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ABSTRACT The rotatingmachinery plays a vital role in industrial systems, in which unexpected mechanical

faults during operation can lead to severe consequences. For fault prevention, many fault diagnostic methods

based on vibration signals are available in the literature. However, the vibration signals are obtained

by using different types of sensors, which can cause sensor installation issues and damage the rotating

machinery. In addition, this kind of data acquisition through vibration signal induces a large amount

of signal noise during machine operation, which will challenge the later fault diagnosis. A recent fault

detectionmethod based on infrared thermography (IRT) for rotatingmachinery avoids these issues. However,

the corresponding literature is limited by the fact that the characteristics of the manual design cannot

characterize the fault completely so that the diagnostic accuracy cannot exceed the diagnostic method based

on the vibration signals. This paper introduces a popular image feature extraction method into the fault

diagnosis of rotating machinery based on IRT for the first time. First, capturing the IRT images of the rotating

machinery in different states, and then two popular feature extraction methods for IRT images, bag-of-visual-

word, and convolutional neural network, are tested in turn. Finally, the extracted features are classified to

implement the automatic fault diagnosis. The developed method is applied to analyze the experimental IRT

images collected from bearings, and the results demonstrate that the developed method is more effective than

the traditional methods based on vibration signals.

INDEX TERMS Fault diagnosis, infrared thermography, convolutional neural network, bag-of-visual-words,

feature recognition.

I. INTRODUCTION

Modern industrial applications including automobiles and

generators, use rotating machinery, whose failure can cause

different levels of damage [1]. In most cases, these failures

refer to the discrepancy or residual of a mechanical compo-

nent that goes above a certain threshold. For example, in rotor

systems, the most common malfunction is unbalance whose

primary symptom is abnormal vibration. Unbalance leads to

fatigue of machine components. Worst of all, the wear on the

bearing will further damage the seal, resulting in a decline in

the performance of the machine [2].

Material fatigue is the major cause of rotating machin-

ery failure. Other causalities, such as improper operation

and installation, abnormally heavy load, and insufficient

lubricant, can lead to failure or even damage of rotat-

ing machinery. Diagnosis and repair of rotating machinery

is time-consuming, and its sudden suspension of opera-

tion or damage usually incurs a huge economic loss [3].

Due to its importance, numerous prognostics and health

management (PHM) techniques have been developed for

rotating machinery [4], such as acoustic emission [5], [6],

vibration analysis [7]–[9], and eddy-current [10], [11].
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The PHM technology for mechanical fault diagnosis in

the existing literature is mostly based on the vibration signal

of rotating machinery [12]–[15]. A significant disadvantage

of vibration signal-based diagnosis is the noise issue. It is

well known that a large amount of noise is induced within

the captured vibration signals due to many environmental

factors such as temperature and electromagnetic inference,

duringmachine operation. Althoughmanymethods [16], [17]

have been proposed to denoise the vibration signals, these

methods are destructive to the fault information implied in

the vibration signal, and hence can result in degradation of the

fault diagnosis performance. Noise in images is represented

by isolated pixels or blocks that cause strong visual effects.

Nowadays, noise on IRT images used to detect the health

status of equipment is very small, so it is not necessary

to consider the issue of denoising. In order to solve the

problem of denoising, infrared thermography (IRT) has been

applied to the fault diagnosis of rotating machinery [18], [19].

IRT has been extensively used in areas such as maintenance

of electrical installations. Its use in electrical machines has

been mainly circumscribed to the detection of faults in static

machines, such as power transformers [20]. The principle of

IRT detection is to analyze whether the electrical equipment

has a fault and determine the fault location by detecting the

IRT image photographed by infrared camera during opera-

tion. By now, IRT has become a matured and widely accepted

condition monitoring tool that can effectively judge the tem-

perature rise and operating state of the equipment, where the

temperature is measured in real time in a non-contact manner.

Applying IRT to the fault diagnosis of rotating machin-

ery can not only avoid the noise problem in the traditional

vibration signal-based fault diagnosis methods as mentioned

above, IRT images have many other significant advan-

tages such as non-contact, easy setup, non-invasiveness,

high sensitivity and resolution. Therefore, IRT has gradually

appeared in the field of mechanical fault diagnosis in recent

years [21]–[25]. In [22], IRT is first used for classification

of different machine conditions, where two-dimensional dis-

crete wavelet transform is used to decompose the thermal

image, and then Mahalanobis distance and relief algorithm

are employed for feature selection, and finally support vector

machine (SVM) is used as classifiers. Similar to the diagnos-

tic procedure in [22], the fault detection method based on

IRT includes three stages, i) thermal images are acquired;

ii) features are extracted; and iii) feature classification is

conducted to realize fault diagnosis. In addition, [23] and [24]

using thermal imaging-based methods to diagnose rotating

machinery failures is also in accordance with this diagnostic

process.

