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A (ROUGH) PATHWISE APPROACH TO FULLY NON-LINEAR

STOCHASTIC PARTIAL DIFFERENTIAL EQUATIONS.

MICHAEL CARUANA, PETER FRIZ AND HARALD OBERHAUSER

Abstract. In a series of papers, starting with [Fully nonlinear stochastic partial di¤erential
equations. C. R. Acad. Sci. Paris Sér. I Math. 326 (1998), no. 9] Lions and Souganidis proposed
a (pathwise) theory for fully non-linear stochastic partial di¤erential equations. We present here
a (partial) extension towards certain spatial dependence in the noise term. The main novelty is
the use of rough path theory in this context [Lyons, Terry J.; Di¤erential equations driven by

rough signals. Rev. Mat. Iberoamericana 14 (1998), no. 2, 215�310].

1. Introduction

We trust the reader is familiar with the rudiments of (second order) viscosity theory [7, 8] and
rough path theory [27, 28]. Recall that geometric rough paths arise from the (abstract) completion
of Rd-valued smooth paths in a p-variation (or 1=p-Hölder) type "rough path" metric which involves
the iterated integrals up to order [p]. As is well known this abstract completion can be realized as
genuine path space,

C0;p-var
�
[0; T ] ; G[p]

�
R
d
��

resp. C0;1=p-Höl
�
[0; T ] ; G[p]

�
R
d
��

where G[p]
�
R
d
�
is the free step-[p] nilpotent group over Rd, equipped with Carnot�Caratheodory

metric, and in this context usually realized as a subset of 1 + t[p]
�
R
d
�
where

t
[p]
�
R
d
�
= Rd �

�
R
d
�
2

� � � � �
�
R
d
�
[p]

is the natural statespace for (up to [p]) iterated integrals of a smooth Rd-valued path. For instance,
almost every realization of d-dimensional Brownian motion plus Lévy�s area gives rise to the a path
in the step-2 free nilpotent group over Rd.

Following [22, 23, 24] we consider a real-valued function of time and space u = u (t; x) 2
BUC([0; T ]� Rn) which solves the fully-nonlinear partial di¤erential equation

du = F
�
t; x;Du;D2u

�
dt+

dX

i=1

Hi (x;Du) dz
i(1.1)

� F
�
t; x;Du;D2u

�
dt+H (x;Du) dz

in viscosity sense. When z : [0; T ] ! R
d is smooth then, subject to suitable conditions on F

and H, this is a rather standard setting in viscosity theory. However, the ultimate aim here is to
allow for z = z (t) with little regularity in time, such as to cover the case when z is a Brownian
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1



2 MICHAEL CARUANA, PETER FRIZ AND HARALD OBERHAUSER

motion1; the class of such stochastic partial di¤erential equations (SPDEs), possibly generalized to
H = H (x; u;Du), is considered to be an important one and the reader can �nd a variety of examples
(drawing from �elds as diverse as �ltering and stochastic control theory, pathwise stochastic control,
interest rate theory, front propagation and phase transition in random media, ...) in the articles
[23, 21]. We mention explicitly

Example 1 (Pathwise stochastic control; [23, 3, 4]). Consider

dX = b (X;�) dt+W (X;�) � d ~B + V (X) � dB; X0 = x

where b;W; V are (collections of) su¢ciently nice vector �elds (with b;W dependent on some control

process �) and ~B;B multi-dimensional (independent) Brownian motions. De�ne

u (x; t; B) = inf
�2A

E

��
g (Xt) +

Z t

0

f (Xs; �s) ds

�����B
�

and write L� =
P
W 2
i for the linear second order di¤erential operator, here in Hörmander form.

Then, at least by a formal computation,

du = inf
�2A

[b (x; �)Du+ Lau+ f (x; �)] dt+Du � V (x) � dBt

� F
�
x;Du;D2u

�
dt+H (x;Du) � dB (t) :

Observe that H = (H1;H2) with Hi (x; p) = p � Vi (x) is linear in p.

