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Increasing evidence has revealed that the initiation and progression of breast cancer

are greatly affected by the immune environment. Neutrophils are the most abundant

leucocytes in circulation and act as the spearhead in inflammation, including in

breast cancer. Circulating neutrophils are closely related to the prognosis of breast

cancer patients, and tumor-infiltrating neutrophils have varied functions at different

stages of breast cancer, such as antitumor or tumor-promoting neutrophils, which are

termed N1 and N2 neutrophils, respectively. In this review, we will discuss the utility

of circulating neutrophils for predicting prognosis and therapeutic efficacy and the

underlying mechanisms of their chemotaxis, the dynamic regulation of their antitumor

or protumor functions and their different spatial distributions in tumor microenvironment.

Finally, we also discuss the possibility of targeting neutrophils as a therapeutic strategy

in breast cancer.
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INTRODUCTION

Breast cancer (BC) is the most common malignancy in women worldwide (1). Although BC
is classified as a malignant disease with low immunogenicity, recent evidence has revealed
a promising outcome of therapies with blocking immune checkpoints in both early and
advanced stages (2–4). The efficacy of immunotherapy is closely related to the tumor immune
microenvironment, especially to infiltrating immune cells (5). To date, macrophages and T
cells are the most well-studied immune cells in BC, whereas increasing evidence has indicated
that neutrophils are also key in the oncogenesis and metastasis of BC; in addition, circulating
neutrophils have been reported to have great prognostic prediction value (6). Neutrophils are the
most abundant leucocytes in blood and usually act as the first line of host defense against pathogens
(7). However, due to their short life span (an average of 6–8 h in blood) (8), it is difficult to employ
this subset of cells for experiments, which has resulted in a poor understanding of their role in solid
tumors. In addition, some contradictory results reported in vitro studies or animal experiments
have suggested a dual effect of neutrophils in tumor development.
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Neutrophils can present both antitumorigenic (“N1”) and
protumorigenic (“N2”) phenotypes in various cancers or
specific circumstances. The term neutrophil in several studies
also includes both mature neutrophils and myeloid-derived
suppressor cells (MDSCs). MDSCs are described as a subset
of neutrophils with immunosuppressive functions that express
CD11b and Gr1 (9, 10) and can be divided into monocytic
(M) (CD11b+/Ly6C+) MDSCs and G/PMN (CD11b+/Ly6G+)
MDSCs (11), and G/PMN MDSCs usually share a common
set of markers and similar morphological features with
neutrophils (9).

To avoid confusion, we mainly focus on the biological
function of mature neutrophils and related therapeutic strategies
for targeting them in BC. We provide a comprehensive review
of the prognostic value of circulating neutrophils and the
mechanisms of how tumor-associated neutrophils (TANs) exert
antitumor or tumor-promoting functions in BC, and in the
end, we also discuss the potential of targeting neutrophils as a
therapeutic strategy in cancer.

PROGNOSTIC VALUE OF THE
NEUTROPHIL-TO-LYMPHOCYTE RATIO
(NLR)

Tumors can be thought of as wounds that will not heal and
are characterized by chronic inflammation. Neutrophils are the
most rapidly responding immune cells to inflammation, and
many studies have found that the NLR is closely related to the
prognosis and treatment response in patients bearing BC (12, 13).
A recent meta-analysis of 39 studies, including 17,079 patients
with both early and advanced BC, revealed that patients with
a higher NLR before treatment had poorer disease-free survival
(DFS) than those with a lower NLR before treatment, but the
NLR was not related to overall survival (OS); the subgroup
analysis found that the NLR was associated with prognosis
only in early-stage patients but not in patients with metastasis

Abbreviations: BC, Breast cancer; MDSCs, Myeloid-derived suppressor cells;

TANs, Tumor-associated neutrophils; NLR, Neutrophil-to-lymphocyte ratio; DFS,

Disease-free survival; OS, Overall survival; ALC, Absolute lymphocyte count; NCT,

Neoadjuvant chemotherapy; pCR, Pathological complete response; PLR, Platelet-

to-lymphocyte ratio; TAMs, Tumor-associated macrophages; CTCs, Circulating

tumor cells; NETs, Neutrophil extracellular traps; MPO, Myeloperoxidase;

G-CSF, Granulocyte colony-stimulating factor; ECs, Endothelial cells; PMNs,

Polymorphonuclear neutrophils; ICAM-1, Intercellular adhesion molecule 1;

MMP-9, Matrix metalloproteinases-9; ROS, Reactive oxygen species; HMGB1,

High-mobility group box 1; TLR4, Toll-like receptor 4; TNBC, Triple-negative

breast cancer; MES, Macrophage-enriched subtype; NES, Neutrophil-enriched

subtype; H2O2, Hydrogen peroxide; TNF-α, Tumor necrosis factor-α; HOCI,

Hypochlorous acid; TRPM2,Transient receptor potential cation channel,

subfamily M, member 2; ADCC, Antibody-dependent cellular cytotoxicity;

NK, Natural killer; NE, Neutrophil elastase; NRP1, Neuropilin-1; IRS-1, Insulin

receptor substrate-1; PI3K, Phosphatidylinositol 3-kinase; VEGF, Vascular

endothelial growth factor; TIMP-1, Tissue inhibitor of matrix metalloprotease;

TGF-β, Transforming growth factor-β; 27HC, 27-hydroxycholesterol; PAD4,

Peptidyl arginine deiminase 4; TINs, Tumor-infiltrating neutrophils; CRT,

Conventional radiotherapy; MRT, Microbeam radiation therapy; DAMPs,

Damage-associated molecular patterns; ICB, Immune checkpoint blockade;

LDNs, Low-density neutrophils; HDNs, High-density neutrophils; NAMPT,

Nicotinamide phosphoribosyl transferase; NAD, Nicotinamide adenine

dinucleotide; GTX, granulocyte transfusion.

