−1 > . . . > Ld0). /en, the
difference ΔLdi in the lengths Ldi of the SSCs are calculated
and expressed as

ΔLdi � L
d
i −L

d
i−1, (8)

/e sequences of Ldi and ΔLdi of the simulated signal are
depicted in Figure 8. Obviously, the first peak of ΔLdi appears
at an index of 2. Consequently, the two longest SSCs are
selected to delimit the resonance frequency band, and the
determined boundaries are shown in Figure 9.

Compared with Figure 5, the OSSR approach and the
proposed boundary selection algorithm can more accurately
determine the boundaries used to delineate the resonance
band containing fruitful fault information, as shown in
Figure 9.

4. Procedure of the Proposed Method

/e procedure of the proposed EWTOSSR method is
summarized in this section, and it is shown in Figure 10.

(1) Compute the Fourier spectrum of the analysed signal

(2) Calculate the OSSP

(3) Detect the boundaries using the differences in the
lengths of scale-space curves

(4) Decompose the analysed signals using the EWT

(5) Extract the fault information from the squared en-
velope spectra of the decomposed signals.

5. Simulation Verification

To verify the effectiveness of the proposedmethod, the signal
simulated using Equation (6) in Section 2 is analysed by the
EWTOSSR technique. According the EWTOSSR procedure,
the OSSP is shown in Figure 6. /e differences in the length
of the SSCs are shown in Figure 8. /e peak of the difference
appears at an index of 2. Consequently, the two longest SSCs
are selected to delimit the resonance frequency band. /e
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determined boundaries (548Hz and 1299Hz) are shown in
Figure 9. Finally, three sub-band signals are obtained, and
their squared envelope spectra are calculated and shown in
Figure 11. Consequently, the characteristic fault frequency
1/Tp and its first three harmonics can be observed clearly in
Figure 11(e). /erefore, the bearing fault has been identified
by the proposed EWTOSSR.

To illustrate the advantages of the proposed EWTOSSR
technique, three other well-known methods, namely, the
traditional EWT [10], ensemble empirical mode de-
composition (EEMD; the standard deviation set to 0.3, and
the number of ensembles is set to 100) [38], and the fast
kurtogram [6], are used to analyse the same signal simu-
lated in Section 2. By the traditional EWTmethod, 17 sub-
band signals are obtained. However, only the sub-band
signals 7–10 approaching the resonant frequency band are
depicted in Figure 12 because they have the greatest
probability of extracting characteristic fault frequency from
their squared envelope spectrum. /e EEMD decomposes
the noised signal into 13 intrinsic mode functions (IMFs).
Because of the IMF5-13 in the low-frequency domain may
not be modulated by fault characteristic frequency, only
IMF1-4 and their resulting squared envelope spectra are
shown in Figure 13. /e fast kurtogram are shown in
Figure 14(a), and the squared envelope and squared en-
velope spectrum with the largest kurtosis have been shown
in Figures 14(b) and 14(c). /e characteristic fault fre-
quency 1/Tp obtained by the traditional EWT can be ob-
served only in Figure 12(g); no more harmonics could be
detected. /e EEMD and fast kurtogram are unable to
extract any useful fault information; instead, the fault
characteristic frequency and its harmonics are still sub-
merged in strong noise.

/rough comparisons of Figures 12–14 with Figure 11,
the EWTOSSR fault-detecting performance is superior to
those of the three other methods./is is because the OSSR is
capable of detecting relatively reasonable and effective fre-
quency band boundaries containing maximal fault in-
formation and minimal noise, thereby highlighting the fault
features.

6. Experimental Validation

To validate the effectiveness of the proposed EWTOSSR
method, a testing bench is constructed, as shown in Fig-
ure 15(a). /e test bench consists of a motor, a drive wheel,
a loading device, a wheelset, and an axle box. /e power is
conveyed to the driving wheel through rubber belts. /e
traction power of the driving wheel is then transmitted to the
wheelset. Two types of artificial faults on the outer race and
rollers are shown in Figures 15(b) and 15(c), respectively
[39]. /e parameters of the tested wheelset bearing are listed
in Table 2. /e fault experiments are conducted at a rotation
speed of 50 km/h, and the vibration signals are collected at
a sampling frequency of 10 kHz.

