
Citation: D’Angelo, V.; Folino, P.;

Lupia, M.; Gagliardi, G.; Cario, G.;

Gaccio, F.C.; Casavola, A. A

ROS-Based GNC Architecture for

Autonomous Surface Vehicle Based

on a New Multimission Management

Paradigm. Drones 2022, 6, 382.

https://doi.org/10.3390/

drones6120382

Academic Editor: Oleg Yakimenko

Received: 8 October 2022

Accepted: 24 November 2022

Published: 27 November 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

drones

Article

A ROS-Based GNC Architecture for Autonomous Surface
Vehicle Based on a New Multimission Management Paradigm
Vincenzo D’Angelo 1 , Paolo Folino 2, Marco Lupia 1 , Gianfranco Gagliardi 1,* , Gianni Cario 1 ,
Francesco Cicchello Gaccio 2 and Alessandro Casavola 1

1 Dipartimento di Ingegneria Informatica, Modellistica, Elettronica e Sistemistica (DIMES), Università della
Calabria, 87036 Rende, Calabria, Italy

2 Applicon s.r.l., Viale De Filippis, 326, 88100 Catanzaro, Calabria, Italy
* Correspondence: g.gagliardi@dimes.unical.it

Abstract: This paper presents the design and implementation of BAICal (Intelligent Autonomous
Buoy by the University of Calabria), an autonomous surface vehicle (ASV) developed at the Au-
tonomous Systems Lab (LASA) of the Department of Computer Science, Modeling, Electronics,
and Systems Engineering (DIMES), University of Calabria. The basic project was born as a research
program in marine robotics with multiple applications, either in the sea or in lake/river environments,
for data monitoring, search and rescue operations and diver support tasks. Mechanical and hardware
designs are discussed by considering a three-degree-of-freedom (3DoF) dynamical model of the
vehicle. An extension to the typical guidance, navigation, and control (GNC) software architecture is
presented. The software design and the implementation of a manager module (M-GNC architecture)
that allows the vehicle to autonomously coordinate missions are described. Indeed, autonomous
guidance and movement are only one of several more complex tasks that mobile robots have to
perform in a real scenario and that allow a long-term life cycle. Module-based software architecture
is developed by using the Robot Operating System (ROS) framework that is suitable for different
kinds of autonomous vehicles, such as aerial, ground, surface or underwater drones.

Keywords: autonomous vehicles; guidance navigation and control (GNC); marine applications; robot
operating system (ROS); mission management; modular systems architecture

1. Introduction

In recent decades, the attention to underwater exploration has largely grown due to a
large number of technological infrastructures deployed at the bottom of the sea (pipelines,
communications cables, etc.) and offshore sites for energy production. Furthermore,
water health monitoring can provide a lot of information on climate change and helps to
prevent environmental disasters. In particular, underwater and surface ROVs are used to
perform several different operations [1], such as repairs and maintenance in the offshore
industry (i.e., oil and gas industries or renewable energy plants) [2,3], for scientific purposes
(i.e., environmental data collection, bathymetric mapping, etc.) [4,5] or for military purposes
(i.e., patrolling, naval defense, mine countermeasures) [6–8]. The use of Remotely Operated
Vehicles (ROV) requires the presence of a human operator who coordinates and guides
the vehicle in its operations. However, the demand for vehicles that can work for long
periods (days, months or even years) in a completely autonomous way is increasing. To
be considered autonomous, a vehicle must be able to complete all required tasks without
any external interaction. To this purpose, a vehicle must be equipped with a software and
hardware architecture that allows it to localize itself in the space and manage its actuators.
Autonomous vehicles are often equipped with a guidance, navigation, and control (GNC)
architecture that is in charge of generating the actuator control signals, planning desired
routes, providing an estimate of the vehicle’s pose starting from the data collected by
sensors and performing other basic tasks such as obstacle avoidance.

Drones 2022, 6, 382. https://doi.org/10.3390/drones6120382 https://www.mdpi.com/journal/drones

https://doi.org/10.3390/drones6120382
https://doi.org/10.3390/drones6120382
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/drones
https://www.mdpi.com
https://orcid.org/0000-0001-9047-8419
https://orcid.org/0000-0003-2356-9817
https://orcid.org/0000-0002-5148-8638
https://orcid.org/0000-0001-9482-8041
https://orcid.org/0000-0002-4216-4201
https://doi.org/10.3390/drones6120382
https://www.mdpi.com/journal/drones
https://www.mdpi.com/article/10.3390/drones6120382?type=check_update&version=2

Drones 2022, 6, 382 2 of 22

Furthermore, a fully autonomous vehicle must be able to autonomously manage
its missions and handle its payloads. High-level mission planning and management
techniques and intelligent error-handling mechanisms represent the state-of-the-art in
autonomous vehicle design. In the literature, several papers about the hardware and
software design of autonomous surface and underwater vehicles are presented. In [9–12],
the development of ASV prototypes based on GNC architectures is described, whilst
in [13–17] different management approaches are presented to schedule the execution of
missions in a dynamic environment. Many works in the literature propose strategies by
mean of the single-mission management approach, where mainly the replanning of tasks
is considered. In [15,18], single-mission management and replanning are addressed by
using Petri nets, whilst in [16], a modular architecture proposes a process-based approach
to manage single modules in order to carry out a mission. In [17], a cognitive architecture
based on the belief–desire–intention paradigm is described to manage the mission tasks.

The main contribution of this paper is to present a different approach to the mission
management problem. In particular, a multimission paradigm is introduced that enables
the possibility to design an autonomous switching mechanism between simultaneous
active missions. The rationale is supported by the fact that the use of a vehicle for a
long period supposes the possibility of carrying out several alternative missions. These
missions could be time-fixed scheduled or dynamically scheduled, by using a priority-
based mechanism. Then, the introduction of a multimission manager module allows
one to select in real time, which mission has to be performed according to the assumed
priorities, by switching between the active ones. In this respect, the proposed multimission
management mechanism exploits the single-mission common structure. Then, each robot’s
behavior is modeled by using a state machine where the inner states represent single tasks.
Then, in this paper, the whole design of an autonomous marine surface vehicle prototype
is presented, starting from the mechanical and hardware design, with a special focus on
the software architecture developed. First of all, the used GNC architecture, suitable for
different kinds of autonomous vehicles, such as aerial, ground, surface or underwater
drones, is presented. This provides the basic functionalities of an unmanned vehicle. Next,
a manager module, which extends the previous architecture (M-GNC), is introduced. The aim
of this module is to provide an intelligent way to perform high-level mission management,
by using behavior-based mission modeling and dynamic AI-based scheduling algorithms,
in order to increase mission safety, reliability and flexibility in long-term operations.