(14). Since similar meta-analyses were not based on individual
patient data, which may cause significant bias, we reviewed and
compared the individual reports and found some issues worth
discussing here. Widmann et al. first reported the correlation
between the NLR and BC prognosis in 316 patients, and it
was found that a higher NLR (≥3.3) before treatment was an
adverse factor for both short- and long-term mortality (15). The
majority of retrospective studies thereafter have drawn similar
conclusions (16–19), and the NLR was found to be consistent
among different BC subtypes at baseline (20, 21). However, a
prospective substudy of GEICAM/9906, which comprised 1,246
patients, did not find any prognostic value of the NLR after
adjustment for clinicopathological factors; in addition, a high
NLR was independently associated with worse DFS in only high-
risk patients (the hormone receptor-negative/HER2+ population
and in patients with ≥3 lymph node metastases) (22). Another
study with 247 early BC patients also found that the NLR before
surgery was not associated with DFS (23), indicating that the
presurgery NLR may be valuable only in patients with a high
tumor burden.

In addition to the above studies, several studies also
explored the prognostic value of the NLR posttreatment or with
continuous assessment. A retrospective study comparing the
absolute lymphocyte count (ALC) and the NLR eight consecutive
times before and after chemotherapy found that patients who
died had lower ALC and higher NLR values than patients who
remained alive throughout the treatment course; additionally,
among the patients who died, a steady increase in the NLR
over the baseline measurement was observed at subsequent
time points (24). Another retrospective study included 330 BC
patients with DFS values of more than 5 years, and it interestingly
found that NLR sampled during follow-up rather than before
any treatment was an independent prognostic factor for late
recurrence (21). However, there is still no compelling explanation
for the abovementioned inconsistent results. In addition, since
lymphocytes are critical in cancer immune surveillance and
neutrophils have been reported to play a protumor role in most
studies, low lymphocytes and high neutrophils in circulation
may also suggest immunosuppression status (10), and studies
focused on the relationship between neoadjuvant chemotherapy
(NCT) and the NLR might support the above hypothesis. A
comprehensive review of the existing reports shows that most
studies have found that a low NLR indicates a higher NCT
response and pathological complete response (pCR) rate (25–27);
in addition, the NLR has showed predictive value not only in
all molecular types of BC but also in both operable and locally
advanced BC (18, 28, 29). Interestingly, although Suppan et al.
did not find a significant correlation between the initial NLR and
prognosis, the same cohort revealed a low NLR as a significant
parameter for predicting chemotherapy response (p = 0.012)
(23). A low NLR was also reported to be associated with a higher
response rate to primary endocrine therapy for locally advanced
or metastatic BC (30, 31).

Although increasing evidence suggests a close association
between the NLR and prognosis in BC, several issues remain that
make clinical application difficult. One of the most important
reasons is the lack of a consensus cut-off value. As we list
here (Table 1), the cut-off values for the NLR in the published
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TABLE 1 | Characteristics of the studies related to neutrophil-to-lymphocyte ratio.

References Country Study period Cancer type Median

age (ys)

No. patients

low/high NLR

Treatment Follow-up Significance of NLR

Noh et al. (32) Korea 2000–2010 Luminal A/B,

HER2-enriched,

TNBC

50 n = 442

NLR < 2.5 (n ≤ 327)

NLR ≥ 2.5 (n = 115)

NR 5.9 ys High NLR indicates lower

survival rate (p = 0.009).

Koh et al. (33) Korea 2002–2010 ER/PR-positive,

HER2-enriched

44 n = 157

NLR ≤ 2.25 (n = 91)

NLR > 2.25 (n = 66)

Surgery, NCT 21 mo Univariate analysis indicates

high NLR related to lower RFS

(p = 0.001) and OS (p <

0.001).

Yao et al. (34) China 2009–2011 Luminal A/B,

ER/PR-positive,

HER2-enriched,

TNBC

50 n = 608

NLR = 2.57; NLR

> 2.57

Surgery 5.9 ys High NLR indicates lower

5-year OS.

Pistelli et al. (35) Italy 2006–2012 TNBC 53 n = 90

NLR ≤ 3 (n = 73)

NLR > 3 (n = 17)

NR 53.8 mo Multivariate analysis indicates

high pretreatment NLR is

correlated with poor DFS (p =

0.03) and OS (p = 0.01).

Ulas et al. (36) Turkey 2009–2014 HER2-enriched 51.4 n = 187

NLR < 2.38 (n = 119)

NLR > 2.38 (n = 68)

Adjuvant

transtuzumab

26 mo High pretreatment NLR

indicates shorter DFS.

Jia et al. (37) China 2000–2010 ER /PR-positive,

HER2-enriched,

TNBC

47 n = 1,570

NLR > 2 (n = 804)

NLR ≤ 2 (n = 766)

NCT, surgery 79 mo Multivariate analysis indicates

low NLR is related to superior

DFS (p = 0.004) and (p =

0.022).

Bozkurt et al. (38) Turkey 2002–2013 TNBC 50 n = 85

NLR ≤ 2 (n = 33)

NLR > 2 (n = 52)

Surgery,

adjuvant

chemotherapy,

and

radiotherapy

60 mo Multivariate analysis indicates

high pretreatment NLR is

correlated with poor DFS (p =

0.006) and OS (p = 0.04).

Asano et al. (25) Japan 2007–2013 TNBC 56 n = 177

NLR < 3 (n = 58)

NLR > 3 (n = 119)

NCT 3.4 ys Univariate analysis indicates

low NLR is related to favorable

prognosis in TNBC patients

who achieved pCR (p = 0.044,

hazard ratio = 0.06).

Rimando et al. (39) USA 2001–2013 Non-metastatic BC 58 n = 461

NLR ≤ 3.7 (n = 409)

NLR > 3.7 (n = 52)

Radiotherapy,

chemotherapy

61 mo High pretreatment NLR

indicates poor all-cause

mortality, with a multivariable

HR of 2.31 (95% CI:

1.10–4.86).

