
 Open access Journal Article DOI:10.1007/S10618-005-0029-Z

A Rule-Based Approach for Process Discovery: Dealing with Noise and Imbalance
in Process Logs — Source link

Laura Maruster, A.J.M.M. Weijters, Wil M. P. van der Aalst, Antal van den Bosch

Institutions: University of Groningen, Eindhoven University of Technology, Tilburg University

Published on: 01 Jul 2006 - Data Mining and Knowledge Discovery (Springer US)

Topics: Process mining, Business process discovery, Business process, Process modeling and Rule induction

Related papers:

 Workflow mining: discovering process models from event logs

 Workflow mining: a survey of issues and approaches

 Fuzzy mining: adaptive process simplification based on multi-perspective metrics

 Flexible Heuristics Miner (FHM)

 Discovering models of software processes from event-based data

Share this paper:

View more about this paper here: https://typeset.io/papers/a-rule-based-approach-for-process-discovery-dealing-with-
5jbkngabm4

https://typeset.io/
https://www.doi.org/10.1007/S10618-005-0029-Z
https://typeset.io/papers/a-rule-based-approach-for-process-discovery-dealing-with-5jbkngabm4
https://typeset.io/authors/laura-maruster-2gw6t8jm7u
https://typeset.io/authors/a-j-m-m-weijters-5fn9xhnbwf
https://typeset.io/authors/wil-m-p-van-der-aalst-2zhmhw6gvi
https://typeset.io/authors/antal-van-den-bosch-4a8avm7hel
https://typeset.io/institutions/university-of-groningen-1unz7wt1
https://typeset.io/institutions/eindhoven-university-of-technology-131kgvqf
https://typeset.io/institutions/tilburg-university-2ofsu33z
https://typeset.io/journals/data-mining-and-knowledge-discovery-2fo3t45c
https://typeset.io/topics/process-mining-3a62yvlt
https://typeset.io/topics/business-process-discovery-36gme0g0
https://typeset.io/topics/business-process-1duww34h
https://typeset.io/topics/process-modeling-3rbmpvxw
https://typeset.io/topics/rule-induction-uwk0j9tv
https://typeset.io/papers/workflow-mining-discovering-process-models-from-event-logs-2e3us8cswr
https://typeset.io/papers/workflow-mining-a-survey-of-issues-and-approaches-3w9qivv4j2
https://typeset.io/papers/fuzzy-mining-adaptive-process-simplification-based-on-multi-286zemsn7q
https://typeset.io/papers/flexible-heuristics-miner-fhm-32qyv177zl
https://typeset.io/papers/discovering-models-of-software-processes-from-event-based-10xp9qr661
https://www.facebook.com/sharer/sharer.php?u=https://typeset.io/papers/a-rule-based-approach-for-process-discovery-dealing-with-5jbkngabm4
https://twitter.com/intent/tweet?text=A%20Rule-Based%20Approach%20for%20Process%20Discovery:%20Dealing%20with%20Noise%20and%20Imbalance%20in%20Process%20Logs&url=https://typeset.io/papers/a-rule-based-approach-for-process-discovery-dealing-with-5jbkngabm4
https://www.linkedin.com/sharing/share-offsite/?url=https://typeset.io/papers/a-rule-based-approach-for-process-discovery-dealing-with-5jbkngabm4
mailto:?subject=I%20wanted%20you%20to%20see%20this%20site&body=Check%20out%20this%20site%20https://typeset.io/papers/a-rule-based-approach-for-process-discovery-dealing-with-5jbkngabm4
https://typeset.io/papers/a-rule-based-approach-for-process-discovery-dealing-with-5jbkngabm4

Data Mining and Knowledge Discovery, 13, 67–87, 2006
c© 2006 Springer Science + Business Media, LLC. Manufactured in the United States.