The BAICal ASV was used successfully in the early stages of the POR research project
MONEMA to collect environmental data in a sea monitoring application and in diver
support tasks using an onboard acoustic underwater localization system [19,20], remote
web-application [21], and GNC system exploiting fault diagnosis algorithm [22] and a
sensor reconciliation architecture in charge of hiding possibly corrupted measures due to
sensor faults [23].

The paper is organized as follows. Section 2 discusses mechanical, hardware and
mathematical modeling matters. Section 3 introduces and discusses the implementation of
the main software modules. In Section 4, a novel management module compliant with the
previous architecture is introduced. Some experimental results are also reported and some
conclusions end the paper.

2. Physical Design

Depending on the type of application, an ASV can be designed in different ways. In
fact, when it is necessary to travel great distances, autonomous marine surface vehicles
are designed to be similar in shape to traditional ships or catamarans. On the other side,
when the main purpose is to carry out operations in small spaces or perform dynamic
positioning, the ASV is designed to be an omnidirectional vehicle. In this respect, because
the main task of the BAICal ASV is to perform slow movements and hold the position
despite perturbations due to sea currents or wind, an omnidirectional design is considered.
Then, in this Section, mechanical and mathematical considerations are discussed in order

Drones 2022, 6, 382 3 of 22

to obtain a prototype suitable for this kind of task. Hardware and electrical aspects are also
described below.

2.1. Mechanical Design

To perform dynamical positioning task, an omnidirectional overactuated vessel is
chosen. Equipping the vehicle with four underwater thrusters in a cross configuration
allows free motion (with any orientation) in the xy-plane (shown in Figure 1).

Figure 1. ASV prototype on xy-plane and thrusters configuration.

Defining τuvr = [τu, τv, τr]T the vector that contains thrusts and moments along the
axes of the body-fixed (mobile) coordinate frame, it is possible to define an actuator al-
location matrix Σ that gives the relation between the forces provided by each thruster
τ1234 = [τ1, τ2, τ3, τ4]

T and the forces and moments acting on the rigid body. The allocation
matrix is given by (1), where α = 45° and ` = 1 m.

τu
τv
τr

 =

 sin α sin α − sin α − sin α
− cos α cos α − cos α cos α
−`/2 `/2 `/2 −`/2

︸ ︷︷ ︸

Σ

·

τ1
τ2
τ3
τ4

 (1)

The chassis is made with two 1 m long aluminum bars arranged in a cross, resting on
four buoyant bodies, one for each thruster. In the center of the “X”, there is a watertight
(IP56) box that contains the battery pack and all control electronics. The small size of the
vehicle (it weighs approximately 10 kg) allows it to be very suitable for research or civil
purposes thanks to the ease of transport and deployment. The buoyant drag allows the
addition of a payload of up to 10 kg, such as multiparametric probes for water monitoring,
an acoustic modem for underwater communications or a sonar for bathymetric purposes
(Figure 2).

The vehicle is equipped with four Blue Robotics T200 thrusters, approximately 0.25 m
under the water surface. Each thruster consists of a fully -flooded brushless motor that can
rotate up to 3800 rpm, providing a maximum thrust of 3.5 kgf with a power consumption
of 350 W. Small dimensions and the omnidirectional motion increase maneuverability in
environments where accurate motion is required, such as between the docks of a port.

Drones 2022, 6, 382 4 of 22

Figure 2. BAICal vehicle in sea and lake environments.

2.2. Hardware

The vehicle’s logic unit consists of two main boards (Figure 3): a low-power single-
board computer based on an ARM processor, running a Linux operating system, which
implements high-level tasks (control, navigation and mission management) using the Robot
Operating System (ROS) framework; and a microcontroller-based board to provide control
signals (hardware PWMs) and export native communication interfaces (SPI, I2C, UART) to
connect external sensors. The low-level board embeds a 9-DOF IMU sensor that uses an
MPU9250 chip that combines three angular rate gyros, three orthogonal accelerometers,
and three orthogonal magnetometers in order to extract vehicle orientation, attitude, speed
and accelerations. The system also uses a global positioning system (GPS), whose data are
processed together with the IMU data by a data fusion algorithm to estimate the vehicle’s
state required by control and mission modules. A couple of low-cost GPS receivers from
Swift Navigation Company, with RTK technology support, are used to obtain centimeter-
level precision of vehicle position data.

The low-level board is also connected to a 2.4 GHz radio receiver that allows one to
teleoperate the vehicle in manual mode, in order to drive it in the initial position or to
ensure a manual recovery safety system. The radio control system is a 6-channel JRpropo
kit using a dual modulation spread spectrum; the transmitter uses three channels to send
τuvr commands and a channel to encode the operation mode (autonomous or manual) via
a switch; the receiver is connected to a hardware PPM-encoder module, which converts
the received PWM signals in a single pulse-position modulated signal that is sent to the
microcontroller board and then to the high-level board.

The high-level unit computes control signals needed to reach the desired goal and
sends the actuator commands to the 4 electronic speed controllers (ESCs) in terms of the
duty cycle of the PWM signals used to actuate the independent thrusters. The motor
controllers used are 4 Favourite Littlebee 30A ESC, whose firmware is BLHeli-based. The
controllers are reprogrammable to fit the technical specifications of the thruster.

The overall system is supplied by two 3700 Ah 12V LiPo battery packs. The main
power line goes straight to the four thrusters, whereas various DC/DC converters are used
to generate the required voltages for the different subsystems (onboard pc, low-level board,
sensors). The following table summarizes the main technical features of the hardware used
to build the vehicle prototype.

Drones 2022, 6, 382 5 of 22

Onboard PC Raspberry Pi 3 B+ (ARM Cortex A53 1.2 GHz, RAM 1 GB, SD 16 GB)

Low-level board PXFMini (MPU9250 IMU, 2xI2C, 8xPWM Output, 1xPPM-Sum

GPU Broadcom VideoCore IV – 400 MHz

ROM Scheda SD 16 GB

Network Ethernet, Wireless, Bluetooth

I/O 40xGPIO

Figure 3. Main hardware components schematic.

