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A RSM METHOD FOR NONLINEAR PROBABILISTIC
ANALYSIS OF THE REINFORCED CONCRETE

STRUCTURE FAILURE
OF A NUCLEAR POWER PLANT – TYPE VVER 440

Juraj Králik*

This paper describes the reliability analysis of a concrete containment for VVER
440 under a high internal overpressure. The probabilistic safety assessment (PSA)
level 3 aims at an assessment of the probability of the concrete structure failure
under the excessive overpressure. The non-linear analysis of the concrete structures
was considered. The uncertainties of the loads level (long-time temperature and
dead loads), the material model (concrete cracking and crushing, behavior of the
reinforcement and liner), degradation effects and other influences following from the
inaccuracy of the calculated model and numerical methods were taken into account
in the response surface method (RSM). The results of the reliability analysis of the
NPP structures are presented.

Keywords : nuclear power plant VVER, probabilistic safety analysis, concrete failure,
RSM, ANSYS

1. Introduction

The International Atomic Energy Agency set up a program to give guidance to its mem-
ber states on many aspects of the safety of nuclear power reactors. In the case of the
analysis PSA 3 level it is necessary to determine the probability of the concrete structure
failure under higher overpressure. The general purpose of the probabilistic analysis of the
containment integrity failure was to define the critical places of the structure elements and
to estimate the structural collapse. In this paper the nonlinear analysis of the concrete
containment resistance for mean values of loads, material properties and the overpressure
higher than Beyond Design Basic Accident (BDBA) are presented. Following these results
the probability check of the structural integrity can be performed for the random value of
the loads and material characteristics by the RSM method [4, 15, 16 and 17].

The object of NPP V1 is rectangular in the plan (Figure 1). There are two critical
structures – the containment (CTMT) and the emergency water safety tank (EWST). The
foundation conditions under the NPP V1 structure are also complicated.

The complicated wall configuration inside the hermetic zone provides more possibilities
for the occurrence of local peak stress along the contact of walls and plates. The computa-
tional FEM model of the NPP V1 structures is presented in Figure 2.

For a complex analysis of the reinforced concrete structure of the hermetic zone for dif-
ferent kinds of loads, the ANSYS software and the CRACK program [12 and 13] (created by
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Fig.1: Containment and emergency tank 800 m3 of NPP V1

Fig.2: Computational model of the NPP building with layered shell elements
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Králik) were provided to solve this task. The building of the power block was idealized with
a discrete model consisting of 26 923 elements with 325 036 DOF. The link finite elements
and the infinite layered space elements developed by the author [16] were used to model
the soil. The link finite elements for the model of the thin soil layer under the power block
building loaded by a steam pressure are accurate enough, and thus create a more realistic
model. Recently the soil under the foundation plate has been consolidated.

The accident scenario was defined by SIEMENS KWU, VÚEZ Tlmače and VÚJE Trnava
within the Phare program and ‘The NPP V1 Reconstruction Project’ [12].

2. Nonlinear solution of concrete cracking and crushing

The probabilistic analysis of the containment integrity failure is based on the nonlinear
analysis of the concrete structures due to the accident of the coolant system and under the
high level of the overpressure into the box of the steam generator.

The theory of large strain and rate independent plasticity were proposed during the high
overpressure loading using the SHELL91 or the SHELL281 layered shell element from the
ANSYS library [10 and 27].

The vector of the deformation parameters {r} of this element (Figure 3) with the corner
nodes ‘1, 2, 3, 4’ and midside nodes ‘5, 6, 7, 8’ is defined in the form

{r} = {r1, r2, r3, r4, r5, r6, r7, r8}T , {ri} = {uxi, uyi, uzi, θxi, θyi}T ∀i = 1, 8 . (1)

The vector of the displacement of the lth shell layer {ul} = {ul
x, u

l
y, u

l
z}T is approximated

by the quadratic polynomial [10] in the form
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⎧⎨
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8∑
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, (2)

where Ni is the shape function for i-node of the 8-node quadrilateral shell element,
uxi, uyi, uzi are the motion of i-node, ζ is the thickness coordinate, ti is the thickness
at i-node, {a} is the unit vector in x direction, {b} is the unit vector in plane of element
and normal to {a}, θxi or θyi are the rotations of i-node about vector {a} or {b}.