As pointed out in [22], classical (deterministic) second order viscosity theory can deal at best
with z 2 W 1;1

�
[0; T ] ;Rd

�
, i.e. measurable dependence in time. As such, (1.1) with "Brownian"

regularity of z (i.e. just below 1=2-Hölder) falls dramatically outside the scope of the deterministic
theory. The results [22, 23, 24] are in fact pathwise and apply to any continuous path z 2
C
�
[0; T ] ;Rd

�
, this includes Brownian and even rougher sources of noise; however, the assumption

was made that H = H (Du) is independent of x. The rôle of x-dependence is an important one
(as it arises in applications such as the above example) and far from harmless: the results of
Lions�Souganidis imply that the map

z 2 C1
�
[0; T ] ;Rd

�
7! u (�; �) 2 C ([0; T ] ;Rn)

depends continuously on z in uniform topology ; thereby giving existence/uniqueness results to

du = F
�
t; x;Du;D2u

�
dt+

dX

i=1

Hi (Du) dz
i

for every continuous path z : [0; T ] ! R
d. When the Hamiltonian depends on x, this ceases to be

true although (cf. remark 3 in [22]); indeed, as may seen by taking F � 0; d = 2 and

(1.2) Hi (x; p) = hp; V (x)i �
nX

j=1

pjV
j
i (x) ;

where i = 1; 2 and V1; V2 are two C
1-bounded vector �elds with Lie bracket [V1; V2] 6= 0. In this

case, solving the characteristic equations shows that u is expressed in terms of the (inverse) �ow
associated to dy = V1 (y) dz

1 + V2 (y) dz
2, the solution of which does not depend continuously on

the driving signal z =
�
z1; z2

�
in uniform topology2.

1... in which case (1.1) is understood in Stratonovich form to avoid super-parabolicity assumptions, needed in
the Itô-formulation.

2We shall push this remark much further in theorem 2 below.
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The Lyons-theory of rough paths does exhibit an entire cascade of (p-variation or 1=p-Hölder
type rough path) metrics (for each p � 1) on path-space under which such ODE solutions are
continuous functions of their driving signal. This suggests to extend the Lions�Souganidis theory
from a pathwise to a rough pathwise theory. At present, we are able to do so for a rich class of
fully-nonlinear F and Hamiltonians of the form (1.2). The proof of the following theorem, detailed
in the section below, can be viewed as a �rst demonstration of the natural and powerful interplay
of rough path and viscosity ideas. The use of rough path theory in the context of fully non-linear
SPDEs was verbally conjectured by P.L. Lions in his Courant lecture (2003); in a sense the present
paper gives an a¢rmative, if partial, answer to this conjecture. We have the following result3.

Theorem 1. Let (z") � C1
�
[0; T ] ;Rd

�
be Cauchy in (p-variation) rough path topology with rough

path limit z 2 C0;p-var
�
[0; T ] ; G[p]

�
R
d
��
. Assume u"0 2 BUC(Rn) ! u0 2 BUC(Rn) locally

uniformly and let u" 2 BUC([0; T ]� Rn) be a viscosity solution to

du" = F
�
t; x;Du"; D2u"

�
dt+Du" (t; x) � V (x) dz" (t) = 0;(1.3)

u" (0; �) = u"0;(1.4)

where F = F (t; x; p;X) is continuous, degenerate elliptic such that @t = F satis�es �(3)-invariant
comparison (cf. de�nition 1 below, also for a list of examples which satisfy this condition) and

V = (V1; : : : ; Vd) � Lip

+2 (Rn;Rn) with 
 > p.

Assume that any such family (u" : " > 0) is locally uniformly bounded4. Then (i) there exists u,
only dependent on z but not on the particular approximating sequence, such that u" ! u locally
uniformly. We write (formally)

du = F
�
t; x;Du;D2u

�
dt+Du (t; x) � V (x) dz (t) = 0;(1.5)

u (0; �) = u0;(1.6)

and also u = uz when we want to indicate the dependence on z. (ii) comparison holds in the sense
that

juz � ûzj
1;Rn�[0;T ] � ju0 � û0j1;Rn

where ûz is de�ned as limit of û�, de�ned as in (1.3).
(iii) the map (z;u0) 7! uz from

Cp-var
�
[0; T ] ; G[p]

�
R
d
��
� BUC(Rn)! BUC([0; T ]� Rn)

is continuous.