The above studies all adopt the traditional pattern recogni-

tion method. Their difference lies in the feature determination

step. It can be said that the researchers manually designed

the features to be extracted. However, the diagnostic accu-

racy of rotating machinery is highly dependent on feature

selection, and improper selection of features cannot guar-

antee high diagnostic accuracy. Existing applications using

traditional feature extraction methods (Mahalanobis distance,

relief algorithms, etc.) have proven that IRT can achieve

mechanical fault diagnosis, but in comparative experiments,

the accuracy of the IRT-based diagnostic method does not

exceed the accuracy based on vibration signals, which is

limited by the fact that the characteristics of the manual

design cannot fully characterize the fault. Different from the

feature extraction methods in the literature, in this work, two

popular image feature extraction methods, namely, bag-of-

visual-word (BoVW) [26] and convolutional neural network

(CNN) [27] are tested. Firstly, the IRT image features are

extracted by BoVW or CNN, and then the extracted features

are classified by SVM for fault diagnosis. Experiments show

that the developed method can realize high-precision diagno-

sis of rotating machinery by infrared diagnostic technology,

and the diagnostic accuracy is higher than the traditional

method based on vibration signals.

Contributions: Our approach is made possible by the

following technical contributions:

1) Unlike the existing fault diagnosis methods for rotating

machinery, which are almost based on vibration signals, this

paper presents a fault diagnosis method based on IRT images.

IRT images have many significant advantages such as non-

contact, easy setup, non-invasive, high sensitivity and res-

olution. In addition, image-based fault diagnosis avoids the

important problem of denoising the vibration signal.

2) An image-based fault diagnosis scheme for rotating

machinery is developed, which can automatically detect

mechanical faults with high accuracy. In this study, an exper-

imental platform is established to obtain IRT images of dif-

ferent fault states, which verifies the effectiveness of this

method.

Section II describes the procedures and techniques of

the two feature extraction methods used in this paper and

briefly introduces the steps of fault detection and isolation.

Section III first introduces the experimental platform, and

then presents two sets of comparative experiments, and gives

performance analysis of the two comparative experiments.

Finally, conclusions are drawn in Section V.

II. IRT IMAGE-BASED FAULT DIAGNOSIS

Image-based diagnosis is a kind of data-driven diagnostic

method where the data is a set of IRT images other than

vibration signals, and the IRT images are taken by infrared

camera. Inspired by themature image recognition techniques,

two popular feature extraction methods are employed in this

work: BoVW [28] and CNN, which is a kind of deep learning

method [29].

Image-based diagnostics have several advantages: i) image

identification refers to processing image data and then clas-

sifying images. The thermal image-based rotating machinery

fault diagnosis method used in this paper also achieves the

final fault diagnosis target by directly processing the thermal

images. Therefore, no expert knowledge on the application

is required, such as material properties, structures, or failure

mechanisms, because the knowledge can be learned directly
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FIGURE 1. Flowchart of the developed IRT image-based fault diagnosis.

from the images; ii) IRT images do not possess troublesome

noise induced by environmental factors and machine oper-

ation as in vibration signals; iii) IRT images are captured

in a non-contact and non-intrusive way that avoids rubbing

damage to the machinery or malfunctioning of the contacting

sensors. Based on this idea, a framework of image-based

fault diagnosis is proposed as shown in Fig. 1. The two diag-

nostic methods are composed of two parts, namely, offline

and online [30]. Among them, the offline part corresponds

to the training process, and the online part corresponds to

the testing process. The IRT images taken of the entire test

rig contains faulty components and other devices (motors,

photoelectric counters, etc.). The difference in IRT images

under different fault conditions is mainly reflected in the

faulty component part. Therefore, in order to make the image

processing process more efficient, the method developed in

this paper includes a preprocessing step of cutting off the

redundant part of the complete IRT image of the test rig as

shown in Fig. 1, leaving only the range of interest, that is,

the part containing the faulty component. The rules between

features and faults are learned after the training process,

while the testing process is used to observe the effect of

fault diagnosis methods. In this figure, the process of fault

diagnosis and isolation is introduced through the example of

the outer race fault.