The linear strain vector {εl} for the lth layer is related to the nodal displacement vector
by

{εl} = [Bl] {ul} , (3)

where [Bl] is the strain-displacement matrix based on the element shape functions. In the
case of the elastic state the stress-strain relations for the lth layer are defined in the form

{σl} = [Dl
e] {εl} , (4)

where {εl}T = {εx, εy, γxy, γyz, γzx} and {σl}T = {σx, σy, τxy, τyz, τzx} and the matrix of the
material stiffness

[Dl
e] =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

Bl El
x Bl μl

xy El
x 0 0 0

Bl μl
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x Bl El
y 0 0 0
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xy 0 0

0 0 0
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yz
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0

0 0 0 0
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zx
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⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

,
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where Bl = El
y/[El

y − (μl
xy)

2 El
x], El

x (versus El
y) is Young modulus of the lth layer in the

direction x (versus y), Gl
xy, Gl

yz, Gl
zx are shear moduli of the lth layer in planes XY, YZ and

ZX; ks is the coefficient of the effective shear area (ks = 1 + 0.2 A/(25 t2) ≥ 1.2), A is the
element area, t is the element thickness.

Fig.3: The shell element with 8 nodes

2.1. Geometric nonlinearity

If the rotations are large but the mechanical strains (those that cause stresses) are small,
then a large rotation procedure can be used. A large rotation analysis is performed in a static
analysis in the ANSYS program [10].

The strain in the n-step of the solution can be computed from the relations

{εn} = [Bo] [Tn] {un} , (5)

where {un} is the deformation displacement, [Bo] is the original strain-displacement rela-
tionship, [Tn] is the orthogonal transformation relating the original element coordinates to
the convected (or rotated) element coordinates.

The convected element coordinate frame differs from the original element coordinate
frame by the amount of rigid body rotation. Hence [Tn] is computed by separating the rigid
body rotation from the total deformation {un} using the polar decomposition theorem.
A corotational (or convected coordinate) approach is used in solving large rotation/small
strain problems (Rankin and Brogan) [10].

2.2. Material nonlinearity

The presented constitutive model is a further extension of the smeared crack model [2, 5,
21 and 22], which was developed in [13]. Following the experimental results of Červenka,
Kupfer, Jerga and Križma, and others [2, 9 and 18] a new concrete cracking layered finite
shell element [13] was developed and incorporated into the ANSYS system [12, 13, 16 and 17].
The layered approximation and the smeared crack model of the shell element are proposed.

The processes of the concrete cracking and crushing are developed during the increasing
of the load. The concrete compressive stress fc, the concrete tensile stress ft and the shear
modulus G are reduced after the crushing or cracking of the concrete [2].
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Fig.4: The concrete stress-strain diagram Fig.5: Kupfer’s plasticity function

In this model the stress-strain relation is defined (Figure 4) following ENV 1992-1-1
(1991) [3]:

– Loading in the compression region εcu < εeq < 0

σef
c = f ef

c

k η − η2

1 + (k − 2) η
, η =

εeq

εc
, (εc

.= −0.0022, εcu
.= −0.0035) . (6)

– Softening in the compression region εcm < εeq < εcu

σef
c = f ef

c

(
1 − εeq − εc

εcm − εcu

)
. (7)

– The tension region εt < εeq < εm

σef
c = ft exp

[
−2

εeq − εt

εtm

]
(εt

.= 0.0001, εtm
.= 0.002) . (8)

In the case of the plane state the strength function in tension ft and in compression fc

were considered equivalent values f eq
t and f eq

c .

In the plane of principal stresses (σc1, σc2) the relation between the one and bidimensional
stresses state due to the plasticity function by Kupfer (see Figure 5) can be defined as follows :

– Compression-compression

f ef
c =

1 + 3.65 a

(1 + a)2
fc , a =

σc1

σc2
. (9)

– Tension-compression

f ef
c = fc rec , rec = 1 + 5.3278

σc1

fc
, rec ≥ 0.9 . (10)

– Tension-tension

f ef
t = ft ret , ret =

A + (A − 1)B

AB
, B = K x + a , x =

σc2

fc
,

ret = 1 ⇔ x = 0 , ret = 0.2 ⇔ x = 1 .