6.1. Outer-Race Fault Detection. /e signals measured when
the wheelset bearing in Figure 15(b) with three outer-race
faults is installed on the tested bench shown in Figure 15(a)
are shown in Figure 16(a). /e EWTOSSR method is used to
analyse the measured signal. /e OSSP obtained according
to the EWTOSSR calculation procedure is shown in Fig-
ure 16(b), and the calculated differences in the lengths of the
SSCs are shown in Figure 16(c). /e peak of the difference
appears at an index of 6, and thus, the 6 longest scale-space
curves are selected as the boundaries. /e six frequencies for
determining the boundaries are 811Hz, 1333Hz, 1615Hz,
2168Hz, 2417Hz, and 3477Hz, and the detected boundaries
are depicted in Figure 16(d). As a result, the analysed signal
in Figure 16(a) is decomposed into seven sub-band signals,
and the sub-band signals are shown in the left column of
Figure 17, while the resulting squared envelope spectra are
shown in the right column of Figure 17. /e outer-race fault
characteristic frequency is expressed as [39]

fBPFO �
Zfr

2
1− d

D
cos α( ), (9)

where fr is the rotation frequency of the wheelset, d is the
roller diameter, D denotes the pitch diameter, Z is the
number of rollers, and α denotes the contact angle. /e
rotation frequency fr corresponding to a running speed of
50 km/h is 5.1Hz. According to the parameters in Table 2,
the outer-race fault characteristic frequency is 41.6Hz. /e
sub-band signal filtered by a wavelet transform with Fourier
support (811Hz, 1333Hz) can be used to extract the fault
information. /e outer-race characteristic fault frequency
fBPFO and its first five harmonics are clearly displayed in
Figure 17(i). Consequently, it is determined that the bearing
has suffered an outer-race fault.

Similarly, the three other methods are employed to
analyse the same signal shown in Figure 16(a) for com-
parison. /e results obtained by the traditional EWT are
shown in Figure 18. /e SSP and the threshold obtained by
k-means are shown in Figure 18(a), and the resulting
boundaries are displayed in Figure 18(d). According to the
detected boundaries, the signal is decomposed into 25 sub-
band signals. As the frequency band is too narrow, most of
them are unable to extract fault information, and only the
fifth and sixth sub-band signals contain feature information

Calculate the OSSP 

Input signal

FFT

Detect boundaries using the
differences in the lengths of

scale-space curves

Decompose the analysed signals
using the EWT

Extract the fault information
from the squared envelope spectra

of the decomposed signals

Figure 10: /e procedure of the proposed method.
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about outer-race faults. /e outer-race fault characteristic
frequency fBPFO and its previous three harmonics are
extracted and shown in Figures 18(e) and 18(f). However,
both the amplitude and the number of its harmonics are less
than those in Figure 17(i). /is is because the second fre-
quency band of EWTOSSR (from 811Hz to 1333Hz) in
Figure 16(d) is split into two bandwidths determined by the
traditional EWT (the first band is from 809Hz to 992Hz and
the second band is from 992Hz to 1211Hz). As a result, the
width of the two sub-band signals is too narrow to contain
more useful fault information. /en the signal is analysed by
the EEMD, the signal is decomposed into 14 IMFs. Because
of the IMF5-14 in the low-frequency domainmay not be able
to modulate the fault characteristic frequency, only IMF1-4
and their resulting squared envelope spectra are shown in
Figure 19. /e results obtained by fast kurtogram are shown
in Figure 20. Obviously, the fault characteristic frequency
and its harmonics cannot be identified from Figures 19 and
20./us, the EEMD and fast kurtogram could not extract the
fault-related repetitive transients from the signal.

By comparison, only the EWT and the proposed
EWTOSSR have successfully extracted the fault impulses;
however, the fault features obtained by the proposed method
are more significant. /us, the fault-detecting performance of
the EWTOSSR is superior to the three comparison methods.