Both BoVW and CNN have been conducted and compared

in the experiments. For BoVW, the diagnosis framework is

conducted as follows: i) capturing and preprocessing the IRT

images of the region of interest, followed by scale-invariant

feature transform (SIFT) algorithm [31] to extract visual

features from the IRT images; ii) from the extracted visual

features, a visual vocabulary is generated bywhich the BoVW

of each image is computed for fault diagnosis; and iii) the

extracted BoVW features are used as input of the classifi-

cation algorithms such as SVM. For CNN, the framework

is conducted as follows: i) capturing and preprocessing the

IRT images of the region of interest, followed by resizing the

image resolution to fit input of the network; ii) constructing

the network structure and learning the CNN feature of each

image for fault classification; and iii) the extracted CNN

features are used for input to the SVM classifier. The output

of the SVM classifier indicates the fault state of the rotating

machinery including which component is faulty. The follow-

ing sections describe these steps in details.

A. BAG-OF-VISUAL-WORD

BoW (bag of words) gains great success in text retrieval,

leading to its extension for image processing called BoVW.

Similar to BoW, BoVW represents an image as a histogram

(i.e., frequencies of occurrences) of visual features (i.e.,

words) in the image, which is an unordered set of non-

distinctive discrete words with certain level of invariance to

the spatial location of objects in the image. This histogram

of visual words can be regarded as the effective features for

image classification.

1) SIFT FEATURE EXTRACTION

Practically, fault diagnosis at the component level cannot be

achieved by analyzing the whole IRT image but only a few

‘‘interested’’ regions in the IRT image. The reason is obvious
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that most IRT images are very similar under different fault

states. Therefore, the analysis is focused on the characteristics

of the ‘‘interest points’’ of these few regions, such as corners

and blobs.

In [32], Lindeberg has shown that stable locations of the

interest points in scale space can be efficiently detected

through scale-space extrema in the difference-of-Gaussian

function [33]. By convolving the scale-space extrema with

the image D(p, σ ), where p = (x, y) is a point in the image,

the difference of two nearby scales separated by a constant

multiplicative factor κ can be computed:

D(p, σ ) = (G(p, κσ ) − G(p, σ )) ∗ I (p)

= L(p, κσ ) − L(p, κσ ) (1)

where ∗ is the convolution operation in p. The scale space of

an image is defined as follows,

L(p, σ ) = G(p, σ ) ∗ I (p) (2)

which is the convolution of a variable-scale Gaussian,G(p, σ )

with an input image, I (p).

G(p, σ ) =
1

2πσ 2
exp−(x2 + y2)/2σ 2 (3)

The local extrema of the function D can be detected

through accurate localization of interest points. Following

the method in the literature [34], the Taylor expansion of

the scale-space function D(p, σ ) is computed up to quadratic

term only:

D(p, σ ) = D+
∂DT

∂p
p+

1

2
pT

∂2D

∂p2
p (4)

By taking the partial derative of Eq. (4) with respect

to p and setting to zero, the location of the extremum p̂ is

found. Subsequently, these local extrema, i.e., interest points,

constitute an abstraction of the image. At each of these

local extrema, a consistent orientation is assigned so that

the local information of the image (represented as a vector

of gradients) can be obtained as the SIFT descriptor. This

process has been implemented in the Open Source Computer

Vision Library (OpenCV) environment. Default parameters

are employed in the visual feature extraction while the fea-

ture vectors are 128-dimensional. After this step, each image

is a collection of vectors of the same dimension (128 for

SIFT), where the order of different vectors is unimportant.

Since the IRT images are acquired under slightly different

(up/down/left/right) angles (± 5 degrees) and the image

brightness taken from different angles is varying, the SIFT

descriptor must be robust to noise and illumination changes

of images, which is an expectant property for some com-

pensations on slightly different angles when we acquire the

IRT images. Experimentally, the number of SIFT features is

adjusted from 20 to 80 due to the different fault states. Finally,

the presentation of a fault state (of 100 images) is constituted

from about 2000 to 8000 SIFT features.

2) BoVW FEATURE GENERATION

Before feature encoding, a representative of several similar

interest points called vocabulary is produced using k-means

clustering [35]. First, a set of k clusters is learned by cluster-

ing the features extracted from each fault state into a specified

vocabulary size. Then, the centers of the learned clusters

are defined as the vocabulary. In current application, a set

of 128-dimensional vectors of SIFT features (x1, x2, ..., xn)

is given. Through k-means clustering, the n SIFT vectors are

partitioned into k different sets such that S = {S1, S2, ..., Sk}

with minimized intra-cluster squared summed error (SSE).