DOI: 10.1007/s10618-005-0029-z

A Rule-Based Approach for Process Discovery:

Dealing with Noise and Imbalance in Process Logs

LAURA MĂRUŞTER l. maruster@rug.nl

University of Groningen, P.O. Box 800, 9700 AV, Groningen, NL

A.J.M.M. (TON) WEIJTERS a.j.m.m.weijters@tm.tue.nl

WIL M.P. VAN DER AALST w.m.p.v.d.aalst@tm.tue.nl

Eindhoven University of Technology, P.O. Box 513, 5600 MB, Eindhoven, NL

ANTAL VAN DEN BOSCH antal.vdnbosch@uvt.nl

Tilburg University, P.O. Box 90153, 5000 LE, Tilburg, NL

Published online: 12 May 2006

Abstract. Effective information systems require the existence of explicit process models. A completely

specified process design needs to be developed in order to enact a given business process. This development

is time consuming and often subjective and incomplete. We propose a method that constructs the process

model from process log data, by determining the relations between process tasks. To predict these relations, we

employ machine learning technique to induce rule sets. These rule sets are induced from simulated process log

data generated by varying process characteristics such as noise and log size. Tests reveal that the induced rule

sets have a high predictive accuracy on new data. The effects of noise and imbalance of execution priorities

during the discovery of the relations between process tasks are also discussed. Knowing the causal, exclusive,

and parallel relations, a process model expressed in the Petri net formalism can be built. We illustrate our

approach with real world data in a case study.

Keywords: rule induction, process mining, knowledge discovery, Petri nets

1. Introduction

Managing complex business processes calls for the development of powerful infor-

mation systems, able to control and support the underlying processes. To support a

structured business process, such information systems have to offer generic process

modelling and process execution capabilities. Because problems are encountered when

designing and employing such information systems, the interest in Business Process

Analysis and Continuous Process Improvement Efforts increases. Yet, whatever the

goal is (e.g. modelling, designing, redesigning or implementing business processes),

it needs to be preceded by an analysis of the existing processes. The growing interest

into the automation of analysing existing processes, process mining can be explained

by the availability of logged information, which most information systems (traditional

or process-aware) support.

The goal of process mining is to abstract process information from transaction

logs (Aalst et al., 2003). Process mining focuses on different levels. Accordingly,

this leads to different mining perspectives, such as the process perspective, the or-

ganizational perspective, and the case perspective. The process perspective focuses

68 MĂRUŞTER ET AL.

on the control flow, i.e., the ordering of activities. The goal of this type of mining is

to find the possible relations between tasks, expressed in terms of a process model,

e.g., expressed in terms of a Petri net (Reisig and Rosenberg, 1998) or an Event-

driven Process Chain (EPC) (IDS Scheer, 2002; Keller and Teufel, 1998). For process

mining with a focus on the process perspective, the specific terms process discov-

ery or workflow mining are used (Aalst et al., 2004). Using this perspective, it is

assumed that it is possible to record events such that (i) each event refers to a task,

(ii) each event occurs in a case (i.e., process instance) and (iii) events are totally ordered.

A set of such recorded sequences is called a process log. For mining the other perspec-

tives, we refer to (Aalst et al., 2003), and http://www.processmining.org. In this paper

we will focus on the process perspective.

The idea of discovering models from process logs was previously investigated in

contexts such as software engineering and workflow management (Agrawal et al., 1998;

Cook and Wolf, 1998a; Herbst, 2000a) etc. Cook and Wolf propose alternative methods

for process discovery in case of software engineering, focusing on sequential (Cook

and Wolf, 1998a) and concurrent processes (Cook and Wolf, 1998b). Herbst and Kara-

giannis use a hidden Markov model in the context of workflow management, focusing

on sequential (Herbst and Karagiannis, 2000; Herbst, 2000b) and concurrent processes

(Herbst, 2000a). In Măruşter et al. (2002), a technique for discovering workflow pro-

cesses in hospital data is presented. Theoretical results are presented in Aalst et al.

(2004), providing proof that for certain subclasses of processes it is possible to find the

correct process model.

