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Abstract

Finding the shortest paths for packets from sources to destinations in packet-switched com-

munication networks is an inevitable problem in building a future high-speed information

society. A routing method with memory information has already been proposed to alleviate

the congestion of large volumes of packet flow. This routing method shows a high transmis-

sion completion rate even for large volumes of packet flows in communication networks with

scale-free properties. However, the method exhibits poor performance for networks with

local triangular connections and long distances between nodes. To overcome these prob-

lems, in this study, we first enhanced the routing performance of the conventional communi-

cation network models by using the betweenness centrality of nodes, which is one of the

network centralities that measures the number of shortest paths that pass through each

node in the networks. Subsequently, we adaptively changed the transmitting paths of pack-

ets by using only local information. Numerical simulations indicated that our routing method

performs successfully for various topologies of communication networks by avoiding the

congested node, and effectively using the memory information.

Introduction

The recent significant development of communication technologies, such as the Internet of

Things, various applications using cloud communication, and the fifth generation communi-

cation will result in a huge amount of traffic to the packet-switched communication networks.

The shortest path routing (SP) method is commonly employed as a routing method in real

communication networks. This method successfully handles the transmission of small vol-

umes of traffic flows in the communication networks from their sources to destinations.

However, for large traffic volumes, the transmission of data to their destinations is hindered

because of existing scale-free (SF) properties in real communication networks [1]; the packets

are easily congested at routers, where many transmitting paths go through. One of the solu-

tions to avoid traffic congestion is to rewire the physical connections between any hosts or

routers. However, this requires huge costs. The second solution is to implement a sophisticated
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routing method that effectively diversifies the transmitting routes for packets depending on

the traffic volumes and the underlying topologies in the communication networks.

Considering the conventional routing methods that aim to address data transmission in

high-traffic communication networks, Echenique et al. [2] proposed a routing method that

employs distance information and the number of stored packets at nodes. Ling et al. [3] pro-

posed a global dynamic routing that uses stored information of packets in the entire communi-

cation network. Tang et al. [4] proposed a self-adjusting traffic awareness protocol that utilizes

the connectivity of communication networks and the stored information of packets. Wang

et al. [5, 6] analyzed the traffic dynamics of communication networks with SF properties and

proposed a routing algorithm that integrates the local static and dynamic information. Yang

et al. [7, 8] proposed an effective routing method for mobile networks. Gao et al. [9] employed

weights between nodes that dynamically change based on the connectivity of the network and

stored information of packets. Echagüe et al. [10, 11] proposed a routing algorithm that

dynamically changes the distance between nodes using congestion parameters based on the

number of packets that arrive at the nodes. Lin et al. [12] proposed a routing strategy with a

restrictive queue length algorithm, which reduces the load of the hub nodes in the networks.

Zhang et al. [13] proposed the routing strategy in which each packet at a node has a different

level of priority for the next transmitting node. Horiguchi et al. [14] proposed a routing strat-

egy by using the Hopfield and Tank typed mutually connected neural networks, and this

method was further improved by reinforcement of a learning strategy [15] and incorporation

of the stochastic effect [16]. Recently, Hou et al. proposed QoS routing algorithms based on

the particle swarm optimization [17] and the ant colony optimization [18] for different types

of services in named data networking, which are the next generation of network architectures.

The above-mentioned routing methods [2, 9–11, 14–16] require real-time information such as

the number of stored packets at adjacent (or connected) nodes to determine the next transmit-

ting node. However, such information cannot always and instantaneously be obtained in real

networks. Therefore, a routing method that avoids packet congestion using only local informa-

tion is required.

From this viewpoint, a routing method that autonomously diversifies packet transmissions

using chaotic neurodynamics has been proposed [19, 20]. An advantage of using chaotic neu-

rodynamics is the refractory effect, which inhibits the firing of neurons for a certain period of

time [21]. By using this functionality, the solution methods with the chaotic neurodynamics

were applied to various types of combinatorial optimization problems [22]. In the routing

method using the chaotic neurodynamics, the refractory effect works to memorize the histo-

ries of packet transmissions at each node. Further, a routing method using memory informa-

tion, which reinforces the packet memorizing functionality in chaotic neural networks, has

already been proposed [23]. According to the hop distance information and memory informa-

tion, this routing method [23] avoids the congestion of packets and maintains a high transmis-

sion completion rate of packets for the communication networks with SF properties. In

addition, the effectiveness of the memory information is clarified by using the method of sur-

rogate data [24], which is a statistical hypothesis testing used in the research field of nonlinear

time-series analysis [25]. However, the routing method using memory information showed

poor performance for networks with highly clustered and long distances between nodes [24].

In this work, we incorporated two strategies to improve the routing method using memory

information [23, 24]. First, we reformed the conventional communication network models

[26] by changing the number of transmissions of packets and buffer sizes at each node based

on node betweenness centrality, which is one of the network centralities that measures the

number of shortest paths that pass through nodes in the networks [27]. Second, we enhanced

the performance of the routing method [24] by adaptively adjusting the weight of memory
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information at each node based on the transmitting probabilities. Numerical experiments indi-

cated that our proposed routing method that adaptively adjusted the weights of the memory

information worked well both for communication networks with SF properties and also highly

clustered networks with long node distances.

Communication network models

This study used communication network models represented by an unweighted and undi-

rected graph U = (V, E), where V is a set of nodes, and E is a set of edges [2, 4, 9–11, 20, 24, 28,

29]. In the communication network model, each node represents a host and a router, and each

edge represents a connection between the nodes. A packet is generated at a randomly selected

node (source), and a randomly selected destination different from the source is assigned. Each

node has a buffer for storing packets. If a packet is generated at a node, it is stored at the tail of

the buffer of the node. A packet is removed from the network if it is transmitted to a node with

a full volume of the packets in its buffer or in case the packet arrives at its destination. All pack-

ets are transmitted according to the first-in-first-out principle.