Equivalently, it aims to find

S = argmin
S

k∑

i=1

∑

x∈Si

||x − µi||
2 (5)

where µi is the mean vector in Si. In the experiments,

the vocabulary size k is set to 1000 for better discrimination

capability. With this constructed vocabulary S, the extracted

SIFT features are then quantized as the label of the clos-

est cluster [36]. Finally, an image is abstracted as the fre-

quency counts or histogram of the quantized SIFT features

[f1, f2, ...fi, ..., fk ] where fi is the frequency of i
th visual word

in the image. This encoding from SIFT features to visual

words according to the idea of nearest neighbor in the vocab-

ulary can generate an effective BoVW histogram with spatial

invariance.

B. CONVOLUTIONAL NEURAL NETWORK

CNN is a deep learning method that has achieved great suc-

cess in image classification. The application of CNN in fault

diagnosis tasks is essentially an image classification problem.

CNN provides a powerful framework to learn hierarchical

features of images as a feature extractor based on deep learn-

ing. Furthermore, an advantage of this network is that it is

highly variable for translation, scaling, tilting or other defor-

mations, thanks to the fact that the convolution operation is

close to the mechanism of the human eye capturing features.

In this paper, CNN is employed to learn IRT image features,

and Fig. 2 shows its structure and working principle by taking

the network of this paper as an example.

FIGURE 2. The principle of feature learning for the CNN model.

1) CONVOLUTIONAL NEURAL NETWORK

The CNN model employs multiple layers, including convo-

lutional layer, pooling layer, and connection layer, to process

the input image. CNN is trained with multiple stages, and

the input and output sets of arrays of each stage are called
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feature maps. In this study, the IRT images were used as input

to the network. The output feature map of the current stage

is considered the input feature map for the next stage. Each

stage consists of three steps: convolutional operation, non-

linearity transformation, and feature pooling. Several such

three-part stages form the complete structure of the CNN

model, followed by SVM to perform the classification. The

details of CNN are described as follows.

The L-layer CNN model can be described as a series

of linear transformations, nonlinear symmetric squashing

operations (such as sigmoid function or tanh function) and

pooling/subsampling operations. The network treats the input

image as three-dimensional arrays, including the number of

feature maps, the height and width of the maps. For layer l,

Fl is defined as the output of the l-th stage and is given by:

Fl = pool(tanh(Wl ∗ Fl−1 + bl)) (6)

where l ∈ 1, ...,L, Wl is the convolutional kernel, bl is the

bias parameter of the l-th layer. The input image is the initial

feature map, i.e., F0 = I . The whole network is made up of

all layers stacked one after another.

In the CNN model, the tanh function is the point-wise

hyperbolic tangent function that is applied to the output of

every convolutional and pooling layer. The pool operation

is a function considering a neighborhood of activations and

generating one activation in each neighborhood. The fully

connected layer is the last layer of the network. This layer can

be regarded as a feature descriptor, which is the final feature

representation of the input image by the CNN network. Its

output is fed to the SVM classifier.

As depicted in Fig. 2, the CNN model constructed in

this paper contains five layers with weights; the first and

third ones are convolutional, the second and fourth ones are

pooling, and the last layer is fully connected. All layers are

connected to one another in turn. The first convolutional layer

filters the 200 × 200 × 3 input image with 40 kernels of size

12 × 12 × 3 with a stride of 4 pixels. The second pooling

layer uses a 40 kernels of size 2 × 2 × 40 with a stride of 2

pixels. The third convolutional layer takes as input the output

of the second pooling layer and filters it with 60 kernels of

size 6 × 6 × 40. The fourth pooling layer uses 60 kernels

of size 2 × 2 × 60 with a stride of 2 pixels. The fifth fully

connected layers is connected to the fourth pooling layers.

Then the output of the fifth layer is used as the input to the

SVM classifier.

C. FAULT DETECTION AND ISOLATION

In this paper, the problem of fault detection and isolation

is considered as a multi-class classification. Given a set of

training data, features are extracted from different fault states

for rotating machinery. Under these extracted features with

the corresponding fault states, a fault dictionary is pro-

duced containing different classes of fault states. Notewor-

thy, the no-fault state is considered as a class in the fault

dictionary. SVM is employed to learn a classifier from the

extracted features along with their corresponding fault states.

