
A major purpose of the Techni-

cal Information Center is to provide

the broadest dissemination possi-

ble of information contained in

DOE’s Research and Development

Reports to business, industry, the

academic community, and federal,

state and local governments.

Although a small portion of this

report is not reproducible, it is

being made available to expedite

.the availability of information on the

research discussed herein.

. 1



A Rosetta Stone for Connecticnism

J. Doyne Farmer

LA-uR--9O-228

Complex Systems Group

Yheorecical Division DE90 006506

Los .41amcw Xational Laboratory

Los Akimos, NM

and

8?545.

Santa Fe Institute

1120 Canyon Rd.

Santa Fe YAi 87501zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

Abstract

‘lH~eterm connectionism is usually applied to neural networks. There are,

however, many other models that are mathematically similar, including classi-

fier systems, immune networks, autocatalytic chemical reaction networks, and

others. In view of this similarity, it is appropriate to broaden the term con.

nectionism, I define a connectionist model as a dynamical system with two

properties: (1) The interactions between the variables at any given time are

explicitly constrained to a finite list of connections, (2) The connections are

fluid, in that their strength and/or pattern of connectivity can change with

time,

This paper reviews the four examples listed above and maps them into a

common mathematical framework, discussing their similarities and differences.

It also suggests new applications of connectionist models, and poses some prob-

lems to be addressed in an eventual theory of connectionist sjstems.
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Figure 1: “Ptolemy”, in hieroglyphics, Demotic, and Greek. This cartouche played a

seminal role in deciphering hieroglyphic, by providing a hint that the alphabet was

partially phonetic [12], (The small box is a ‘p”, and the half circle is a “t” - literally

it reads ‘ptoltnis”. )

1 Introduction

“rhis paper has several purposes. The first is to identify a common language across

several fields in order to make their similarities and differences clearer. A centrai goal

is that practitioners in neural nets, classifier systems, immune nets, and autocatalytic

nets will be able to make correspondences between work in their own field as comp-

ared to the others, more easily importing mathematical results across disciplinary

boundaries, This paper attempts to providezyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAa coherent statement of \vllat conncc-

tionist models are and how they differ in mathematical structure and pllilosoi>l~y from

conventional “fixed” dynamical systems models. I hope that it provides a first step

toward clarifying some of the mathematical issues needed for a generally applicable

theory of connectionist models, Hopefully this will also provide a natural framework

for connectionist models in other areas, such as ecology, economics, and gi]l]le tlmory,

1.1 Breaking the jargon barrier

Language is the medium of cultural evolution. To a large extent difrercncos in Iar.

guage define culture groupings, Sotneune {VIMspealw Romany, for t+~ii[li~>l~, is very

likely a Cypsy; the existence of a common and unique hmguage is one of tl~e nmst itl].

portant bonds preserving Gypsy culture, At times, however, communication betwcwn

sub-cultures becomes essential, so that we must map one Iatlguiig,? to onotller.

The language of scicncc is particularly spcciolimd, [t is also ptuti~’lllurly Ilui(i;

It’orfls m! tools otlto Wllicll WWmap ide.ls, all[l wlli(:h we illvcut. or rcdclinc ilS !lL’(~(’SSi\l’)’.

01



When models are based on a given class of phenomena, such u neurobiology or

ecology, the terminology used in the models tends to reflect the phenomenon being

modeled rather than the underlying mathematical structure, This easily obscures

similarities in the mathematical structure. ‘Neural activation” may appear quite dif-

ferent from ‘species population”, even though relative to given mathematical models

the two may be identical. Differences in jargon place barriers to communication that

prevent results in one field from being transparent to workers in another field. Proper

nomenclature should identify similar things but distinguish those that are genuinely

different.

At present this problem. is particularly acute for adaptive systems. The CIMS

of mathematical models that are employed to understand adaptive systems contain

subtle but nonetheless significant new features that are not easily categorized by

conventional mathematical terminology, This adds to the problem of communication

between disciplines, since there are no standard mathematical terms to identify the

features of the models.

1.2 What is connectinnism?

Connectionism iszyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAa term that is currently applied to neural network models such as

those described in references [58,15]. The models consist of elementary units, which

can be ‘connected” tcgether to form a network, The form of the resulting connection

diagram is often called the amhitecture of the network, The computations performed

by the network are highiy dependent on the architecture. Each connection carries

information in its weight, which specifics how strongly the two variables it connects

interact with each other. Since the modeler has control over how the connections are

made, the architecture is pkutic,

This contrasts with the usual approach in dynamics and bifurcation theory, w’here

the dynarnid system is a fixed object whose variability is concefltrat~ into a few

parameters. The plasticity of the connections and connection strengths means ihat

we must think about the entire family of dynamical systems described by all possible

architectures and all possible combinations of weights, Dynainics occurs on as many

aY three Icvels, that of the states of the network, the values of connection strengths,

and the architecture of the connections themselves,

Mathematical models with this basic rjtructure are by no means unique to neural

networks. They occur in several other areas, including classifier systems, ilmnunc

networks, and autocatalytic networks, ‘l’hey also have potential applications in other

arms, such u economiw, game. thcwretic models and ecological models, I propose

that the term connectionisrn be extended to this wider chwjs Oitncdcls.

J3y comparing connectionist rnodcls for different ptwnomcna using A COIIUIIOII

nomenclature, we get a clear view of the extent to which these models arc sill)il~r

or diffcreut, W’t! also get a ~/irll/)ye of tht~ e~tl!nt to wl~ic~~tj~e ~li!d.~r]!’illg ~)ll,*[lu[l\-

{!11,:arc similar or (Ii(l’ercnt. I mlpliiuize tllo word glirtlpse to r]lak(! it, cl(Ia~ t!l;~t \v41

mv! sirrlplifying a complic~tcd plwnomenon whw wc rwdul it in conllcctiurlist t(’rrlk+.

C’ompariug two corlnectionist rnodcls ut’, for (!xanlple, tll(! IIC’UVU IIS sysl(![l I ,111[1 1111’



immune system, provides a means of extracting certain aspects of their similarities,

but we must be very careful in doing this; much richness and complexity is lost at

this level of description.

Connectionism represents a particular level of abstraction. By reduci.lg the state

of a neuron to a single number, we are collapsing its properties relative to a real

neuron, or relative to those of another potentially more comprehensive mathematical

formalism. For example, consider fluid dynamics. At one level of description the state

of fluid iszyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAa function whose evolution is governed by a partial differential equation.

.4t another level we can model the Juid as a finite collection of spatial modes whose

interactions are described by a set of ordinary differential equations. The partial

differential equation is not a connectionist model; there are no identifiable elements

to connect together; a function sirx,ply evolves in time. The ordinary differential

equations are mom connectionist; the nature of the solution depends critically on the

particular set of modes, their connections, and their coupling parameters. In fl~’id

dynamics we can sometimes calculate the correct couplings from first principles, in

which case the model is just a fixed set of ordinary differential equations, In contrast.

for a connectionist model there are dynamics for the couplings and/or connections.

In a fully connectionist model, the connections and couplings would be allowed to

change, to find the best possible model with a given degree of complexity.

Another alternative is to model the fluid on a grid with a finite difference scheme

or a cellular automaton, In this c~e each element is “connected” to its neighbors, so

there might be some justification for calling these connectionist models, How’ever, tile

connections are t-ixed, completely regular, and have no dynamics, I will not consider

them as ‘connectionist”,

Just as there are limits to what can be described by a finite number of distinct

modes, there are also limits to what can be achieved by con,~ectionist models, For

more detailed descriptions of many adaptive phenomena we may need models with

explicit spati~l structure, such M partial differential equations or cellular automata,

Nonetheless, cormectionism is a useful level of abstracti~n, Which solves some problems

efficiently.

The Rosetta Stone is a fragment of rock in which the same text is inscribed in

several different languages and alphabets. It provides a kcy that greatly facilitated

the decoding of these languages, but it is by no means a complete clcscription of tl~enl,

Jiy goal is similar; by presenting several connectionist models side by side, I hope

to make it clear how some aspects of the underlying phenomena compare \vitli otic

iwother, but I offer the warning that quite a bit has been omittccl in the process.

1.3 Organization of this paper



d

Figure 2: A directed graph.

● C
G

tains the ‘rosetta stone”, a table mapping the jargon of each area into a common

nomenclature. I also nuke a few suggestions for applications of connectionist modeis

and comment on what I learned in writing this paper.

Connectimist models are ultimately dynamical systems. Readers who are not

familiar with terms such as automaton, map, or lattice model may wish to refer to

the Appendix.

z The generai mathematical framework of con-

nectionist models

In this section I present the mathematical framework of a “generic” connectionist

model. I make some arbitrary choices about nomenclature, in order to provide a

standard language, noting common synonyms whenever appropriate,

To first approximation a connectionist model is a pair of coupled dynamical sys-

tems living on a graph, IQ some cases the graph itself may also have dynalnics. The

remainder of this section explains this in more detail.

2.1 The graph

The foundation of any cormectionist model is a graph, consisting of nudes (or ver-

tices) and connection.q, links, or edges between tl!em as shown iu Figure (2). Tl]e

graph describ~!s tlie architecture of the system and provides the cliar~ll~ls iu wl~icl~ tllc

dynamia takes place. ‘1’here are different typw of graph~; for I~xaIIIple, tile Ii[lks ~i~l)

lx either directed (with arrows), or undirected (without arrows), Fur soIIw I)li’$pf)s{’s.

●
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such as modeling catalysis, it is necessary to allow more complicated graphs with

more than one type of node or more than one type of link.

For many purposes it is important to specify the pattern of connections, with a

graph representation. The simplest way to represent a graph is to draw a picture

of it, but for many purposes a more formal description is necessary. One common

graph representation is a connection matriz. The nodes are assigned an arbitrary

order, corresponding to the rows and columns of a matrix. The row corresponding to

each node contains a nonzero entry, such M “1” , in the columns corresponding to the

nodes to which it makes connections. For example, if we order the nodes of Figure

(2) lexigraphically, the connection matrix is

i]

01010

10000

c= 00100 (1)

01000

01000

If the graph is undirected then the connec~ion matrix is symmetric. It is sometimes

economical to combine the representation of the graph and the connection parameters

associated with it into ii matrix of connection parameters.

A connection list is an alternative of a graph representation. For example, the

graph of Figure (’2) can also be represented as

a-b

a-d

b-a
(~)C*C

d+b

e+b

Sote that the nodes are implicitly contained in the confection list, In some cases, if

there are isolated nodes, it may be necessary to provide an additional list of nodes

that do not appear on the connection list. For the connectionist models discussed

here isolated nodes, if any, can be ignored.

ForzyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAa dense graph almost every node is connected to almost every other node.

For a sparse graph most no&s are connected to only a small fraction of t!~e other

nodes, A connection matrix is a more efficient representation for ii dense graph, l~IIc

a connection hst is a more efficient representation for a sparse graph,

2.2 Dynamics

in convent ior]al dynamical models the form of tile dynamical systerrl is fixed. I’lle

olll~ part uf tll~ (Iytlamical s~stc’m that chf~llgW is the Stilt(?, W’llicll (’otltains illl tlld

iuformat, io[l wc I]wd to know about tl)e systmm to dctertuine its future l)(!t)ii~io~.

I’lle pOWible ways the “fixed” dynamical forlri “lllight ch;lnge” iil(’ (’I) Uit[)S(llill. t’11 AS
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parameters. These are usually thought of as !ixed in any given experiment, but

varying from experiment to experiment. Alternatively we can think of the parameters

as knobs that can be slowly changed in the background. III reality the quantities that

we incorporate as parameters are usually aspects of the system that change on a time

scale slower than those we are modeling with the dynamical system.

Connectionist models extend this view by giving the parameters an explicit dy-

namics of their own, and in some cases, by giving the list of variables and their

connectionszyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAa dynamic of its own. Typically this also involves a separation of time

scales. Although a separation of time scales is not necessary, it provides a good start-

ing point for the discussion. The fast scale dynamics, which changes the states of

the system, is usually ~sociated with short term information processing. This is the

transition de. The intermediate scale dynamics changes the parameters, and i: usu-

ally associated with learning. I will call this the pamrneter d~raamics or the learnin~

rule. On the longest time scale, the graph itself may change. I will call this the graph

dynamics. The graph dynamics may also be used for learning; nopefully this will not

lead to confusion,

Of course, strictly sperking the states, parameters, and graph representation de-

scriLed above are just the states of a larger dynamical system with multiple time

scales. Reserving the word state for the shortest time scale is just a convenience. The

association of time scales given above is the natural generalization of “con~”entional”

dynamical systems. in which the states change quickly, the parameters change slowly,

and the graph is fixed. For sGme purposes, however, it might prove to be useful to

relax this separation, for example, letting the graph change at a rate comparable to

that of the states. Although all the models discussed here have at most three time

scales, in principle this framework could be iterated to higher levels to incorporate

an arbitrary number of time scales.