We first enhanced the routing performance of communication network models proposed in

Ref. [26] by improving the number of transmissions of packets and buffer sizes at each node.

To show that the conventional communication network models [23, 24, 26] have poor packet

routing abilities, we first displayed relationships between degree and node betweenness centrali-

ties of networks and the number of existing packets by using the shortest path (SP) method. The

SP method transmits packets from sources to destinations using uniquely determined shortest

paths. In this work, if multiple adjacent nodes have the same shortest hop distance to the desig-

nations, we assigned an adjacent node that has the youngest index as the transmitting node of

packets. The shortest paths for all pairs of nodes are preliminarily obtained once the networks

were constructed using the shortest path algorithm, such as the Dijkstra algorithm [30].

In Ref [26], the storage performance of node i that corresponds to the buffer sizes at each

node, Bi, is defined by:

Bi ¼ bki; ð1Þ

where β> 0 is a control parameter and ki is the degree of node i, which corresponds to the

number of edges of a node. By using Eq (1), each node has space for storing packets, which is

proportional to its degree. Next, the transmission performance of node i that corresponds to

the number of transmissions of packet at each node, Ci, is defined as:

Ci ¼ 1þ bgki þ 0:5c; ð2Þ

where γ> 0 is a control parameter and b�c expresses the floor function. By using Eq (2), the

node that has a large degree transmits many packets to its adjacent (connected) nodes during

one iteration. In this work, one iteration is defined as a period for each node to transmit the

first Ci, 8i 2 V packets to the adjacent nodes.

Next, we evaluated the SP method for the conventional and improved communication net-

work models. In all the numerical experiments, we set the number of iterations, denoted by I,
as I = 103. In addition, we set β and γ to 103 and 0.4, respectively, based on conventional studies

[23, 24]. We also generated R packets at each iteration.

We generated SF networks, small-world networks, and networks with both scale-free and

small-world properties by using the Barabási and Albert (BA) [1], the Watts and Strogatz (WS)

[31], and the Klemm and Eguı́luz (KE) [32] models, respectively. The BA model [1] was con-

structed using the following procedure. We started with a complete graph of m nodes, and

inserted a new node with m edges at every time step. Next, we connected the m edges of the
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newly added node to the nodes that already existed in the network with probability

PðkiÞ ¼ kðtÞi =
PjVðtÞj

m¼1
kðtÞm , where kðtÞi is the degree of node i (i = 1, . . ., |V(t)|) at time t, V(t) is a set

of indices of pre-existing nodes in a network at time t, and |�| denotes the number of elements

in a set.

For the WS model [31], we started from a circular regular network with eight degrees in

each node. Next, we randomly rewired each edge with a probability rp (0� rp� 1) so that the

networks were strongly connected. This construction allowed us to adjust the network

between the regular network (rp = 0), small-world network (0 < rp< 1), and the fully random-

ized network (rp = 1).

The KE model [32] was constructed following a procedure similar to that for the BA model.

In this model, each node had either an activated or a deactivated state, and we set a newly

added node with m edges to an activated state. We started with a complete graph of m nodes

with activated states. The m edges of the newly added node were connected to the following

criteria; (i) m edges connect to the activated nodes, (ii) m edges connect to the existing nodes,

including both activated and deactivated nodes using the preferential attachment whose proba-

bility was the same as that used to construct the BA model. The criterion (i) is selected with the

probability μ(0� μ� 1), and (ii) is selected with probability 1 − μ [32]. Next, one of the acti-

vated nodes was deactivated. The probability of choosing node i for deactivation is inversely

proportional to its degree. In this study, the number of edges at each node for the regular net-

works (rp = 0) of the WS model was set to 8, and m of the BA and KE models was set to 4.

Next, we normalized the node betweenness centrality, degree centrality, and the number of

existing packets. To calculate the normalized node betweenness and normalized degree cen-

tralities, we first measured the node betweenness centrality of node i, χi, and degree centrality

of node i, fi. Those are defined as follows:

wi ¼

XjVj

is¼1;is 6¼i

Xis � 1

it¼1;it 6¼i

gðis ;itÞi

Nis;it

ðjVj � 1ÞðjV � 2jÞ=2
; i 2 V;

ð3Þ

fi ¼
ki

PjVj
j¼1

kj
; i 2 V; ð4Þ

where gðis ;itÞi is the number of shortest paths from node is to it that pass through node i, Nis ;it
is

the total number of shortest paths from node is to it, and ki is the degree of node i. The node

betweenness centrality measures how often a node is on the shortest paths between any pairs

of nodes in the networks, and the degree centrality measures the number of edges attached to

the nodes. Next, we prepared vectors whose elements were the node betweenness and the

degree centralities of nodes defined by X ¼ ðw1; . . . ; wjVjÞ
⊺

and F ¼ ðf1; . . . ; fjVjÞ
⊺
, respectively.

We then created a normalized vector by X/||X|| and F/||F||, where k � k denotes the Euclidean

norm of a vector. To obtain normalized the number of existing packets, we counted the num-

ber of stored packets of node i during the simulation as Qi ¼
PI

t¼1
qiðtÞ, where qi(t) is the

number of stored packets of the node i at the iteration t, and calculated the number of existing

packet vectors as Q ¼ ðQ1; . . . ;QjVjÞ
⊺
. Q was then normalized by Q/||Q||.