For diagnosis, the extracted features of a new image are

diagnosed using the trained SVM classifier. Note that a no-

fault state is considered one of the classes in SVM.

There are many SVM classification models [37],

e.g., c-support vector classification, ν-support vector clas-

sification, and distribution estimation. Each classification

model contains a kernel function, i.e., linear, polynomial,

RBF, or sigmoid kernels, which are evaluated and formulated

as shown in Table 1. Here, γ , r , and d are kernel parameters.

In the study, after testing the combination of different kinds

of SVM classifiers and kernel functions, it is found that

the combination of c-support vector classification and linear

kernel achieves the best classification accuracy.

TABLE 1. Commonly used kernel functions.

III. EXPERIMENTAL SETUP

In order to test the developed image-based diagnosis on

rotating machinery, the IRT images were chosen as the tar-

get signals for analysis, and two popular classes of feature

extraction methods were employed in this work: BoVW, and

CNN. Finally the SVM classification performed the task of

fault detection and isolation.

A fault simulator (WS-ZHT1 type multifunctional rotor

test rig) as shown in Fig. 3 was employed to provide different

kinds of faults of driving motors, bearings, flywheels, shafts

and rotors. A long shaft of 10 mm diameter was supported

by two ball bearings. One end of the shaft was attached to

the motor spindle through a flexible coupling. In this paper,

9 fault states of the bearing were collected (note that the nor-

mal state was also considered a fault state), including various

FIGURE 3. Experimental setup for demonstrating the developed
approach.
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single fault types and compound fault types. Compound faults

refer to the simultaneous occurrence of multiple types of

faults, that is, multiple faults are coupled together. In addition

to roller fault state, outer race fault state and normal state,

the unbalance state was simulated by attaching weights on

a flywheel with threaded holes. As for the rub impact fault,

a copper blade was fixed by the threaded holes on the stand

in order to connect the copper blade and adjust the gap

between the copper blade and the shaft. When the copper and

the shaft come into contact with each other, the rub impact

fault happens. The motor was driven by a variable speed

direct current (DC) motor with speed up to 2000 rpm. The

specifications of the fault simulator and the thermal camera

(Fluke Ti32) are shown in Table 2.

TABLE 2. Specifications of IRT camera and fault simulator.

The thermal camera is the key device for data acquisition

whose parameters must be carefully set for accurate IRT

images. The parameters of the thermal camera are automati-

cally configured by the camera itself. Among all parameters,

the most important one is emissivity. The emissivity of a

object refers to the ratio of the radiated power of the object to

the radiating power of a black body at the same temperature.

It is related to the surface state of the object (including the sur-

face temperature of the object, the surface roughness, and the

presence of surface oxides, surface impurities, or coatings).

The diagnostic object of this paper is the rolling bearing,

and the material of the rolling bearing is steel. For metallic

materials, surface roughness and surface temperature will

have a greater impact on emissivity. In general, the greater the

surface roughness of the metal, the greater the emissivity of

the metal. The emissivity of the metal increases as the surface

temperature increases. As shown in Table 2, the thermal

imager used in the experiments herein is suitable for mate-

rials with an emissivity of 0.1 to 0.95. The other parameters

such as relative humidity, scale temperature, focal length of

camera, and distance are configured as in Table 2. All of these

parameters were chosen according to experiment condition.

In this study, all fault states (such as normal, unbalance,

roller, outer race, rub impact, unbalance and rub impact,

unbalance and roller, outer race and rub impact, unbalance

and roller and rub impact) are measured under the same

parameters setting of the Fluke Ti32 for the experiment. Data

from the Fluke Ti32 were saved directly to the computer.

In order to verify the robustness of our developed image-

based diagnosis, the images were acquired under slightly

different (up/down/left/right) angles (±5 degrees).

For the machine configuration, the speed of the motor

was gradually raised up to 2000 rpm for data acquisition.

We collected two sets of data (Group 1 and Group 2), each of

which contains 100 images. Group 1 is the set of 100 images

captured during the transient state of the machine (from the

beginning to 5 minutes of machine operation). The speed

of 2000 rpm was held for 15 minutes until the machine

reached its steady state. Then, another set of 100 images

was captured as Group 2 (from 15 minutes to the end of

the experiment). It is well known that the images captured

under transient state may significantly vary even though they

belong to the same fault. On the other hand, such variation

is significantly reduced for those images captured under an

operational state.