Iwase et al. (40) Japan 2005–2014 TNBC 50.9 n = 89

NRL = 3

ChemotherapyNR High NLR upon recurrence

indicates shorter OS

recurrence rates (p < 0.05).

Hernandez et al.

(41)

Spain 2003–2016 Luminal A/B,

ER/PR-positive,

HER2-enriched,

TNBC

49.8 n = 150

NLR = 3.3

NCT, surgery 24 mo Low NLR indicates higher OS

(p = 0.024).

Miyagawa et al. (42) Japan 2010–2017 Locally Advanced or

Metastatic BC

63 n = 59

NLR < 3 (n = 24)

NLR ≥ 3 (n = 35)

Eribulin NR Low NLR indicates better PFS

(p = 0.0032).

Ferroni et al. (43) Italy 2007–2017 Luminal A/B,

HER2-enriched,

TNBC

57 n = 475

NLR ≤ 2 (n = 245)

NLR > 2 (n = 230)

NCT,

chemotherapy,

endocrine

therapy;

trastuzumab

regimens

45.6 mo High pretreatment NLR

indicates worse DFS (HR =

2.28) and OS (HR = 3.39).

Qiu et al. (44) China 2006–2013 Non-metastatic

TNBC

50 n = 406

NLR < 2.85 (n = 210)

NLR ≥ 2.85 (n = 196)

Surgery, NCT,

chemotherapy

54.3 mo Low NLR indicates higher OS

(p < 0.001) and DFS (p <

0.001).

(Continued)
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TABLE 1 | Continued

References Country Study period Cancer type Median

age (ys)

No. patients

low/high NLR

Treatment Follow-up Significance of NLR

Iimori et al. (30) Japan 2004–2013 Luminal A/B,

HER2-enriched,

TNBC

63 n = 34

NLR < 3 (n = 24)

NLR ≥ 3 (n = 10)

Endocrine

therapy

38.8 mo Low NLR indicates a

prolongation of PFS (p =

0.003) and OS (p = 0.013).

Mando et al. (45) Argentina 2011–2014 Early stage BC 56 n = 85

NRL = 2

Surgery 38.6 mo High NLR indicates lower DFS

(p = 0.048).

Lee et al., (46) Korea 2008–2015 TNBC 51 n = 358

NLR ≤ 3.16 (n = 313)

NLR > 3.16 (n = 45)

NCT NR Low NLR indicates superior

OS (p = 0.002) and DFS (p =

0.032).

Xuan et al. (19) China 2006–2008 TNBC 50 n = 286

NLR < 2.93 (n = 223)

NLR ≥ 2.93(n = 63)

Surgery NR Low NLR indicates longer DFS

(p = 0).

Fujmoto et al. (47) Japan 2005–2016 With high counts of

lymphocytes

30.7 n = 889

NLR < 2.72 (n = 582)

NLR >2.72 (n = 307)

Surgery,

adjuvant

chemotherapies,

endocrine

therapies

NR Low NLR indicates better RFS

(p = 0.036).

Imamura et al. (48) Japan 2011–2017 HER2-enriched 53 n = 53

NLR < 2.56 (n = 26)

NLR ≥ 2.56 (n = 27)

Trastuzumab

emtansine

NR Low NLR at baseline indicates

better PFS (p = 0.0001) and

OS (p = 0.0296).

NLR, Neutrophil-to-lymphocyte ratio; ER, Estrogen receptor; PR, Progesterone receptor; HER2, Human epidermal growth factor receptor 2; Mo, Months; Ys, Years; DFS, Disease-free

survival; OS, Overall survival; PFS, Progression-free survival; RFS, Relapse free survival; pCR, Pathological complete response; TNBC, Triple-negative breast cancer; NCT, Neoadjuvant

chemotherapy; NR, Not recorded.

studies were between 2 and 4. In addition, based on individual
studies, the sensitivity of the NLR fluctuates greatly (50–94.1%),
and the specificity is much lower (26.5–51.6%) (18, 29, 49).
Therefore, some researchers have tried to determine a better
alternative parameter. In addition to the NLR, the platelet-to-
lymphocyte (PLR) ratio has also been investigated and compared
with the NLR in BC. A single central retrospective study with 434
hormone receptor-negative non-metastatic BC patients reported
that both elevated NLR and PLR were associated with poor OS;
however, the multivariate analysis revealed that only the NLR (p
< 0.001) but not the PLR (p = 0.104) was a significant indicator
for both DFS and OS (50). Additionally, since the absolute
lymphocyte count has also been reported as a prognostic factor,
the predictive values of the PLR and NLR were evaluated after
adjusting for the total lymphocyte count. The results showed that
the PLRwas no longer a significant predictor for 5-yearmortality,
and the NLR remained a significant predictor irrespective of
the lymphocyte count (51). Furthermore, it was revealed that
the combination of the NLR and PLR could further improve
the predictive value. Two retrospective studies found that the
highest rate of pCR (32%) was in the group of patients with
an NLRlow/PLRlow profile, and the lowest rate (19%) was in
the group with an NLRhigh/PLRhigh profile (18); in addition,
when the cut-off values for the NLR and PLR were applied, the
specificity of predicting a pCR increased from 38 to 52% (49).