Fig 1 shows scatter plots between the normalized degree centrality and normalized the

number of existing packets (upper figures) and scatter plots between the normalized node

betweenness centrality and normalized the number of existing packets (lower figures) for the

BA, WS, and KE models. Not surprisingly, in Fig 1(d)–1(f), the normalized node betweenness
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Fig 1. Upper figures: scatter plots of the normalized degree centrality of networks and normalized the number of existing

packets generated by the SP method for the (a) BA, (b) WS, and (c) KE models. Lower figures: scatter plots of the normalized

betweenness centrality of networks and normalized the number of existing packets generated by the SP method for the (d) BA,

(e) WS, and (f) KE models. Black lines in all figures represent f(x) = x.

https://doi.org/10.1371/journal.pone.0283472.g001
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centrality and normalized the number of existing packets exhibit a stronger correlation than

that of the normalized degree centrality (Fig 1(a)–1(c)), particularly in the KE model (Fig 1(c)

and 1(f)). These results strongly suggest that Bi and Ci are defined based on the node between-

ness centrality [27]. Thus, we modified the conventional packet transmission and storage per-

formance of node i, expressed by ~Bi;
~Ci; 8i 2 V as follows:

~Bi ¼
~Bmin þ Ball

~bi; ð5Þ

~Ci ¼
~Cmin þ bCall

~bi þ 0:5c; ð6Þ

where ~bi is the normalized node betweenness centrality of node i defined by ~bi ¼ bi=
PjVj

j¼1
bj,

and bi is the node betweenness centrality of node i. Ball and Call are control parameters that

adjust
PjVj

i¼1
Bi �

PjVj
i¼1

~Bi and
PjVj

i¼1
Ci �

PjVj
i¼1

~Ci and are defined by Ball ¼
PjVj

i¼1
ðBi � BminÞ �

0 and Call ¼
PjVj

i¼1
ðCi � CminÞ � 0, respectively. ~Bmin and ~Cmin guarantee that the node i has

~Bmin and ~Cmin at the minimum. We set Bmin and Cmin to 7 for all numerical simulations.

In sequence, we evaluated the transmission completion rate of packets for the conventional

and improved communication network models. The transmission completion rate of packets

is described as follows:

1. Transmission completion rate of packets A:

A ¼
1

RI

XI

t¼1

aðtÞ; ð7Þ

where a(t) is the number of packets that arrive at the destination at the tth iteration. If A is

1, all the packets are successfully transmitted to their destinations.

Fig 2 shows the transmission completion rate of packets (A) defined by Eq (7) by the SP

method for the conventional and improved transmission and storage performance of nodes.

In these experiments, we constructed 30 different networks for every BA, WS, and KE model

and averaged the results. These results indicated that the SP method maintained a higher A for

the improved communication network in all the topologies of networks. From these results,

we hereafter used the packet transmission and storage performance of nodes defined by Eqs

(5) and (6) for later numerical experiments.

Routing method using memory information

As our proposed routing method improves the conventional routing method using memory

information [23, 24], we first describe this routing method and evaluate it for improved com-

munication network models. To implement the routing method using memory information

(hereafter referred to as the memory method), we first define the distance information, ξij, as

follows:

xij ¼
dij þ djgðpiÞX

s2@i

ðdis þ dsgðpiÞ
Þ ¼

1þ djgðpiÞX

s2@i

ð1þ dsgðpiÞ
Þ
; i 2 V; j 2 @ i; ð8Þ

where dij is the static shortest hop distance between the node i and its adjacent node j, πi is a

packet ready to be transmitted from node i, g(πi) is the destination node of πi, djg(πi) is the static

shortest hop distance from the adjacent node j to g(πi), and @i is the set of adjacent nodes of
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node i. The SP method is realized by using the distance information only; node i transmits a

packet to its adjacent node j with the minimum value of ξij, namely minj2@i
xij.

Next, the memory information, zij,τ, is defined as follows:

zij;t ¼ a
Xt

s¼0

gsxijðt � sÞ ¼ axijðtÞ þ gzij;t� 1; i 2 V; j 2 @ i; 1 � t � oij ð9Þ

where α> 0 is a control parameter determining the strength of the memory information, γ(0

< γ� 1) is a decay parameter of the memory information, ωij is the total number of transmis-

sions of packets from node i to j, and xij(τ) is a memorizing variable of transmission from

Fig 2. Relationship between the number of generating packets at each iteration (R) of the SP method and the transmission completion rate of packets (A) defined

by Eq (7) for the (a) BA, (b) WS, and (c) KE models. In these figures, the “degree” and “betweenness” in the figure legends express that the packet transmission and

storage performance are composed of the node degree and node betweenness centralities, respectively. In these figures, the standard deviation of each method is plotted

as error bars.

https://doi.org/10.1371/journal.pone.0283472.g002
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node i to j at the τth packet transmission defined as follows:

xijðtÞ ¼
1 ðif a node i transmits a packet to the node j at the tth packet transmissionÞ;

0 ðotherwiseÞ:

(

ð10Þ

Using the distance and memory information, we defined an evaluating function to deter-

mine the transmission of a packet from node i to its adjacent node j as follows:

min
j2@i

yij;t; i 2 V; 1 � t � oij; ð11Þ

where yij,τ = ξij + zij,τ, and @i� V is a set of adjacent nodes of node i.
In this method, the value of zij,τ increases if node i frequently transmits the packets to the

adjacent node j. Therefore, node i avoids to transmit the next packet to the adjacent node j for

a while because the smallest value of yij,τ in Eq (11) is determined as the next transmitting

node. Thus, the memory information memorizes the past transmitting history at each node.