The information that resides on the graph typically consists of integers, real num-

bers, or vectors, but could in principle be any mathematical objectsl. The state

transition and learning rules can potentially be any type of dynamical system. For

systems with continuous states and continuous parameters the natural dynamics are

ordinary differential equations or discrete time maps. In principle, the states or pa-

rameters could also be functions whose dynamics are partial differential equations or

functional maps. This might be natural, for example, in a more realistic model of neu-

rons where the spatio-temporal form of pulse propagation in the axon is important

[59]. When the activities or parameters are integers, their dynamics are naturally

automata, although it is also common to use continuous dynamics even when the

underlying states are discrete.

Since the representation of the graph is intrinsically discrete, the graph dynamics

us~ally has a different character, Often, as in classifier systems, immune netivorl;s,

or autocatalytic networks, the graph dynamics contains random demerits, III otlicr

cases. it may be a deterministic response to statistical properties of tl~e II U(.ICsta:m or

the connection strengths, for example, M in pruning idgorithms. D}’nanli~’id s~stt’[i]s

1The stat~ could Conceivably IM MOrO complicated malhematicid ObJt?CtS, guch w ~ fullctr~lls



with graph dynamics are sometimes called rneiadynamical system [20,8].

In all of the models discussed here the states of the system reside on the nodes

of the graph 2. The states are denoted ~i, where z is an integer labeling the node.

The parameters reside at either nodes or connections; ei refers to a node parumeter

residing at node i, and wii refers to a connection parameter residing at the connection

between node z and node j.

The degree to which the activity at one node influences the act~vity at another

node, or the connection strength, is an important property of connectionist mcdels.

Although this is often controlled largely by the connection parameters, wij, the node

parameters ~i may also have an influence, and in some cases, such as B-cdl im-

mune networks, provide the only means of changing the average connection strength.

Thus, it is misleading to assume that the connection parameters are equivalent to the

connection strengths. Since the connection strength at any given instant may vary

depending on the states of the system, and since the form of the dynamics may differ

considerably in different models, we need to discuss connection strength in terms of a

quantity that is represe:l~ation- independent, which is well defined fm any dynamical

model.

Fo: a continuous transition rule the natural way to discuss the connection strength

is in terrm of the Jacobian. When the transition rule is an ordinary differential

equation, of the form *Z~ = .fi(~l, ~2,. . . . ZN), the instantaneous connection stren~th

of the connection from rmde i to node j (where i is an input to j) is the corresponding

~ A connection is excitatory if J], >0term in the Jacobian matrix Jji = & = ~= .

and inhibitory if J)i < 0. Similarly, fo~ discr~te time dynamical systems (continuous

maps), of the form zj(t+l) = jl(zl, zz, ..., z~), a connection is excitatory if [Jjil > 1

and inhibitory if lJjil < 1. In a continuous system, the average connection strength is

(J,,), where ( ) denotes an appropriate average; in a discrete system it is (lJjt/). To

make this more precise it is necessary to specify the ensemble over which the average

is taken.

For automaton transition rules, since the states xi are discrete the notion of in-

stantaneous connection strength no longer makes sense. The average connection

strength may be defined in one of many ways; for example, u the fraction of times

node j changes state when node i changes state. In situations where ~i is an inte-

ger but nonetheless approximately preserves continuity, if l&,(t) I is the magnitude

of the change in xi at time t, the average

‘W) IAZ, (,)I>O’

‘It is also possible that states could be attached

01 the modeb discussed here.

connection strengtl] can be defined as

to connections, but Lll Is is [lot t])e c~e ill any

●
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3 Neural nets

3.1 Background

Neural networks originated with early work of McCulloch and Pitts [42], Rosenblatt

[57], and others. Although the form of neural networks was originally motivated by

neurophysiology, their properties and behavior are not constrained by those of real

neural systems, and indeed are often quite different. There tie two basic applications

for neural networks: one is to understand the properties of real neural systems, and the

other is for machine learning. In either case, a central question for developing a theory

of learning is: Which behaviors of real neurons are essential to their information

processing capabilities, and which are simply irrelevant side effects?

For machine learning problems neural networks have many uses that go consider-

ably beyond the problem of modeling real neural systems. There are several re~ons

for dropping the constraints of modeling real neurons:

●

●

●

●

We do not understand the behavior of real neurons.

Even if we understood them, it would be computationally inefficient to imple-

ment the full behavior of real neurons.

It is unlikely that we need the full complexity of real neurons in order to solve

problems in machine learniGg.

By experimenting with different approaches to simplified models of neurons, we

can hope to extract the basic principles under which they operate, and discover

which of their properties are truly essential for learriing.

Because of the factors listed above, for machine learning problems there has been

a movement towards simpler artificial neural netwcrks that are less motived by real

neural networks. Such networks are ofteri called ‘artificial neural networks”, to dis-

tinguish them from the real thing, or from more rdistic models. Similar arguments

apply to all the models discussed here; it might also be appropriate to say “artificial

immune networks” and ‘artificial autocatalytic networksv, However, this is cumber-

some and I will Msume that the distinction between the natural and artificial worlds

is taken for granted.

Neural networks are constructed with simple units, often called “neurons”, Until

about five years ago, there were almost as many different types of neural networks

as there were active researchers in the field. In the simplest and probably currently

most popular form, each neuron is a simple element that sums its inputs with respect

to weights, subtracts a threshold, and applies an activation function to the result. If

we assume that time is discrete so that we can write the dynamics as a map, then ~ve

have

● t= 1 9!- !... = time

● z,(t) = state of peuron i

10



● Wij = weight of connection from i to j

●Oj= threshold

● s= the activation function, often a sigmoidal function such as tanh.

The response of a single neuron can be characterized as

~j(~ + 1) = S’(~WijZ,(t) – O,). (3)
i

We could also write the dynamics in terms of automata, differential equations,

or, if we assume that the ,~eurons have a refractory period during which they do not

change their state, as delay dfierential equations.

The instantaneous connection strength is

ax,(t -t H

ihl(t)

— = UJijS’(~WijZi(t) - Oj).

i

(4)

where .S’ is the derivative of S, If S is a sigmoid, then s’ is always positive and a

connection with wij >0 is always excitatory aad a connection with wij < 0 is always

inhibitory.

A currently popular procedure for constructing neural networks is to line the

neurons up in rows, or “layers”. A standard architecture has one layer of input units,

one or two layers of “hidden” units, and a layer of output units, with full connections

between adjacent layers. For a feed-jorwani architecture the graph has no loops so

that with fixed parameters information flows only in one direction, from the inputs

to the outputs. If the graph has loops so ~hat the activity of a neuron feeds back on

itself then the network is wcurrent.

For layered networks it is sometimes convenient to assign the neurons an extra

label that indicates which layer they are in. For feed-forward networks the dynanlics

across layers is particularly simpie, since first the input layer is active, then the first

hidden layer, then the next, etc., until the output layer is reached. If, for definiteness,

we choose tanh as the activation function, and let 1 refer to the input layer, 2 to the

first hidden layer, etc., the dynamics can be described by Equation (5), Note that

because the activity of each layer is synchronized and depends only on that of the

previous iayer at the previous time step, the role of time is trivial. Since each \’ariable

only changes its \’alue once during a given feed-forward step, we can drop time labels

without ambiguity,

(5)

*

11



From this point of view the neural network simply implements a particular family

of nonlinear functions, parameterized by the weights w and the thresholds 0 [22]. For

feed-forward networks the transition rule dy~ amics is equivalent to a single (instan-

taneous) mapping, For a recurrent network, in mntrast, the dynamics is no longer

trivial; any given neuron can change state more than once during a computation.

This more interesting dynamics effectively gives the network a ]nemory, so that the

set of functions that can be implemented with a given number o’.’neurons is much

larger. However, it becomes necessary to make a decision as 20 when the computation

is completed, which complicates the learning problem.

To solve a given problem we must select vallws of the parameters w and 0, i.e., we

must select a particular member of the family of functions specified by the network.

This is done by a learning rule.

The Hebbian learning rules are perhaps the simplest and most time honored. They

do not require detailed knowledge of the desired outputs, and are easy to implement

locally, The idea is simply to strengthen neurons with coincident activity, A simple

implementation changes the weights according to the product of the activities on each

connection,

Awij = ~izl (6)

Hebbian rules are appealing because of their simplicity and particularly because

they are local, They can be implemented under very general circumstances. However,

learning with Hebbian rules can be ineffective, particularly when there is more detailed

knowledge available for training, For example, in some situations we have a training

set Gf patterns for which we know both the correct input and the correct output,

Hebbian rules fail to exploit this information, and are correspondingly inefllcient

when compared with algorithms that do.

Given a learning set of desired input/output vectors, the parameters of the net-

work can be determined to match these input/output vectors by minimizing an error

function based on them. The back-propagation algorithm, for example, minimizes the

least mean square error and is effectively a nonlinear least-squares fitting algorithm,

For more on this, see reference [58],

Siuce there is an extensive and accessible literature on neural networks, I will [lot

review it further [58,15].

3.2 Comparison to a generic network

Neural networks are the canonical example of conuectionisill And thcii mapl)i[lg iuto

generic connectiouist terms is straight forward,

● IVodes correspond to neurons.

●



e

●

●

4

4.1

Node dynamics. There are many possibilitia. For feed-forward net}vorks the

dynamics is reduced to function evaluation. For recurrent networks the node

dynamics may be an ~utomaton, a system of coupled mappings, or a system

of ordinary diffe~~ntial equations. The attractors of such systems can be fixed

points, limit cycles, or chaotic attractors. More realistic models of the refractory

periods of the neurons yield systerm of delay-differential equations.

Learning rules . Again, there are many possibilities. Fcr feed-forwal.d net-

works with carefully chosen neural activation functions such as radial basis func-

tions [11,13,54] where the weights can be solved through a linear algorithm, the

d;mamics reduces to a function evaluation, Nonlinear search algorithms such as

back-propagation are nonlinear mappings which usually have fixed point attrac-

tors. Nondeterministic algorithms such as simulated annealing have stochastic

dynamics.

Graph dynamics. For real neural systems this corresponds to plasticity of

the synapses. There is increasing evidence that plasticity plays an important

role, even in adults [2]. As currently practiced, most neural networks do not

have explicit graph dynamics; the user simply tinkers with the architecture

attempting to get good results. This approach is clearly limited, particularity

for large problems where the graph must be spiI rse and the most efficient way

to restrict the architecture is not obvious from tile symmetries of the problem.

There is currently a great deal of interest in implementing graph dynamics for

neural networks, and there are already some results in this direction [26,-43,16,

64,66]. This is likely to bc-orne a major field of interest in the future.

Classifier Systems

Background

The classifier system is an approach to machine learning introduced by Jd~JA Iiollimcl

[30]. It wu inspired by many influences, including production systems in artificial

intelligence [48], population genetics, and economics. The central motivation was

to avoid the problem of brittleness encountered in expert systems and conventional

approaches to artificial intelligence. The classifier system learns and adapts usiug

a low-level abstract representation that it constructs itself, rather than a high- levci

explicit representation constructed by a human being,

On the surface the Clilssifier system appears quite diifercnt from a neural network,

and at first glance it is uot obvious that it iszyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAa connect. iotlist systclu at All. On

closvr exatninatiuu, )Iowvvvr, classifier systcnls and neural I\ct\vorks i~l’(’ (I(litiy SillliliL~.

In filCt$ by tii!{it)~ il sllflicif!tltl~ broad ~lt!!itiitiot) of “(litssili(’r s)’stt!llls” “illlll “11(’(11’AI

IWtwot’lw”, ~l)j’ l)itl’ti(”lllii~ illll)!(’1lll’ll tiltioll ()( t:itlicr (Jilt! lllil~

CUJN of the u~hcr. Ulwisilier systctns and Hcural Ilctworks iill!