However, the causal relationship between the NLR and
poor prognosis in malignant disease has yet to be illuminated.
According to an assessment with paired peripheral blood
and pancreatic cancer specimens, Takakura et al. found that
a high NLR was associated with increased tumor-associated

macrophages (TAMs) and decreased tumor-associated
lymphocytes but was not significantly related to CD66b+
infiltrating neutrophils (52). Therefore, it seems that an
increase in neutrophils in peripheral blood is not necessarily
related to the number of TANs. Several basic studies have
suggested a unique mechanism of the pro-tumor function
of circulating neutrophils: protecting circulating tumor cells
(CTCs). Circulating neutrophils can cluster around tumor cells
and induce tumor cell aggregation, aiding tumor cell survival
by hiding them from immune surveillance (53). Neutrophil
extracellular traps (NETs) are webs of decondensed chromatin
fibers conjugated together with histones, myeloperoxidase
(MPO), elastase, and other cytoplasmic proteins (54). Recent
studies also found that neutrophils could form many NETs both
in circulation and in tumor lesions and could coordinate with
platelets to capture CTCs and facilitate cancer metastasis (55).
In addition, neutropenia is very common in cancer patients
undergoing chemotherapy, and supportive treatment with
granulocyte colony-stimulating factor (G-CSF) can induce
a neutrophilic response; as a consequence, neutrophils are
primed toward a pro-NETotic phenotype and may suppress the
cytotoxic activity of T cells as well as impair immune surveillance
(24, 56, 57). On the other hand, lymphocytes have the propensity
to mount an adaptive antitumor response in malignant disease
(58), and decreased lymphocyte numbers are considered to be
related to an insufficient immunologic reaction, which may
increase the risk of tumor relapse or metastasis (59). Clearly,
a general association between prognosis and the NLR exists in
BC, but large prospective studies and rigorous research are still
required to determine its clinical significance.
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MECHANISM OF NEUTROPHIL
CHEMOTAXIS TO THE TUMOR
MICROENVIRONMENT

Neutrophils are considered the main immune cells that provide
protection against invading pathogens, which can be induced by
trauma, infection, and malignant disease (60). The recruitment
of neutrophils is greatly dependent on certain chemokines,
including interleukin (IL)-8 (also known as CXCL-8), CXCL-
1, and CXCL-2 (61). IL-8 is a proinflammatory cytokine
and acknowledged as the most important chemoattractant for
neutrophils in the tumor microenvironment (62). IL-8 mainly
comes from endothelial cells (ECs) and monocytes in the tumor
microenvironment upon certain stimulation, such as physical
injury, hypoxia, chemotherapy or radiotherapy, and other cell
types, including fibroblasts and keratinocytes, can secrete IL-8 as
well (63, 64). In addition to its chemotactic effect, it was revealed
that IL-8 could provoke neutrophils to release NETs to assist
cancer cell migration (5). By live-cell fluorescence microscopy,
Gupta et al. confirmed that activated ECs could induce
NETosis characterized by typical extracellular DNA lattices
when cocultured with polymorphonuclear neutrophils (PMNs)
and activated ECs (65). In addition, activated ECs produce
other inflammatory cytokines, such as P-selectin, E-selectin,
and intercellular adhesion molecule 1 (ICAM-1), to facilitate
neutrophil adhesion to ECs and migration (66). Furthermore,
tumor-promoting neutrophils in BC cells are also characterized
by high expression of matrix metalloproteinases-9 (MMP-9)
(67, 68), which was found to cleave CXCL-5, potentiating its
action in neutrophil recruitment as a positive feedback function
in tumors (15, 69). IL-17 was also found to control neutrophil
recruitment in lung metastasis of BC in a mouse model:
CD3+CD4+ and γδ T cells were the major sources of IL-17
(70, 71), and it was interesting to find that the absence of γδ

T cells or neutrophils markedly reduced pulmonary and lymph
node metastases without influencing primary tumor progression,
which suggested a collaborative relationship between γδ T cells
and neutrophils in promoting BC lung metastasis. However,
in an orthotopic hepatocellular carcinoma model, Sofia et al.
reported that TANs exert an overt antitumor role by suppressing
γδ T17 cells via reactive oxygen species (ROS) (72), contrary
to the phenomenon that within the 4T1-derived BC model,
CD11b+/Ly-6G+ neutrophils that infiltrate and surround liver
metastases were found to be tumor promoting (73). These
controversial results suggest both promoting and suppressive
roles of TANs in different circumstances.

High-mobility group box 1 (HMGB1) usually acts as a
damage-associated molecular pattern that is released by dying
cells or stressed cells to initiate inflammation and was later
found to be an important chemoattractant for neutrophils (74).
Epithelial cell-derived HMGB1 was found to recruit neutrophils
to the necrotic site through its receptor RAGE (75). Enrichment
of platelets has been reported in the microenvironment of
multiple cancers, including BC (76), and infiltrating platelets
could be activated by the large amounts of adenosine phosphate
released by necrotic cells as a result of chemotherapy (77).

Activated platelet-derivedHMGB1, known as themajormediator
of injury-induced thrombosis in vivo (74), can also stimulate
NETosis through Toll-like receptor 4 (TLR4) and RAGE on
neutrophils, and as a positive feedback mechanism, released
NETs strongly induce a prothrombotic state and activate platelets
(78). Meanwhile, tumor cell-derived exosomal HMGB1 was
also found to activate neutrophils through the TLR4/NF-
κB pathway, which promotes its survival by increasing the
autophagic response and polarizing TANs to a protumor type
(79). It is noteworthy that various reports imply the core
position of the NF-κB pathway in the activation and recruitment
of neutrophils (80, 81). In addition to HMGB1, tumor cells,
including BC cells, have been reported to secrete other peptides,
such as a2 isoform V-ATPase (a2V), to activate the NF-κB
pathway in neutrophils, thereby promoting their recruitment and
inhibiting their apoptosis (82, 83). Additionally, breast involution
after weaning is characterized by acute inflammation and an
increase in estrogen. It was found that estrogen could induce
the mammary infiltration of neutrophils and upregulate the
expression of protumor cytokines/chemokines, such as COX-2
and MMPs, in mammary infiltrating neutrophils (84).