Acknowledgement 1. The authors are partially supported by EPSRC grant EP/E048609/1. Pe-
ter Friz is partially supported by a Leverhulme Research Fellowship. Harald Oberhauser is partially
supported by a DOC-fellowship of the Austrian Academy of Sciences. Part of this work was under-
taken while the last two authors visited the Radon Institute.

3Unless otherwise stated we shall always equip BUC-spaces with the topology of locally uniform convergence.
4A simple su¢cient conditions is boundedness of F (�; �; 0; 0) on [0; T ] � Rn, and the assumption that u"

0
! u0

uniformly, as can be seen by comparison.
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2. Proof of theorem

We shall always assume that F = F (t; x; p;X) is continuous and degenerate elliptic5 and that
comparison holds for solutions of @t = F . On a bounded domain a well-known su¢cient condition6

is

Condition 1 ([7, (3.14)]). There exists a function � : [0;1] ! [0;1] with � (0+) = 0, such that
for each �xed t 2 [0; T ],

F (t; x; � (x� ~x) ; X)� F (t; ~x; � (x� ~x) ; Y ) � �
�
� jx� ~xj

2
+ jx� ~xj

�

whenever � > 0, x; ~x 2 Rn, and X;Y 2 Sn (the space of n� n symmetric matrices) satisfy

�3�

�
I 0
0 I

�
�

�
X 0
0 �Y

�
� 3�

�
I �I
�I I

�
.

In fact, this condition also guarantees comparison on [0; T ] � Rn provided the solutions are
assumed to have suitable growth restrictions. In particular one shows that comparison holds for
BUC-solutions in [0; T ]� Rn, cf. the remarks preceding Theorem 2.1 in [24] for instance.

Remark 1. A free bene�t, cf. [7, p.20], of condition 1 is that if F
 satis�es Condition 1 for 
 2 �
(some index set) with a common modulus �, then inf
 F
 again satis�es condition 1; similar remarks
apply to sup� inf
 F�;
 .

To state our key assumption on F we need some preliminary remark on the transformation
behaviour of

Du = (@1u; : : : ; ; @nu) ; D
2u = (@iju)i;j=1;:::;n :

under change of coordinates on Rn where u = u (t; �), for �xed t. Let us allow the change of
coordinates to depend on t, say v (t; �) := u (t; �t (�)) where �t : R

n ! R
n is a di¤eomorphism. Dif-

ferentiating v
�
t; ��1t (�)

�
= u (t; �) twice, followed by evaluation at �t (y), we have, with summation

over repeated indices,

@iu (t; �t (x)) = @kv (t; x) @i�
�1;k
t j�

t
(x)

@iju (t; �t (x)) = @klv (t; x) @i�
�1;k
t j�

t
(x)@j�

�1;l
t j�

t
(x) + @kv (t; x) @ij�

�1;k
t j�

t
(x):

We shall write this, somewhat imprecisely7 but convenient, as

Duj�
t
(x) =



Dvjx; D�

�1
t j�

t
(x)

�
;(2.1)

D2uj�
t
(x) =



D2vjx; D�

�1
t j�

t
(x) 
D�

�1
t j�

t
(x)

�
+


Dvjx; D

2��1t j�
t
(x)

�
:

Let us now introduce �(k) as the class of all �ows of Ck-di¤eomorphisms of Rn, � = (�t : t 2 [0; T ]),
such that �0 = Id 8� 2 �

(k) and such that �t and �
�1
t have k bounded derivatives, uniformly in

t 2 [0; T ]. We say that � (n)! � in �(k) i¤ for all multi-indices � with j�j � k

@�� (n)! @��t; @�� (n)
�1
! @��

�1
t locally uniformly in [0; T ]� Rn:

5F (: : : ; X) � F (: : : ; Y ) if X � Y in the sense of symmetric matrices.
6... which, en passant, implies degenerate ellipticity, cf. page 18 in [7, (3.14)].
7Strictly speaking, one should view