Fig. 4 shows the IRT image of the machine state, with a

black rectangle encircling the interesting part of the experi-

ment, the bearing. The black rectangle is a predefined bound-

ing box whose resolution is 480 × 200 in order to realize

the automatic cutting of an IRT image (whose resolution

is 640 × 480). The final experimental IRT images con-

sist of 9 machine conditions as listed in Table 3. Actually,

segmentation is performed to the portion (specified by the

black rectangle) of the original IRT image in order to exclude

non-defective parts, such as driving motor and some other

parts, and reduce the scope of image processing. In this way,

it will be beneficial to the next step of feature extraction

by deleting non-defective portions, because the extracted

features about the black rectangle contain more fault informa-

tion and are more representative than the extracted features

of the whole image. After segmentation, the IRT images

of all faults under transient and steady states are presented

in Figs. 5 and 6.

FIGURE 4. An IRT image and the region of interest.

In order to verify the effectiveness of the two feature

extraction methods (i.e., BoVW and CNN), we intention-

ally captured the IRT images under both transient state and

steady state. There are 9 fault states corresponding to labels

F1 to F9. Each fault state has been captured for 100 samples

in the experiment. Each sample is a collected IRT image with

480 × 200 pixels. For every fault state, the 100 captured

IRT images are halved for training and testing, respectively.
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FIGURE 5. IRT images under transient state.

FIGURE 6. IRT images under steady state.

This ensures a relatively adequate training set and a fully

tested diagnostic algorithm. Therefore, under both transient

and steady states, there are 100 no-fault and 800 faulty cases

for the purposes of training and testing, respectively. The

setup details of the experimental data are shown in Table 3.

Therefore, the total number of training samples and test sam-

ples is both 450 (each sample is a 480×200 pixel image). It is

very hard to effectively distinguish the 9 operation conditions

from the collected IRT images according to Figs. 5 and 6.

After SVM training, the trained classifier was applied to the
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TABLE 3. Details of captured IRT images under transient state.

testing cases to evaluate the discriminability of the extracted

features. The procedure to handle IRT images under steady

state was similarly conducted.

IV. RESULTS AND ANALYSIS

In order to assess the performance of the developed IRT

image-based fault diagnosis method, two types of analyses

were carried out in the fault feature extraction step. In the first

analysis, the classification results are compared based on fea-

tures, respectively, of the two popular feature learning meth-

ods, BoVW and CNN [38]. In the second analysis, the results

of fault diagnosis based on IRT maps and traditionally used

vibration signals are compared. Finally, the diagnostic per-

formance was verified under different metrics to evaluate the

performance of the above several fault diagnosis methods.

A. BOVW VERSUS CNN

Two different feature learning methods based on BoVW and

CNN were used to produce diagnostic decisions. The classi-

fication accuracy of the SVM classifier was evaluated under

features learned by BoVW and CNN, respectively. The aver-

age classification accuracy was considered as the evaluation

measure throughout the first experiment. The different fault

condition settings are shown in Table 3, which contains a total

of 9 types of faults. The IRT images were acquired under

these fault conditions, and then divided into training sets and

test sets, and fault features were collected for classification.

Under these fault conditions, IRT images of the test elements

were collected and then divided into training and testing

sets, on which fault features were captured for classification.

Subsequently, the SVM was selected for classification.

During the training phase, the SVM classifier was trained

by features and corresponding fault labels. The training and

testing datasets consisted of faulty IRT images of the bearings

captured under different fault conditions. Then, through the

fault feature extractionmethod, BoVWandCNN, the training

and testing features were captured from training and testing

datasets, respectively. After training the classifiers, the fault

labels for testing features were predicted. The classification

results for fault class diagnosis produced by SVM classifier

are shown in Tables 4, 5, and 7, respectively.

TABLE 4. Fault diagnostic results based on IRT images with BoVW
features under transient state.

TABLE 5. Fault diagnostic results based on IRT images with BoVW
features under steady state.

The distributions of BoVW features under transient state

and steady state are shown in Figs. 7 and 8, respectively

(Remark: The X-axis and Y-axis in Figs. 7 and 8 are meaning-

less, which are merely scale representation. The 9 different

colors represent the 9 different faults.). It is well known

that if the intra-class distance is smaller and the inter-class

distance is bigger, the classification result is better. The visu-

alization of BoVW features under transient state in Fig. 7 is

more disordered than the BoVW features under steady state

in Fig. 8. Compared to Fig. 8, in Fig. 7, different faults are

not completely distributed at different regions because some

regions are overlapping. For example, the regions of classes

F3 and F6 are overlapping (specified by the black rectangle),

which is consistent with the diagnostic performance contrast

under two states shown in Tables 4 and 5. After the feature

extraction is completed, the SVM is used for classification to

implement fault diagnosis, that is, fault type classification.
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FIGURE 7. Visualization of BoVW features under transient state.