2.3. Mathematical Modeling

The mathematical model of the vessel on the xy-plane can be divided in a kinematic
and in a dynamic model, properly connected. First of all, two coordinate frames are
defined: a body-fixed (mobile) frame {b} and the Earth-fixed frame {n}. Denoting with
ν = [u, v, r]T the velocities vector expressed in {b}, where the components are, respectively,
surge, sway and yaw speed, and with η = [x, y, ϑ]T the pose vector (Cartesian position and

Drones 2022, 6, 382 6 of 22

yaw orientation) of the vehicle in {n}, it is possible to obtain the following kinematic model
starting from simple trigonometric consideration.ẋ

ẏ
ϑ̇

 =

cos ϑ − sin ϑ 0
sin ϑ cos ϑ 0

0 0 1

︸ ︷︷ ︸

R(ϑ)

·

u
v
r

 (2)

According to [24], the dynamic model can be expressed in the body-fixed frame
through the following equation

Mν̇ + C(ν)ν + D(ν)ν = τuvr + τE (3)

where M ∈ R3×3 is the matrix of mass and inertia terms, C(˚) ∈ R3×3 is the Coriolis
and centripetal matrix and D(ν) ∈ R3×3 is the matrix containing nonlinear hydrodynamic
damping terms, whilst τuvr = [τu, τv, τr]T is the vector that contains surge and sway thrusts
and the yaw moment and τE represents the external disturbance forces and torques. Since
the operating conditions ensure that the vehicle moves at low speeds and thanks to the
symmetrical shape of the vehicle it is possible to make some model simplifications [1]:

• M, D(ν) are diagonal matrices (decoupled dynamic);
• C(ν) is negligible;
• D(ν) is a constant;
• τE can be neglected in calm environments.

Remark 1. Note that the kinematic (2) and dynamic models (3) must be discretized to be used in
the GNC architecture described in Section 3. To this end, the forward Euler differences method with
a sampling time ∆T has been employed to perform the models discretization.

3. GNC Architecture

This section describes the main implemented modules that compound the base guid-
ance, navigation and control (GNC) architecture. The design of the software architecture
was focused on software modularity and components decoupling, thanks to the pub/sub
paradigm and other design patterns provided by ROS. Modular software and a GNC
architecture allow us to improve the components’ reliability and make it easy to enhance
a single module, such as the control or planning algorithms. Figure 4 shows the main
modules that compose the software architecture; for each module, a package containing
the nodes needed to implement specific functionalities is created.

Figure 4. Software architecture modules.

Drones 2022, 6, 382 7 of 22

3.1. Robot Operating System

ROS is a framework known as a meta-operating system as it exports the main features
provided by a usual operating system. Among these, ROS provides hardware abstrac-
tion, device drivers, rules and conventions, packet management systems, libraries that
implement commonly used algorithms, multithreading management, interprocess commu-
nication and message passing. ROS refers to a node as the smallest unit of the processor
running, and it is recommended to create one single node for each purpose, in order to
improve the decoupling and reusability of the code. Nodes can exchange information with
each other using different mechanisms made available by ROS:

• Topic: Through the pub/sub paradigm, one or more nodes can subscribe to a topic of
interest on which, on the other hand, publishers nodes can share information. Each
time a message is published on the topic, all the nodes subscribed to it receive a
notification with the shared information.

• Service: It is a client/server mechanism which can be seen as a synchronous remote
procedure call, i.e., it allows one node to call a function that is executed by another node.

• Action: It is a more sophisticated method of internode communication that uses topic
to establish asynchronous bidirectional communication. Similar to the service mechanism,
an action is taken when the server takes longer to respond after receiving a request
(long-running activity), allowing a node to get intermediate responses and the ability
to cancel the task at any time.

3.2. Guidance

The main purpose of the guidance module, whose details are summarized in Figure 5,
is to establish the desired path of travel from the vehicle’s start position to a target location,
also called goal. This task can be done using several well-known path planning heuristic
or nonheuristic algorithms that can be developed using different techniques. Among
these, some of the best-known techniques include artificial potential field algorithms, firstly
introduced by Khatib in [25], sampling-based algorithms, such as probabilistic roadmap, or
search-based algorithms, which exploit base graph theory to compute the shortest path
between the source node and the target node using algorithms such as Dijkstra’s or A*.
When a priori information about the environment is known, the path planning problem is
solved by a module called global path planner. The information about the environment is
firstly loaded with the aim to build a map, then a global path planning algorithm can be
executed to find the best way to move the vehicle from the start pose to a goal pose.

The vehicle should ideally move through the planned path, but in a real scenario, the
described path can be affected by several sources of error, such as unmodeled dynamics,
environmental disturbances or the presence of unmapped obstacles. In this scenario,
another unit, called local path planner, takes action. Its purpose is to generate local corrections
to the original trajectory and allow obstacle avoidance. The guidance module contains native
ROS libraries, known as navigation stack, and some custom nodes to perform its tasks. The
navigation stack is made up of some packages that can be used to perform autonomous robot
navigation both in a simulated and real environment. In particular, a global path planner
which implements Dijkstra’s algorithm (refer to the pseudo code reported in Algorithm 1
below for details) was used among the features exported from the navigation stack as well
as a set of tools to manage maps, including loading and cost map building.

Drones 2022, 6, 382 8 of 22

Algorithm 1: Dijkstra

1: Input : s;
2: Output : dist[];
3: for q ∈ N ∼ {s} do
4: dist[q]← ∞;
5: end for
6: S← ∅; // visited nodes set
7: Q← V; // vertices set
8: while Q 6= ∅ do
9: pop q from Q

10: S← S ∪ {q};
11: Build neighbors set Ns;
12: for q′ ∈ Ns do
13: if dist[q′] > dist[q] + distance(q, q′) then
14: dist[q′]← dist[q] + distance(q, q′)
15: end if
16: end for
17: end while
18: return dist[]

Figure 5. Guidance modules.

Using a modular design approach, the guidance module is a nutshell that exposes a
single interface that allows communication with other modules. In particular, the manager
module communicates to the guidance module the target point that should be autonomously
reached. To further explain, to perform communication with the manager module, the ROS
action mechanism is used, which requires the implementation of a ROS node that works
as an action server. The goto_server node implemented waits for an incoming action
request from the manager module, which contains the target pose expressed as [x∗, y∗, ϑ∗].
The target is published on the topic global_planner/goal, and these messages are read by

Drones 2022, 6, 382 9 of 22

the global_planner node that computes the complete path from the start position to the
target goal in terms of a set of waypoints through the map. This collection of intermediate
points is processed by the local_extractor node which proceeds to send one at a time to
the control module and waits for the confirmation that the single target is reached; only after
having exhausted the list of waypoints is a message sent to the action server to terminate
the requested action.