�
Du;D2u

�
j� as second order cotangent vector, the pull-back of

�
Dv;D2v

�
jx

under ��1t .
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De�nition 1 (�(k)-invariant comparison). Let k � 2 and
(2.2)
F� ((t; x; p;X)) := F

�
t; �t (x) ;



p;D��1t j�

t
(x)

�
;


X;D��1t j�

t
(x) 
D�

�1
t j�

t
(x)

�
+


p;D2��1t j�

t
(x)

��

We say that @t = F satis�es �(k)-invariant comparison if, for every � 2 �(k), comparison holds for
BUC solutions of @t�F

� = 0. More precisely, if u is a sub- and v a super-solution to this equation
(in viscosity sense, both BUC)and u (0; �) � v (0; �) then u � v on [0; T ]� Rn.

Example 2 (F linear). Suppose that � (t; x) : [0; T ]� Rn ! R
n�n0 and b (t; x) : [0; T ]� Rn ! R

n

are continuous in t and Lipschitz continuous in x, uniformly in t 2 [0; T ]. If F (t; x; p;X) =

Tr
h
� (t; x)� (t; x)

T
X
i
+ b (t; x) � p, then �(3)-invariant comparison holds. Although this is a special

case of the following example, let us point out that F� is of the same form as F with �; b replaced
by

�� (t; x)
k
m = �im (t; �t (x)) @i�

�1;k
t j�

t
(x); k = 1; : : : ; n;m = 1; : : : ; n0

b� (t; x)
k
=

h
bi (t; �t (x)) @i�

�1;k
t j�

t
(x)

i
+
X

i;j

�
�im�

j
m@ij�

�1;k
t j�

t
(y)

�
; k = 1; : : : ; n:

By de�ning properties of �ows of di¤eomorphisms, t 7! @i�
�1;k
t j�

t
(x); @ij�

�1;k
t j�

t
(y) is continuous

and the C3-boundedness assumption inherent in our de�nition of �(3) ensures that ��; b� are Lip-
schitz in x, uniformly in t 2 [0; T ]. As is well known, this ensures that comparison holds for BUC
solutions of @t � F� = 0. By applying theorem 1 to this class of linear F we recover the results of
[5].

Example 3 (F quasi-linear). Let

(2.3) F (t; x; p;X) = Tr
h
� (t; x; p)� (t; x; p)

T
X
i
+ b (t; x; p) :

We assume b = b (t; x; p) : [0; T ] � Rn � Rn ! R is continuous and Lipschitz continuous in x and

p, uniformly in t 2 [0; T ]. We also assume that � = � (t; x; p) : [0; T ] � Rn � Rn ! R
n�n0 is a

continuous map such that

� � (t; �; p) is bounded and Lipschitz continuous, uniformly in (t; p) 2 [0; T ]� Rn;
� there exists a constant c1 > 0, such that

8

(2.4) 8p; q 2 Rn : j� (t; x; p)� � (t; x; q)j � c1
jp� qj

1 + jpj+ jqj

for all t 2 [0; T ] and x 2 Rn.

Then �(3)-invariant comparison holds for @t = F with F given by (2.3). To see this we proceed
as follows. For brevity denote

p = � (x� ~x) ; J� = D��1t j�
t
(�);H� = D2��1t j�

t
(�)

�� = � (t; �t (�) ; hp; J�i) ; a� = ���
T
� ; b� = b (t; �t (�) ; hp; J�i)

so that

F� (t; x; p;X) = Tr [ax (hX; Jx 
 Jxi+ hp;Hxi)] + bx

= Tr
�
JxaxJ

T
x X

�
+ bx +Tr [ax hp;Hxi] :

8A condition of this type also appears also in [1].
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Hence

F� (t; ~x; p; Y )�F� (t; x; p;X) = Tr
�
J~xa~xJ

T
~x Y � JxaxJ

T
x X

�

| {z }
=:(i)

+ b~x � bx| {z }
=:(ii)

+Tr [a~x hp;H~xi � ax hp;Hxi]| {z }
=:(iii)

:

To estimate (i) note that JxaxJ
T
x = Jx�x (Jx�x)

T
. The R2n � R2n matrix

 
(Jx�x) (Jx�x)

T
Jx�x (J~x�~x)