Moreover, this method does not require additional information on the adjacent nodes, such as

the number of stored packets, to diversify transmitting routes for packets.

We compared the transmission completion rate of packets by the memory, SP, random SP
(SPr) methods, and the routing method by using the distance and packet stored distribution

proposed in [2] for the networks generated from the BA, WS, and KE models. The SP method

transmits a packet using uniquely determined shortest paths. In this work, we fixed indices of

nodes after constructing a network. A node in the SP method transmits a packet to its adjacent

node with the youngest index when multiple adjacent nodes satisfy min
j2@i

xij. Moreover, a node

in the SPr method randomly transmits a packet to one of its adjacent nodes with the smallest

value of ξij. The routing method [2] determines the transmitting nodes of packets using the fol-

lowing equation:

OijðtÞ ¼ cðdij þ djgðpiÞ
Þ þ ð1 � cÞqjðtÞ; i 2 V; j 2 @ i; ð12Þ

where qj(t) is the number of stored packets in the adjacent node j at the tth iteration, and ψ(0

< ψ< 1) is a tunable parameter that determines the strength of the first and second terms. In

the right-hand side of Eq (12), the first term is the shortest hop distance for the packet from

node i to the destination of the packet through the adjacent node j, and the second term is the

number of stored packets in the adjacent node j. In this method, the node i transmits a packet

to its adjacent node j that has the smallest value of Oij(t). Our preliminary numerical experi-

ments show that the performance of the routing method [2] is rapidly degraded if R becomes

large because the values of ranges between the first and second terms are too different (see S1

Fig in S1 File for details); Eq (12) is dominated by the second term because dij þ djgðpiÞ � qjðtÞ
if R increases enough. To overcome this problem, we modified Eq (12) as follows:

O
0

ijðtÞ ¼ c
h dij þ djgðpiÞP

s2@i
ðdis þ dsgðpiÞ

Þ

i
þ ð1 � cÞ

qjðtÞ
P

s2@i
qsðtÞ

; i 2 V; j 2 @ i: ð13Þ

We preliminarily conducted the numerical simulations to determine ψ for this routing

method, and ψ was set to 0.9. Hereafter, we call the routing method using Eq (13) the efficient
routing(ER) method.

In these numerical experiments, we set the number of iterations to I = 103. In the memory

method, we set α and γ in Eq (9) to 0.01 and 0.99 [24], respectively. We constructed 30 differ-

ent networks for every BA, WS, and KE model and averaged the results.
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Fig 3 illustrates the transmission completion rate of packets (A) by the SP, SPr, ER, and

memory methods for the (a) BA, (b) WS, and (c) KE models as the number of generating pack-

ets (R) increased. In Fig 3(a) and 3(b), all the routing methods keep 100% of A if R is a small

value. In addition, the value of R at which A decreased from 100% by the memory method is

more significant than those of the SP and SPr methods for the BA and WS models. However,

the memory method shows the lowest A in the KE model (Fig 3(c)). Although the memory

method used the information of the transmitting node such as the distance and memory infor-

mation, the ER method used information of both the transmitting and adjacent nodes such as

the distance and the number of stored packets at adjacent nodes for each transmission of a

packet. The ER method then retains the highest A value for all the network models. One of the

reasons why the memory method shows poor performance for the KE model is triangular con-

nections in the networks. For example, if nodes a, b, and c had a triangular connection, these

nodes are mutually connected to each other. In this case, a packet starting from a is transmit-

ted to c by using the following two paths; (i) the packet is directly transmitted to c, and (ii) the

packet is first transmitted to b and next transmitted to c. The second path might be an

Fig 3. Relationship between the number of generating packets at each iteration (R) and transmission completion rate of packets (A) by the SP, SPr, ER, and

memory methods for the (a) BA, (b) WS, and (c) KE models. In these figures, the standard deviation of each method is plotted as error bars.

https://doi.org/10.1371/journal.pone.0283472.g003
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unnecessary detour depending on the distribution of stored packets. The SP and SPr methods

transmit the packets using the first path because these methods only consider the shortest dis-

tance. However, the memory method detours packets using the memory information obtained

by the transmitting node. Thus, the packet might be unnecessarily detoured even if the packet

should be transmitted directly to node c because of the unsuitable strength of the memory

information. The performance of the memory method for the KE model was then degraded.

To clarify how many networks have triangular connections and how far apart are the nodes

in the networks, we next measured the clustering coefficient (�l) and the average shortest hop

distance between nodes (�k) [31]. The clustering coefficient (�l) is defined as follows:

�l ¼
1

jVj

X

i2V

li; ð14Þ

li ¼
2

kiðki � 1Þ

X

j2V

X

s2V

aijajsasi; i 2 V; ð15Þ

aij ¼
1 ðif node i and j are connectedÞ;

0 ðotherwiseÞ:

(

ð16Þ

In Eq (15), aijajsasi = 1 if the nodes i, j, and s are triangularly connected. Namely, Eq (15)

averaged the number of triangular connections among the nodes i, j, and s. Therefore, the clus-

tering coefficient (�l) in Eq (14) measured an average ratio of triangular connections in the net-

works. If �l increases, the network has many triangular connections. The average shortest hop

distance between nodes (�k) is defined as follows:

�k ¼
1

jVjðjVj � 1Þ

X

i2V

X

j2V;i6¼j

dij: ð17Þ

If �k takes large values, the networks have long hop distances between nodes.