To illustrate the idea of process discovery, consider the process log from Figure 1(a). In

this example seven executed cases are logged. Twelve different tasks occur in these cases.

We can notice the following example regularities: for each case, the execution starts with

task a and ends with task l; if c is executed, then e is executed immediately afterwards.

Using the information shown in the process log from Figure 1(a), we can discover

the process model shown in Figure 1(b). We represented the model using Petri nets

(Reisig and Rosenberg, 1998), where all tasks are expressed as transitions. Petri net

Figure 1. An excerpt of a process log and the corresponding Petri net process model.

A RULE-BASED APPROACH FOR PROCESS DISCOVERY 69

formalism has several advantages, therefore they are often used to represent process

models (Aalst, 1998): formal semantics (a clear and precise definition), graphical nature

(intuitive and easy to learn), expressiveness (support all primitives needed to model a

process), properties (the mathematical foundation allows for reasoning of Petri Nets

properties), analysis (many analysis techniques to prove properties and calculate per-

formance measures), vendor independent (not based on software package of a specific

vendor). In Figure 1(b), after executing a, either task b or task f can be executed. If task

f is executed, tasks h and g can be executed in parallel. A parallel execution of tasks h

and g means that they can appear in any order.

In the case of real-world processes which can involve many more tasks and which

can exhibit higher levels of parallelism, the problem of discovering the underlying

process can become prohibitively complex. Moreover, process mining can be harmed

and hindered when process logs contain noise—random replacements or insertions of

incorrect symbols—or have missing information. A process log is complete when all

tasks that potentially directly follow each other, in fact do directly follow each other in

some trace in the log. In case of a complex process, incomplete process logs will not

contain enough information to detect the causal relation between tasks. The notion of

completeness is formally defined in Aalst et al. (2004). Note that a process log can be

complete without containing all possible cases. A heuristic process discovery method,

based on simple count statistics, able to handle certain levels of noise is described in

Weijters and Aalst (2001). Nevertheless, in some situations this heuristic method is not

robust enough for discovering the complete process. Tackling the problem of process

discovery at a more robust level was subsequently introduced in Măruşter, Weijters

et al. (2002), using an empirical data-driven approach; more specifically, a logistic

regression model able to detect the causal relations (or direct successors) from process

logs. However, that logistic regression approach requires a global threshold value for

deciding when there is a direct succession relation between two tasks. The use of a global

threshold has the drawback of being too rigid, thus real relations may not be found and

false relations may be considered. In Medeiros, Weijters, and Aalst (2004) subsequent

advanced issues in robustness towards noisy data and finding causality between tasks

are tackled by using genetic algorithms. An overview of issues and related work about

Process Mining can be found in Aalst and Weijters (2004).1

The problem of noisy and incomplete process log is not the only difficulty which

may occur during process mining. A review of challenging process mining problems is

made in Aalst and Weijters (2004), which refer to mining hidden tasks, mining duplicate

tasks, mining loops, using time, mining different perspectives, and dealing with noise

and incompleteness.

In Aalst et al. (2004) it is developed an algorithm called ‘the α algorithm’, which

given a complete process log, it can (re-)discover quite a large class of Petri nets (the

discussion about the properties of these Petri nets is beyond the scope of this paper and

it is addressed in Aalst et al. (2004)). However, the α algorithm has some limitations,

such as (i) mining loops and (ii) dealing with incomplete and noisy process logs. In

Medeiros et al. (2004), an extension of the α algorithm is provided, that address the first

limitation, e.g. it can handle short loops. In this paper, we address the second limitation

of the α algorithm presented in Aalst et al. (2004), namely dealing with incomplete and

noisy process logs, to allow its applicability to real-world processes.