*



of models, and represent two different design philosophies for the connectionist ap-

proach to learning. The analogy between neural networks and classifier systems h=

been explored by Compiani et uJ. [14], Belew and Garrity [9], and Davis [16] There

are many different versions of classifier systems; I will generally follow the version

originally introduced by Holland [30], but with a few more recent modifications such

= intensity and support [31].

At its core, the classifier system has a rule-based language with content addressable

memories. ‘X’headdressing of instructions occurs by matching of patterns or rules

rather than by the position of the instructions, iu it does in traditional von Yeumann

languages. Each rule or clusifier consists of a condition and an action, both of

which are fixed length strings. One rule in~ ~kes another when the action part of one
~a=tchm the Coxldition part of the other. Th~ * it possib& to Wt UP a chain of

. . . .
:L --sv invoke a seriu of other rules, effectingassoclatlons; whenzyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAa given rule IS active ~u..* ”J .-.

a computation. The activity of the rules is mediated by a me$sa~e M, whidi :c:ws

as a blackboard or short term memory on which the n.h post messages for each

other. While many of the messages on the list are posted by other classifiers, some

of them are also external mtssages, inputs to the program posted by activity from

the outside world. In the most common implementations the message list is of fixed

length, although there are applications where its length may vary. See the schematic

diagram show in Figure (3). You may also want to refer to the example in Section 5.

The conditions, actio~s, md messages are all strings of the same fixed length. The

messages are strings over the binary alpi]abet {O, 1}, while the conditions and actions

arc over the aiphabet {0, 1, #}, where # is a ‘wildcard” or “dotz’t care” symbol. The

length of the message li~t controls how many messages can be active at a given time,

aud is typically much smaller than the total number of rules.

The way in which a classifier system ‘executes programs” is apparent by cxamini ng

what happens d~lring a cycle of its operation. At a given time, suppose there is a

set of messages on the message list, some of which were posted by other clwifiers,

and some of which are inputs from the extsrnal world, The condition parts of ali

the rules are matched against all the messages on the me.qsage list, A match occurs

if each symbol matches with the symbol in the corresponding position. The sy]nbo]

# matches everything. The rules that make matches on a given time step post tl~cir

actions as messages on the next time step, By going through a series of steps like this,

the classifier systcm can perform a computation, Note that iu most illll)leillelltati{jlls

of the classifier system each rule can have more than one condition pbrt; a match

occurs only when both conciitiona are satisfied.

In general, because of the # symbol, more than one rule may match A giiwu

message, The parameter of the cl~gifier sygtem (frequency of #, length of messages,

length of musage li~t, etc.) are usually chosen so that the uumkr of thatches typi(a]ly

(:XCCAS the size of the r]lcwqp list, I’hc rub then bld against each other tO fl~’(”1~1~’

wtlitti 0[ tt]f’fIl Will I)(? illloWCLl to pofjt lll(YYilgf!S, l’ltu I)ids w! I]Md to coIIIl)IItt’ ii

t}l~eshulcl, whiuh is tijutitud to keep thu nu;tdwr ot tlmsmgcw on tl~c tl)cwage list ( I I)i\t

1i
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wili be posted on the next step) less than or equal to the size of the message list.

Only those rules whose bids exceed the threshold are allowed to post their messages

on the next time step3.

An important factor determining the size of the bid is the strmgih ofzyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAa classifier,

which is a real number attached to each classifier rule. The ~trength is a central

part of the learning mechanism. If a classifier wins the hidding competition and

successfully posts a message, an amount equal to the size of its bid is subtracted from

its strength and divided among the classifiers that (on the previous time step) posted

the messages that match the bicidi~g classifier’s condition parts on the current time

step4.

Another factor in determining the size of bids is the specificity of a classifier, \vhich

is defined as the percentage of characters in its condition part that are either zero or

one, i. e,, that are not #, The motivation is tb,at when there are %pecidistsn to solve

a problem, their input is more valuable than that of “gcneralists~.

The final factor that determines the bid ~ize is the intensity ~i(t) associated with

a given message. In older implementations of the classifier system, the intensity is a

boolean variable, whose value is one if the message is on the message list, and zero

otherwise. In newer implementations the intensity is ailowed to take on real values

O ~ ~i ~ 1. Thus, some messages on the list are “more intense” than others, which

means they have more iufluence on subsequent activity, Under the support r-de, the

intensity of a message is computed by taking the sum over all the matching messages

on the previous time step, weighted by tlie strength of the cltisifier making the match,

The size of a bid is

bid = Const x w x specificity x F(intensity), (7)

where C’onat is a constant, F(intensity) is a function of the intensities of the matching

messages. There are many options; for example, it can be the intensity ~~fthe message

generating the highest bid, or the sum o{ all the matching messages [J~].

To produce outputs the classifier system must have a means of deciding when a

computation halts, l’he most common method is to designate certain classifiers w

outputs, When three classifiers become active the cliwificr systcm nmkcs the output

associated with that classifier’s message, If more than me output classifier becomes

active it is necessary to resolve the conflict, ‘1’here are various meuns of doing this; a

simple method iti to simply pick the output with the largest bid,

Neglecting the learning process, the state of a cl~sificr rystcun is determined by

the intensities of its messages ( most of which may bc zero), [n lllikli~ cases it is

inlportant to be able to paw along a particular set of information from one tilne step

to another, This is dot~e by a construction called puss. thmu~h, The # symbol in

the action part of the ruk: ha4 a (li(~wwtlt rimming thim it does in thu couditiun put

of the rule. Ill the action part of the rulu it is used to “pitss through”’ illforlll,l ,1[1

‘%)lllc iftll)lelll(tlltatiollu i\lll.)W stoctlutic I)itltlillg,

iotllt,r vmrlall~u nre l{IU() IIIWI. fi[IuIy autlit)ro thiuk thiit t.llid ~t~p IS UIIII~!C~’SH:WY,or I’~011 lIUIIII~IIl~

this iu a topic 0[ wtiw vulltrovcrsy.



from the message list on one time step to the message list on the next time step;

anywhere there is a # symbol in the action part, the message that is subsequently

posted contains either a zero or one according to whether the message maiched by

the condition part on the previous time step contained a zero orzyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAa one.

The procedure described above allows the classifier system to implement any fi-

nite function, as long as the necessary rules are present in the system with the proper

strengths (so that the correct rules will be evoked), The transfer of strengths accord-

ing to bid size defines a learning algorithm, called the bucket brigade. The problem

of making sure the necessary rules are present is addressed by the use of genetic

ulgom”thms that operate on the bit strings of the rules as though they were haploid

chromosomes. For exampl~, point mutation randomly changes a bit in one of the

rules. Crossover or recombination mimics sexual reproduction. It is performed by se-

lecting two rules, picking an arbitrary position, and interchanging substrings so that

the left part of the first rule is concatenated to the right part of the second rule and

visa versa. When the task to be performed has the appropriate structure, crossover

can speed up the time required to generate a good set of rules, w compared to pure

point mutations.

4.2 Comparison to generic network

The classifier system is rich with structure, nomenclature, and lore, and has a liter-

ature of its own that & evolved more or less independently of the neural net~,’ork

literature, Nonetheless, the two are quite similar, as can be sew-t by mapping the

clusifier system to standard concectionist terms,

For the purpose of this discussion we will assume that the classifiers only have one

condition part, The extension to classifiers with multiple condition parts has been

made by Compiani ei u1. [i 4],

b

●

Nodes. The messages are labels for the nodes of the conncctionist network.

For a classifier system with woru length IV the 2N possible messages range from

i=O,l ,. ... 2N -1. (In practice, for a given set of classifiers, only a small subset

of these may actually occur, ) ‘I’he state of the ith node is the i[itcnsity x,, The

node activity also depends on a globally defined lhreshold O(t), which ~aries in

titne.

Connections. The condition and action parts of the classifier rules are it

connection list representation of a graph, in the form of Equation (2), lhch

classifier rule connects a set of nodes {i} to a node j and cati he writteti { [ } 4 j,

A rule consisting entircl; of ones and mros corresponds to a singlt connw:tioll;

a rule with n tion’t care symbols represents 2“ diffmxwt conimctiotlso Note tllfit

if two rules share tll(?ir outplit tlodc j and some of tlwir in{)ut tiod{w i tlit’ri tll(?r(?

arc rrlultiph! connections butwcen two nodes, The (Iotltlrct,ioll paratlwt[’rs fc,,

11-



are computed as the product of the classifier rule strength and the classifier rule

specificity i.e.,zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAWij = specijia”ty. strength. When the graph is sparse there are

many nodes that have no rule connecting them so that implicitly Wtj = 0.

lNote that only the connections are represented explicitly; the nodes are im-

plicitly represented by the right hand parts of the connection representations,

which give all the nodes that could ever conceivably become active. Thus nodes

with no inputs are not represented, This can be very efficient when the graph

is sparse.

Although on the surface pass-through appears to be a means of keeping recur-

rent information, as first pointed out by Miller and Forrest [44], in connec~ionist

terms it is a mechanism for efficient graph representation. Pass-through occurs

when a classifier hag # symbols at the same location in both its condition and

action parts. (If the # is only in the action part, then the pass-through value

k always the same, and so it is irrelevant, ) The net effect is that the node that

is activated on the output depends on the node that was active on the input.

This amounts to representing more than one connection withzyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAa single clwifier.

For example, consider the classifier 0# + 1#. If node 00 becomes active, then

the second O is ‘passed through”, so the output is 10. Similarly, if 01 becomts

active, the output is 11. The net result is that two connections are represented

by the same classifier, From the point of view of the network, the classifier

0# ~ 1# is equivalent to the two classifiers 00 ~ 10 and 01 - 11. The net

effect is thus a more efficient graph representation, and pass-through is just a

representational convenience,

● Transition rule. In traditional classifier systems

on time step t + 1 if it has an input cuunection i

Z. ,(t)Wij > 0. Lrsing the support rule,

a node j becomes active

on time step t such that

(s)
1

where the sum is taken over ail i that satisfy Z)(t)wij > 0, \Vitil the support rule

the dynantica is thus piwxwise linear, with nonlinearity due to the cifcct of the

threshold 0, Witlmut the support rule the intensity i9 x,(t + 1) = max, {x,(t )},

There are two approache to computing the threshold 0. The simplmt approiwh

is to simply set it to a constant value 0, /\ more commonly usml approach in

traditional Aw3sifier systems is to adjust O(t) On cd thrw stop so tll{lt tlie

number of mewages that are active on the message list is ICSY than or cqual to

a constant, which is equivalent to requiring that the number of nodes active on

a given time step is IH8 than or equal to a constant} In col~licwtiunist turn~s

this may I)(: visualized w addi[lg a spuciai tllrcshokling utlit that [);Lsi!iput iili{l

output Cunnectiwls to every nwic.

● Learning

tlie bucket
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Figure4: The bucket brigade learning algorithm. A wave o!activity propagates from

nodes {i} at time t- 1 through node j at time t to nodes {k} at time t .1. The solid

lines represent active connections, and the dashed lines represent inactive connections,

Strength is transferred from the input connections of ~ to output connections of j

according to Equation (11), The motivation is that connections “pay” the connections

that activate them.

Equation (6)). When a node becomes active, strength is transferred from its

active output connections to its active input connections. This transfer occurs

on the time step after it was active, To be more precise, consider a wave of

activity Zj(t) >0 propagating through node j, M shown in Figure (4).

Suppcwc this activity is stiltmlated by m activitic9 t,(t - 1) > 0 tllrougl) in-

put connection parameterszyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAtl~ij, and in t~rn btinluli~tw activities .rk(t+ 1) >0

through output connection pnrametcry Wjk, Letting 1( be the IIcavisicle func.

tion 1{(:) = 1 for x > 0, II(z) = (1 for .u ~ O, the input connections g:kin

strength according to

LJw,, = Q ~ W,,li(,r,t”,k - 0) (!))
ltt ~

Aw)k = -x,lu, &.li(x,ll’, k - u) (10)

1!)
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where Auij = Urij(t+ 1) - Wi)(t). All the quantities on the right hand side are

evaluated at time t.

This is only one of several variants of the bucket brigade learning algorithm; for

discussion of other possibilities see Reference [10].