(11)



8 Králik J.: A RSM Method for Nonlinear Probabilistic Analysis of the Reinforced . . .

The shear concrete modulus G was defined for cracking concrete by Kolmar [11] in the
form

G = rg Go , rg =
1
c2

ln
εu

c1
, c1 = 7 + 333 (p− 0.005) , c2 = 10− 167 (p− 0.005) , (12)

where Go is the initial shear modulus of concrete, εu is the strain in the normal direction
to crack, c1 and c2 are the constants dependent on the ratio of reinforcing, p is the ratio of
reinforcing transformed to the plane of the crack (0 < p < 0.02).

It is proposed that the crack in the one layer of shell element is oriented perpendicular
to the orientation of principal stresses. The membrane stress and strain vector depends on
the direction of the principal stress and strain in one layer

{εcr} = [Tε] {ε} , {σcr} = [Tσ] {σ} , (13)

where [Tε], [Tσ] are transformation matrices for the principal strain and stress in the direc-
tion θ in the layer.

[Tε] =

⎡
⎢⎢⎢⎣

cos2 θ sin2 θ sin θ cos θ 0 0
sin2 θ cos2 θ − sin θ cos θ 0 0

−2 sin θ cos θ 2 sin θ cos θ cos 2θ 0 0
0 0 0 cos θ sin θ
0 0 0 − sin θ cos θ

⎤
⎥⎥⎥⎦ ,

[Tσ] =

⎡
⎢⎢⎢⎣

cos2 θ sin2 θ 2 sin θ cos θ 0 0
sin2 θ cos2 θ −2 sin θ cos θ 0 0

− sin θ cos θ sin θ cos θ cos 2θ 0 0
0 0 0 cos θ sin θ
0 0 0 − sin θ cos θ

⎤
⎥⎥⎥⎦ .

(14)

The strain-stress relationship in the Cartesian coordinates can be defined in dependency
on the direction of the crack (in the direction of principal stress, versus strain)

[σcr] = [Dcr] {εcr} and therefore [σ] = [Tσ]T [Dcr] [Tε] {ε} . (15)

For the membrane and bending deformation of the reinforced concrete shell structure the
layered shell element, on which a plane state of stress is proposed on every single layer, was
used.

The stiffness matrix of the reinforced concrete for the lth layer can be written in the
following form

[Dl
cr] = [T l

cσ]T [Dl
cr] [T

l
cε] +

Nrein∑
s=1

[T l
s]

T [Dl
s] [T

l
s] , (16)

where [Tcσ], [Tcε] , [Ts] are the transformation matrices for the concrete and the reinforcement
separately, Nrein is the number of the reinforcements in the lth layer.

After cracking the elasticity modulus and Poisson’s ratio are reduced to zero in the
direction perpendicular to the cracked plane, and a reduced shear modulus is employed.



Engineering MECHANICS 9

Considering 1 and 2 two principal directions in the plane of the structure, the stress-strain
relationship for the concrete lth layer cracked in the 1-direction, is⎧⎪⎪⎪⎨

⎪⎪⎪⎩
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where the shear moduli are reduced by the coefficient of the effective shear area ks and
parameter rg1 by Kolmar (12) as follows : Gcr

12 = Go rg1, Gcr
13 = Go rg1, Gcr

23 = Go/ks.

When the tensile stress in the 2-direction reaches the value f ′
t, the latter cracked plane

perpendicular to the first one is assumed to form, and the stress-strain relationship becomes :⎧⎪⎪⎪⎨
⎪⎪⎪⎩
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where the shear moduli are reduced by the parameter rg1 and rg2 by Kolmar (12) as follows :
Gcr

12 = Go rg1, Gcr
13 = Go rg1, Gcr

23 = Go rg2.

The cracked concrete is anisotropic and these relations must be transformed to the re-
ference axes XY. The simplified averaging process is more convenient for finite element
formulation than the singular discrete model. A smeared representation for the cracked
concrete implies that cracks are not discrete but distributed across the region of the finite
element.