In addition, similar to lymphocytes and macrophages,
neutrophils aremore likely to localize in tumors of triple-negative
breast cancer (TNBC) than to tumors of other BC subtypes (85).
Recently, Zhang et al. identified neutrophils and macrophages as
the most frequent infiltrating immune cells in various BCmurine
models, and BC could be classified into a macrophage-enriched
subtype (MES) and a neutrophil-enriched subtype (NES). It was
interesting to find that there were only a few neutrophils in
the MES but a large number of macrophages in the NES (57).
This mutual repelling phenomenon in the MES and NES may
result in spatial segregation within the same tumor. The authors
speculated that a possible mechanism could be the factors derived
frommacrophages that inhibit the IL-8-dependent chemotaxis of
neutrophils (86).

ANTITUMOR FUNCTION OF TANs IN BC

The polarization of neutrophils can be differentially regulated
in the tumor microenvironment. In a mouse model, Fridlender
et al. found that TANs from the early tumor stage were like
tumor-killing cells, which produce high levels of hydrogen
peroxide (H2O2), tumor necrosis factor (TNF)-α and NO,
and that TANs are more likely to obtain a protumorigenic
phenotype with tumor progression (87). Although few studies
have directly compared the phenotype and function of TANs
between early- and late-stage tumors, there are still some clues to
support this hypothesis. A phenotypical and functional analysis
of TANs in early-stage lung cancer found an activated phenotype
(CD62lowCD54high) that was able to stimulate T cell proliferation
and IFN-γ release, which suggested a pro-inflammatory rather
than immunosuppressive state of TANs in early-stage lung
cancer (88). MPO is an enzyme characteristic of mature “N1”
type neutrophils, which are able to convert H2O2 to cytotoxic
hypochlorous acid (HOCI) (87, 89). Recently, a retrospective
study of 928 BC cases revealed that MPO-positive neutrophils
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(defined as≥5 cells/tissue punch) were found in 16% of evaluable
cases, while the luminal (ER/PR+ andHer2-), Her2-enriched and
triple-negative types had positive rates of 13, 29.7, and 26.4%,
respectively, in addition, in univariate analyses, infiltration
by MPO-positive neutrophils was a significant independent
favorable indicator for both OS and DFS. Notably, almost all of
the patients included in this study had early-stage disease (T1-
2 72%, N0-1 89%), and the data suggested that MPO-positive
neutrophils were much more abundant in BC cases with low T
and N stages than in advanced cases (90).

In addition, a direct tumor killing function of neutrophils has
also been reported. One of the classical factors working against
tumor cells is ROS. Recent research inmouse BCmodels revealed
that ROS-mediated cell lysis was dependent on Ca2+ channels
and mediated by transient receptor potential cation channel,
subfamily M, member 2 (TRPM2) expression on tumor cells
(91). Although TCGA analysis revealed a high expression of
TRPM2 in BC cells (http://gepia2.cancer-pku.cn/#index), active
NOX1, catalase and SOD were also increased in the membrane
of cancer cells, forming a complex mechanism by which tumor
cell apoptosis induced by ROS is prevented (92). In addition,
tumor cells are characterized by enhanced metabolic activity and
high levels of intracellular ROS (93), which indicates that direct
cytotoxic effects of neutrophil-produced ROS are not sufficient.
In addition to the direct cytotoxic effect, TANs containing ROS
have been found to strongly suppress IL-17-producing γδ T
cells (72), which are critical for shaping the immune suppressive
microenvironment in various solid tumors (94–96), and have also
been reported to promote BC cell extravasation and metastasis
(71). In addition, neutrophils could also express Fc receptors and
exert antibody-dependent cellular cytotoxicity (ADCC) effects
similar to those of T cells and macrophages, leading to a
trogocytosis effect to destroy cancer cells (97). However, some
studies have indicated that neutrophils are more likely to be
distributed at the periphery of tumors at the initiation stage
(85, 87), which may make controlling tumor growth with these
cell-cell contact-dependent mechanisms ineffective.

PROTUMOR EFFECTS OF TANs

More studies suggest that neutrophils facilitate tumor promotion
and metastasis in BC than antitumor effect. Overexpression of
the chemokines CCL2 and CCL17 is a recognized feature of
N2 neutrophils. Richmond et al. (98) found that exogenous
CCL2 enhances the killing effect of neutrophils against BC
cells in vitro, while this antitumor activity was not observed
in vivo. Instead, intranasal delivery of CCL2 to BALB/c mice
markedly enhanced lung metastasis of BC cells and increased
the recruitment of CD4+ T cells and CD8+ central memory T
cells. CCL17 secretion from TANs was found to support tumor
growth by recruiting CD4+ Treg cells and macrophages (99).
In addition to recruiting immune-suppressive cells, TANs were
reported to promote the accumulation of BC cells in the lung
and directly inhibit natural killer (NK) cell-mediated clearance
of tumor cells (100). Human NK cells can be divided into
CD56dim (antitumor) and CD56bright (protumor) subsets, and

CD56bright NK cells are enriched in the tumormicroenvironment
and draining lymph nodes (101, 102). Early reports revealed that
ROS and arginase-1 from neutrophils impair the maturation and
cytotoxic function of NK cells (103), but CD56brightCD16− NK
cell are resistant to neutrophil-derived ROS, perhaps due to their
high antioxidative capacity (104). Meanwhile, NK cells could
be recruited by TANs via CCL2 and CCL5, which may explain
the preferential accumulation of CD56bright NK cells in tumor
microenvironments with high ROS levels (105).

Extracellular arginine is crucial to signal local CD8+ cells
and increase their CD3ζ expression, which is key for T cells
to survey antigens presented on MHC class I molecules, and
it was also found to be necessary for T cell activation and
survival (106). Tumor cell-derived IL-8 could lead to TAN
degranulation, resulting in arginase-1 release and conversion of
extracellular arginine to ornithine and urea, thereby dampening
the survival and cytotoxic effect of CD8+ T cells (53, 107, 108).
Neutrophil elastase (NE) is also released by TANs and can
be endocytosed by tumor cells via neuropilin-1 (NRP1); this
results in the cross-presentation of PR1, which is an NE-derived
HLA-A2-restricted peptide that may be an immunotherapeutic
target (109). Besides, upon endocytosis, NE is to bind insulin
receptor substrate-1 (IRS-1), which removes the inhibitory effect
of IRS-1 on phosphatidylinositol 3-kinase (PI3K) to enhance the
proliferation of cancer cells (110).