70 MĂRUŞTER ET AL.

The aim of this article is two-fold. First, we describe a rule-based approach for process

discovery, assuming the existence of noisy information in the process log and imbalance

in execution priorities. Second, we want to gain insight into the effects of noise and

imbalance during the process discovery. Our goal is to use machine learning techniques

to induce classification rules for (i) causal relations (i.e., for each task, find its direct

successor tasks) and (ii) find the parallel/exclusive relations (i.e., for tasks that share

the same cause or the same direct successor, detect if they can be executed in parallel

or there is a choice between them). Knowing these relations between tasks, a process

model can be constructed by using the α algorithm (Aalst et al., 2004).

The article is organized as follows: in Section 2 the types of relations that can exist

between two tasks are described. The methodology for generating experimental data used

to induce the rule sets is presented in Section 3. In Section 4 the methods for inducing

the rule sets are introduced. In Section 5 we evaluate the rule sets, and in Section 6 we

discuss the results obtained, focusing on the influence of process characteristics on rule

sets performance. In Section 7 we illustrate our approach using real data from a case

study. We end with discussing issues for further research in Section 8.

2. The log-based relations

Discovering a model from process logs involves determining the dependencies among

tasks. We choose to express these dependencies as log-based relations. The log-based

relations are formally introduced in Măruşter et al. (2002) and Aalst et al. (2004), in

the context of workflow logs and workflow traces. Because we focus on the process

perspective, we use the same definitions as in Aalst et al. (2004), this time referring to

process logs and process traces.

Definition 1. Process trace, process log

Let T be a set of tasks. δ ∈ T∗ is a process trace and W : T ∗ → N 2

Figure 1(a) is an example of a process log, “afghikl ” is an example of a process

trace belonging to case 1. This process trace is unique (i.e., W(afghikl) = 1). However,

the process trace “abcejl ” appears three times (e.g. for cases 2, 5 and 7) in the log

(i.e., W(abcejl) = 3). Especially in the case that logs may contain noise the use of

frequency information appears crucial.

Definition 2. Succession relation

Let W be a process log over the tasks T with a, b ∈ T. Then between a and b there

is a succession relation (notation a > b), i.e., b succeeds a if and only if there is a

trace δ = t1 t2 . . . tn in W (i.e., W(δ) > 0), where i ∈ {1, . . ., n−1} and ti = a, ti+1

= b. The succession relation > describes which tasks appeared in sequence, i.e., one

directly following the other. In the log from Figure 1(a), a > f, f > g, b > c, h > g,

g > h, etc.

Definition 3. Causal, exclusive and parallel relations

Let W be a process log over the tasks T with a, b ∈ T . If we assume that there is no

noise in W, then between x and y there is:

1. a causal relation (notation x → y), i.e., x causes y if and only if x > y and y ≯ x. We

consider the inverse of the causal relation →−1, i.e., →−1 = {(y, x) ∈ T× T | x →

y}. We call task x the cause of task y and task y the direct successor of task x.

A RULE-BASED APPROACH FOR PROCESS DISCOVERY 71

2. an exclusive relation (notation x#y) if and only if x ≯ y and y ≯ x;

3. a parallel relation (notation x ‖ y) if x > y and y > x.

The relations → ,→−1, # and ‖ are mutually exclusive and partition T× T (Aalst

et al., 2004).

To illustrate the above definitions, let’s consider again the process log from Figure

1(a) corresponding to the Petri net from Figure 1(b). If there is no noise, there are three

possible situations in which a pair of events (henceforth referred to as tasks) can be

related, namely causal, exclusive, and parallel:

causal relation. Tasks c and e have a causal relation, because c > e, e ≯ c, thus c → e;

exclusive relation. There is a choice between tasks b and f, because b ≯ f, f ≯ b, thus b

#f (and f # b);

parallel relation. Tasks h and i are in parallel, because h > i, i > h, thus h ‖ i (and i ‖

h).

The information on all three types of relations occurring between all tasks is necessary

and sufficient to construct the Petri net model using the α algorithm (Aalst et al., 2004).