The smeared crack model [21 and 22], used in this work, results from the assumption,
that the field of more micro cracks (not one local failure) brought to the concrete element will
be created. The validity of this assumption is determined by the size of the finite element,
hence its characteristic dimension Lc =

√
A, where A is the element area (versus integrated

point area of the element). For the expansion of cracking the assumption of constant failure
energies Gf = const is proposed in the form

Gf =

∞∫
0

σn(w) dw = AG Lc , wc = εw Lc , (19)

where wc is the width of the failure, σn is the stress in the concrete in the normal direction,
AG is the area under the stress-strain diagram of concrete in tension. Concrete modulus
for descend line of stress strain diagram in tension (crushing) can be described according to
Oliver [22] in dependency on the failure energies in the form

Ec,s =
Ec

1 − λc
, λc =

2 Gf Ec

Lc σ2
max

, (20)

where Ec is the initial concrete modulus elasticity, σmax is the maximal stress in the concrete
tension. From the condition of the real solution of the relation (20) it follows, that the
characteristic dimension of element must satisfy the following condition

Lc ≤ 2 Gf Ec

σ2
max

. (21)
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The characteristic dimension of the element is determined by the size of the failure energy
of the element. The theory of a concrete failure was implied and applied to the 2D layered
shell elements SHELL91 and SHELL281 in the ANSYS element library [17].

The limit of damage at a point is controlled by the values of the so-called crushing or
total failure function Fu. The modified Kupfer’s condition [18] for the lth layer of section is
following

F l
u = F l

u(Iε1; Jε2; εu) , F l
u =

√
β (3 Jε2) + α Iε1 − εu = 0 , (22)

where Iε1, Jε2 are the strain invariants, and εu is the ultimate total strain extrapolated from
uniaxial test results (εu = 0.002 in the tension domain, or εu = 0.0035 in the compression
domain), α, β are the material parameters determined from the Kupfer’s experiment results
(β = 1.355, α = 0.355 εu) [18 and 22].

The failure function of the whole section will be obtained by the integration of the failure
function through to the whole section in the form

Fu =
1
t

t∫
0

F l
u (Iε1; Jε2; εu) dz =

1
t

Nlay∑
l=1

F l
u (Iε1; Iε2; εu) tl , (23)

where tl is the thickness of the lth shell layer, t is the total shell thickness and Nlay is
the number of layers. This failure condition is determined by the maximum strain εs of
the reinforcement steel in the tension area (max(εs) ≤ εsm = 0.01) and by the maximum
concrete crack width wc (max(wc) ≤ wcm = 0.3mm).

3. Degradation of a reinforced concrete structure

The safety of nuclear power plants could be affected by the age related degradation of
structures [1] if it is not detected prior to the loss of the functional capability and if timely
corrective action is not taken.

The reduction even or the loss of functional capability of the key plant components could
reduce the plant safety. Mild steel reinforcing bars are provided to control the extent of
cracking and the width of cracks at operating temperatures, to resist tensile stresses and
computed compressive stresses for elastic design, and to provide the structural reinforcement
where required. Potential causes of degradation of the reinforcing steel would be corrosion,
exposure to elevated temperatures and irradiation [1, 20, 25 and 27].

So-called ‘uniform’ or general corrosion consists of approximately uniform loss of metal
over the whole exposed surface of the reinforcing bar [1]. Faraday’s law indicates that a cor-
rosion current density of icorr = 1 μAcm−2 corresponds to a uniform corrosion penetration
of 11.6 μmyear−1. Thus the reduction of the diameter of a corroding bar, ΔD, at time T ,
can be estimated directly (in mm) from icorr as

ΔD(T ) = 0.0232

T∫
To

icorr(t) dt , (24)

where T is the actual time, To is the time of corrosion initiation (in years). If a constant
annual corrosion rate is assumed, equation (24) reduces to the following equation

ΔD(T ) = 0.0232 (T − To) icorr .
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The net cross-sectional area of a reinforcing bar, Ar at time T , is then equal to

Ar(T ) =

⎧⎪⎨
⎪⎩

π D2
o

4
T ≤ To ,

π [Do − ΔD(T )]2

4
T > To ,

(25)

where Do is the initial diameter of the reinforcing bar (in mm).

The limit concrete strength and its Young modulus are practically not changed during
the corrosion process. The corrosion process can be considered as the reduction of the
reinforced steel cross section. The state of the NPP reinforced concrete structures has been
periodically monitored in the frame of the IAEA requirements for safety and reliability of
the NPP performance.