Recent reports highlighted the leukocytes, especially
neutrophils preferentially uptake tumor derived extracellular
vesicles, or named exosomes (111). Hypercoagulability is one
of the important characteristics of malignant tumors, and
has been reported associated with NETs. Breast cancer cell
4T1-derived exosomes induced NETs formation in neutrophils,
besides, tumor-derived exosomes also interacted with NETs
to significantly accelerate venous thrombosis in vivo (112).
Furthermore, several reports also indicated the cancer derived
exosomes prolonged lifespan of neutrophils, and also polarized
neutrophils toward pro-tumor type (79, 113).

In addition to direct modulation of the protumor
microenvironment, increasing evidence has found that
neutrophils promote tumor cell migration and the formation of
a metastatic niche (6, 13, 114). Tumor angiogenesis is regarded
as a prerequisite for tumor metastasis, and TANs have been
recognized as an important source of vascular endothelial
growth factor (VEGF) upon specific stimulation in the tumor
microenvironment (115, 116). Neutrophils were also found to be
one of the main sources of MMP-9 (117), and the link between
MMP-9 and VEGF has been reported previously. The absence
of MMP-9 has been reported to have a similar function as the
inhibition of VEGF signaling, indicating that MMP-9 serves as
an angiogenic switch during tumorigenesis by inducing VEGF
release from the matrix (117–119). In addition, Gabriele et al.
also found that MMP-9 was expressed by a small number of
cells in close proximity to the vasculature, such as infiltrating
inflammatory cells, rather than tumor cells (118). In addition,
several serine proteases are also produced by TANs, such as
NE, cathepsin G and proteinase-3, which have been reported to
activate MMP-2 to promote tumor invasion and proliferation
(120, 121). In addition, although neutrophils were reported
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to produce little tissue inhibitor of matrix metalloprotease
(TIMP-1), Wang et al. observed that BC cells with CD90-positive
expression could induce the TIMP-1 secretion by TANs, and as
a reciprocal effect, TIMP-1 induced EMT and metastasis in BC
(122). Other neutrophil-derived cytokines such as IL-1β, IL-6,
and IL-17α have been reported to initiate EMT of cancer cells by
activating JAK2/STAT3 and ERK signaling (123, 124).

In addition to modulating the primary tumor
microenvironment, neutrophils can also assist the formation
of the cancer premetastatic niche in distant organs. CTCs
are precursors for metastatic lesion formation; intravascular
NETs were found to protect CTCs from attack by circulating
immune cells; and dysregulated NETs were found to induce
inflammatory vascular injury, EC shrinkage and tissue damage
(53, 125–127). Moreover, in vitro and in vivo experiments found
that activated neutrophils promote the adherence of CTCs to
ECs and facilitate their lung and liver metastasis (128). Recently,
Aceto et al. provided strong evidence that neutrophils escort
CTCs in BC to assist metastasis (129). With detection of cell
surface markers andWright Giemsa staining, they identified that
most CTC-associated white blood cells were N2-like neutrophils.
In addition, single-cell RNA sequencing revealed higher Ki-67
expression in disseminated tumor cells from CTC neutrophil
clusters than in standalone CTCs. In the same study, TNF-α,
oncostatin M, IL-1β, and IL-6 were frequently expressed by
CTC-associated neutrophils and matched by the receptors on
corresponding CTCs; on the other hand, CTCs from the CTC
neutrophil clusters expressed high gene levels encoding G-CSF,
transforming growth factor (TGF)-β3 and IL-15, which have
been reported to activate neutrophils (130–132), illuminating a
mechanism of neutrophil-CTC cluster formation.

In addition to escorting CTCs in circulation, several studies
have found that neutrophil accumulation is a prerequisite
for cancer metastasis. For both orthotopic transplantation
and spontaneous BC models, neutrophils were suggested
to accumulate in the distant organ before cancer cells
infiltration (6, 133). Obesity and elevated cholesterol are
risk factors for BC development and poor prognosis (134,
135). Interestingly, 27-hydroxycholesterol (27HC) increased the
number of polymorphonuclear-neutrophils and γδ T cells at
distal metastatic sites, and neutrophils were required for the
metastatic effects of 27HC (136). Egeblad et al. (137) developed
a confocal intravital lung imaging system and found that NETs
were formed early in the lung and continued to form for
the next few days after tail vein injection of BC cells. In
addition, based on immunofluorescence staining of human
primary BC and matched metastatic lung lesions, they found
that the abundance of NETs was highest in TNBC, but NETs
were absent or very rare in luminal BC samples, which may
explain the higher metastatic ability of TNBCs than luminal
BCs. In ovarian cancer, an influx of neutrophils in the omentum
was also observed before metastasis, and blockade of NET
formation with peptidyl arginine deiminase 4 (PAD4), an enzyme
that is essential for NET formation, could decease omental
colonization of cancer cells (133). In addition to supporting
colonization of cancer cells, lung-infiltrating neutrophils has
also been reported to directly promote cancer proliferation via

release of high levels of S100A8, S100A9, Bv8, MMP-9 and
the lipid leukotriene B4, which stimulate the migration and
proliferation of BC cells, and activate the MAPK/Erk pathway
in BC cells to potentiate their tumorigenic capacity (6, 138).
Interestingly, BC can remain dormant and clinically undetectable
before late recurrence decades later, and it has been reported
that inflammation induced by stimuli such as lipopolysaccharide
or smoking triggers neutrophils to accumulate and NET
formation, which can cause tumor recurrence by activating
the integrin and FAK/ERK/MLCK/YAP signaling pathways to
awaken dormant tumor cells (139). Overall, evidence is mounting
that neutrophils play a significant detrimental role in every step
of cancer metastasis.