6.2. Rolling Fault Detection. /e measured signal of the
rolling fault shown in Figure 15(c) is shown in Figure 21(a)
under the test speed. Similarly, the OSSP is obtained and
shown in Figure 21(f), and the differences in the lengths of
the SSCs are shown in Figure 21(b). /e peak of the dif-
ference appears at an index of 2, and thus, the 2 longest SSCs
are selected as the boundaries. /e two frequencies for
determining the boundaries are 978Hz and 2524Hz, and the
resulting boundaries are displayed in Figure 21(g). /ere-
fore, the measured signal is decomposed into three sub-band
signals, and the sub-band signals and their squared envelope
spectra are shown in Figure 21. /e rolling fault charac-
teristic frequency fBSF is expressed as

fBSF �
Dfr

2d
1− d

D
cos α( )2 . (10)

According to the rotation frequency of the wheelset and
the wheelset bearing parameters listed in Table 2, fBSF is
equal to 33.9Hz. In both Figures 21(i) and 21(j), the rolling
fault characteristic frequency fBSF and its harmonics are
clearly extracted.

To further illustrate the advantages of the EWTOSSR
method, the three other methods are used to analyse
the same measured signal in Figure 21(a) for comparison.
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Figure 11:/e proposed EWTOSSR method for diagnosing a simulated signal: (a–c) sub-band signals; (d–f) squared envelope spectra (red
dashed lines: the first three harmonics of the characteristic fault frequency 1/Tp).
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Figure 12: Results obtained by the traditional EWT and SSR: (a–d) sub-band signals; (e–h) squared envelope spectra (red dashed line:
characteristic fault frequency 1/Tp).
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According to the process of the EWT, the SSP and threshold
obtained by k-means are firstly calculated and shown in
Figure 22(a), and the corresponding boundaries are depicted
in Figure 22(b). /erefore, there are 16 sub-band signals

obtained by EWT, and the sixth and seventh sub-band
signals have the most obvious fault characteristic fre-
quency in the squared envelope spectra. /us, only the sixth
and seventh sub-band signals and their squared envelope
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Figure 13: Results obtained by EEMD: (a–d) IMFs; (e–h) squared envelope spectra.

A
m

p
li

tu
d

e
A

m
p

li
tu

d
e

0.6

0.3

0.0

1.0

0.5

0.0

0 1

Time (s)

2

0 50 100 150 200

×10–2

Frequency (Hz)

(b)

(c)(a)

0

1

1.6

2

2.6

3

3.6

4

4.6

5

L
ev

el
 k

�-kurt.2 - Kmax = 0.3 @ level 5, Bw = 64Hz, fc = 1952Hz

0 1000 2000 3000 4000 5000

Frequency (Hz)

0

0.05

0.1

0.15

0.2

0.25

0.3

Figure 14: Results obtained by the fast kurtogram: (a) kurtogram; (b) squared envelope of the node with the largest kurtosis value;
(c) squared envelope spectrum of (b).

10 Shock and Vibration



spectra have been illustrated in Figure 22. /e same signal is
also processed by the EEMD, and 14 IMFs are obtained.
Because the IMF5-14 are low-frequency narrow-band sig-
nals which would not be modulated by defect-related fre-
quency, only the first four IMFs and their squared envelope
spectra are illustrated in Figure 23. /e result obtained by
fast kurtogram is shown in Figure 24. Obviously, the dom-
inant components in Figures 22(e) and 22(f), Figure 23(e),

and Figure 24(c) are fault characteristic frequency and its
harmonics.

Although these three methods can extract the char-
acteristic rolling fault frequency fBSF and its harmonics,
both the amplitudes of fBSF and the number of its har-
monics are less than those extracted by the EWTOSSR
method. /erefore, the EWTOSSR method can be used to
effectively determine the boundaries containing fruitful

(b)

(c)(a)

Figure 15: /e test bench for investigating wheelset bearing faults and bearing defects: (a) bench; (b) outer-race defect; (c) roller defect.

Table 2: /e parameters of the tested wheelset bearing.