Fig.6: Computational model with two vertical cracks

Fig.7: Degradation effects at the basin bottom
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Special attention was paid to the EWST structure. After 10 years of the operation, two
vertical cracks in the wall in axis 12, near the contact of the reactor corps and the basin
wall, were identified (Figure 6). Also, hence the degradation effects at the bottom of the
emergency water storage tank were identified (Figure 7). These effects were the consequence
of the corrosion process of the reinforced steel in the basin plate.

Fig.8: Detail of reinforcement and the concrete crack

Fig.9: Steel corrosion depending on time

There is proposed conservatively that this corrosion process had been acting from 10
to 20 years. In regard to all uncertainties to define the influence of the corrosion effects
and to identify cracks the state of the NPP structure resistance is investigated using the
probabilistic methodology and conservative proposition of the degradation processes.

The corrosion effects of the reinforcement at the basin bottom and in the concrete cracks
(Figure 8) were considered according to Faraday’s law (Figure 9) using the uniform corrosion
penetration (of 11.6 μmyear−1). This assumption is also conservative from the point of view
of the higher safety level [1].

4. Nonlinear deterministic analysis

The critical sections of the structure were determined on the base of the nonlinear analysis
due to the monotone increasing of overpressure inside the hermetic zone [12 and 13]. The
resistance of these critical sections was considered taking into account the design values of
the material characteristics and the load. The combination load and design criteria were
considered for the BDBA state [16].
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Fig.10: Critical area of containment structure loading at overpressure 320 kPa

The critical areas were identified in the connection walls and plate of the hermetic zone
at level +10.5m near the hole in the modulus ‘10’ and ‘V’ (Figure 10). The tension forces
and the bending moments were concentrated between two outside large walls.

On the base of the nonlinear analysis of the containment resistance for median values
of the material properties and failure function (22) the critical overpressure was equal to
309 kPa without the degradation effect and 287 kPa (versus 283 kPa) with degradation effects
during 10 years (versus 20 years) (Figure 11a).

The capacity of the concrete wall of the EWST structure is equal 45% without consi-
dering the degradation effect (versus 50% with the degradation effect after 20 years) under
overpressure 300kPa in the CTMT structure (Figure 11b). The temperature of the water



14 Králik J.: A RSM Method for Nonlinear Probabilistic Analysis of the Reinforced . . .

(about 55 ◦C) in the emergency tank (EWST) affects the compression in the tank wall as the
prestressed. This effect is opposite to the overpressure effects in the CTMT. The degradation
effect occurs during overpressure higher than 150kPa (Figure 11).

Fig.11: The capacity utilization of the reinforced concrete containment
(CTMT) and emergency water storage tank (EWST) due to
overpressure with and without degradation effects

5. Probabilistic analysis of the structure reliability

Recent advances and the general accessibility of information technologies and computing
techniques give rise to assumptions concerning the wider use of the probabilistic assessment
of the reliability of structures through the use of simulation methods in the Czech Republic
and Slovakia [6, 14, 15, 16, 17, 25 and 26]. A great attention should be paid to using the
probabilistic approach in an analysis of the reliability of structures [4, 8, 19, 20, 23 and 26].

Most problems concerning the reliability of building structures are defined today as a
comparison of two stochastic values, loading effects E and the resistance R, depending on the
variable material and geometric characteristics of the structural element. The variability of
those parameters is characterized by the corresponding functions of the probability density
fR(r) and fE(e). In the case of a deterministic approach to the design the deterministic
(nominal) attributes of those parameters Rd and Ed are compared.

The deterministic definition of the reliability condition is of the form

Rd ≥ Ed (26)

and in the case of the probabilistic approach it is of the form

RF = g(R, E) = R − E ≥ 0 , (27)

where g(R, E) is the reliability function.

The probability of failure can be defined by the simple expression

Pf = P [R < E] = P [(R − E) < 0] . (28)

The reliability function RF can be expressed generally as a function of the stochastic pa-
rameters X1, X2 to Xn, used in the calculation of R and E.

RF = g(X1, X2, . . . , Xn) . (29)
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The failure function g({X}) represents the condition (reserve) of the reliability, which can be
either an explicit or implicit function of the stochastic parameters and can be single (defined
on one cross-section) or complex (defined on several cross-sections, e.g., on a complex finite
element model).