In order to learn, the system must receive feedback about the quality of its

performance. To provide feedback about the overall performance of the sys-

tem, the output connections of the system, or the efiectors, are given strength

according to the quality of their outputs. Judgments a-s to the quality must

be made according to a predefine evaluation function. To prevent the system

from accumulating useless cluifiers, causing isolated connections, there is an

activity tax which amounts to a dissipation term, P~~tting all of these effects

together and following reference [21] we can write the bucket brigade dynamics

(the learning rule) as

,

where k is the disGipaticm rate for the activity tax, and P(t) is the evaluation

function for outputs at time t,

Graph dynamics, The graph dynamics occurs through manipulations of the

graph representation (the classifier rules) through genetic algorithms such as

point mutation and crossover. These operations are stochastic and are highly

nonlocal; they preserve either t!~e input or the output of each connection, but

the other part can move to a very different part O! the graph. The application

of these operators generates new connections, which is usually accornpaniccl by

the removal of other connections.

An example

An example make the graph-theoretic view of classifier systems clearw, For cximlplc,

consider the classic problem of exclusive. or. (See also Belew and Ghertity [!)],) The

exclusive-or function is O if both inputs are the same and 1 if both inputs are difl’crcnt,

The standard neural net solution of this problem is easily iinphmenled with three

classifiers:

61t ic clearly important to maintain an qpropriatu distribution of otrength wittlin a clmmitier

system, which do.a not overly favor input or output classifiers, IJnd which can set u~ chuinm d

appropriate aaaociations. Strength is added to classifiers that participate in god outputs, and tltcn

tllti huckct hrigde cauues A local trru~mfer of (twlback, in the form of connection strungth, frolti

~)utputs to lnputN lhi~ ia further complicated by the recur9ive structure of Clilmilicr systcllui, wli IclI

r{)rrl,spolldu to 100pB ill the ~raph, ~[tilltl!l[lillg aII approprial(h grmlictlt O( St.rvligtll (r{~ll] OUIJIIIIS [()

itlputu haa provt!d to bv a dillicult iaaue In cluadhr my8tems,
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implementing the exclusive-or in standard neural net

? which in classifier terms would be messages on the

Figure 5: A clasifier network

fashion. The binary numbers

message list, label the nodes of the network.

●o#+lo:+l

●o#+ll:+l

● 10+11 :”2,

(The number after the colon is w = strength x the specificity. ) Although there

are only three classifiers, because of the # symbols they make five connections, as

shown in Figure (5),

W’ith this representation the node 00 represents one of the inputs, and 01 repre-

sents the other input; the state of each input is its intensity, If both inputs arc 1, for

Table 1: A wave of activity caused by the inputs (1,1) is shown in the following table,

l’he numbers from ld’t to right are the inter.sities ou successive iterations. lnitiully

the two input mcssagm have intwsit y 1, iill(! t }w Otl~ers afw 0, 111~ inpllt lll(!SSii~(!S

wtivatc mwsqys 10 MI(1 11, ;LI1(Ittlf:ll 10 slv I!chcs 11 i~l~. l’or tllc i[ll)llt (0.0), ill

coi~tr,ast, tile network illlllmliately settles to a !ixcd point \vitli L]lC iiltc[lsitics ot All

the nodes at a!ro,



example, then nodes 00 and 01 besome active, in other words, they have intensity

> 0, which is equivalent to saying that the messages 00 and 01 are placed on the

message list. Assume that we use the support rule, Equation (8), that outputs occur

when the activity on the message list settles to a fixed point, and that the message

list is large enough to accornmoda~e at least four messages. An example illustrating

how the computation is accomplished is shown iL the table of Figure (5).

This example is unusual from the point of view of common classifier system prac-

tice in several respects. (1) The protocol of requiring that the system settle to a fixed

point in order to make an output. A more typical practice would be to make an

output whenever one of the output cl~sifiers becomes active, (2) The mtisage list

is rather large for the number of classifiers, so the threshold is never used. (3) There

are no recursive connections (loops in the graph).

There are simpler ways to implement exclusive-or with a classifier system. For

example, if we change the input protod and let the input message be simply the

two inputs, then the classifier system can solve thi~ with four cl~sifiers whose action

parts are t!ie four possible outputs. This always solves the problem in one step

with a message list of length one. Note that in network terms this corresponds to

unary inputs? with the four possible input nodes representing each possible input

configuration. While this is a cumbersome way to solve the problem with a network,

it is actually quite natural with a classifier system,

4.4 Comparison of classifiers and neural networks

There are many varieties of classifier systems and neural networks. Once the classifier

system is described in connectionist terms, it becomes difficult to distinguish between

tnem. In practice, however, there are significant distinctions between neural nets

as they are commonly used and classifier systems as they are commonly used. The

appropriate distinction is not betwtxm classifiers and neural networ ;s, but rathe:

between the two design philosophies represented by the typical implementations of

connectionist networks within the classifier system and neural net communities. A

comparison of classifier systems and neural networks in a common language illustrates

their

●

differences more clearly and suggests a natural synthesis of the two approaches.

Graph topology and representation, Th? cotinecticm list graph represents.

tion of the classifier system is efficient for sparse graphs, in contr~t to the con.

nection matrix representation usually favored by neural net researchers, This

issue is not critical on small problems that can be solvcd JY small networks

which allow the luxury of a densely connected graph. On larger pro bletns. use

of a sparsely connected graph is essential. If a large problem cannot be solved

with a sparsely connected network, then it cannot feasibly be in~plementml ill

hmlwitrc m on parallel machines where there are inevitable cOustraints On the

number of connections to a given node.

10 use a sparse network it is necessary to discover a Ilctwork topology suited to

a given problem. 5incc the number of possible nt’t’.vork topologies is exponrll-

‘)’)



tially large, this can be difficult. For a classifier system the sparseness of the

network is controlled by the length of each message, and by the number of clu-

sifiers and their specificity. Genetic algorithms provide a means of discovering a

good network, while maintaining the sparseness of the network throughout the

learning process. (Of course, there may be problems with convergence time. )

For neural nets, in contrast, the most commonly used approach is to begin with

a network that is fuily wired across adjacent layers, train the network, and then

prune connections if their weights decay to zero. This is useless for a large

problem because of the dense network that must be present at the beginning.

The connection list representation of the classifier system, which can be identi-

fied with that of production systems, potentially makes it e~ier to incorporate

prior knowledge. For example, Forrest has shown that the semantic networks

of KL- ONE can be mapped into the clwisifier system [23]. On the other hand,

another common form of prior knowledge occurs in problems such as vision,

when there are group invariance such as translation and rotation svmmetry.
1in the context of neural nets, Giles et af. [251 have shown that . ia invari-

ance can be hard-wired into the network by restricting the network weights

and connectivity in the proper manner. This could also be done with a cltisi-

fier system by imposing appropriate restrictions on, the rules produced, by the

genetic algorithm. !

Transition rule. Typical implementations of the classifier system apply a

threshold to each input separately, before it is processed by the node, whereas

in neural networks it is more common to combine the inputs and then apply

thresholds and activation functions. It is not clear which of these approaches is

ultimately more powerful, and more work is needed.

Most implementations of the classifier system are restricted to either linear

threshold activation functions or maximum input activation functions. Xeural

nets, in contrast, utilize a much broader class of activation functions. The most

common example is probably the sigmoid, but in recent work there has been a

move to more flexible functions, such as radial basis functions [11,13,47,54] and

local linear functions [22 ,35,67]. Some of these functions also have the significant

speed advantage of iinear learning rules7. In smooth environments, smooth

activation functions allow more compact representations. Even in environments

where a pm’ori it is not obvious tht smoothness plays a role, such as learning

boolean functions, smooth functiofis c ‘ m “yield better generalization resuits

and accelerate the learning process (67]. ,..~plementation of smoother activation

functions may improve performance of classifier systems in some problems.

Tr~ditionally, classifier systems use a threshold computed on each time stt)p in

order to keep the nunlher of active no&s below a maximum value. Computation

of the threshold it~ this way requires a global computation tliat is expensiic iIOIrI

‘Linear learning rules are sotnctltnc Criticized w “no~ local”. Linear algoritl~ms ~r,’, lIo\vI:v I>r,

easily implemented in parallel by systolic arrays, and converge ~ ) logaritltn~ic tIIIW.

,>,
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a connectionist point of view. Future work should concentrate on constant or

locally defined thresholds.

From a Connecti.onist point of view, classifiers with the # symbol correspond

to multiple connections constrained to have the sa.mc strength. There is no

obvious re~on why their lack of specificity should give them less connection

strength. This intuition seems to be borne out in numerical experiments using

simplified classifier systems [65].

Learning rule. The classifier system traditionally employs the bucket brigade

learning algorithm, whose feedback is condensed into an overall performance

score. In problems where there is more detailed feedback, for example a set of

known input-output pairs, the bucket-brigade algorithm fails to use this infor-

mation. This, combined with the lack of smoothness in the activation function,

caum it to perform poorly in problems such as learning and forecasting smooth

dynamical systems a. Since there are now recurrent implementations of back-

propagation [53], it makes sense to incorporate this into a cltxwifier system with

smooth activation functions, to see whether this gives better performance on

such problems [9].

For problems where there is only a performance score, the bucket brigade is

more appropriate. Unfortunately, there have been no detailed comparisons of

the bucket brigade algorithm against other algorithms that use “learning with

a critic-. The form of the bucket brigade, algorithm is intimately related to

the activation dynamics, in that the size of the connection strength transfers

are proportional to the size of the input activation signal (the bid). Although

coupling of the connection strength dynamics to the activation dynamics is

certainly necessary for learning, it is not clear that the threshold activation

level is the correct or only quantity to which the learning algorithm should be

coupled. Further work is needed in this area.

Immune networks

Background

The basic task of the immune system is to distinguish between self and non-self, and to

eliminate non-self. This iszyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAa prob!em of pattern learning and pattern recognition in the

space of chemical patterns. This is a difficult task, and the immune system performs it

with high fidelity, with an extraordinary capacity to make subtle distinctions between

molecules that are quite similar.

The basic building blocks of the immune system are aniibodics. ‘y” sha~ed molecules

t}l~t serve * identification tags for foreign material; lymp}locyte9, ceils thiit produce

antibodies and perform discrimination tasks: and mucrop/lages, large cells tl]iit rt’-

move material tagged by antibodies. Lymphocytes have antibodies attd~ed to ~lleir

‘Stephen Pope, unpublkhed research.
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\ve represent it in our model, and a B-lymphocyte with antibodies on

function u antigen detectors.

an antibody as

its surface that

surface which serve as antigen detectors. (See Figure 6.) Fore~gn material is called

antigen. A human contains roughly 10W antibodies and 1012lymphocytes, organized

into roughly 108 distinct types, based on the chemical structure of the antibody, Each

lymphocyte has only one type of antibody attached to it, Its type is equivalent to

the type of its attached ant~bodies. The majority of antibodies are jree antibodies,

i.e. not attached to lymphocytes. The members of a given type form a clone, i,e.,

they are chemically identical,

The difficulty of the problem solved by the immune system can be estimated

from the fact that mammals have roughly 105 genes, coding for the order of 103

proteins. An antigenic determinant is a region on the antigen that is recogniza~le by

an antibody. The number of antigenic determinants on a protein such as m!wgiobin

is the order of 50, with 6-9 amino acids per region. \Ve can compare tllc c!i[~:ulty

of telling proteins apart to a more familiar task by assullling that each alltig[wic

determinant is rOli~tll~ as di~lcult to recognize ds a [Ace. 1[1 this (N(” till? [)il! if ’[’[1

recognition task performed by the i[l]l]lllric \ystc*t]l is (’[)[]]l)ari~l~l(+to Utv:(l,q[lizillg a

Itlilliou different fixes. ,4 ce~ltral questio[l is [Ile [Iiviu]s I)y wtlicll tl]is is ucorllp!isllc(l.



Does the immune system function as a gigantic look up table, like a neural network

with billions of ‘grandmother cells”? Or, does it have an tisociative memory with

computational capabilities?