Table 1 shows the clustering coefficients (�l) and the average shortest hop distance between

nodes (�k) averaged over 30 different networks generated by the BA, WS, and KE models. In

Table 1, the KE model has the largest �l among all the models. In addition, the KE model has

larger �k than those of the BA and WS models. From Fig 3 and Table 1, the memory method

results in low A values for the networks with many triangular connections and long distances

between nodes. If the network has large �k, the packets need many hops to be transmitted to

the destinations. Thus, the point where the value of A starts decreasing from 100% of the mem-

ory method for the KE model is lower than that for the SF and WS models because �k of the KE

model is larger than the other models. Additionally, the performance of the memory method

for the KE model is further degraded because of its triangular connections.

Table 1. �λ and �κ for the BA, WS, and KE models. In these simulations, we constructed 30 different networks for each

model, and averaged the results.

BA WS (rp = 0.7) KE (μ = 0.2)

�l 0.0941 0.038 0.491

�k 2.741 2.373 3.423

https://doi.org/10.1371/journal.pone.0283472.t001
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Routing method that adaptively adjusts the weight of memory

information

From the results in previous section, the memory method showed a low transmission comple-

tion rate of packets for the KE model. To improve this method, we first investigate transmit-

ting probabilities between any connected nodes. The transmitting probability of packets from

node i and its adjacent node j, pij(I), is defined as:

pijðIÞ ¼

XI

t¼1

lijðtÞ

XI

t¼1

X

s2@i

lisðtÞ
; i 2 V; j 2 @ i; ð18Þ

where lij(t) is the total number of packet transmissions from node i to its adjacent node j at

iteration t.
Fig 4 illustrates the transmitting probabilities of the typical four edges by the memory

method for the BA model. In these simulations, we randomly selected four typical edges from

different nodes in the networks. Although transmitting probabilities converged to different

values, each probability showed almost a constant value as the iterations progressed. These

results lead to the following assumption: even if we incorporate the fixed transmitting proba-

bilities into the memory information, instead of Eq (8), the routing method would show a sim-

ilar performance as that of the memory method. To confirm this, we modified the memory

information zij,τ by using the transmitting probabilities. The modified memory information,

z
0

ij;t, is defined as follows:

z
0

ij;t ¼

a
Pt

s¼0
gsxijðt � sÞ; ðt � LÞ;

ðkmax þ kminÞ

2jVj
pijðLÞ;

ðL < tÞ;

8
><

>:
ð19Þ

where L is a period of iterations for calculating the transmitting probability, and kmin and kmax

are the minimum and maximum degrees in the networks, respectively. A coefficient (kmax +

kmin)/(2|V|) expresses a median of the degree and balances the weight of modified memory

information. We heuristically found this weight in preliminary numerical simulations. In Eq

(19), pij(L), defined in Eq (18), is calculated when the iteration t is L. Further, we defined an

Fig 4. Typical examples of transmitting probabilities of four selected edges by the memory method for the BA

model. In these simulations, we randomly selected four typical edges from different nodes in the networks. In this

figure, “high-high,” “high-low,” “low-high,” and “low-low” are transmitting probabilities that connect high-degree

nodes, high and low-degree nodes, low and high-degree nodes, and low-degree nodes, respectively.

https://doi.org/10.1371/journal.pone.0283472.g004
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evaluation function for this routing method as follows:

min
j2@i

y0ij;t; i 2 V; 1 � t � oij; ð20Þ

where y0ij;t ¼ xij þ z
0

ij;t.

Eqs (8), (10), (18), (19) and (20) compose the memory method with fixed transmitting

probabilities (hereafter, we call this method memory-pfix. The memory-pfix method transmits

the packets using the static paths determined by the distance and modified memory informa-

tion. These paths might be better than the shortest paths by using the SP and SPr methods. We

then compared the transmission completion rate of packets of the original memory method

[24] with the memory-pfix method.

Fig 5 shows the transmission completion rate of packets (A) by the original memory and

memory-pfix methods for the BA, WS, and KE models. We constructed 30 different networks

generated by the BA, WS, and KE models and averaged the results. We used different periods

Fig 5. Relationship between the number of generating packets at each iteration (R) and a transmission completion rate of packets (A) by the original memory

method and the memory-pfix method for the (a) BA, (b) WS, and (c) KE models. The numbers in the parentheses in the memory-pfix method indicate the periods of

iterations for calculating the transmitting probability (L). In these figures, the standard deviation of each method is plotted as the error bars.

https://doi.org/10.1371/journal.pone.0283472.g005
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of iterations for calculating the transmitting probability (L) and evaluated the method. The

numbers in parentheses in the figure legends denote the L values. In Fig 5, the memory-pfix

method showed higher A values compared to those of the original memory method for all the

models.

Fig 6 shows the maximum value of R, where A in Eq (7) is lower than or equal to 0.9 in the

memory-pfix method (η) as a function of a period of iterations for calculating the transmitting

probability (L) in Eq (19) for the BA, WS, and KE models. We constructed 30 networks for

each model and calculated the averaged value of η. In these figures, the values of η are high

when L> 10 for BA model (Fig 6(a)), 60< L< 110 for WS model (Fig 6(b)), and 10 <

L< 100 for KE model (Fig 6(c)).