In the case of simulation methods the failure probability is calculated from the evaluation
of the statistical parameters and theoretical model of the probability distribution of the
reliability function Z = g(X). The failure probability is defined as the best estimation on
the base of numerical simulations in the form

pf =
1
N

N∑
i=1

I[g(Xi) ≤ 0] , (30)

where N in the number of simulations, g(.) is the failure function, I[.] is the function with
value 1, if the condition in the square bracket is fulfilled, otherwise is equal 0.

The RSM method was chosen for the PSA analysis of the containment safety. It is based
on the assumption that it is possible to define the dependency between the variable input
and the output data through the approximation functions in the following form :

Y = co +
N∑

i=1

ci Xi +
N∑

i=1

cii X2
i +

N−1∑
i=1

N∑
j=i+1

cij Xi Xj , (31)

where co is the index of the constant member; ci are the indices of the linear member and
cij the indices of the quadratic member, which are given for predetermined schemes for the
optimal distribution of the variables or for using the regression analysis after calculating
the response. Approximate polynomial coefficients are given from the condition of the error
minimum, usually by the ‘Central Composite Design Sampling’ (CCD) method or the ‘Box-
Behnken Matrix Sampling’ (BBM) method [10].

Fig.12: A procedural diagram of the probabilistic calculations
using the ANSYS software system
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The computation efficiency of the experimental design depends on the number of design
points, which must be at least equal to the number of the unknown coefficients. In the
classical design approach, a regression analysis is carried out to formulate the response
surface after calculating the responses at the sampling points. These points should have
at least 3 levels for each variable to fit the second-order polynomial, leading to 3k factorial
design. This design approach becomes inefficient with the increasing of the number of
random variables. More efficient is the central composite design, which was developed by
Box and Wilson [10].

The central CCD method is composed of (Figure 13a) :
1. Factorial portion of design – a complete 2k factorial design (equal −1, +1),
2. Center point – no center points, no ≥ 1 (generally no = 1),
3. Axial portion of design – two points on the axis of each design variable at distance α

from the design center.

Then the total number of design points is N = 2k + 2 k + no, which is much more than
the number of the coefficients p = (k + 1)(k + 2)/2. The graphical representation for k = 3
and the matrix form of the coded values are represented in Figure 13.

It is advisable to use the displacement-based FEM for reliability analysis of the com-
plicated structures with one of the defined simulation methods. In this work the ANSYS
licensed program [10] with a probabilistic postprocessor was utilized for the probability
analysis of the reliability of the NPP structures for various action effects. In Figure 13,
the procedural diagram sequence is presented from the structure of the model through the
calculations, up to the evaluation of the probability of the structural failure.

Fig.13: Distribution schemes of the stochastic numbers
of the RSM method for three input variables

The postprocessor for the probabilistic design of structures enables to define the random
variables using the standard distribution functions (normal, lognormal, exponential, beta,
gamma, weibull, etc.), or externally (user-defined sampling) using other statistical programs
as the AntHILL or the FREET. The probabilistic calculation procedures are based on the
Monte Carlo simulations (DS, LHS, user-defined sampling) and the approximation RSM
method (CCD, BBM, user-defined sampling) [15 and 17]. The RSM method generates the
explicit performance function for the implicit or complicated limit state function. This
method is very effective for robust and complicated tasks.

On the base of experimental design, the unknown coefficients are determined due to the
random variables selected within the experimental region. The uncertainty in the random
variables can be defined in the model by varying in the arbitrary amount producing the
whole experimental region.
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6. PSA level 3 analysis of containment failure

The methodology of the probabilistic analysis of integrity of reinforced concrete structures
of containment results from requirements [8] and experience from their applications [14, 15,
16, 19, 25 and 26].

The probability of containment failure is calculated from the probability of the reliability
function RF in the form

Pf = P (RF < 0) , (32)

where the reliability condition RF is defined depending on a concrete failure condition (30)

RF = −Fu(Iε1; Jε2; εu) , (33)

where the failure function Fu(.) was considered in the form (23).

The previous design analyses, calculations and additions include various uncertainties,
which determine the results of probability bearing analysis of containment structural in-
tegrity are presented in Table 1. Due to the mentioned uncertainties of the input data for
the probabilistic analysis of reinforced concrete containment structures loss of integrity the
mean values and standard deviations, the variable parameters for normal, lognormal and
beta distribution were determined.