The argument given above neglects the important fact that there are 10s distinct

proteins only if we neglect the immune sysiem. Each antibody is itself a protein, and

there are 108 distinct antibodies, which appear to be a contradiction: How do we

generate 108 antibodies with only 105 genes? The answer lies in combinatorics. Each

antibody is chosen from seven gene segments, and each gene segment is chosen from

a “family” or set of possible variants. The total number of possible antibody t~~pes is

then the product of the sizes of each gene family. This is not known exactly, but is

believed to be on the order of 107- 108. Additional diversity is created by somatic

mutation. When the lymphocytes replicate, they do so with an unusually large error

rate in their antibody genes. Although it is difficult to estimate the number of possible

types precisely, it is probably much larger than the number of types that are actually

present in a given organism.

The ability to recognize and distinguish self is learned. How the immune system

accomplishes this task is unknown. However, it is clear that one of the main tools

the immune system uses is clonal selection. The idea is quite simple: A particular

lymphocyte can be stimulated by a particular antigen if it has a chemical reaction

with it. Once stimulated it replicates, producing more lymphocytes of the same type,

and also secreting free antibodies. These antibodies bind to the antigen, acting as

a “tag” instructing macrophages to remove the antigen. Lymphocytes that do not

recognize antigen do not replicate and are eventually removed from the system.

While ckmal selection explains how the immune system recognizes and removes

antigen, it does not explain how it distinguishes it from self, From both experiments

and theoretical arguments, it is quite clear that this distinction is learned ratl~er than

hard- wired. Clonal selection must be suppressed for the molecules of self. IIOW this

actually happens is unknown,

A central question for self-nonself discrimina~icm is: Where is the seat of com-

putation? It is clear that a significant amount of computation takes place in the

lymphocytes, which have a sophisticated repertoire of different behaviors. It is also

clear that there are complex interactions between lymphocytes of the same type, for

example, between the different varieties of T-1ymphocytes and B-lymphocytes, These

ii~teractions are particularly strong during the early stages of development,

Nick Jerne proposed that a significant component of tl~c cotnputationa! poi~~crof

the immune system tnay come from the interactions of different types of ;mt ibodies

and lym~hocytes wi(h cuch other [J:j,$i]. The argument for this is quite silllpie:

Since ant ibodic~ are after all just molecules, then froln the point of view of ~ give[i

mohxule other molecules are effectively indistinguishable from antigens, IIc proposwl

that, Inudl of th[! pow f:r [)f Lll(! ittilllutle SYstefrl ?,0 regul~te its OWll lMliilViO~ llli~~ COIIIC

from interacting alitibodics and Iynlphocytos of Illillly dii~(:rcilt t~pt’s”,

‘~llw(! is good (’XpCll[il(!litid (!vidcncc I,llat Ilctwol’k int(!ractiolls t.d;c I)likC(!, l);Ll’ticll-

9Such nctworku aro ofteu CdId IifIo/yp Ic nefwodw,
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larly in young animals. Using the nomenclature that an antibody that reacts directiy

with aritigen is AB1, an antibody that reacts directly with AB1 is AB2, etc., antibod-

ies in categories as deep as AB4 have been observed experimentally l”. Furthermore,

rats raised in sterile environments have active immune systems, with activity between

types. Nonetheless, the relevance of networks in immunology is highly controversial.

5.2 Connectionist models of the immune system

JVhile Jerne proposed that the immune system could form a network similar to that

of the nervous system, his proposal was not specific. Early work on immune net-

works put this proposal into more quantitative terms, assuming that a given AB 1

t}”pe interacted only with one antigen and one other A132 type. These irtteractions

were modeled in terms of simple differential equations whose three variables repre-

sented antigen, AB1, and AB2 [55,28]. A model that treats immune interactions in

a connectionist network~l, allowing interactions between arbitrary types, was pro-

posed in reference [21]. The complicated network of chemical interactions between

different antibody types, which are impossible to mode; in detail from first principles,

wu taken into account by constructing an artificial antibody chemistry. Each anti-

gen and antibody type is assigned a random binary string, describing its “chemical

properties”. Chemical interactions are assigned based on complementary matching

between strings. The strength of a chemical reaction is proportional to the lengt!~

of the matching substrings, with a threshold below which no reaction occurs, EIPN

though this artificial chemistry is unrealistic in detail, hopefully it correctly Cil])t U1’W

some essential qualitative features of real chemistry,

A model of gene shuffling provides rnctadynamics for the network. Tliis is Illost

rcaiisticaiiy accotnplishxl w’ith a gene library of patterns, mimicking the gene fanl.

ilies of real olganisms. These families are randomly shufiicd to prociucc iLn initial

population of antibody types, This gives an initial assignment of chemical reac-

tions, through the matching procedure described above, including rate constimts and

other parameter sla, Kinetic equations implement clonal selection; some types am

stitnulatcd by their chertiicitl react iuns, while others are supprcsst:d. Types u’itli no

reactions are slowly flushed from the system so chat they perish, ‘1’hrollgh rcshuilling

of the gene library new types arc itltroduccd to the systcm, It is also possible to

si[nuiate somatic mutation through point mutations of existing types, proporciu]lul

to their rate of replication.

It is difficult to tnodcl tile kitwrics of the itmnutlc syst(~ll~ ~(:~listi~i~ll~, Tlium ii~(~

five diff’cwnt classm of al]tjbo(iiw, with rlibtiftct itlt(’rwtiotis i~rid j)roj)vrtics. ‘1’llel(?art!

lo~’1~~~l~ll~~a~i~ll ~f $l~tl~~~ieas]loujd uot be collf’uwxl Wltll tlwir t~p~: ii giveh ~~1)~ C~Lllsl-

Itlultwcoumly be ~\I)l imd /\l12relative to dilfcren; antigctlu, and II IUIIy (Iilt’crftnt typ IIY IIIUy t)e

AHI.

1* A IIotlII:r cotltlccliot)lst IIIodOl with a mtlwwtlul dilrttr,lnt plIIILNMJIIIIy WM WIW.II)rol)i)wl(l l))’ llvll-

Illallll (?9].

l~’l’llq ~,JII,oIIC ,)l~(,rl,~l,~llg ~l,,ScrllJl*tl Ilorp ;tre illurv w )l)lllht lculo(l lIIW [II(W Wlll:llly 11$4’(IIll rl’1’l’r”

ettcti [21]; IIlor(: rculimLic IINXIIMIMIIIM IIUVP I)oell I*IIIplUyI!Ii III sIIIwv(iIivIlt work [50,] ‘;,1,$].



different types of lymphocytes, including helper, killer and suppressor T-cells, which

perform regulatory functions, *weU=B-ceUs, which caproduce fr&antibodies. All

of these have developmental stages, with different responses in each stage. Chemical

reactions include cell-cell, antibody-antibody, and cell-antibody interactions. Fur-

thermore, the responses of cells are complicated and often state dependent. Thus,

any kinetic equations are necessarily highly approximate, and applicable to only a

subset of the phenomena.

In oui’ original model we omitted T-cells, treating only B-cells. (This can also be

thought of as modeling the response to certain polymeric antigens, for which T-cells

seem to be irrelevant. ) We assumed that the concentration of free antibodies is in

equilibrium with the concentration of lymphocytes, so that their populations can be

lumped together into a single concentration variable. Since the characteristic time

scale for the production of free antibodies is minutes or hours, while that of the pop-

ulation of lymphocytes is days, this iszyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAa good approximation for some purposes, It

turns out, however, that separating the concentration of lymphocytes and free anti-

bodies and considering the cell-cell, antibody-antibody, and cell-antibody reactions

separately gives rise to new phenomena that are important for the connectionist view.

In particular, this generates a more interesting repertoire of steady states, including

‘mildly excited” seif-stimulated states suggestive of those observed in real immune

systems [50,17,18],

s.3 Comparison to a generic network

As with classifier systems and neural networks, there are several varieties of immune ‘

networks [21,17,2 !l,63], and it is necessary to choose one in order to malic a compari.

son, The model described here is based on that of Farmer, Packard and Pcrclson (’21],

with sotne modifications due to later work by Perclson [30] and DeBoer and HogeNwg

[17]. Also, since this model only describes B-cells, whenever necessary I wil! refer to

it as a B-cell network, to distinguish it from models that also incorporate the activity

of T-cells,

To discuss immune networks in conncctionist terms it is first /lcccssarY to tllake

the appropriate map to no(ics and connections. The most obvious mapping” is to

assign antibodies and antigens to nodes. However, since antibodies and antigens typ-

ically hixve more than antigenic determinant, and each region has ~ distinct chemical

shape l”, we could also tnakc the regions (or chctnical shapes) the ftil]di\[l]C1iti\l ~i~~i-

ahle, Since all the models discussed alj~v~ treat, the ~or)ccr]tr~tj~n of ~l~tj[)o(li~s A[ld

lymptwytw as the fundamental variabhx, I shell make the ielentilicatiun ut this Iuvul,

‘This

●

—.

leads to the following conncctiouibt description:

Nodes correspond to antibodim, or rnorc accurately, to distinct until)ody typw,

Antigcn8 Arc another typu of node with diflcrcrlt (ljJtlilliliCY; from a (:(-’~tiiitl Poitlt

of view thej iitltig(!t) (:ort(:(?tltr;~tiofls may be reqywdwl us tlw illpllt 4Llld out I)llt



nodes of the network14. The free antibody concentrations, which can change on

a rapid time scale, are the states of the nodes. They are the immediate indica-

tors of information processing in the network, The lymphocyte concentrations,

which change on an intermediate time scale, are node parameters. (Recall that

there is a one-to-one correspondence between free antibody types and lym-

phocyte types). Changes in lymphocyte concentration are the mechanism for

learning in the network.

Connections. The physical mechanisms which cause connections between

nodes are chemical reactions between antibodies, lymphocytes, and antigens.

The strength of the connections depends on the strength of the chemical reac-

tions. This is in part determined by chemical properties, which arc fixed in time,

and in part by the concentrations of the antibodies, lymphocytes, and antigens,

which change with time. Thus the instantaneous connection strength changes

in time as conditions change in the network. The precise way of representing

md modeling the connections is explained in more detail in the following.

Graph representation. To model the notion of “chemical properties” we

assign each antibody type a binary string, To determine the rate of the chemical

reaction between type i and type j, the binary string of type i is compared

to binary string of type j. A match strength matrix mij is assigned to t!~is

connection, which depends on the degree of complctncntary matching between

the two strings. Types whose strings have a high clcgrcc of complementary

matching are a9signcd large reaction rates, Since the matching algoritlllll is

symmetric ‘5 mij = ~ji,

‘here iszyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAa threshold for the length of the con~plcmcntary matching rcgiol] b(!-

IOW which WC ikSSUllic lliat no reaction occurs dnd set ??l, j = (), sil~cc tll, , is

the connection maf.rix of the graph, scttiug !Ilij = O amounts tO del~!ting tllC

corrcspontiing connection from the graph, We thus neghxt reactions that ilrC

so weak that they ho~:c an insignificant effect on the behavior of the nct~vor~.

The match thrmhohl together with the hmgth of the binary strings detcrll~illw

the sparseness of the graph, W’llcn the systlml is sparse tile matrix ))1,, ~iitl illS()



Dynamics. Themijare naturally identified as connection parameters for the

network. For any given i and j, however, the mij are fixed. Thus. !earn-

ing in B-cell immune networks occurs not by changing connection paranv’ters,

but rather by changing the lymphocyte concentration, which is a paraxi .eter

of the nodes. The net reaction flux (or strength of the reaction) is a nonlin-

ear function of the lymphocyte concentration. Thus changing the lymphocyte

concentration changes the effective connection strength. This is a fundamen-

tal difference between neural networks and B-cell irnrnune networks; while the

connection strength is changeable in both cases, in B-cell immune networks all

the connection strengths to a given node change in tandem as the lymphocyte

concentration varies. However, since the reaction rates are nonlinear functions,

a change in lymphocyte concentration may effect each connection differently,

depending on the concentration of the other nodes.