SPATIAL DISTRIBUTION AND VARIOUS
CLUSTER OF TANs

Several studies have suggested that the spatial distribution of
TANs is different between early- and advanced-stage cancers,
which is related to the biological function of TANs (antitumor
or protumor functions) (Figure 1). A mouse model of lung
carcinoma and mesothelioma revealed that TANs were scattered
around the periphery of the tumor site in the early stage,
while neutrophils were more distributed among the tumor
cells in the late stage (87). Another retrospective study of
BC defined TANs as neutrophils in direct contact with
carcinoma cells and showed that 47.7% of cases were TAN
positive, but the frequency of cancer cell contacting-TANs
was much higher in advanced-stage cases than in early-
stage cases (85), which also indicates that neutrophils are
dynamically modulated by the tumor microenvironment both in
phenotype and spatial position. Recently, Wang et al. evaluated
the association between parenchymal and stromal neutrophil
counts and clinical outcomes with their own BC datasets and
found that neutrophils in the tumor parenchyma, rather than
those in the stroma, were an independent poor prognostic
factor (122).

Because of the lack of direct information from previous
publications, we tried to determine the abundance and subtype
of TANs in human BC via the CIBERSORT-LM7 deconvolution
algorithm based on mRNA expression datasets (GSE6532,
GSE9195, GSE16446, GSE17907, GSE19615, GSE20685,
GSE20713, GSE21563, GSE31448, GSE42568, GSE48390, and
GSE58984) (140). Our analysis indicated that the proportion of
neutrophils was significantly higher in BC cases with a higher
grade and of the luminal B, TNBC and HER2+ subtypes but was
not associated with tumor size or axillary lymph node metastasis
(Figures 2A–D). Recently, Klein et al. (142) used single-cell
RNA sequencing (scRNA-seq) to map tumor-infiltrating myeloid
cells in non-small-cell lung cancer patients and revealed that
tumor-infiltrating neutrophils (TINs) could be clustered into
five subsets (hN1-hN5). hN1 cells were characterized by high
expression of Arginase-1, MMP9/8, S100A8 and S100A9, and
ADAM8. As we discussed in the previous section, almost
of these genes play a tumor-promoting role in BC. Another
earlier research focused on immune microenvironment also
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FIGURE 1 | Schematic diagram of spatial distribution and functional of TANs in early and late stage breast cancer. As a quick response, tumor associated neutrophils

(TANs) are scattered around the periphery of the tumor site in early stage, and exert tumor inhibition function; with tumor progression, the TANs are more likely to

distributed among and direct contact with tumor cells, and function as tumor promoting cells via shaping immune suppressive microenvironment, enhancing

angiogenesis, and caner metastasis.

profiled BC infiltrating 45,000 immune cells with scRNA-seq,
and identified neutrophils in half of the patients. However, the
neutrophils and mast cells were excluded in analysis due to
their great heterogeneity (143). In addition, Wagner et al. (141)
performed a single-cell analysis to map the microenvironment
of BC using mass cytometry, and found the abundance of
neutrophils (also termed as granulocytes) significant higher
in juxta-tumoral tissue than tumor, and it is noted that nearly
90% of the included patients were early stage (IA-IIB) and
luminal subtype. Since the CIBERSORT and scRNA-seq analysis
are both based on transcriptome level, here we extracted the
original data of Wagner’s study to evaluate the neutrophil
distribution stratified with different pathological features again
(141). The results confirmed the frequency of TANs were greater
in tumor with larger size and higher grade, but not associated
with lymph nodes metastasis (Figures 2E–H); besides, we
also compared the relative proportion of neutrophils between
juxta-tumoral and tumor tissues among different tumor size,
the negative results (Figure 2H) suggested that the increase
of neutrophils infiltration in tumor may be a continuous
chemotactic process from para-tumoral tissue toward the
tumor. More rigorous experiments are needed in the future to
delineate the dynamic changes in neutrophil function during
this process.

THE IMPACT OF CHEMOTHERAPY AND
RADIOTHERAPY ON TANs

Chemotherapy and radiotherapy are integral parts of BC
treatment that can influence the immune microenvironment.
Anthracycline and cyclophosphamide-based chemotherapy
regimens are still widely used in BC treatment (144, 145). It has
been reported that anthracycline as well as cyclophosphamide
can impair the actin polymerization of neutrophils, which
results in insensitivity of neutrophils to the chemotactic effect
of IL-8, therefore decreasing the infiltration of neutrophils
in BC (146). In addition, the migration ability of neutrophils
was also impaired by paclitaxel, a cornerstone drug in BC
treatment, which could be attributed to the increased cell
stiffness and decreased compliance induced by enhanced
microtubule assembly (147). Platinum-based chemotherapeutic
strategies have also been widely applied in various solid
malignancies, such as colorectal cancer, ovarian cancer,
and BC (148–150). Determination of neutrophil-specific
chemokine expression by RT-PCR confirmed that oxaliplatin
plus lipid A, which has been reported to exert antitumor effects
against different tumor types, including colon cancer, BC and
melanoma (151, 152), increased CXCL-1, CXCL-2, and IL-8
gene expression in tumors, thereby stimulating recruitment
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FIGURE 2 | Abundance of tumor infiltrating neutrophils in breast cancer. CIBERSORT algorithm analysis was performed based on mRNA expression datasets

(GSE6532, GSE9195, GSE16446, GSE17907, GSE19615, GSE20685, GSE20713, GSE21563, GSE31448, GSE42568, GSE48390, and GSE58984). Comparison

of breast cancer infiltrating neutrophils with different molecular subtype (A), grade (B), tumor size (C), and lymph nodes metastasis (D); original data based on mass

cytometry (141) was extracted and re-analyzed to evaluate the abundance of neutrophil stratified with different tumor size (E), grade (F), and lymph nodes metastasis

(G), relative proportion of neutrophils between juxta-tumoral and tumor tissues among different tumor size was also presented (H).

of antitumor N1-like neutrophils and impeding cancer
progression (153).