T

(J~x�~x) (Jx�x)
T

J~x�~x (J~x�~x)
T

!

is positive semide�nite and thus we can multiply it to both sides of the inequality

�
X 0
0 �Y

�
� 3�

�
I �I
�I I

�
:

The resulting inequality is stable under evaluating the trace and so one gets

Tr
h
J~x�~x (J~x�~x)

T
� Y � Jx�x (Jx�x)

T
�X
i
� 3�Tr

h
(Jx�x) (Jx�x)

T
� Jx�x (J~x�~x)

T

�J~x�~x (Jx�x)
T
+ J~x�~x (J~x�~x)

T
i

= 3�Tr
h
(Jx�x � J~x�~x) (Jx�x � J~x�~x)

T
i

= 3� kJx�x � J~x�~xk
2

(using that Tr
�
: � :T

�
de�nes an inner product for matrices and gives rise to the Frobenius matrix

norm k:k). Hence, by the triangle inequality and Lipschitzness of the Jacobian of the �ow (which
follows a fortiori from the boundedness of the second order derivatives of the �ow),

kJx�x � J~x�~xk � kJx�x � Jx�~xk+ kJx�~x � J~x�~xk

� kJxk k�x � �~xk+ kJx � J~xk k�~xk

� kJxk k�x � �~xk+ c2 (�; �) jx� ~xj

Since � (t; �; q) is Lipschitz continuous (uniformly in (t; q) 2 [0; T ] � Rn) and �t (�) is Lipschitz
continuous (uniformly in t 2 [0; T ]), we can use our assumption (2.4) on �, to see

(2.5) k�x � �~xk � (const)� jx� ~xj :

Indeed,

k�x � �~xk = k� (t; �t (x) ; p � Jx)� � (t; �t (~x) ; p � J~x)k

� k� (t; �t (x) ; p � Jx)� � (t; �t (~x) ; p � Jx)k

+ k� (t; �t (~x) ; p � Jx)� � (t; �t (~x) ; p � J~x)k

� c2 (�; �) jx� ~xj+ c1
� jx� ~xj jJx � J~xj

1 + � jx� ~xj (jJxj+ jJ~xj)
;
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and, noting that �t � �
�1
t = Id and sup(t;x)2[0;T ]�Rn kD�tjxk � c3 implies kJxk =



D��1t j�
t
(x)



 �
1=c3, we have

c1
� jx� ~xj jJx � J~xj

1 + � jx� ~xj (jJxj+ jJ~xj)
� jx� ~xj �

c1� jJx � J~xj

� jx� ~xj (jJxj+ jJ~xj)

� jx� ~xj
c4 (�; �) jx� ~xj

jx� ~xj (jJxj+ jJ~xj)

� c5 (�; �) jx� ~xj :

Putting things together we have

j(i)j � c6 (�; �)� jx� ~xj
2
:

As for (ii), we have that,

jbx � b~xj � jb (t; �t (x) ; hp; Jxi)� b (t; �t (~x) ; hp; Jxi)j

+ jb (t; �t (~x) ; hp; Jxi)� b (t; �t (~x) ; hp; J~xi)j

� c7 (b) (j�t (x)� �t (~x)j+ jpj jJ~x � Jxj)

where c7 (b) is the (uniform in t 2 [0; T ]) Lipschitz bound for b (t; �; �). To get the required estimate
we again use the regularity of the �ow. Finally, for (iii),

(iii) = Tr [a~x hp;H~xi � a~x hp;Hxi] + Tr [a~x hp;Hxi � ax hp;Hxi]

= Tr [a~x hp;H~x �Hxi] + Tr [(a~x � ax) hp;Hxi] .

Using Cauchy-Schwartz (with inner product Tr
�
: � :T

�
) and p = � (x� ~x) it is clear that boundedness

of H and a (i.e. supx jHxj <1 uniformly in t 2 [0; T ] and similarly for a) and Lipschitz continuity
(i.e.jHx �H~xj � (const) � jx� ~xj uniformly in t 2 [0; T ] and similar for a) will su¢ce to obtain
the (desired) estimate

j(iii)j � c8 � � jx� ~xj
2
:

Only Lipschitz continuity of ax = �x�
T
x requires a discsussion. But this follows, thanks to bound-

edness of supx j�xj, from showing Lipschitzness of x 7! �x = � (t; �t (x) ; hp; Jxi) uniformly in
t 2 [0; T ] which was already seen in (2.5). This shows that F� satis�es condition 1 for any � 2 �(3).