Fig 6. Relationship between a period of iterations for calculating the transmitting probability (L) in Eq (19) and the maximum value of R, where A in Eq (7) is

lower than or equal to 0.9 of the memory-pfix method (η) for the (a) BA, (b) WS, and (c) KE models.

https://doi.org/10.1371/journal.pone.0283472.g006
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One of the strategies to further enhance routing performance is to adjust pij(L) depending

on the states of adjacent nodes. To realize this, we changed z
0

ij;t in Eq (19) as follows:

�ij;tðtÞ ¼
a
Pt

s¼0
gsxijðt � sÞ; ðt � LÞ;

~pijðtÞ; ðL < tÞ;

8
<

:
ð21Þ

where

~pijðtÞ ¼
p0ijðtÞX

s2@i

p0isðtÞ
;

ð22Þ

p0ijðtÞ ¼

ðkmax þ kminÞ

2jVj
p0ijðt � 1Þ; ðif qjðtÞ=~Cj < yÞ;

ffiffiffiffiffiffiffiffi
kj
kmax

s

; ðotherwiseÞ;

8
>>>>><

>>>>>:

ð23Þ

where we defined p0ijðLÞ ¼ pijðLÞ. In Eq (23), qj(t) is the number of stored packets of node j at

the tth iteration, ~Cj is the modified transmission performance defined by Eq (6), and θ is a

threshold value that determines whether the adjacent node j is congested. Eq (22) works to

change the probability of transmitting packets to each of the adjacent nodes adaptively; when

the number of stored packets in each adjacent node occupied over 100 × θ% of its buffer size,

p0ijðtÞ is recalculated by Eqs (22) and (23), thereby changing transmitting probabilities so that

the packets can be transmitted to adjacent nodes with plenty of free space in their buffer after

the iteration passes L in Eq (21). We defined that a node is in the free-flow state when

qjðtÞ=~Cj < y and in the congested state when qjðtÞ=~Cj � y. If the adjacent node is congested,

the weight of memory information is set to
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
kj=kmax

q
.

In the networks, the nodes that transmit a large number of packets are divided into the fol-

lowing two types; (i) a node that has a small degree but has a large node betweenness centrali-

ties, and (ii) a node that has both a large degree and node betweenness centralities. We call the

second type of node a hub node. If the first type of node is congested, the transmissions of

packets to this node can be avoided by changing ~pijðtÞ in Eq (23) to
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
kj=kmax

q
. However, our

method continues to transmit the packets to the hub nodes even if these nodes are congested

because if the hub nodes are congested, its ~pijðtÞ becomes
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
kj=kmax

q
’ 1, and this achieves

fðkmax þ kminÞ=ð2jVjÞgp0ijðt � 1Þ <
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
kj=kmax

q
. This implies that our method continues to use

the hub node for transmitting packets independent of the amounts of packets in the networks

because the hub nodes have high storage and transmission performance for routing the pack-

ets. In addition, our method tries to avoid the transmissions of the packets to the nodes that

have small degree and large betweenness centralities. We expect that this strategy for avoiding

the congestion of packets is effective for routing the packets in the networks.
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Moreover, we redefined an evaluation function for our proposed method as follows:

min
j2@i

zij;tðtÞ; i 2 V; 1 � t � oij; ð24Þ

where zij,τ(t) = ξij + ϕij,τ(t).
By using Eqs (8), (10), (21), (23) and (24), we finally propose a routing method that auto-

matically adjusts the weight of memory information based on the memorized routing history.

In our method, recalculations of distance information are not necessary once the networks are

constructed. In addition, our method locally and less frequently exchanges information

between the connected nodes; a node transmits a signal (0 or 1) to its adjacent nodes only if

the node is congested (see S2 File for details). Hereafter, we call our proposed method mem-
ory-pauto.

Before starting the routing of packets, we prepared the routing tables at each node by calcu-

lating the shortest hop distance between any pairs of nodes. Because the SP method transmits

the packets using the fixed transmitting paths, the method only refers to an index of the next

adjacent node when routing the packets. The SP method then needs O(1) calculation cost at

each node. However, the SPr method randomly selects an adjacent node if multiple adjacent

nodes have the same shortest hop distance to the destination. If all the adjacent nodes of a

transmitting node have the same shortest hop distances, and this transmitting node has the

maximum degree, defined by kmax, the SPr method needs O(kmax) to determine the next trans-

mitting node in the worst case. The ER method uses information of the shortest hop distances

and the information of stored packets at adjacent nodes. This needs O(ki) at each node. Thus,

the ER method requires O(kmax) to determine the transmitting node in the worst case. The cal-

culation costs by the memory-pauto method change depending on the values of L that deter-

mines the transmitting probabilities defined by Eq (21). When t< L, The memory-pauto uses

the distance information in Eq (8) and modified memory information in Eq (21). At this time,

each node needs O(1) to obtain the memory information between connected pairs of nodes

because Eq (21) is the same as Eq (9). In addition, the calculation costs for obtaining the dis-

tance information are the same as the ones used in the ER method. Namely, each node in the

memory-pauto method requires O(ki) when t< L. When L� t, recalculations of transmitting

probabilities by using Eqs (22) and (23) are required and these calculation costs become O(ki)
at each node. Please note that this recalculation is required only if the state of the node

changes. By summarizing these, in the worst case, the memory-pauto method requires O(kmax)

to determine the next transmitting node. When t = L, the memory-pauto calculates the trans-

mitting probability of every edge by using Eq (22). This requires O(Lki) at each node. However,

this calculation only performed when t = L, and we omitted this from the calculation costs. All

the routing methods require the distance information to transmit the packets. To obtain this

information, we used the Dijkstra algorithm [30]. Generally, the Dijkstra algorithm needs O(|

V|2), but it changes O(|E| + |V| log |V|) using a Fibonacci heap. Other methods such as the

bread-first search or A* algorithm are also applicable to calculate the shortest distance between

any pairs of nodes. However, these algorithms only performed when the networks were con-

structed. Therefore, we omitted this from the calculation costs for each routing method.