The impact of radiotherapy on neutrophils has also been
reported. In the EMT6.5 mammary tumor model, conventional
radiotherapy (CRT) but not microbeam radiation therapy
(MRT) induced a substantial increase in TAMs and TANs,
and increased levels of CCL2 (which, as mentioned above,
can be released by TANs to exert chemoattractant functions)
were also observed in tumors subjected to CRT (154). In
addition, different radiation regimens (20Gy, 4 × 2Gy, 2Gy,
or 0Gy) induce different immune responses. High single
doses (20Gy) induce a delayed type of primary necrosis with
characteristics of mitotic catastrophe and plasma membrane
disintegration. The protein damage-associated molecular
patterns (DAMPs) released by these dying cells stimulate
sequential recruitment of neutrophils and monocytes in vivo
(155). Furthermore, elevated infiltration of neutrophils was
observed in various radiation-induced pneumonia models
(156–158). However, in human BC, there is no direct evidence
for how radiation affects the variations in neutrophils in the
tumor microenvironment, but it has been reported that the NLR
could be an independent prognostic factor in TNBC following
radiotherapy (159).

TARGETING NEUTROPHILS FOR CANCER
TREATMENT

Since the majority of studies have revealed a protumor function
of neutrophils in BC, targeting neutrophils as a therapeutic

strategy has been investigated. In mouse mammary tumor
models, depletion of neutrophils with anti-Ly6G antibodies
resulted in diminished tumor formation and lung metastasis
(160). In addition, multiple BC xenograft models have proved
that tumors enriched in neutrophils are more likely to be
resistant to immune checkpoint blockade (ICB) therapy,
while depleting neutrophils could restore the efficiency of
ICB to reduce tumor recurrence and significantly improve
progression-free survival (57). However, it is impossible
to eradicate all neutrophils in cancer patients since it
would cause severe immunodeficiency and infection, so it
is more desirable to block the chemotaxis of neutrophils
in tumor tissues or to prevent their polarization to the
N2-like phenotype.

IFN-β and TGF-β are the cytokines that are most often
reported to modulate the switch between N1 and N2-
like neutrophil polarization. Steven et al. first revealed
that TGF-β blockade significantly increased the influx of
antitumor neutrophils and activated CD8+ T cells in a BC
mouse model (161). Thereafter, a population of low-density
neutrophils (LDNs) featuring impaired antitumor function and
immunosuppressive properties accumulated continuously with
cancer progression, including in BC. This LDN subpopulation
consists of both immature MDSCs and mature neutrophils
that are transformed from “normal,” antitumor, high-density
neutrophils (HDNs) in a TGF-β-dependent mechanism (162).
Mice deficient in IFN-β showed rapid tumor growth and large
amounts of neutrophil infiltration with high expression of
c-myc and stat3, which are known as enhancers of MMP-9,
VEGF, and CXCR4 expression (163). Furthermore, nicotinamide
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FIGURE 3 | Anti- and pro-tumor function of neutrophils in breast cancer. Due to the dynamic regulation of neutrophils in tumor microenvironment, it can either

function as inhibit or promote tumor progression. The anti-tumor neutrophils can exert anti-tumor function through antibody-dependent cellular cytotoxicity (ADCC)

effect, produce HOCI, ROS, TNF-α, and NO as direct killing effect, and suppress immune suppressive cells, such as IL-17 producing γδ T cells. To the contrary,

pro-tumor neutrophils can produce CCL2 and CCL17 to recruit CD4+ Treg cells and anti-inflammatory macrophages, together with release arginase-1 to inhibit the

activation of CD8+ cells, therefore promote immune suppressive microenvironment; they also promote tumor angiogenesis via release MMP9 and VEGF and produce

NETs to escort circulating tumor cells and promote cancer metastasis; finally, neutrophils could release elastase, IL-6, IL-1β, and IL-17 to promote tumor cells

proliferation and EMT directly.

phosphoribosyl transferase (NAMPT), an enzyme with cytokine-
like features involved in the salvage pathway of nicotinamide
adenine dinucleotide (NAD) biosynthesis (164), was found to be
highly expressed and to modulate the tumorigenicity of TANs.
Targeting NAMPT in TANs led to their antitumor conversion
and antiangiogenic polarization by inhibiting SIRT1 signaling,
which resulted in efficient repression of tumor growth (165).
In addition, CXCR2 blockade in a K-ras mutant mouse model
of lung cancer induced tumor regression, which was related
to reduced neutrophil chemotaxis and polarization from

N2- to N1-like cells (166). Transfusion of neutrophils
(granulocyte transfusion, GTX) to cancer patients has also
been tested, but due to the short life span of neutrophils and
severe adverse events, such as respiratory distress and even
death, it needs further investigation (167).

CONCLUSIONS

A schematic picture depicting the dual role of neutrophils in
BC (Figure 3). Here, we provide a comprehensive review of
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circulating and TINs in BC to highlight their importance in
the tumor microenvironment. Although increasing evidence
suggests a close association of neutrophils with treatment
outcome and prognosis in BC, as well as their utility in predicting
these parameters, it is still difficult to utilize the NLR or TANs as
clinical tools due to the lack of reliable markers to distinguish
N1 and N2 neutrophils and the lack of a unanimous cut-
off value for the NLR. In addition, existing evidence suggests
an interesting phenomenon in which the spatial distribution
and function of neutrophils are dynamically regulated with
tumor progression, although the detailed mechanism requires
further research. Overall, exploring more effective and low-
toxicity strategies to inhibit protumor neutrophil polarization is
a promising approach for cancer treatment.
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