The dynamics of the real immune system are not well understood. The situation

is similar to that of neural networks; we construct simplified heuristic immune

dynamics based on a combination of chemical kinetics and experimental obser-

vations, attempting to recover some of the phenc mena of real immune systems,

The real complication arises because lymphocytes are cells, and understand-

ing their kinetics requires understanding how they respond to stimulation and

suppression by antigens, antibodies, and other cells, At this point our under-

standing of this is highly approximate and comes only from experimental data,

The kinetic quations used in our original paper were highly idealized [211,The

more rcaIistic equations quoted here are due to De130cr aud Iiogcwegio [1‘i],

Let i Iubel the nodes of the sy~tem, xi the concentration of antibodies, and

“ The amount of stimulation rwxivrx.1 byOi the concentration of lymphocytes ,

lymphocytes of type i is Apj>roxirnated as

The rate of change of antibody concentration i~

i)hocytcs, rcmovrd from the system, and binding

equationM Arc

(13)

due to production by lyln-

with other itntilxxlics. ‘1’hc

(Ii)

k is a dissipatitm corlstant urld c the binding constant, / iri ib function describing

the degree of stimulotiou of a Iymphocytt!. Iixpcrilmmtd obscrvutious SllOW

that f ie bell. ~haped, A fuuction with this rough qua]itativc b(:l~uvior CiLIA be



constructed by taking the product of a sigmoid with

example
zk2

‘(z)= (k, + z)(ks + z)”

an inverted sigmoid, for

(15)

The production of lymphocytes is due to replenishment by the bone marrow,

cell replication, and removal from the system. The equations are

d(li
— = r +@lj(91) - kO1.
dt

(16)

r is the rate of replenishment and p is a rate constant for replication.

5.4 Comparison to neural networks and classifier systems

There are significant differencti between the dynamics of immune networks and neural

networks, The most obvious is in the form of the transition and learning rules. The

nodes of the imtnune network are activated by a bell-shaped function rather than

a sigmoid function. Since the bell-shaped function undergoes an inflection and its

derivative changes sign, the dynamics are potentially more complicated.

B-cell immune networks differ from neural networks in that there is no variable

which acts w a connection parameter, Instead, the connection strength is indirectly

determined by the node parmwtcrs (concentrations and kiuetic equations), Tl)e

instan~aneous connection strength is

dii— = (Oij’($i) - CZl)Yllij - C.9, - kd,j
ax]

(17)



adjusted independently of that of other nodes, the learning capabilities of the network

may be much weaker or more inefficient than those of networks where the connection

parameters are independent. As discussed in the next section, this may be altered by

the inclusion of T-cells in the models.

5.5 Directions for future research

\t:hether immune networks area major component of the computational machinery of

the immune system is a subject of great debate. The analogy between neural networks

and immune networks suggests that immune networks potentially possess powerful

capabilities, such as associative memory, that could be central to the functioning

of the immune system. However, before this idea can reach fruition we need more

demonstrations of what immune networks can do. At this point the theory of immune

networks is still in its infancy and their utility remains an open question.

The immune network may be able to perform tasks that would be impossible for

individual cells, Consider, for example,zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAa large antigen such as a bacterium with

many distinct antigenic determinants. If each region is chemically distinct, a single

type can interact with at most a few of thcm (and thus a single cell can interact

with at most of few of them). Network interactions, in contrast, potentially allow

different cells and cell types to communicate with each other and make a collective

computation to reinforce or suppress each other’s immune responses. For example,

suppose :\, B, C and D are active sites. It might be useful for a network to implement

an associati~’e memory rule such as: If any th,rcw of A, II, C, and D arc prcscr;t, tlwn

gcnmate an immune response; otherwise do not, Such an associative mcnlory requires

the capability to implement a repertoire of Boolean function9, A wcful rule might h:

Genoratc an inmunc rcspwse if active site A is present, or ixtivc site 13 is present,

t)ut wt if both arc present simultaneously”. Such a rule, which is M~lliVill(,!llt to taking

the c~tilusive.or fu!lction of A and B, might be useful for implementing self tolerance,

Such logical rulca arc e~ily implemented by networks, It is difficult to scc how tlwy

could be implemented by individual CC118all of the same type,

Immune memory is another task in which networks may play an essential role,

Curretit]y the prevailing belief is that immune memory cozYmsabout because of spwial

memory cells, [t is ccrtaiidy true that some cells go into dcvclupmcntai st~tcs that

arc indicative of memory, ,tlthough the typicid Ii fetirno of a lymphocvtc is about fiv(:

(lays, there are some lynll)ho~ytes that have been dcrrmnstratcd to p( sist for As loNg

w a nlontho This is a far cry, however, frwu the eighty or fiiorc yvars t,h~t0 lluIlmI

tmy display au immune mcmmy. Since culls arc normally fluslwd from tl~c systcln at

a stwu-ly rate, it is difficult to I)vlicve th~t any ifidiVjdUid cull (Iollld liiSt this lougo [t

is only tho type, then, tlmt ])crsist~, but in order to achiww tl)ib ilidi~’iduml cullb Ill[lst

])(’rio(li(’idl~ rq)liriktc tl)clllwlvos, IImvever, ill order tu llt)lf] Lll(? I) L)l)lllitt.it)l) Stitl)l(’

tll(’ rf’l)lic,ktiotl rutu tllllYt 1)1! [)(!lf(!(:tl~ I)itlilll(’1’d a~aillst tll(! l’(’11101’iLl I’ilt(!, ‘1’l)is is iii)

IItItit;Il)lo I)IQc(’NN IInl(!ss tlm~ is fwl})ack Ilol(lillg tl~o I)ol)lllutio[l sthl)l(’. It is (Iilli(lllt

to SIYIt)()\v ft~i(ll)i~(’k 011 tlIII l)ol)llli~tioll” sim (illi I)(* gi~(~ti II II I{*SS t lit’~t’ ,L[tI II(II\\IOIk

illtvractions,

:]’J



In an immune network a memory can potentially be modeled by a fixed point of

the network. The concentrations at the fixed point are held constar.t through the

feedback ofonetype toanother type. Modclsof the form of Equations (14jand (16)

contain fixed points that might be appropr,.~te for immune memory. However, it is

clear from experiments that T-cells are necessary for memory, and so must be added

to immune networks to recover this effect.

T-cells arezyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAa key element missing from most. current immune network models. T-

cells play an important role in stimulating or suppressing reactions between antibodies

and antigens, and are essential to immune memory. From the point of view of learning

in the network, they may also indirectly act as specific connection parameters.

One of the most interesting activities of the immune system is “antigen presen-

tation”. When .a B-cell or microphage reacts with an antigen it may process it,

discarding all but the antigenic determinants, It then presents the antigenic determi-

nant on its surface (as a peptide bound to an MHC molecule). The T-cell reacts with

the antigenic determinant and the B-cell, and based on this information may either

stimulate or suppress the B-cell, Note that antigen presentation provides information

about both the B-ceil and an antigen, and thus potentially about a specific connection

in the network.

[n a connectionist model, this may amount to a connection strength parameter;

a B.cell presenting a given active site contains information that is specific to two

nodes, one for the B-cell of the same type as the T-cell, and one for the antigen

whose active site is being presented (which may also be another antibody), Due to

their interactions with T-cells, the B-cell populations of type i presenting antigenic

determinants from type j may play the roles of the connection parameters w,,.

At this point, it is not clear how strongly the absence of explicit connection pa-

ralncters limits the computational and learning power of ilnnlunc uetfvorl; s. Ilolvcvcr,

it scwms likely that before they can realize their full p(-)t~t~tii\l, connection paramc.

ters must lx includ~d, taking iI~to accouIlt the operotiotl of l’. c:ells, ‘1’-cclls act like

CiltalYStS, either suppressing or enhimcing reactions. Siuce catalytic activity is olic

of the primary tools used to implement the interuid functions of living orgwlisms,

it is not surprising that it should phby a central role in the immune systenl ikS wwllo

Autocutalytic activity is discussed in nwrc detail in the next scctiou,

6 Autocatalytic networks

(5.1 Background



the origin of life, namely, to demonstrate an evolutionary pathway from a soup of

.nonomers to a polymer metaholisrn with selected autocatalytic properties, which in

turn could provide a substrate for the emergence of contemporary (or other) life forms.

When Miller and Urey discovered that amino acids could be synthesized de nouo from

t 1.c hypothetical primordial constituents ‘earth, fire and water” [45], it seemed but

a small step to the synthesis of polymers built out of amino acids (polypepticles and

proteins). It was hoped that RNA and DNA could be created similarly. However,

under normal circumstances longer polymers are not favmed at equilibrium. Living

systems, in contr~t, contain DNA, RNA, and proteins, specific long polymers which

exist in high concentration. They are m~ntained in abundance by their symbio~ic

relationship wi~h each other: Proteins help replicate RLNA and DNA, and DNA and

RNA help synthesize proteins. Without the other, neither would exist. IIOW did such

a complex system ever get started, unless there were proteins and RNA to begin with?

The question addressed in references [36,20,8] is: Under what circumstances can the

synthesis of specific long polymers be achieved beginning with simple constituents

such u monomers and dimers?

The model here applies to any situation in which unbranched polymers are built

out of monomers through a network of catalytic activity. The monomers come from

a fixed alphabet, a, h, c, . . . . They form one-dimensional chains which are represented

~ a string of moncmers, aca66acbc ..,. The monomer alphabet could be the twenty

amino acids, or it could equally well be the four nucleotides, This changes the pa-

rameters but not the b=ic properties of the model. The model assumes that the

polymers have catalytic properties, i.e., that they can undergo reactioris in which one

polymer catalyzes the formation of another, If A, D, C, and E are polymers, and 11

is water, then the b~ic reaction is:

(1s)

where E is written over the arrows to indicate that it catalyzes tht reaction.

Our purpose is to model a chernostat, a reaction vessel it)to which monomers arc

added at a steady rate. The chemicrd species that are added to the chcnmstut are

called the jood set. We a9sume that the mass in the vessel is consmu.1, for rxwllple,

by simply ]ett,ing the cxccss soup overilow, For convcnicncc wc asstitne that the soup

is well-stirred, so that we can iTIOdel it by a systcm of ordinary differential collations,

In any real system it is extremely difficult to dctcrtnine from first principles which

rcactious will lx catalyzed, and with what affinity, Very few if any of the t’CIC!Vil!lt

properties have been me~ured cxperirncntally in any dctaij, and the Ilunhcr of tlwa-

suretncnts or cotnputittions that would have to be ma(le itl ord~r to prefli~t all th(’

Aemi(:al properties irn hopelessly complex, Our approwh is to iuwmt all Mtificiid

(’heltlistry aud ~tt(!ti~l)t to ttmkc its properties at Iuwt quitlitatis’vly sill~ilor to tliose

of d rViAl CllUllliCiLl S~St(!lll, /\(; tllikll Y W(2 (1S(! oti~ of tW’udif~vrcnt i~rti!i~i:~l cll[:lrlistrics,

bud otl two di!fureut I)ril]cil)lcs:



● Assignment of catalytic properties based cm string matching,

These two simple artificial chemistries lie on the borders of extreme behavior in ; Id

chemistry. In some cases, we know that changing one monomer can have a drama:” c

effect on the chemical properties of a polymer, either because it causes a drutic

change in the configuration of the polymer or because it alters a critical site. If this

were always the case, then random chemistry would be a reasonable model.

In other cases, changing a monomer has only a small effect on the chemical prop-

erties. Our string matching model is closer to this case; altering a single monomer will

only change the quality of matching between two strings by an incremental amount,

and should never cause a dramatic alteration in the chemical properties of the poly-

mer.

Another difficulty of modeling real chemistry is that there is an extraordinarily

large number of possible reactions. In a vessel with all polymers of length 1 or less,

for example, the total number of polymer species is ~~~j m’, where m is the number

of distinct monomers. For example, with m = XI and 1 = 100, the number of polymer

species is in excess of 201m, an extremely large number, and the number of possible

reactions is far larger than this. To get around this problem, to first approximation, we

neglect spontan.~u]? reactions, and assume that tie catalytic properties are sufficiently

strong that all catalyzed reactions are much faster than spontaneous reactions l”.

Once we have assigned chemical properties, we can represent the network of cat-

alyzed chemical reactions as a graph, or mors precisely, as a poly-graph with tw’o

types of nodes and two types of connections [20]. Because of catalysis the graph

must be ‘more complicated than for any of the other networks discussed so far. .4n

example is shown in Figure (7). One type of node is labeled by ovals containing the

string representation of the polymer species, The other type of node corresponds to

catalyzed reactions, and is labeled by black dots. The dark black connections are

undirected (because tlie reactions are reversih!e), and connect each reaction to the

three poiymcr species that participate in it; the dotted connections are directed, and

connect the reaction to ito catalysts, All the edges connect polymers to reactions,

and each reaction has at le=t four conn~tions, three connections for the reaction

products and one or more for the catalyst(s), In this illustration wc have labeled the

uwml.wrs of the food set by double ovals.