3.3. Navigation

The aim of the navigation module is to provide an accurate estimation of the vehicle’s
position, orientation and velocities, in order to make the control and guidance modules work
properly (refer to Figure 6 for details about the navigation module). For this reason, the
navigation module is responsible for interfacing with the sensors, providing an abstraction
layer that hides the sensor hardware and providing device drivers to interface with them.
The management of the IMU is done using the imu_sensor node, which reads the IMU
measurement (roll–pitch–yaw angles, linear accelerations and angular velocities) and starts
to publish them on topics. For the GPS module, the ethz_piksi_ros external libraries
were used to interface with the hardware device. This module provides the drivers and the
libraries needed to support RTK (real-time kinematic) technologies. RTK GPS technology
allows corrections to be made thanks to the use of two or more receivers: a fixed one
(referred to as a base) and a mobile one (which often takes the name of rover). The base,
whose position on earth is well-known, calculates an estimation of the position using the
information received from the satellites and compares it with its real position, then the
difference between the two is used to determine correction terms. These data are sent,
usually via radio modem, to the rover’s GPS receiver, which use them to correct its error
and locate itself with better accuracy. Thanks to the RTK technology, the position error
decrease, providing centimeter precision.

Figure 6. Navigation modules.

The information coming from the IMU and GPS is combined using a sensor fusion
algorithm, which merges information to obtain the vehicle state (composed of position and
velocities). To this aim, in order to perform the sensor data fusion action, the extended
Kalman filter (EKF) or, alternatively, the unscented Kalman filter (UKF) can be used (details
about the EKF and UKF implementations are provided in the following sections). Note
that the state estimations are provided by the navigation module as inputs to the control
algorithms, with a sample rate of 10 Hz.

Drones 2022, 6, 382 10 of 22

3.3.1. Extended Kalman Filter

The Kalman filter (KF) is one of the most widely used methods for tracking and
estimation due to its simplicity, optimality, tractability and robustness. However, the
application of the KF to nonlinear systems can be difficult. The most common approach is
to use the extended Kalman filter (EKF) [26], which simply linearizes the nonlinear model
along the trajectory so that the traditional linear Kalman filter can locally be applied at each
computational step. Let us consider the following nonlinear discrete-time system

ξk = fk−1(ξk−1) + wk−1, (4)

zk = hk(ξk) + σk (5)

where ξk represents the state vector of the system, zk the measurement vector, wk the noise
process due to disturbances and modeling errors and σk the measurement noise. It is
assumed that the noise vectors wk and σk are zero-mean, uncorrelated and with covariance
matrices Qk = QT

k > 0 and Rk = RT
k > 0, respectively, i.e., wk ∼ ℵ(0, Qk), σk ∼ ℵ(0, Rk)

The signal and measurement noises are assumed uncorrelated also with the initial state
ξ0. Then, the estimation problem can be stated, in general terms, as follows: given the
observations set Zk := {z0, z1, . . . , zk}, evaluate an estimate ξ̂k of ξk such that a suitable
criterion is minimized. In the sequel, we consider the mean squared error estimator,
and therefore, the estimated value of the random vector is the one that minimizes the
cost function

J[ξ̂k] = E[(ξk − ξ̂k)
2|Zk] (6)

At each time instant k, the EKF design can be split into two parts: time update (prediction)
and measurement update (correction). In the first part, given the current estimates of the
process state ξ̂k−1 and covariance matrix Pk−1 and based on the linearization of the state
Equation (4)

Φk =
∂ fk
∂ξ

∣∣∣∣
ξ=ξ̂k−1

(7)

the updating of the covariance matrix and state prediction ξ̂k|k−1 are performed as follows

Pk|k−1 = ΦkPk−1ΦT
k + Qk−1,

ξ̂k|k−1 = fk(ξ̂k−1)
(8)

Then, given the current measurement zk and by linearizing the output Equation (5)
according to

Hk =
∂hk
∂ξ

∣∣∣∣
ξ=ξ̂k|k−1

(9)

the following Kalman observer gain is derived

Kk = Pk|k−1HT
k (Rk + HkPk|k−1HT

k)
−1 (10)

Finally, the state and the matrix covariance estimates are updated as

ξ̂k = ξ̂k|k−1 + Kk(zk − hk(ξ̂k|k−1)), (11)

Pk = (I − Kk Hk)Pk|k−1 (12)

and the procedure is iterated.

3.3.2. Unscented Kalman Filter

It is well known that the extended Kalman filter could give rise to poor estimation
performance when the plant model (4) and (5) has a highly nonlinear structure, because it
does work on a linearized model of the nonlinear state space description. Such a drawback

Drones 2022, 6, 382 11 of 22

can be avoided by using a further extension of the Kalman filter: the unscented Kalman
filter (UKF) [27].

The UKF is based on a different idea: the mean and the covariance matrix are updated
by resorting to a deterministic sampling technique, the unscented transform, whose aim
is to select an appropriate minimal set of sample points (sigma points). Hence, all the
sigma points are propagated through the state transition function fk(·) and the observation
function hk(·), from which both the mean and the covariance matrix of the state estimate
are finally recovered.

In particular, the sigma points are selected as follows

(Ξk−1)
(0) = ξ̂k−1

(Ξk−1)
(m) =ξ̂k−1 + colm

(√
(n + λ)Pk−1

)
,

m = 1, . . . , n
(Ξk−1)

(m) =ξ̂k−1 + colm−n

(√
(n + λ)Pk−1

)
,

m = n + 1, . . . , 2n

(13)

where n = dim(xk) and λ = α2(n + χ)− n, with α and χ some scaling factors.
Essentially the EKF algorithm consists of two phases. In the first step the sigma point

predictions of the state and of the covariance error matrix are computed by

ξ̂k|k−1 =
2M

∑
m=0

ω(m)Ξ(m)
k

Pk|k−1 =
2M

∑
m=0

Ω(m)
(

Ξ(m)
k −ξ̂k|k−1

)(
Ξ(m)

k −ξ̂k|k−1

)T
+Qk−1

(14)

where Ξ(m)
k = fk

(
Ξ(m)

k−1

)
. Then, a correction phase is performed by using the following equa-

tions

ξ̂k = ξ̂k|k−1 + Kk

(
Zk − ẑ(m)

k

)
(15)

Pk = Pk|k−1 + KkSkKT
k (16)

where

Z(m)
k = hk−1(Ξ

(m)
k−1), ẑk =

2M

∑
m=0

ω(m)Z(m)
k

Sk =
2M

∑
m=0

Ω(m)(Z(m)
k − ẑk)(Z(m)

k − ẑk)
T+Rk

Kk = ∑2M
m=0 Ω(m)(Ξ(m)

k − ξ̂k|k−1)(Z(m)
k − ẑk)

TS−1
k

with ω(m) and Ω(m) some fixed weights selected as follows

ω(0) = λ
(n+λ)

, ω(m) = 1
2(L+λ)

, m = 1, . . . , 2n,

Ω(0) = λ
(n+λ)

+ (1− α2 + β),

Ω(m) = 1
2(n+λ)

, m = 1, . . . , 2n,

where β is a parameter used to incorporate any prior knowledge about the distribution of
the state ξk.