Example 4 (F of Hamilton-Jacobi-Bellman type). From the above examples and remark 1, we see
that �(3)-invariant comparison holds when F is given by

F (t; x; p;X) = inf

2�

n
Tr
h
� (t; x; 
)� (t; x; 
)

T
X
i
+ b (t; x; 
) � p

o
;

the usual non-linearity in the Hamilton-Jacobi-Bellman equation, and more generally

F (t; x; p;X) = inf

2�

n
Tr
h
� (t; x; p; 
)� (t; x; p; 
)

T
�X
i
+ b (t; x; p; �)

o

whenever the conditions in examples 2 and 3 are satis�ed uniformly with respect to 
 2 �.

Example 5 (F of Isaac type). Similarly, �(3)-invariant comparison holds for

F (t; x; p;X) = sup
�
inf



n
Tr
h
� (t; x;�; 
)� (t; x;�; 
)

T
X
i
+ b (t; x;�; 
) � p

o
;

(such non-linearities arise in Isaac equation in the theory of di¤erential games), and more generally

F (t; x; p;X) = sup
�
inf



n
Tr
h
� (t; x; p;�; 
)� (t; x; p;�; 
)

T
�X
i
+ b (t; x; p;�; 
)

o
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whenever the conditions in examples 2 and 3 are satis�ed uniformly with respect to � 2 B and

 2 �, where B and � are arbitrary index sets.

Lemma 1. Let z : [0; T ] ! R
d be smooth and assume that we are given C3-bounded vector �elds9

V = (V1; : : : ; Vd). Then ODE

dyt = V (yt) dzt; t 2 [0; T ]

has a unique solution �ow (of C3-di¤eomorphisms) � = �z 2 �(3).

Proof. Standard, e.g. chapter 4 in [14]. �

Proposition 1. Let z; V and � be as in lemma 1. Then u is a viscosity sub- (resp. super-) solution
(always assumed BUC) of

(2.6) _u (t; x) = F
�
t; x;Du;D2u

�
�Du (t; x) � V (x) _z (t)

if and only if v (t; x) := u (t; �t (x)) is a viscosity sub- (resp. super-) solution of

(2.7) _v (t; x) = F�
�
t; x;Dv;D2v

�

where F� was de�ned in (2.2).

Proof. Set y = �t (x). When u is a classical sub-solution, it su¢ces to use the the chain-rule and
de�nition of F� to see that

_v (t; x) = _u (t; y) +Du (t; y) � _�t (x) = _u (t; y) +Du (t; y) � V (y) _zt

� F
�
t; y;Du (t; y) ; D2u (t; y)

�
= F�

�
t; x;Dv (t; x) ; D2v (t; x)

�
:

The case when u is a viscosity sub-solution of (2.6) is not much harder: suppose that (�t; �x) is
a maximum of v � �, where � 2 C2 ([0; T ]� Rn) and de�ne  2 C2 ([0; T ]� Rn) by  (t; y) =
�
�
t; ��1t (y)

�
. Set �y = ��t (�x) so that

F
�
�t; �y;D (�t; �y) ; D2 (�t; �y)

�
= F�

�
�t; �x;D� (�t; �x) ; D2� (�t; �x)

�
:

Obviously, (�t; �y) is a maximum of u�  , and since u is a viscosity sub-solution of (2.6) we have

_ (�t; �y) +D (�t; �y)V (�y) _z (�t) � F
�
�t; �y;D (�t; �y) ; D2 (�t; �y)

�
:

On the other hand, � (t; x) =  (t; �t (x)) implies
_� (�t; �x) = _ (�t; �y)+D (�t; �y)V (�y) _z (�t) and putting

things together we see that

_� (�t; �x) � F�
�
�t; �x;D� (�t; �x) ; D2� (�t; �x)

�

which says precisely that v is a viscosity sub-solution of (2.7). Replacing maximum by minimum
and � by � in the preceding argument, we see that if u is a super-solution of (2.6), then v is a
super-solution of (2.7).
Conversely, the same arguments show that if v is a viscosity sub- (resp. super-) solution for (2.7),
then u (t; y) = v

�
t; ��1 (y)

�
is a sub- (resp. super-) solution for (2.6). �

We can now give the proof of our main result.