Numerical experiments

The routing performance of the memory-pauto method mainly depends on L and θ in Eqs

(21)–(23). L determines the period of iterations for calculating the transmitting probability,

and θ determines whether the node is congested. We first evaluated the performance depen-

dencies by these parameters.
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Fig 7 shows the transmission completion rate (A) by incorporating different θ and L values

to the memory-pauto method. In Fig 7(a), the memory-pauto method maintains the highest A
value if θ equals 1. In Fig 7(b), the memory-pauto method maintains the highest A value if L
equals 10.

Fig 8(a)–8(c) shows the maximum value of R, where A in Eq (7) is less than or equal to 0.9

of the memory-pfix method (η) when increasing the value of threshold (θ) that determines

whether the adjacent nodes are congested. Fig 8(d)–8(f) shows the maximum value of R,

where A in Eq (7) is less than or equal to 0.9 of the memory-pfix method (η) hen increasing

the period of iterations for calculating the transmitting probability (L) in Eq (21). In these sim-

ulations, we set L to 5 in Fig 8(a)–8(c), and θ = 1.0 in Fig 8(d)–8(f). In Fig 8(a)–8(c), the mem-

ory-pauto shows the largest values of η if θ> 0.65 for BA, θ> 0.2 for WS, and θ> 0.75 for KE

models. In Fig 8(d)–8(f), the memory-pauto shows the largest values of η when L� 40 for BA,

2� L� 7 for WS, and L� 40 for KE models.

These results indicate that the memory-pauto method works well if each node holds as

many packets as possible within a range of its modified transmission performance defined by

Eq (6) because the method shows large η values if θ increases. Moreover, the memory-pauto

method needs short periods to determine the transmitting probabilities because η takes large

values if L decreases. Comparing with Fig 6, the memory-pauto method requires short periods

for determining the transmitting probability because p0ijðtÞ in Eq (23) changes depending on

the states of adjacent nodes. Based on Fig 8, we set θ and L of the memory-pauto method to 1.0

and 5 for all the models, respectively.

We next evaluated the routing performance of the memory-pauto method for the BA, WS,

and KE models. These numerical experiments evaluated the transmission completion rate of

packets (A) in Eq (7). We also evaluated the average hop (H) and average arrival time (U) of

arriving packets. The H and U are defined as follows:

1. Average hops of arriving packets H:

H ¼
1

jnj

X

m2n

hm; ð25Þ

Fig 7. Relationships between the number of generating packets at each iteration (R) and a transmission completion rate of packets (A) for different L and θ values

applied for the memory-pauto method. In these figures, the standard deviation of each method is plotted as error bars. In these numerical experiments, we used the BA

model.

https://doi.org/10.1371/journal.pone.0283472.g007
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Fig 8. Relationships between a threshold (θ) that determines whether the adjacent nodes are congested and the maximum value of R, where A� 0.9 (η) of the

memory-pfix method for the (a) BA, (b) WS, and (c) KE models, and relationships between a period of iterations for calculating the transmitting probability (L)

and η for the (d) BA, (e) WS, and (f) KE models. In these simulations, we set L to 5 in (a), (b), and (c), and θ = 1.0 in (d), (e), and (f).

https://doi.org/10.1371/journal.pone.0283472.g008
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where ν is a set of arriving packets, |ν| is the number of elements in ν, and hm is the number

of hops from the source to the destination of packet m.

2. Average arrival time of arriving packets U:

U ¼
1

jnj

X

m2n

um; ð26Þ

where um is the number of iterations required to transmit packet m from the source to the

destination.

In these simulations, we set L in Eq (18) for the memory-pfix to 70 for BA, 100 for WS, and

20 for KE models based on Fig 6. Other experimental conditions were the same as the ones

described in previous sections. We constructed 30 different networks and averaged the results.

Fig 9 shows the transmission completion rate of packets (A) when the number of generating

packets at each iteration (R) increases by the SP, SPr, ER, memory, memory-pfix, and mem-

ory-pauto methods for the BA, WS, and KE models. In Fig 9(a)–9(c), the memory-pauto

Fig 9. Relationships between the number of generating packets at each iteration (R) and a transmission completion rate of packets (A) of the SP, SPr, ER, memory,

memory-pfix, and memory-pauto for the (a) BA, (b) WS, and (c) KE models. In these figures, the standard deviation of each method is plotted as error bars.

https://doi.org/10.1371/journal.pone.0283472.g009
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Fig 10. Relationships between the number of generating packets at each iteration (R) and the average hop of arriving packets (H) of the SP, SPr, ER, memory,

memory-pfix, and memory-pauto methods for the (a) BA, (b) WS, and (c) KE models, and the average arrival times of arriving packets (U) for the (d) BA, (e)

WS, and (f) KE models. In these figures, the standard deviation of each method is plotted as error bars.

https://doi.org/10.1371/journal.pone.0283472.g010
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method maintains a higher A than the SP, SPr, and memory-pfix methods for all the models.

In particular, the maximum value of R, where A starts to decrease from 100%, is improved by

approximately 170% by our proposed method for the BA model compared to the SP method

and 25% compared to the memory method. In addition, the ER and memory-pauto methods

show similar A values for the WS model. We also evaluated these routing methods for BA, WS

and KE models with small degrees (see S3 Fig in S3 File for details).