Roller number Roller diameter (mm) Pitch diameter (mm) Contact angle (rad) Load (kN)

19 26.9 180 0.1571 50
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Figure 16: Results obtained by the EWTOSSRmethod: (a) measured signal; (b) OSSP; (c) differences in the lengths of the scale-space curves;
(d) detected boundaries (green dash-dotted lines).
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Figure 17: Sub-band signals and their envelope spectra: the left column shows the sub-band signals; the right column shows the squared
envelope spectra corresponding to the left column (red dashed lines: fBPFO and its harmonics).
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Figure 18: Results obtained by the traditional EWT: (a) SSP (green dashed line: the detected threshold by k-means clustering), (b, c) sub-
band signals; (d) detected boundaries (green dash-dotted lines); (e, f ) squared envelope spectra (red dashed lines: fBPFO and its harmonics).
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fault information, and it is suitable for extracting weak
faults from measured signals.

6.3.Multiple Fault Detection. /e vibration signals measured
when there are the multiple outer-race faults (Figure 15(b))

and roller faults (Figure 15(c)) are shown in Figure 25(a). /e
OSSP and the differences in the lengths of the SSCs are shown
in Figures 25(b) and 25(f), respectively. Similarly, the peak of
the difference appears at an index of 2, and thus, the 2 longest
SSCs are selected as the boundaries. /e two frequencies for
determining the boundaries are 977Hz and 2576Hz, and the
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Figure 19: Results obtained by EEMD: (a–d) IMFs; (e–h) squared envelope spectra.
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resulting boundaries are displayed in Figure 25(g). /erefore,
the measured signal is decomposed into three sub-band
signals. /e sub-band signals and their squared envelope
spectra are shown in Figure 25./e rolling characteristic fault
frequency fBSF and its first five harmonics are clearly

extracted in Figure 25(i). Meanwhile, the outer-race fault
characteristic frequency fBPFO and its first eleven harmonics
are clearly displayed in Figure 25(j).

To verify the superiority of the proposed EWTOSSR
method, the three other methods are used to analyse the same
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Figure 21: Results obtained by the EWTOSSR method: (a) measured signal; (b) differences in the lengths of scale-space curves; (c–e) sub-
band signals; (f ) OSSP, (g) detected boundaries (green dash-dotted line); (h–j) squared envelope spectra (red dash-dotted lines: fBSF and its
harmonics).
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Figure 22: Results obtained by the traditional EWT: (a) SSP (green dashed line: the detected threshold by k-means clustering); (b, c) sub-
band signals; (d) detected boundaries (green dash-dotted lines), (e, f ) squared envelope spectra (red dash-dotted lines: fBSF and its
harmonics).
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measured signal in Figure 25(a) for comparison. /e SSP and
threshold obtained by k-means are illustrated in Figure 26(a).
According to the boundaries shown in Figure 26(e), the EWT
decomposes the signal into 18 sub-band signals. Because the
tenth, thirteenth, and sixteenth sub-band signals contain the
most significant defective information about outer-race and
roller faults; hence, only the corresponding filtered signal and
squared envelope spectra of the tenth, thirteenth, and six-
teenth sub-band signals are displayed in Figure 26./e rolling
characteristic fault frequency fBSF and its first three har-
monics can be identified in Figure 26(f). Additionally, the
outer-race fault characteristic frequency fBPFO and its first six
harmonics are clearly depicted in Figures 26(g) and 26(h)./e
EEMD is utilized to analyse the bearing multiple fault signal,

a total 14 IMFs is obtained. As the IMF5-14 are low-frequency
narrow-band signals which would not be modulated by
defect-related frequency, only the first four IMFs and their
squared envelope spectra are depicted in Figure 27. Only
the outer-race fault characteristic frequency fBPFO and its
first eleven harmonics are identified in Figure 27(c). /e
fast kurtogram is shown in Figure 28(a); the squared en-
velope and the squared envelope spectrum of the node
with highest kurtosis have been displayed in Figures 28(b)
and 28(c), respectively. From Figure 28(c), only the rolling
characteristic fault frequency fBSF and its first five har-
monics are clearly identified.