9In particular, if the vector �elds are Lip
 , 
 > p+ 2, p � 1, then they are also C3-bounded.
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Proof. (Theorem 1.) Using Lemma 1, we see that �" � �z
"

, the solution �ow to dy = V (y) dz",
is an element of � � �(3). Set F " := F�

"

. From Proposition 1, we know that u" is a solution to

du" = F
�
t; y;Du"; D2u"

�
dt�Du" (t; y) � V (y) dz" (t) ; u" (0; �) = u"0

if and only if v" is a solution to @t � F
" = 0. By assumption of �-invariant comparison,

jv" � v̂"j
1;Rn�[0;T ] � jv0 � v̂0j1;Rn :

where v"; v̂" are viscosity solution to @t � F " = 0. Let �z denote the solution �ow to the rough
di¤erential equation

dy = V (y) dz:

Thanks to Lip
+2-regularity of the vector �elds �z 2 �, and in particular a �ow of C3-di¤eomorphisms.
Set F z = F�

z

. The "universal" limit theorem [27] holds, in fact, on the level of �ows of di¤eomor-
phisms (see [26] and [14, Chapter 11] for more details) tells us that, since z" tends to z in rough
path sense,

�" ! �z in �

so that, by continuity of F (more precisely: uniform continuity on compacts), we easily deduce that

F " ! F z locally uniformly.

From the method of semi-relaxed limits (Lemma 6.1 and Remarks 6.2, 6.3 and 6.4 in [7], see also
[8]) the pointwise (relaxed) limits

�v : = lim sup � v";

v : = lim inf � v
";

are viscosity (sub resp. super) solutions to @t � F z = 0; with identical initial data. As the latter
equation satis�es comparison, one has trivially uniqueness and hence v := �v = v is the unique (and
continuous, since �v; v are respectively upper resp. lower semi-continuous) solution to

@tv = F zv ; v (0; �) = u0 (�) :

Moreover, using a simple Dini-type argument (e.g. [7, p.35]) one sees that this limit must be uniform
on compacts. It follows that v is the unique solution to

@tv = F zv ; v (0; �) = u0 (�)

(hence does not depend on the approximating sequence to z) and the proof of (i) is �nished by
setting

uz (t; x) := v
�
t; (�zt )

�1
(x)
�
:

(ii) The comparison juz � ûzj
1;[0;T ]�Rn � ju0 � û0j1;Rn is a simple consequence of comparison for

v; v̂ (solutions to @tv = F zv). At last, to see (iii), we argue in the very same way as in (i), starting
with

F zn ! F z locally uniformly

to see that vn ! v locally uniformly, i.e. uniformly on compacts. �
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3. Applications to stochastic partial differential equations

Applications to SPDEs are path-by-path, i.e. by taking z to be a typical realization of Brownian
motion and Lévy�s area, B (!) � (B;A), also known as enhanced Brownian motion or Brownian
rough path. The continuity property (iii) of our theorem 1 easily allows to identify (1.5) with
z = B (!) as Stratonovich solution to the non-linear SPDE

du = F
�
t; x;Du;D2u

�
dt+Du (t; x) � V (x) � dB; u (0; �) = u0:

Let us mention some typical applications.
(Approximation results) Any approximation result to B in rough path topology implies a

corresponding (weak or strong) limit theorem for such SPDEs: it su¢ces that an approximation
to B converges in rough path topology; as is well known (e.g. [14, Chapter 13] and the references
therein) examples include piecewise linear -, molli�er - and Karhunen-Loeve approximations, as
well as (weak) Donsker type random walk approximations [2]. A slightly more interesting example
is the following10.