FIGURE 8. Visualization of BoVW features under steady state.

Tables 4 and 5 show the fault diagnosis for the bearing

under transient state and steady state using the BoVW feature

extraction method, respectively. As can be seen from Table 4,

under the transient state, there are four types of faults (F3,

F6, F7, and F8) that are incorrectly classified. However,

from Table 5, it can be seen that only one misclassification

case occurred in the steady state. It is obvious that the fault

diagnosis effect under the steady state is better than that under

the transient state. In addition, the BoVW feature extraction

method based on IRT image has excellent overall diagnostic

performance, indicating that BoVW can effectively capture

highly discriminative semantic features. The four assessment

types are shown in Table 6. It can be seen that the diagnostic

performance of both the two states based on BoVW feature

learning method achieved a high score, which implies that

BoVW works effectively in capturing features for diagnosis

of rotating machinery. Furthermore, the SVM classifier can

identify and isolate faulty types with a nearly 100% accuracy

in both states (see Precision in Table 6 for details), which can

be concluded as fault isolation in addition to fault diagnosis.

In order to evaluate the diagnosability of the developed

IRT image-based fault diagnosis method, four evaluation

TABLE 6. Metrics evaluation of fault diagnostic performance based on
IRT images with BoVW features.

measures are employed: 1) false positives: the number of

cases that the classifier indicated a fault in the bearing while

there is no fault actually; 2) false negatives: the number

of cases that the classifier declares a no-fault situation in

the circuit while there is a fault actually; 3) accuracy: the

proportion of cases whose label is correctly predicted in the

total cases; 4) precision: the proportion of cases correctly

predicted as faulty in all cases predicted to be faulty.

CNN is another popular feature extraction method for

images based on deep learning, which can be an alterna-

tive tool to BoVW feature learning. For a fair comparison,

CNN uses the same training and testing data as BoVW.

The structure of the CNN determined in this experiment,

as described in Sec. II B, consists of five layers, first two

sets of convolutional and pooling layers, followed by a fully

connected layer. As shown in Table 7, the use of CNN features

based on IRT images achieves perfect fault diagnosis results

in both transient and steady state, and 450 test samples are

correctly classified into corresponding fault states, achieving

100% diagnostic accuracy. As feature extraction methods,

the features extracted by the CNN and BoVW from the IRT

images are classified by the same classifier, and the accuracy

based on CNN is higher than that of BoVW. From the results

shown in Tables 4, 5, and 7, it may be explained that in CNN,

TABLE 7. Fault diagnostic results based on IRT images with CNN features
under both transient and steady state.
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the feature extraction process is performed layer by layer, and

the ability to express features becomes stronger as the layer

deepens, which enables the final output features to accurately

reflect the characteristics of the input information, whereas

BoVWfirst captures the ‘‘interest points’’, on which learning

and classification are carried out.

B. IRT IMAGE-BASED METHOD VERSUS VIBRATION

SIGNAL-BASED METHOD

A comparative experiment was also set up to compare the

accuracy of fault diagnosis based on IRT images and tra-

ditional vibration signals. In this comparative experiment,

the IRT image-based method used CNN for feature extrac-

tion (because the performance of CNN is overall better than

BOVW), and the vibration signal-based method used shift

invariant sparse coding (SISC) [9] for feature extraction.

In this paper, an adaptive feature extraction scheme based on

sparse coding is developed. The sparse representation of the

signal can represent the diagnostic information in an efficient

way. The bearing fault diagnosis is carried out in the vibration

signal experiment, and the scheme has good diagnostic per-

formance. The experimental results of better diagnostic accu-

racy prove that the proposed features can effectively represent

fault information. Subsequently, the features extracted by the

two methods are classified using SVM.

The same fault simulator (WS-ZHT1) was used again as

the vibration signal generator and the speed of the motor

was still set to 2000 rpm. An accelerometer was installed on

the bearing of the drive end side. A 16-channel digital audio

tape (DAT) recorder was used to collect vibration signals

under a sampling frequency of 12 kHz when it reached steady

state. Only three single fault types were diagnosed in [9],

and the composite fault state was not considered. Therefore,

in this paper, only the diagnostic accuracies of these three

fault states are compared. In this comparative experiment,

the diagnostic results of three common fault classes including

outer race (F8), roller (F9) and normal (F4) were compared.