Fig 10 shows the average arrival hops of arriving packets (H) and their average arrival time

(U) by the SP, SPr, ER, memory, memory-pfix, and memory-pauto methods for the BA, WS,

and KE models. In Fig 10(a)–10(c), the ER and memory-pauto methods show the longer H
value as R increases compared to those for the the SP, SPr, memory, and memory-pfix meth-

ods. Moreover, the values of H for all the routing methods decreases as R increases because

only the packets whose sources and destinations are directly connected arrive at their destina-

tions when R increases enough. In Fig 10(d)–10(f), the memory-pauto exhibited long H, short

U, and high A values. These results demonstrate that the memory-pauto method effectively

Fig 11. Relationships between the number of generating packets at each iteration (R) and the transmission completion rate of arriving packets (A) of the SP, SPr,

memory-pfix, and memory-pauto methods for the WS model with (a) rp = 0, (b) rp = 0.01, (c) rp = 0.5, and (d) rp = 1.0. In these figures, the standard deviation of each

method is plotted as error bars.

https://doi.org/10.1371/journal.pone.0283472.g011
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diversifies the transmitting routes for packets, which increases the hops for the packets to the

destinations.

Moreover, the total iterations of the packets to be transmitted from the sources to destina-

tions are shortened by the effective transmissions. As a result, the proposed method shows the

highest transmission completion rate even for large volumes of traffic flow in the communica-

tion networks.

In the above numerical experiments, we fixed the rewiring probability (rp) for the WS

model to 0.7 and the probability (μ) that adjusts the clustering coefficient for the KE model to

0.2. However, the routing performance changes are based on the topologies of the networks.

Thus, we clarified the performance dependencies against these probabilities.

Fig 11 illustrates the transmission completion rate of packets (A) of SP, SPr, memory, mem-

ory-pfix, and memory-pauto methods for various values of the rewiring probability (rp). In Fig

11, the point where A starts to decrease from 100% by all the methods increases as rp increases.

In addition,A by the memory method is lower than those for the SP and SPr methods when

the rp values are 0 and 0.01. In contrast, the memory-pfix and memory-pauto methods main-

tain the higher A values than the SP and SPr methods for the WS model (Fig 11(c) and 11(d)).

Fig 12 shows a relationship between the clustering coefficient (�l) in Eq (14) and the average

shortest hop distance between nodes (�k) in Eq (17) if we changed the rewiring probability (rp)
for the WS model (Fig 12(a)) and the probability (μ) that adjusts the clustering coefficient for

the KE model (Fig 12(b)). In these simulations, we constructed 30 different networks for each

model and averaged the results. In Fig 12(a), the WS model has large values of �l and �k when rp
is set to 0 and 0.01. In these cases, the networks have many triangular connections and long

distances between the nodes. However, the WS model has the small values of �l and �k when rp
is set to 0.5 and 1. In these networks, the packets need a few hops transmitted to their destina-

tions. In addition, the networks have a small number of triangular connections. The routing

performance of all the methods is then improved as rp increases (Fig 11(c) and 11(d)).

Fig 13 illustrates the average arrival rate of packets (A) for various values of μ in the KE

model. In Fig 13, the memory-pauto method shows the highest A value except for μ = 0. In

addition, the maximum values of R, where A starts to decrease from 100% by the memory-

Fig 12. Relationships between the clustering coefficient (�λ) and the average shortest hop distance between nodes (�κ) if we change (a) the rewiring probability (rp)

for the WS model, and (b) the probability (μ) that adjusts the clustering coefficient for the KE model. In these simulations, we constructed 30 different networks for

each model, and averaged the results.

https://doi.org/10.1371/journal.pone.0283472.g012
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pauto method, increased as μ increased. In Fig 12(b), the KE model shows small values of �l

and �k as μ increases. In addition, the KE model changed to the SF model if μ approached 1.

Because the triangular connections decrease and the networks have short distances when �l

and �k have small values,A values for all the methods are improved (Fig 13(c) and 13(d)). Figs

11 and 13 indicate that the memory-pauto method showed high A values for the networks

with many triangular connections and long distances between nodes.

These results indicate that the memory-pauto method effectively diversifies the routes of

transmitting packets to maintain a high transmission completion rate by adjusting adequate

weights of memory information at each node, depending on the traffic volumes and topologies

of the communication networks.

Fig 13. Relationships between the number of generating packets at each iteration (R) and a transmission completion rate of arriving packets (A) of the SP, SPr,

memory, memory-pfix, and memory-pauto methods for the KE model with (a) μ = 0, (b) μ = 0.2, (c) μ = 0.5, and (d) μ = 1. In these figures, the standard deviation of

each method is plotted as error bars.

https://doi.org/10.1371/journal.pone.0283472.g013
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Conclusion

In this study, we improved the routing performance of the original routing strategy using

memory information by automatically adjusting the weight of memory information based on

states of adjacent nodes. First, we enhanced the routing performance of conventional commu-

nication network models by changing the packet transmission and storage performance based

on their degree and on node betweenness centralities. Using the improved communication

network models, the SP method, which is commonly applied in real communication networks

was significantly improved. We also showed that the memory routing method maintained a

high transmission completion rate compared to the SP method for the improved communica-

tion network models. However, the original memory routing method showed static transmit-

ting probabilities as iteration moved, leading to the degradation of routing performance. Based

on these consequences, we diversified the transmitting nodes of packets by changing weights

of the memory information based on the transmitting probabilities between any connected

nodes. Numerical simulations demonstrated that our proposed routing method improved

transmission completion rate by approximately 170% compared to the SP method, and by

25% compared to the original routing method with the memory information for the commu-

nication networks with SF properties. Furthermore, our method displayed the highest trans-

mission completion rate both for the networks with SF properties and also for those with

highly clustered and with long distances between nodes. In future works, we plan to investigate

the routing performance of our proposed method if the packet generating probability time-

dependently changes depending on the local connectivity of networks.
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