Theorem 2. Let V = (V1; : : : ; Vd) be a collection of C
1-bounded vector �elds on Rn and B

a d-dimensional standard Brownian motion. Then, for every � = (�1; : : : ; �N ) 2 f1; : : : ; dg
N
,

N � 2, there exists (piecewise) smooth approximations
�
zk
�
to B, with each zk only dependent on�

B (t) : t 2 Dk
	
where

�
Dk
�
is a sequence of dissections of [0; T ] with mesh tending to zero, such

that almost surely

zk ! B uniformly on [0; T ] ;

but uk, solutions to

duk = F
�
t; x;Duk; D2uk

�
dt+Duk (t; x) � V (x) dzk; uk (0; �) = u0 2 BUC(R

n) ;

(with assumptions on F as formulated in theorem 1) converge almost surely locally uniformly to the
solution of the "wrong" di¤erential equation

du =
�
F
�
t; x;Du;D2u

�
+Du (t; x) � V� (x)

�
dt+Du (t; x) � V (x) � dB

where V� is the bracket-vector �eld given by V� =
�
V�1 ;

�
Va2 ; : : :

�
V�N�1

; V�N
���
.

Proof. The rough path regularity of B (!) implies that higher iterated (Stratonvich) integrals are
deterministically de�ned; see [25, First thm.]. Doing this up to level N yields a (rough path) SN (B)
and we perturbe it in the highest level, linearly in the

�
e�1 ;

�
ea2 ; : : :

�
e�N�1

; e�N
���
-direction

of SN (B) viewed as element in the step-N free nilpotent Lie algebra. This yields a (level-N)

rough path ~B and we can �nd approximations
�
zk
�
that converge almost surely to ~B in rough path

topology (see [10]). One identi�es standard RDEs driven by ~B as RDEs-with-drift (driven along
the original vector �elds by dB, and along V� by dt). The resulting identi�cation obviously holds
on the level of RDE �ows and thus

uz
k

(t; x) = v

�
t;
�
�z

k

t

��1
(x)

�
! u

~B (t; x) = v

�
t;
�
�
~B

t

��1
(x)

�

10The following theorem also holds when the Stratonovich di¤erential �dB is replaced by dz for some z 2

C1
�
[0; T ] ;Rd

�
; it can then be viewed as a non-trivial assertion about the behaviour of non-linear parabolic equations

with coe¢cients that exhibit highly oscillatory behaviour in time.
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The �ow identi�cation then implies that

du = F
�
t; x;Du;D2u

�
dt+Du (t; x) � V (x) d~B

is equivalent to the equation with V (x) d~B replaced by V (x) dB+V� (x) dt. �

(Support results) In conjunction with known support properties of B (e.g. [20] in p-variation
rough path topology or [9] for a conditional statement in Hölder rough path topology) continuity
of the SPDE solution as a function of B immediately implies Stroock�Varadhan type support
descriptions for such SPDEs. Let us note that, to the best of our knowledge, results of this type
are new for such non-linear SPDEs and may be hard to obtain without rough path technology; in
the linear case, approximations and support of SPDEs have been studied in great detail [19, 18, 16,
15, 17].
(Large deviation results) Another application of our continuity result is the ability to obtain

large deviation estimates when B is replaced by "B with " ! 0; indeed, given the known large
deiviation behaviour of

�
"B; "2A

�
in rough path topology (e.g. [20] in p-variation and [11] in

Hölder rough path topology) it su¢ces to recall that large deviation principles are stable under
continuous maps. Again, large deviation estimates for non-linear SPDEs in the small noise limit
appear to be new and may be hard to obtain without rough paths theory.
(SPDEs with non-Brownian noise) Yet another bene�t of our approach is the ability to deal
with SPDEs with non-Brownian and even non-semimartingale noise. For instance, one can take
z as (the rough path lift of) fractional Brownian motion with Hurst parameter 1=4 < H < 1=2 ,
cf. [6] or [13], a regime which is "rougher" than Brownian and notoriously di¢cult to handle; or a
di¤usion with uniformly elliptic generator in divergence form with measurable coe¢cients; see [12].
Much of the above (approximations, support, large deviation) results also extend, as is clear from
the respective results in the above-cited literature.
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