Sparse feature extraction was also performed on the time

domain vibration signal. The extracted feature was divided

into two equal halves for training and testing. Experimen-

tal parameters were as follows, each vibration data set had

100 samples truncating into time-series with a 1024-point

window block, and 10 atoms, each with a length of 128-point,

which were learned from one state of the bearing data.

The fault diagnostic results based on vibration signals under

steady state are presented in Table 8. It can be seen from

the classification accuracies comparison results of the two

diagnosticmethods given in Table 9 that the vibration features

perform slightly worse diagnosis of themechanical condition.

From the results, we can consider the reason why the

image-based method is better than the signal-based method.

On the one hand, the vibration signal is doped with noise

from the operating environment of the machine, such as tem-

perature and electromagnetic interference. On the other hand,

the signal-based method needs to utilize accelerometers and

eddy-current sensors. Because these sensors must be installed

TABLE 8. Fault diagnostic results based on vibration signals under steady
state.

TABLE 9. Classification accuracies comparison based on vibration signals
and IRT images.

inside the machinery, the problem of improper sensor

installation can affect the measurement accuracy. However,

IRT images are non-contact, non-intrusive, easy to set up,

and have high sensitivity and resolution, which avoids the

above two problems existing in the vibration signal-based

method. Therefore, the developed IRT image-based method

using CNN is superior to the traditional vibration signal-

based method.

C. ANALYSIS OF THE IMPACT OF ENVIRONMENT ON

EXPERIMENTAL PERFORMANCE

For a particular device, the ambient temperature at which it

is located is generally stable. The IRT camera used in this

paper has an operating temperature range of−10◦C to+50◦C

and a measurement temperature range of −20◦C to +600◦C.

Taking the CNN with outstanding performance in this paper

as an example, the image feature extraction method based

on CNN includes two parts, namely, the offline training

part and the online test part. The high-precision fault diag-

nosis performance in this paper has proven that CNN has

strong feature learning ability. Therefore, the diagnostic accu-

racy can be guaranteed as long as the IRT camera operates

within the allowable operating temperature range of −10◦C

to +50◦C. In addition, as shown in Table 2, the IRT camera

used in this paper is suitable for materials with an emissivity

of 0.1 to 0.95, which ensures that the emissivity is still

within the applicable range when the ambient temperature

varies or the lighting intensity changes.

V. CONCLUSION

There are many advantages to fault diagnosis based on

infrared thermography (IRT) images, such as non-contact,

ease-of-setup, and high sensitivity and resolution, which

avoids expensive equipment such as accelerometers and

eddy-current sensors those are regarded to be installed inside

VOLUME 7, 2019 12357



Z. Jia et al.: Rotating Machinery Fault Diagnosis Method Based on Feature Learning of Thermal Images

the machinery. Moreover, image-based fault diagnosis avoids

the significant issue of denoising on the vibration signal.

However, the existing IRT image-based methods for diag-

nosing rotational machinery faults involve two steps: feature

extraction using signal processing techniques and fault clas-

sification using the shallow learning models (e.g., the most

frequently used support vector machine (SVM) classifiers),

which inevitably leads to the diagnostic performance that

relies heavily on feature extraction. This is why the IRT

image-based diagnostic performance cannot go beyond

the traditional vibration signal-based diagnostic methods.

In recent years, the successful application of bag-of-visual-

word (BoVW) and convolutional neural network (CNN) in

computer vision proved that these two models are more

powerful in describing image features. Therefore, these two

methods are introduced to analyze IRT images in this paper.

In this study, an IRT image-based diagnosis scheme was

developed to classify key rotating machinery conditions.

Instead of the existing IRT-based method for diagnosis using

traditional pattern recognition, our approach used BoVW and

CNN. The approach consists of IRT image data acquisition,

feature extraction, and condition identification. The two pat-

tern recognition methods, BoVW and CNN, were both used

as the classifier to mine the features of the IRT images, and

it was found that CNN can give better results than BoVW.

By setting a variety of fault states for the rotating machinery,

the traditional vibration signal-based diagnostic methods and

the developed IRT image-based method using CNN are used

for diagnostic comparison experiments. Experimental results

show that the classification accuracy based on IRT images

using CNN is superior to that based on vibration signal, which

breaks the previous situation based on traditional vibration

signals to rule the field of rotating machinery fault diagnosis.

The results also show that the diagnostic method based on

IRT images for rotating machinery deserves more in-depth

research.
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