If we use the raudom mcthcw.i of usigning chclnical properties, thc[l the griiph is a

random graph and can be stud~ed using standard tech’ ~ques. Tht? probability p thi~t

a rmwtion sehvmxl at random will be cata!;wri contrbis the ratio of conncctious to

Wxh!s, As p incr(:~cs so does this r~tioo /\5 ~)grows ttl~ ~~il[)ll I)(!COIIX’S ltN)~(? i\Il(l

Inore councctwl, i,e,, niorc dvusc. :\t il critical threshold altnost every Ilo(le Ixxmllws

counccttxl to at least ouc other node, /\s stdicd in rcfcrcnccs [36,20], tlw ~:riticid

Idlll Itlore re(~clltwork (~] We !Ilakc ~ trtct,nl)lfi IN)t JIJl for apl)r(,xitlliitv (r~’:tLlllf’llL{)(~I~IJII~WIWIIS

rvwtl(ms hy lullll}ill~ tog~!thvr All Ltlc Pf)lyl]ler SI)vcivu of 8 ~iw$[l lIIIIgtll I.IIA1 ,Lrc Itot III (III* :I I IL(>

(’it t ;\lyt l(y I ]f!tw ork, :U#I]llllllg tll; if, tll~~ dl IliLV(t tl10 swm? (“i)ll(”(~ll[rlilif)il. “1’I I ,Iw dlit i Iw vif’w(’l w N

II(’W tylw of IKA III dw nc~wurk. ‘1’l~ti alluwH UMto IIICIUA tliu Pilw:t of spoutul~l!um ruuctums WIII III

fmcewmry.
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Figure 7: The graph for an autocatalytic network, The ovals represent polymer

species, labeled by strings, The black dots represent reactions. The solid lines are

connections from polymer nodes to the reactions in which they participate, The

dotted lines go from polymer species to the reactions they catalyze. The double

ovi~ls are special polymer nodes corresponding to the elements of the food set, whose

concentration are supplied extermdly.



threshold also depends on the size of the food set, i.e., how many chemical species

are in the food set. Using a very approximate estimate of a physically reasonable

value o! p, wc can make a connected graph from a food set of monomers and dimers

[20]. Note that spontaneous reactions create a significant number of dimers, so that

supplying monomers automatidly produces a supply of dimers w well.

The graph-theoretic analysis only addresses the question of who reacts with whom,

and begs the central (and much more difficult) question of concentrations. Xumer-

ical modeling of the kinetics for any given catuiy:ed reaction is straightforward but

cumbersome. We introduced a simplified technique for treating catalyzed reactions

of this type in reference [20] that approximates the true catalyzed kinetics fairly tvell.

hfodeling of the complete kinetics for an entire reaction graph is impossible, since

the graph is infinite and under the laws of continuous mass action, even if we initialize

all but a finite number of the species to zero concentration, an instant later they will all

have non-zero concentrations. From a practical point of view, however, it is possible

to circumvent this problem by realizing that any chemical reaction vessel is finite,

and species whose continuous concentrations are significantly below the concentration

corresponding to the presence ofzyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAa single molecule are unlikely to participate in any

reactions. Thus, to cope with this problem we introduce a concentration threshold,

and only consider reactions where all the members on either ~ide of the reaction

equation (either A, B, and E, or C and E) are above the concentration threshold.

This then becomes a metadynamical system: At any given time, only a finite number

of species are above the threshold, and we only consider a finite graph. As the kinetics

act, species may rise above the concentration threshold, so that the graph grows, or

they may drop below the threshold, so that the graph shrinks.

One of the main goals of this model is to obtain closure in the form of an aufo-

cafalytic set. This is a set of polymer species such that each member of the set is

produced by at least one catalyzed reaction involving only other members of the set

(including the catalysts). Since the reactions are reversible, a species can he “pro-

duced” either by cleavage or condensation, depending on which side of equilibrium it

finds itself, Thus an autocatalytic set can be quite simple; for example,

/4+ B~C+H (19)

is an autocatalytic set, and so is

A+ B~C+H, (’20)

A, B, and C will be regenerated by supplying eitlier A and f?, or by supplyitlg C.

Note, however, that SUCh simple autr)catalytjc sets are only likely to occur when tl~e

probability of catalysis is very high. As ~ decreases the average size of the smallest

autocatalytic set ( ill a finite population) increasc5. D(!pendit)g 00 the coi)rl(:cti~it~

of the autocatalytic set it may be possible to sustaiu a large rw~ctiol~ lletwurk l~y

supplying only a few polyrrwr species.

l’here iit’f2 threw rlotion.s of tile formation of autocatalytic s~:ts, d(*[]w\tli(ig (Jll \Ylliit

we meal) I]y “produced by” in the definitiorl givc[l al)Ok-~J:

3“i



Table2: An experiment

shows the four species cf

externally per unit time.

in varying the food set of .an autocatalytic set. The table

the food set, and the concentration of each that is supplied

Case v is used to ‘grow” the autocatalytic set, and cases w

- z are four changes made once the autocatalytic set is established. x and z kill the

autocatalytic set, while w and y sustain it with only minimal alteration, u shown in

Figure (8).

Gmph theoretic. The subgraph defined by the autocatalytic set is closed, so

that each member is ccnnected (byzyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAa solid connection) to at least one reaction

catalyzed by another member,

Kinefics. Each member is produced at a level exceeding a given concentration

threshold,

Robust. The autocatalytic set is robust under at least some changes in its

food set, i.e., its members are at concentrations sufficiently large and there are

enough pathways so that for some alterations of the food set it remains a kinetic

aumcatalytic set, capable of regenerating removed elements at. concentrations

above the threshold.

These notions are arranged in order O( their strength, i.e., an autocatalytic set

in the sense of kinetics is automatically an autocatalytic set in the graph-theoretic

sense, nnd a robust autocatalytic set is automatically a kinetic autocatalytic set,

Describing the details of the conditions under which autocatalytic sets can be

created is outside of the scope of this paper. Suffice it to say that, within our arti-

ficial chemistry we caa create robust autocatalytic sets, Consider, for example, an

autocatalytic set based on the monomers a and h, originally formed by a food set

consisting of the species a, b, d, and M, as shown in Figure (8).

We plot the concentrations of the 21 polymer species in the reactor against an

index that orders the species according to their length, \Vc compare four different

alterations of the original food set, all of which have the same rate of mass input, For

two of the altered food sets the concentration of the members of the autocatalytic set

remains almost the same; they are all maintained at high ,:oucentration. F’or the otlicr

two, the autocatalyt ic set ‘dies” in t,hat some of the members of the set fall below tt~e

concentration threshold, and most of the conccntrationy decrease dru[naticall~, [’7]

Our numerical evidence suggests that any fixed rcacticm network always approacllus

a fixed point where the Coucentratious arc coustallt, IIowcvm, since spo[itwlwus Iv-

:18
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Figure 8: An experiment demonstrating the robust properties of an autocatal~tic set.

The food set is originally a, b, ab, and M, The food set is altered in four di(fe:cnt

ways, as show n ill Table 2, For ea& alteration of the food set the conccntratio[ls

of all 21 polymers in the autocatalytic set are plotted against the “polymer index”.

(The polymer index assigns a Ilnique label to each polymer, It is ordered according

to length, but is otherwise arbitrary. ) Two of the alterations of the food set cause

the autocataiytic set to die, while the other two hardly change it, Like a rol)ust

metabolism, the autocatalytic set can digest a variety of different foods.



actions always take place, there is the possibility that a new species wi!l be created

that is on the graph of the autocatalytic set, but which the kinetics did not yet reach.

If the catalyzed pathtiay is sufficiently strong, then the new species may be regener-

ated and added to the (kinetic) autocatalytic set. This is the way the autocatalytic

sets evolve; spontaneous reactions provide natural variation, and kinetics provides

selection.

Autocatalytic networks create a rich, focused set of enzymes at high concentra-

tion. They form simple metabolisms, which might have provided a substrate for

contemporary life.

The results discussed here, as well as many others, will be described in more detail

in a future paper [7], We intend to study the evolution of autocatalytic sets, and to

make a closer correspondence to experimental parameter values.

6.2

●

●

●

Comparison to generic network

Nodes correspond to both polymer species and to reactions, The states are

determined by the concentrations of the polymers.

Connections. The graph connections are quite different in this system, in

that there are no direct reaction connections to the same types of nodes. Each

reaction node is connected by undirected links to exactly three pGlymer nodes,

and contains one (directed) catalytic link to one or more polymer nodes, A

polymer node can be connected Jy a solid link to any number of reaction nodes,

and car. have any number of catalytic links to reaction nodes.

Dynmnics. The dynamics is based on the laws of mass action. The equations

are physically rcalisitic, and are considerably more cotnplicated than those of

the other networks we have discussed, Arbitrarily label all the polymer species

by an index i, and let z, represent the concentration of the ith species, Assume

that all the forward reactions in Equation ( 18) have the same rate constant

k~, all the backward reactions have the same rate constaut k,, and thot all

catalyzed reactions have the same velocity u. Let the quantity nli,~~ represent

the connections in the two graphs, tvherc i and j refer to the two species tl~at

join together to form k und(?r enzyme ~. ynlj& c = 1 w hen thww is a catalyzed

reaction, and mlj& ~ = () otherwise, mljkc = n]jlkt. Let tl~e dissipiltion (;oi]stiiiit

lx k, iet the rate at which elements arc added to the foodsct Ix d, w~d Ict A

be the conctnltra~ion of water. !iegiecting the cf~ccts of cuzylne SiltUr~tiOII, tlic

equations can be written



~ is a function whose value is one if x, is in the food set, and is zero otherwise.

Llore accurate equations incorporating the effect of enzyme saturation are given

in reference [20].

An effective instantaneous connection strength can be computed by evaluating

~ The resulting expression is too complicated to write here. Like the immune3ZP“
network, the instantaneous connection strength can be either excitatory or in-

hibitory depending cm where the network is relative to its steady state value.

In contrast to the other networks we have studied, there are no special vari-

ables in Equation (21) that explicitly play the role of either node or connection

parameters. The concentration of the enzymes z. that catalyze a given reac-

tion is suggestive of the connection parameters in other connectionist networks.

However, since any species can be a reactant in one equatic.1 and an enzyme in

another, there is no explicit separation of time scales between z. and the other

variables,

● Graph dynamics. The separation of time scales usually associated with learn-

ing occurs entirely through modification of the graph, The deterministic behav-

ior for any given graph goes to a fixed point. However, in a real autocatalytic

system there are always spontaneous reactions creating new species not con-

tained in the catalytic reaction graph. It occasionally happens that one of the

new species catalyzes a pathway that feeds back to create that species, Such

a fluctuation can be amplified enormously, altering the part of the catalyzed

graph that is above the concentration threshold. This provides a mechanism

for the evolution of autocatalytic networks,

:\utocatalytic networks are interesting from a connectionist point of view because

of their rich graph structure and because of the possibilities opened up by catalytic

activity Catalytic activity is analogous to amplification in electronic circuits: it

results in multiplicative terms that either amplify or suppress the activity of a givcu

node. The fixed poitits of the network may be thought of as self-sustaining memories,

caused by the feedback of catalytic activity, The dynamical equations that we usc here

are based on reversible chemical reactions, and lead to unique fixed poilits. IIo~vrvcr,

other chemical reaction networks can have multiple fixwi points, and it seems likely

that when we alter the modcI to study irreversible reactions such as those observed

in contc[t)porary metabolisms, W(? will see nlultiple fixed puints. In tl~is CilS(! tll(’

coll~putational possibilities of such Iwtworlw bcconw nluch Ilwre co[tlplcx.

7 Other potential examples and applications

‘1’Il(! four exanlplus discllssed Iiorc arc hy no 111(’it I ]!4 t ile only 011(!s Wllcre (:ollll(!(:ti(] [list,

ll~O(l(!lS llilV(! 1)(!(!11 (l SC(l, or (’0111(1 1)(! 11S(!({, [.iltlitatiorls of s])wt’ ;Lll(l ti[lw l)r(’~f’tit,

d (I(:t;lil(!(! (’XAIllilliltiOll (Jt’ AII (jt’ ttl(’ possil~ilities, bUt il fl’\V (l(!Sl!~V1’ ilt 1(’iLSt (“ll~Sol’}”

Ilwntion.
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● Bayesian inference networks, markov networks, and constraint net-

works are procedures used in artificial intelligence and decision theory for orga-

nizing and codifying causal relationships in complex systems [49]. Each variable

corresponds to a node of the network. Each node is connected to the other vari-

ables on which it depends. Ba.yesian networks are based on conditional proba-

bility distributions, and use diiected graphs; markov networks are based on joint

probability and have undirected graphs; constraint networks assume determin-

istic constraints between variables. These networks are most commonly used

to incorporate prior knowledge, make predictions and test hypotheses. Learn-

ing good graph representations is an interesting problem where further work is

needed.