3.4. Control

The main task of the control module (Figure 7) is to calculate the control law needed
to reach the target pose and generate the control signal to actuate the four thrusters. The
control module is mainly divided into two submodules: a kinematic controller with the aim of

Drones 2022, 6, 382 12 of 22

generating speed references to drive the vehicle to the goal, and a dynamic controller, whose
task is to generate the control commands to travel at the desired speed.

Figure 7. Control and teleop modules.

3.4.1. Kinematic Controller

First, the position is defined, and the heading errors vector is the difference between
the desired pose and the current pose in the horizontal plane.

e = η∗ − η =

x∗ − x
y∗ − y
ϑ∗ − ϑ

 (17)

Assuming that the reference positions are constant values, the kinematic positioning
error model can be obtained by the differentiation of (17) and using (2):

ė = −η̇ = −R(ϑ)ν (18)

Then, it is possible to design a control law in the form

ν∗ = −R(ϑ)

(
Kp,Ke + Ki,K

∫
edt
)

(19)

where the controller outputs ν∗ are the desired speed to be passed as input to the internal
speed controller. The proportional gains Kp,K and Ki,K are diagonal matrices, where the
Kp,K components are used to improve the reactivity of the vehicle to reach the target
pose and the Ki,K components are introduced to compensate any constant environmental
disturbances such as wind or currents. The values of the gains were empirically determined
following field tests.

3.4.2. Dynamic Controller

Starting from the model in (3), thanks to the simplifications previously introduced, it is
possible to design a decoupled control law, one for each direction and one for the heading
speed control. The PI control law can be written as

τ∗uvr = Kp,D(ν∗ − ν̃) + Ki,D

∫
(ν∗ − ν̃)dt (20)

Drones 2022, 6, 382 13 of 22

where ν∗ is the vector of desired velocities previously computed by the kinematic controller,
and ν̃ is the estimated velocities vector provided by the navigation module. Moreover, for
the dynamic controller, the gain matrices Kp,D and Ki,D are in a diagonal form, and their
values are experimentally computed.

3.4.3. Thruster Controller

The thrust-commands-computed τ∗uvr are transformed in the thrusters’ commands
τ1234 using the pseudoinverse of the Σ matrix

τ∗1234 =
(
ΣTΣ

)−1ΣTτ∗uvr (21)

Then, these values are converted into the required PWM signals needed to properly
actuate the motors, according to the thruster characteristic curve. The thruster characteristic
was obtained using two third-degree polynomials to fit the thrust/PWM relationship
obtained from the thruster datasheet.

Remark 2. Note that the kinematic (19) and dynamic (20) controller must be discretized in order
to provide their implementations in the ROS nodes.

4. Manager Module

Autonomous vehicles are increasingly used to perform more complex tasks during
their service cycle; indeed, they are equipped with advanced sensors and payloads. This
implies that moving along a path or reaching a desired pose are only the basic functions that
an autonomous vehicle must have. A vehicle can be considered completely autonomous
only if its payload management is also autonomous, as this allows the vehicle to operate
for extended periods of time without any external interaction. In this respect, it is possible
to refer to Figure 8 where the designed manager modules is outlined.

Figure 8. Manager modules.

4.1. Mission Definition

A mission is any operation performed by the vehicle, which can be described as a set
of elementary tasks that could be executed sequentially or concurrently. The purpose of
a mission-oriented paradigm is to find a common syntax structure to model every vehicle’s
behavior. This generalization requires a preliminary effort that allows the creation of an
adequate structure for modeling as many behaviors as possible; this involves an increase
of the degree of abstraction of the manager module, which is in charge of executing all

Drones 2022, 6, 382 14 of 22

the single tasks that compose the mission, despite its overall complexity. Therefore, it is
necessary to identify a set of elementary actions provided by the vehicle, such as reach-
ing a single point (goto task), turning on/off an onboard instrument such as a camera
or sonar (inst1_pow_ON), activating an auxiliary actuator such as a winch (winch_goto),
etc. Through the definition of the elementary task, it is possible to model more complex
behaviors as an appropriate combination of these. For example, a patrolling mission can be
modeled as a sequence of goto actions through a set of waypoints; in the same way, it is
possible to describe a data collection mission as a cyclical combination of a goto task with the
water immersion of the appropriate probes (i.e., using the winch), the data collection and
the recovery of the probes.

An intuitive tool suitable for modeling missions as a sequence of tasks is given by finite
state machines. Each task defines a state and implements a ROS action server to perform
the required job and the outcome of the action (succeeded, aborted, etc.) determines the next
state to execute. The hierarchical state machine reported in Figure 9 can be used to allow
missions to be interrupted by implementing a priority-based switching mechanism. Like a
process in a conventional operating system, a mission can remain in one of several states:

• Ready: The mission is ready to be executed and it can join the active mission list, which
contains a suitable mission to be executed. A mission in a ready state waits a start
command to jump in the run state.

• Run: The mission is running (mission with the highest priority). This state contains a
nested state machine that specifies the tasks to reach the mission goal. The tasks of the
inner state machine are executed by sending a goal request to the appropriate ROS
action server.

• Interrupted: If a higher priority mission is present, the current mission is interrupted
and a mission switching is performed. The interrupted mission can restart from the
beginning or from the last task executed, according to the mission policy settings.

• Terminated: when a mission is finished (the last task is completed) the mission moves
in this state.

Figure 9. Hierarchical state machine used to model a generic mission.

The RUN state contains nested state machines that represent the main tasks that com-
pose a mission. These tasks can be organized in a sequential way, or they can be executed
concurrently if there is no conflict in the use of the actuators. Figure 10 shows an example
of how a mission containing concurrent tasks is modeled.