Soil Material Loads Model
Stiff- Young Dead Live Pressure Tempe- Action Resist.
ness modulus load load rature uncertaint uncertaint

Characteristic value kzk Ek Gk Qk Pk Tk Tek Trk

Variable kzvar evar gvar qvar pvar tvar Tevar Trvar
Histogram type N LN N BETA N BETA N N
Mean value μ 1 1 1 0.643 1 0.933 1 1
Deviation σ [%] 5 11.1 10 22.6 8 14.1 5 5
Minimum value 0.754 0.649 0.621 0.232 0.662 0.700 0.813 0.813
Maximum value 1.192 1.528 1.376 1.358 1.301 1.376 1.206 1.206

Tab.1: Variable parameters of the input data

On the base of the RSM simulations the increment vector of the deformation parameters
{Δrs} in the FEM is defined for the sth simulation in the form

{Δrs} = [KGN(Es, kzs, Fσ)]−1 {ΔF (Gs, Qs, Ps, Ts)} (34)

and the strain vector increment

{Δεs} = [Bs] {Δrs} , (35)

where [KGN] is the nonlinear stiffness matrix depending on the variable parameters Es, kzs

and Fσ, Fσ is the Kupfer’s yield function defined in the stress components, {ΔF} is the
increment vector of the general forces depending on the variable parameters Gs, Qs, Ps

and Ts for the sth simulation. The total strain vector is defined as the sum of the strain
increments

{εs} =
Nstep∑

istep=1

{Δεs}istep . (36)
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Fig.14: Sensitivity of reliability function RF

Resulting from the variability of the input quantity 25 simulation steps on the base of
the RSM method under the ANSYS-CRACK system were realized [16]. The probability
of loss containment structure integrity was calculated from 106 Monte Carlo simulations
for 25 steps of the RSM approximation method on the full structural FEM model. The
probability analysis was considered for the structural model without (model V1 10) and
with (model V1 11) the wall cracking and the corrosion effects below the emergency tank
(Figure 1).

The evaluation of the probabilistic sensitivities was calculated from the correlation coef-
ficients between all random input variables and a particular random output parameter by
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Fig.15: Reliability function RF under overpressure 320 kPa for two models :
a) without the degradation effect, b) with the degradation effect

Spearman [10]. These analyses show (Figure 14) that the variability of the overpressure
and the structure stiffness have the fundamental impact upon the reliability of the contain-
ment. The effects of the variability of the concrete stiffness are dominant in the model V1 10
without the degradation effect (Figure 14a), and on the other hand, the variability of the
overpressure is dominant in the model V1 11 with the degradation effect (Figure 14b).

The probability of the concrete structure failure in accordance with the relation (33)
under overpressure 320 kPa is less than 10−6 in the model without cracking effects (original
status). If the influence of the tank wall cracking and the corrosion effects are considered
the probability of failure is equal 1.375×10−4 for overpressure 320kPa. The histograms of
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the reliability function RF under overpressure 320 kPa for two models without (V1 10) and
with (V1 11) the degradation effect, respectively, are presented in Figure 15.

7. Conclusion

The probability analysis of the loss of the concrete containment integrity was made for
the overpressure loads from 40 kPa to 320kPa using the nonlinear solution of the static
equilibrium considering the geometric and material nonlinearities of the reinforced concrete
shell layered elements. The nonlinear analyses were performed in the CRACK program,
which was developed by the author and implemented into the ANSYS system [12 and 13].
The uncertainties of the loads level (longtime temperature and dead loads), the material
model of the composite structure (concrete cracking and crushing, reinforcement, and liner),
the degradation effects (carbonization and reinforcement corrosion) and other influences
following from the inaccuracy of the calculated model and the numerical methods were
taken into account in the MONTE CARLO simulations on the base of the RSM method [16
and 17]. The reliability function RF was defined in dependency on the failure function
Fu(Iε1; Jε2; εu) for requirements of the PSA analysis in the form (23). The probability of
the loss of the concrete containment integrity is less than 10−6 for the original structural
model. In the case of the degradation effects of the concrete structure under the emergency
tank the probability of the containment failure is equal to 1.375×10−4 for the overpressure
320 kPa. The theory of the nonlinear analysis using the RSM method was developed in the
framework of the VEGA grant project [16 and 17].
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