● Boolean networks. A neural network whose transition rule is a binary au-

tomaton is an example of a boolean network. In general there is no need to

restrict the dynamics to the sum and threshold rules usually used in neural

nets (other than the fact that this may make the learning” prGblem simpler). In-

stead, the nodes can implement arbitrary logical (Boolean) functions. Kauffman

studied the emergent properties of networks in which each node implements a

random Boolean function [38,37]. (The functions are fixed in time, but each

node implements a different function.) More recently, hliiler and Forrest [44]

have shown that the dynamics of classifier systems can be mapped into Boolean

networks, This allows them to describe the emergent properties of classifier sys-

tems, Their work implicitly mape Boolean networks to the generic connect ionist

framework, The formulation of learning rules for general Boolean networks is

an interesting problem that deserves further study, Kauffman has done sot:w

work using point tnutation to modify the graph [3!)].

● Ecological models and population genetics are a natural area for t!w

application of connect iouismo There is a large body of work modeling plant

and animal populations and their interactions with their cnvironnumt in terlns

of differential equations, In these models it is neccbsary to explicitly state

how the populations interact, and translate this into mathetnaticol form. ~\n

,alternative i~ to let these interaction evuiue, A natural fralnework ft,r such

models is provided by the work of Maynard Smith in the application of .gam~

theoretic models to population genetics and ethology [62], TIIC itttcractiolis of

the populations with each other arc modeled as game-theoretic stri~tcgics, Itl

these models, however, it is nccewmry to state in advance what tliww stratugics

are. A uaturtd alternative is to let the strategies evolve, SOIIW uspucts uf

this have IMW addreswxi in the !!cdgling theory of evolutionary gattws [?l~,

A conncctionist i~pproach is a natural extension d’ this work, lIIU inulllllw

nrtworks discuswd hmw i~r(! very silt)ihr to pw(l:~tur.prey I\w(lvls. “1’1)~’sttil)gs

(’llccdiug chcmicid IJropcrties arc iLllillo~OUS” to jf(!t)ot~]~wi uf d giv~’11])ol)lllilf iotl,

illlll tilt!Ilmtrix Of Illtuructivus ~1’~ikllill~~oli$ to l)ll(!ll0t~j)U%



e Economics is another natural area of application. Again, existing game-

theoretic work suggests a natural avenue for a connectionist approach, which

could be naturally implemented along the lines of the immune model. The

binary strings can be viewed as encoding simple strategies, specifying the inter-

actions of economic agents. Indeed, there are already investigations of models

of this type based on classifier systems [4,5,41].

● Game theory is a natural area of application. For example, Axelrod [6] has

studied the game of iterated prisoner’s dilemma. His approach was to encode

recent past moves as binary variables, and encode the strategy of the player

a a Boolean function. He demonstrated that genetic algorithms can be used

to evolve Boolean functions th~t correspond to good strategies, An alterna-

tive approach would be to dist libute the strategy over many nodes, and use a

connectionist model instead of a look-up table, Such models may have applica-

tions in many different problems where evolutionary games are relevant, such

u economics and ethology.

● Molecular evolution models. The autocatalytic model discussed in detail

here is by no means the only connectionist model for molecular evolution, Per-

haps one of the earliest example is the hypercycle model of Eigen and Schuster

[19], which has recently been compared to the Hopfield neural rwtwork nwdels

[32,52], For a review see Hofbnuer and Sigmund [27].

8 Conclusions

I hope that presenting four dif~crcr,t connectionist systems in a common framcwwrk

and notation will make it easier to transfer results from one field to anotl)vr, l’l~is

should be part iculariy useful in areas such aY immune twtworks, w Iwrc conliuct ionist

models are not u well dwelopcd as they arc in other areas, such us neural networks.

13y showing how similar mathematical structure mauifests itsvlf iu quite different cotl-

texts, I hope that I have conveyed the broad applicability of conncctionisnl, l’itiitlly,

1 hope that these mathematical anihgies make the underlying plwnomella CIUi\l’Cr.

For tixample, comparing the role of the lymphocyte in t!lesc IINACIS to the WIC of

neurons may give more iusight into the construction of inltnunc nctwurk~ with Ilwru

computational power,

8,1 Open questions



and autocatalytic networks, a connection can be either inhibitory or excitatory,

depending on the state of the system. Does the latter more flexible approach

complicate learning ? Does it give the network any useful additional computa-

tional power?

● Is it essential to have independent parameters for each connection? In neural

nets, each connection has its own parameter. In classifier systems, the use

of the “don’t care” symbol means that mmy connections are represented by

one classifier, and thus share a common connection parameter. This decreases

the flexibility of the network, but at the same time gives an efficient graph

representation, and aids the genetic algorithms in finding good graphs. In B.

cell immune networks the parameters reside entirely in the nodes, and thus

as a single parameter changes many different connections are effected. Does

this make it impossible to implement certain functions? How does this effect

learning and evolution? (It is conceivable that the reductiou of parameters may

actually cause some improvements, )

● What is the optimal level of complexity for the transition rule? Some neural

nets and classifier systems employ simple activation functions, such as linear

threshold rules, Somewhat more complicated nonlinear functions, such as sig-

moids, have the advaritage of being smooth; immune networks have even more

complicated activation functions, An alternative is to make each node a flex.

ible function approximation box, for example, with its own set of local Iincar

functions, so that the node can approximate functions with more geumsl slmpcs

[22,67]. lIowevcr, complexity also increases the number of free partamcturs atid

potentially incrumi the amount of data needed for learning,

● A rukx.1 (Iucstion concerns the role of catalysi~, In autocatalytic networks, a

node can be swithxi on or off by another node through nluhiplicaliue coupling

tcrn~. In coutrast to networks in which inputs CNAonly be summed, this Allows

a ~inglc unit to exert overriding controi over another, A sili]ilar approwh hus

bucn yuggcsttxl in X - H neural uetworks [58]; T.cells and l~curo.trul~s~t~itt~’rs

ilmy play u similar role in real biological systems, IIow vuluublc is specific catal-

ysiu to a network’? Iiow difficult is the learning problem when it is crnploycd’!



the literature suggests certain general conclusions. For example, in problems

with detailed feedback, e.g. a list of known input-output pairs, deterministic

function fitting algorithms such as le~t-squares minimization (of which back-

propagation is an example) can be quite effective, However, if the search space

is not smooth, for example because the samples are too small to be statistically

stable, stochastic algorithms such = crossover are often more effective [1]. In

more general sit uat ions where there is no detailed feedback, there seems to be

no general consensus as to which learning algorithms are superior.

Thus far, very few connectionist networks make use of nontrivial computational

capabilities. In typical applications most connectionist networks end up functioning as

stimulus-response systems, simply mapping inputs to outputs without making use of

conditional looping, subroutines, or any of the power we take fcr granted in computer

programs. Even in systems that clearly have a great deal of computational power in

principle, such as classifier systems, the solutions actually learned are usually close

to look-up tables, It seems to be much easier to implement effective learning rules

in simpler architectures that sacrifice computational complexity, such as feed-forward

networks,

It may be that there is an inherent tradeoff between the complexity of learning

and the complexity of computation, so that the difficulty of learning increases with

with computational power, At one end of the spectrum is a look-up table, Learning

is trivial; examples arc simply inserted as they occur, Unfortunately, all too ofton

ncurid uctwork applications have not been compared to this simple approach, [n the

infamous NET. talk problem [61), for example, a simple look-up table gives Ixxtcr

p~:rformancc than a sum/sigmoid back-propagation network [3], Simple function ap-

proximation is one level abovezyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAa look-up table in computational cornplcxity; functions

cdl~ iit least &ttcmpt to it]tvrprhte betwetm examples, and generalize tc cxatnples that

;Lrc not in the learning data set, Learning iu still ~airly simple, although already the

subtll’tics of probability and statistics begin to complicate the matter. Ilowevcr,

sin]plc function approximation has less computational capability thhn a !initc st~tc

Inocliine. There arc no good learning algorithms for finite 9tatc nmchincs, W’ithut

cauuting, conditional looping, etc., many problems will simpiy remain insoluble,

It is probably more likely that learning iu powitdewith mwo sophinticatccl compu.

t,~tionid power, and that we simply do not yet know how to accon~plish it, I suspuct

tlut the connectionist networks of the future will be full of Joop H,

(.~unncctionist Inmlcis urc a useful tool forsolving problcnls in kmning, ilfJ. ’l)tiLtioll,

‘1’lIvytlmkc it possible to deal with situations in which there ur(! an infinitr, IIuIIIl)(!r

of powihle variddm, I)ut in which only * tinitc numb~r arc ~ctivc i~t iNIy givel~ tiilw,

‘1’11[~cotinuctions ore explicit but Chhngdlco WC huve only rmx!ntly begIIn to wql]iro

tlw (’ott}[)lltotioll~ll cikl)Abiliti(!N to rmdizc tlmir potvntiul, I !lllS[)~*Cttlliit tll(! 111’.Yt

(141(’ILII(B wiil witllcss AI] vnorllwus cxpk)siun in t]lc 4J~)~)li(’iLti(,)l~ of tilu cul~n(x’tiullist

Wtho(h)lofiy,

[[ OWt’\’~!r, (’otltl(!(:tiof)ihft] t’(!l)r(’sl’flt~ a 1(’VVI (JI ,Ll)striu’tioll tlliit is llltillli~tl’1~ Iilllit(’tl

I)y s\l(:l\ t’i!~torlj hs tllv Iitw(l to sputify Cl)niwctiunti explicitly, ~ul(i thu luck of built. ill



spatial structure. Many problems in adaptive systems ultimately require models such

as partial differential equations or cellular automata with spatial structure [40]. The

molecular evolution models of Fontana et al., for example, explicitly model the spatial

structure of individual polymers in an artificial chemistry,zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAAs a result the phenotypes

emerge more naturally than in the artificial chemistry discussed here. On the other

hand, this requires more computational resources. For many problems connectionism

may provide a good compromise between accurate modeling and tractability, appro-

priate to the study of adaptive phenomena during the last decade of this millenium.

8.2 Rosetta stone

This paper is a modest start toward creating a common vocabulary for connectionist

systems, and unifying work on adaptive systems. Like the Rosetta Stone, it contains

only a small fragment of knowledge. I hope it will nonetheless lead to a deeper

understanding in the fuiure.
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I urge the reader to use these results for peaceful purposes.

9 Appendix: A superficial taxonomy of dynami-

cal systems

Dynamical systems can be trivially classified according to the continuity or locality

of the underlying variables, A variable either can be discrete, i.e. Ascribable by A

finite integer, or continuous, There are thr~w essential properties:

● Time. All dynamical systerny contain time as either a discrete m continuous

variable,

● State. The state can either be a vector of real nutiabere, as iu an ordinary

differential equatiou, or integers, aa for an automaton.

● Space plays a special role. in dynamiw l systmna$ some dynalt]ichl ttlodels, such

au autotnata or ordinary differential equations, do not contait~ the notion of

spau. other models, such as Iatticc maps or Cf211UliW autonlata, contaitl a tlotiutl

of locality and therrfore apace even though they arc not fully continuous, I)artiid

cliii’crctltiid equations or functional Inaps hilvc Coutilluous si)atiid YiMiiLl)ll!S.
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type of dynamical system space time representation

partial differential equations continuous continuous continuous

computer representation of a p.d,e, local local local

functional maps continuous discrete continuous
+

ordinary differential equations none continuous continuous
h

lattice nmiels local discrete or continuous continuous ‘

maps~ifference equations) none discrete continuous

cellular automata local discrete discrete ,

automata none discrete discrete

Table 4: Types of dynamical systems, characterized by the nature of time, space,

and state, “Local” means that while this property is discrete, there is typically some

degree of continuity and a clear notion of neighborhood.
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