The implementation of a mission is done by a Mission class that contains a state
machine implemented in the Automa class using the Python library SMACH [28]. The
main advantages of using SMACH are the simple python-based syntax that allows to
easily model hierarchical state machines, the task preemption support (used to interrupt a
mission), the easy way to pass any relevant data between states, and its full compatibility
with ROS. The Mission class also contains some useful parameters used to determine the
mission priority or the possibility to repeat a mission more than one time (i.e., in a patrolling
mission through a set of waypoints).

Drones 2022, 6, 382 15 of 22

Figure 10. Hierarchical state machine used to model a mission with concurrent tasks.

4.2. Mission Management

The use of the vehicle for a long period supposes the possibility of carrying out several
alternating missions; this can be defined as a multimission paradigm. These missions can be
time-fixed scheduled or dynamically scheduled using a priority-based mechanism. Then,
the manager module selects in real time which mission has to be performed with respect to
their priority, by switching between the active ones.

The mission_manager node is in charge of the decision-making mechanism used to
perform dynamic mission scheduling. This node periodically computes the priority level
of each ready mission and sorts them in a heap data structure. Priority computation can be
done according to different policies:

• Fixed-priority scheduling: each mission has a fixed priority level that remains unchanged
over time, according to the mission type.

• Dynamic scheduling: the priority level of the mission can be modified to avoid starvation
(i.e., using aging mechanism) or to react to environment changes or external events.

• Smart scheduling: more powerful and sophisticated algorithms can be used to perform
more efficient mission scheduling by developing AI-based algorithms.

For example, an energy consumption estimation can be done for each mission, which could
be compared with the current battery level to establish the feasibility of the mission. In
a long life cycle, another challenge is to provide robots with basic autonomous energy
management capabilities. The vehicle should estimate in real time its residual battery level
and compare it with the estimated energy needed to reach a home position to recharge its
battery; if the battery level is under a safe threshold, the vehicle can increase the priority of
a recharging mission with the aim to interrupt the current mission and go back to the home
position. Another aspect that can be taken into account is the weather conditions, to avoid
executing missions that require operation in a highly hazardous area.

The core of the scheduling algorithm is implemented in the sorting method of the mis-
sion_manager node. In addition, an external command interface is provided, which allows
the user to interact with the manager module. This interface exports a set of methods suitable
for adding/removing missions from the active mission list or for starting/interrupting
the desired mission. Figure 11 illustrates the activity diagram of the mission_manager
node, whereas the Algorithm 2 below shows in pseudocode the core implementation of the
scheduler’s life cycle.

Drones 2022, 6, 382 16 of 22

Figure 11. Activity diagram of the mission_manager node.

Algorithm 2: Mission Management

1: heap = []
2: heap←− load missions
3: cur_mission = None
4: heap←− sort missions
5: if current_mission 6= heap[0] then
6: if current_mission 6= None then
7: stop current_mission
8: end if
9: current_mission = heap[0]

10: start current_mission
11: end if
12: if current_mission is terminated then
13: remove heap[0]
14: current_mission = heap[0]
15: start current_mission
16: end if
17: goto 4

5. Experimental Results

Several experiments were accomplished in a real environment to test the different
components of the prototype vehicle and its capability to perform a task. In view of this,
Section 5.1 reports the tests conducted to validate the presented multimission approach.
Firstly, in order to validate the proposed common state machine structure, the execution of
a simple single mission was performed. Then, the proposed multimission priority-based
switching mechanism was tested by considering a more complex scenario involving two
simultaneous missions. Moreover, the tests focused on the validation in a real environment
of the whole GNC architecture and hardware design presented in Section 5.2.

5.1. Single- and Multimission Management Test

This section is devoted to verifying the effectiveness of the mission management
module by accounting for both the execution of a simple mission and concurrent missions.
Then, a scenario involving two simultaneous missions is validated.

Drones 2022, 6, 382 17 of 22

In the first test, a single patrolling mission (missione1) was loaded in the manager
module and the correctness of the state machine execution was verified. In addition, concur-
rent tasks were tested to prove that the movement tasks were executed while other tasks,
that used, for example, any payload, executed other operations. The left side of Figure 12
shows the debug flow of the hierarchical state machine operations. Underlined in yellow
are the executed elementary states, and underlined in orange are the state outputs that
lead to a state transition. The red section shows that the transition from the RUN state to the
TERMINATED state happens when both the concurrent state machines finish their tasks.

The right side of Figure 12 shows the execution flow of a multimission scenario: while
the mission missione1 was executing, another more priority mission was loaded and the
mission_manager scheduling algorithm switched the two missions as soon as possible. In
the figure, the manager module operations that start/stop the missions are highlighted.

Figure 12. Hierarchical state machine flow. Left side: single mission execution; right side: multimis-
sion execution.

5.2. Real Environment Test

Other kinds of tests were carried out in order to evaluate the behavior of the whole
architecture, first using the simulation environment provided by ROS. To this purpose,
Rviz and Gazebo were used, and a kinematic model of the vehicle was built in order to
validate the movement tasks. Then, different tests in a real environment were conducted,
both on sea and lake surfaces. The goal was to show the capabilities of the vehicle to move
in autonomous mode among several waypoints. Moreover, a performance evaluation in
terms of tracking error was performed.

5.2.1. Test 1

The first experiment was conducted in a sea environment, starting from a beach
located in the little town of Falconara Albanese (CS) in Calabria: the vehicle was powered
on next to the fixed base (red marker in Figure 13) positioned on the beach and then, it
was remotely guided next the first waypoint. When the mission was enabled, it started to
move in autonomous mode among four waypoints (blue markers in Figure 13) provided
by global coordinates. At the end of the mission, the vehicle was guided towards the beach.

Drones 2022, 6, 382 18 of 22

The calm environment conditions allowed us to register a maximum positioning error of
less than 0.5 meters, where the position error e(t) was defined as the difference between the
straight line that connects two waypoints and the real trajectory that the vehicle traveled to
reach the next waypoint. In this respect, Figure 14 reports the results of data elaboration
activity while Figure 15) shows the absolute value of tracking error e(t). We highlight that
for applications such as environmental monitoring and divers support, errors less than two
meters are acceptable.

Figure 13. Test 1: sea environment. Satellite image: waypoints (blue marker), fixed base (red marker)
and ideal reference trajectory (red line).

-25 -20 -15 -10 -5 0 5

x (m)

-25

-20

-15

-10

-5

0

5

y
 (

m
)

Reference Trajectory

Vehicle Trajectory

Waypoints

Fixed-Base

Figure 14. Test 1: sea environment. Data elaboration: waypoints (green marker), reference trajectory
between waypoints (blue line), fixed base (yellow marker) and vehicle trajectory (dashed red line).