Although the traditional EWT can extract fBSF and
fBPFO and their harmonics, both the amplitudes of the
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Figure 23: Results obtained by EEMD: (a–d) IMFs; (e–h) squared envelope spectra (red dash-dotted lines: fBSF and its harmonics).
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Figure 25: Results obtained by the EWTOSSR: (a) measured signal; (b) differences in the lengths of scale-space curves; (c–e) sub-band
signals; (f ) OSSP; (g) detected boundaries (green dash-dotted lines); (h–j) squared envelope spectra (red dashed lines: fBPFO and its
harmonics; red dash-dotted lines: fBSF and its harmonics).
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Figure 26: Results obtained by the traditional EWT: (a) SSP (green dashed line: the detected threshold by k-means clustering); (b–d) sub-
band signals; (e) detected boundaries (green dash-dotted lines); (f–h) squared envelope spectra (red dashed lines: fBPFO and its harmonics;
red dash-dotted lines: fBSF and its harmonics).
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characteristic fault frequencies and the numbers of their
harmonics are less than those obtained by the EWTOSSR
method. In addition, the results obtained by EEMD and the
fast kurtogram are shown in Figures 27 and 28, respectively.
Neither the EEMD technique nor the fast kurtogram can
extract the fault characteristic frequencies fBSF and fBPFO

simultaneously. /erefore, the OSSR can determine a set of
effective boundaries for extracting useful fault information,
and it possesses higher capability in extracting weak faults
from measured signals.

7. Conclusions

In this paper, a novel fault diagnosis method named the
OSSR-based EWT, namely, the EWTOSSR method, was
proposed. In the EWTOSSR technique, an optimized SSR
replaces the traditional SSR to accelerate the calculation
speed and increase the accuracy of the EWT with regard to
boundary detection. /e bandwidth determined by using
these accurate boundaries can contain complete fault in-
formation with much less noise.

/e EWTOSSR method was verified by simulated and
experimental signals. /e validation results show that the
EWTOSSR approach is fairly suitable for extracting weak
fault features from signals with strong noise.

Compared with three well-known fault diagnosis
methods (i.e., the traditional EWT, EEMD, and the fast
kurtogram), the EWTOSSR exhibits a much better fault
detection performance.

Finally, although the EWTOSSR can effectively de-
termine the resonant bands containing fruitful fault in-
formation, substantial in-band noise still exists and
submerges the fault features to a certain extent. /erefore,
further research needs to be conducted to reduce or elim-
inate the in-band noise following the implementation of the
EWTOSSR method.

Nomenclature

ϕ̂n(ω): Empirical scale function
ψ̂n(ω): Empirical wavelet function
ωn: n-th detected boundary
Tn: n-th transition phase
τn: Width of Tn; ψ̂n(ω)
c: τn � cωn, where 0< c< 1;
η(x): η(x) � x4(35− 84x + 70x2 − 20x3)
x(n): Discrete signal
X(f): Discrete Fourier transform (DFT) of signal x(n)
L(f, s): Discrete scale-space representation
g(f, s): Kernel function
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Figure 27: Results obtained by EEMD: (a–d) IMFs; (e–h) squared envelope spectra (red dashed lines: fBPFO and its harmonics).
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Figure 28: Results obtained by the fast kurtogram: (a) kurtogram; (b) squared envelope of the node with the largest kurtosis value;
(c) squared envelope spectrum of (b) (red dash-dotted lines: fBSF and its harmonics).
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s: Scale parameter
M: Width of the kernel function
Nmax: Maximum number of scale step of scale-space

representation
WN: Number of local minimum of L(f, s) in N-th scale

step
Ci: i-th scale-space curve
Li: Length of the i-th scale-space curve
T: /reshold of the scale-space curve
Aj: Amplitude of the j-th fault impulse
Tp: Time period corresponding to the fault

characteristic frequency
fR: Resonance frequency
β: Structural damping coefficient
J: Number of fault impulses
u(t): A unit step function
s(t): Simulated signal
WT: /e minimum threshold number of the optimized

scale-space representation
Ne: Maximum number of scale steps of the optimized

scale-space representation
Ldi : Length of the i-th scale-space curve in descending

order
ΔLdi : Difference in Ldi
fr: Rotation frequency
d: Roller diameter
D: Pitch diameter
Z: Number of rollers
α: Contact angle
fBPFO: Outer-race fault characteristic frequency
fBSF: Rolling fault characteristic frequency.
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