Drones 2022, 6, 382 19 of 22

0 50 100 150 200

time (s)

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

|e
(t

)|
 (

m
)

Figure 15. Test 1: sea environment. Absolute value of tracking error trend.

5.2.2. Test 2

The second test was accomplished in a lake environment, next to the town of Petronà
(CZ) in Calabria. In this scenario, the vehicle moved among the side of a triangle expressed
with respect to the local reference system (Figure 16). Analyzing the data collected (shown
in Figure 17) from the vehicle, the maximum tracking position error recorded was less than
0.7 m. Notice that the maximum error (refer to Figure 18) in the lake test was greater than
that in the sea test due to windy conditions on that test day.

Figure 16. Test 2: lake environment. Satellite image: waypoints (blue marker), fixed base (red marker)
and ideal reference trajectory (red line).

Drones 2022, 6, 382 20 of 22

-12 -10 -8 -6 -4 -2 0 2

x (m)

-8

-7

-6

-5

-4

-3

-2

-1

0

1

2

3

y
 (

m
)

Reference Trajectory

Vehicle Trajectory

Waypoints

Fixed-Base

Figure 17. Test 2: lake environment. Data elaboration: waypoints (green marker), reference trajectory
between waypoints (blue line), fixed base (yellow marker) and vehicle trajectory (dashed red line).

0 20 40 60 80 100 120 140 160 180

time (s)

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

|e
(t

)|
 (

m
)

Figure 18. Test 2: absolute value of tracking error trend.

6. Conclusions

In this paper, the basic steps toward an ASV prototype development were presented,
with the main focus on the GNC software architecture implementation and its extension
with a management module, to accomplish high-level mission scheduling in a dynamic envi-
ronment. All software and hardware modules of the designed prototype were validated
in a real environment and the performed tests showed that the vehicle was capable of
good performance. Moreover, it is important to highlight that the introduced manager
module is ready to implement more sophisticated AI-based algorithm to better accomplish

Drones 2022, 6, 382 21 of 22

a decision-making process on mission scheduling in a dynamic environment where mission
priority can change due to safety reasons or real-time event occurrence. Future works could
define accurate mission priority assignment criteria, in order to provide dynamic mission
switching according to the scheduling algorithm discussed in Section 4. The proposed
architecture is currently undergoing improvement in order to support multivehicle cooper-
ation and a high-level reference supervision scheme by adding appropriate modules in the
guidance package [29].

Author Contributions: Conceptualization, M.L., A.C. and G.C.; methodology, V.D., P.F. and G.G.;
software, V.D. and P.F.; validation, V.D., P.F. and F.C.G.; formal analysis, G.G.; investigation, V.D., P.F.
and G.C.; resources, F.C.G.; data, G.G. and M.L.; writing—original draft preparation, V.D., P.F. and
G.G.; writing—review and editing, V.D., P.F. and G.G.; visualization, G.G.; supervision, A.C.; project
administration, M.L. and A.C.; funding acquisition, G.G. All authors have read and agreed to the
published version of the manuscript.

Funding: This research is based upon work partially supported by the R&D project J68C17000170006,
entitled “MONitoraggio Ecosistema MArino” (MONEMA), granted by the Calabria Region within
the POR CALABRIA FESR-FSE 2014-2020 Asse I, Obiettivo Specifico 1.2.

Data Availability Statement: Not applicable.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Liu, Z.; Zhang, Y.; Yu, X.; Yuan, C. Unmanned surface vehicles: An overview of developments and challenges. Annu. Rev. Control

2016, 41, 71–93. [CrossRef]
2. Coelho, R.; Daltry, R.; Dobbin, V.; Lachaud, E.; Miller, I. Design Process and Validation of an Autonomous Surface Vehicle for the Offshore

Industry; OTC Brasil: Rio de Janeiro, Brazil, 2015.
3. Khojasteh, D.; Kamali, R. Design and dynamic study of a ROV with application to oil and gas industries of Persian Gulf. Ocean.

Eng. 2017, 136, 18–30. [CrossRef]
4. Hook, J.V.; Tokekar, P.; Branson, E.; Bajer, P.G.; Sorensen, P.W.; Isler, V. Local-Search Strategy for Active Localization of Multiple

Invasive Fish. In Experimental Robotics; Desai, J., Dudek, G., Khatib, O., Kumar, V., Eds.; Springer Tracts in Advanced Robotics;
Springer: Heidelberg, Germany, 2013; Volume 88. [CrossRef]

5. Dunbabin, M.; Grinham, A. Experimental evaluation of an autonomous surface vehicle for water quality and greenhouse gas
emission monitoring. In Proceedings of the 2010 IEEE International Conference on Robotics and Automation, Anchorage, Alaska,
3–8 May 2010; pp. 5268–5274.

6. Oleynikova, E.; Lee, N.B.; Barry, A.J.; Holler, J.; Barrett, D. Perimeter patrol on autonomous surface vehicles using marine radar. In
Proceedings of the OCEANS’10 IEEE Sydney, Sydney, NSW, Australia, 24–27 May 2010.

7. Caccia, M.; Bibuli, M.; Bono, R.; Bruzzone, G.; Spirandelli, E. Unmanned surface vehicle for coastal and protected waters
applications: The charlie project. Mar. Technol. Soc. J. 2007, 41, 62–71. [CrossRef]

8. Djapic, V.; Nad, D. Using collaborative Autonomous Vehicles in Mine Countermeasures. In Proceedings of the OCEANS’10 IEEE
Sydney, Sydney, NSW, Australia, 24–27 May 2010; pp. 1–7.

9. Nad, D.; Miskovic, N.; Mandic, F. Navigation, guidance and control of an overactuated marine surface vehicle. Annu. Rev. Control
2015, 40, 172–181. [CrossRef]

10. Ferreira, H.; Martins, A.; Dias, A.; Almeida, C.; Almeida, J.M.; Silva, E.P. Roaz Autonomous Surface Vehicle Design and Implementation.
In Proceedings of the 2006 IEEE International Conference on Robotics and Automation, Orlando, FL, USA, 15–19 May 2006.

11. Martins, A.; Ferreira, H.; Almeida, C.; Silva, H.; Almeida, J.M.; Silva, E.P. ROAZ and ROAZ II Autonomous Surface Vehicle
Design and Implementation. In Proceedings of the 2007 International LifeSaving Conference, Matosinhos/Porto, Portugal,
27–29 September 2007.

12. Conte, G.; Scaradozzi, D.; Sorbi, L.; Panebianco, L.; Mannocchi, D. ROS Multi-Agent Structure for Autonomous Surface Vehicles.
In Proceedings of the OCEANS 2015, Genova, Italy, 18–21 May 2015.

13. Cesta, A.; Cortellessa, G.; Fratini, S.; Oddi, A.; Denis, M.; Donati, A.; Policella, N.; Rabenau, E.; Schulster, J. Mexar2: AI Solves
Mission Planner Problems. IEEE Intell. Syst. 2007, 22, 12–19. [CrossRef]

14. Diaz, D.; R-Moreno, M.D.; Cesta, A.; Oddi, A.; Rasconi, R. Applying AI Action Scheduling to ESA’s Space Robotcs. In Proceedings
of the 11th Symposium on Advanced Space Technologies in Robotics and Automation (ASTRA 2011), Noordwijk, The Netherlands,
12–15 April 2011; p. 5B_4-8.

15. Bian, X.; Yan, Z.; Chen, T.; Yu, D.L.; Zhao, Y. Mission management and control of BSA-AUV for ocean survey. Ocean. Eng. 2012
55, 161–174. [CrossRef]

http://doi.org/10.1016/j.arcontrol.2016.04.018
http://dx.doi.org/10.1016/j.oceaneng.2017.03.014
http://dx.doi.org/10.1007/978-3-319-00065-7_57
http://dx.doi.org/10.4031/002533207787442259
http://dx.doi.org/10.1016/j.arcontrol.2015.08.005
http://dx.doi.org/10.1109/MIS.2007.75
http://dx.doi.org/10.1016/j.oceaneng.2012.06.022

Drones 2022, 6, 382 22 of 22

16. Conte, C.; de Alteriis, G.; Rufino, G.; Accardo, D. An Innovative Process-Based Mission Management System for Unmanned
Vehicles. In Proceedings of the IEEE 7th International Workshop on Metrology for AeroSpace (MetroAeroSpace), Pisa, Italy,
22–24 June 2020.

17. Gunetti, P.; Dodd, T.; Thompson, H. A software architecture for Autonomous UAV Mission Management and Control. In
Proceedings of the 2010 AIAA Infotech@Aerospace, Atlanta, Georgia, 20–22 April 2010.

18. Barbier, M.; Chanthery, E. Autonomous mission management for unmanned aerial vehicles. Aerosp. Sci. Technol. 2004, 8, 359–368.
[CrossRef]

19. Cario, G.; Casavola, A.; Gagliardi, G.; Lupia, M.; Severino, U. Accurate Localization in Acoustic Underwater Localization Systems.
Sensors 2021, 21, 762. [CrossRef] [PubMed]

20. Cario, G.; Casavola, A.; Gagliardi, G.; Lupia, M.; Severino, U.; Bruno, F. Analysis of error sources in underwater localization
systems. In Proceedings of the OCEANS 2019, Marseille, France, 17–20 June 2019; pp. 1–6. [CrossRef]

21. Gagliardi, G.; Lupia, M.; Cario, G.; Cicchello Gaccio, F.; D’Angelo, V.; Cosma, A.I.M.; Casavola, A. An Internet of Things Solution
for Smart Agriculture. Agronomy 2021, 11, 2140. [CrossRef]

22. Casavola, A.; Gagliardi, G. Fault Detection and Isolation of Electrical Induction Motors via LPV Fault Observers. IFAC Proc. Vol.
2012, 45, 800–805. ISSN 1474-6670, ISBN 9783902823090. [CrossRef]

23. Behzad, H.; Casavola, A.; Tedesco, F.; Sadrnia, M.; Gagliardi, G. A Fault-Tolerant Sensor Reconciliation Scheme based on Self-
Tuning LPV Observers. In Proceedings of the 15th International Conference on Informatics in Control, Automation and Robotics
(ICINCO 2018), Volume 1, pp. 111–118, ISBN 978-989-758-321-6. [CrossRef]

24. Fossen, T.I. Guidance and Control of Ocean Vehicles; John Wiley & Sons: New York, NY, USA, 1994.
25. Khatib, O. Real-time obstacle avoidance for manipulators and mobile robots. In Proceedings of the 1985 IEEE International

Conference on Robotics and Automation, St. Louis, MO, USA, 25–28 March 1985; Volume 2, pp. 500–505.
26. Grewal, M.S.; Andrews, A.P. Kalman Filtering: Theory and Pratice Using Matlab, 2nd ed.; Wiley: New York, NY, USA, 2001.
27. Julier, S.J.; Uhlmann, J.K. A New Extension of the Kalman Filter to Nonlinear Systems. In Proceedings of Aerosense: The 11th

International Symposium on Aerospace/Defence Sensing, Simulation and Controls, Orlando, FL, USA, 21–25 April; SPIE: Bellingham, WA,
USA, 1997.

28. Bohren, J.; Cousins, S. The SMACH High-Level Executive. IEEE Robot. Autom. Mag. 2010, 17, 18–20. [CrossRef]
29. Casavola, A.; D’Angelo, V.; Qemmah, A.E.; Tedesco, F.; Torchiaro, F.A. Distributed Constrained Connectivity-Keeping Supervision

Scheme in the Presence of Static Obstacles, In Proceedings of the 2022 IEEE 61st Conference on Decision and Control (CDC),
Cancun, Mexico, 6–9 December 2022.

http://dx.doi.org/10.1016/j.ast.2004.01.003
http://dx.doi.org/10.3390/s21030762
http://www.ncbi.nlm.nih.gov/pubmed/33498791
http://dx.doi.org/10.1109/OCEANSE.2019.8867536
http://dx.doi.org/10.3390/agronomy11112140
http://dx.doi.org/10.3182/20120829-3-MX-2028.00112
http://dx.doi.org/10.5220/0006840501110118
http://dx.doi.org/10.1109/MRA.2010.938836

	Introduction
	Physical Design
	Mechanical Design
	Hardware
	Mathematical Modeling

	GNC Architecture
	Robot Operating System
	Guidance
	Navigation
	Extended Kalman Filter
	Unscented Kalman Filter

	Control
	Kinematic Controller
	Dynamic Controller
	Thruster Controller

	Manager Module
	Mission Definition
	Mission Management

	Experimental Results
	Single- and Multimission Management Test
	Real Environment Test
	Test 1
	Test 2

	Conclusions
	References