The α algorithm considers first all tasks that stand in a causal relation. Then, for all

tasks that share the same immediately-neighboring input or output task, their exclusive

or parallel relations are incorporated in the Petri net. Although this algorithm can (re-

)discover quite a large class of Petri nets, it also has some limitations, particularly with

respect to incomplete and noisy process logs.

The existence of incompleteness and noise in a process log is disturbing the application

of the notions presented in Definition 3. Considering the Petri net from Figure 1(b),

suppose that we want to discover the relations between pairs of tasks c and e, b and f,

and h and i, given a particular example log file. We may find in this file that c > e ten

times; however, because of some noisy sequences, we may also find that e > c once.

Applying Definition 3, we could conclude that c ‖ e, which is incorrect, because actually

c → e. Also, we have to find at least once in the log that c > e in order to determine c

→ e, otherwise the log is incomplete and we cannot detect the causal relation between

c and e. Similarly, when noise exists, we may find in our noisy example log that both b

> f and f > b occur once, which according to Definition 3 means that b and f stand in a

parallel relation (actually, b # f!).

We want to be able to use the α algorithm on noisy logs. Therefore, instead of using

the definitions given in Definition 3 that break down in noisy circumstances, we use

machine learning techniques to induce noise-robust rule sets to determine the status

of relations among task pairs. Given these relations, we can apply the α algorithm to

construct the Petri net process model.

3. Experimental setting and data generation

Our experimental setup assumes the presence of learning material for inducing rule sets

to detect causal, parallel, and exclusive relations. This learning material should resemble

realistic process logs and should be sufficiently general to allow for generic rule sets

to be induced. We assume here that the following four characteristics underly a typical

realistic process, where variations of these characterisics affect the process logs: (i) the

72 MĂRUŞTER ET AL.

number of possible task types, (ii) the size of the process log, (iii) the amount of noise

and (iv) the execution priorities in OR-splits and AND-splits.

Our experimental setting consists of variations of these four process log characteris-

tics:

1. The number of task types: we construct Petri nets with different number of task

types.

2. The process log size: the log size is expressed by varying the number of traces, where

one trace represents the processing of one case.

3. The amount of noise: we generate noise performing four different operations: (i)

delete the head of a event sequence, (ii) delete the tail of a sequence, (iii) delete a

random part of the body and (iv) interchange two randomly chosen events. During

the noise generation process, minimally one event and maximally one third of the

sequence is deleted.

4. The imbalance of execution priorities: we assume that tasks can be executed with

priorities between 0 and 2. Suppose that in the Petri net from Figure 1(b), after

executing task f (which is an AND-split), an imbalance may exist in the priorities of

the subsequent execution of tasks g and h. For example, task h can have an execution

priority of 0.8 and task g 1.5. This implies that after f, in 35 percent of the cases task

h is executed, and in 65 percent of the cases task g is executed.

Note that an imbalance in priorities can affect the rediscovery process negatively. In

our example, when f > h is observed less frequently than f > g, the causal relation f →

h may be more difficult to determine than the causal relation f → g. Moreover, a false

causal relation g→ h may be determined because of some possible occurrences of g >

h.

The execution imbalance is produced on four levels:

– level 0, no imbalance: all tasks have the execution priority 1;

– level 1, small imbalance: each task can be executed with a priority randomly chosen

between 0.9 and 1.1;

– level 2, medium imbalance: each task can be executed with a priority randomly

chosen between 0.5 and 1.5;

– level 3, high imbalance: each task can be executed with a priority randomly chosen

between 0.1 and 1.9.

Our overall data generation procedure is as follows. First, we design four types of Petri

nets: with 12, 22, 32 and 42 event types. Second, for each type of Petri net, we produce

four unbalanced Petri nets, corresponding to the four levels of execution imbalance.

Third, for each resulting Petri net, we generate a log file with 0, 5, 10, 20 and 50%

noise. Fourth, we vary the amount of information, i.e., we vary the number of lines in

the log: each resulting noisy log is partitioned, considering the first 20% lines, then the

first 40%, and so on, until 100% of material is considered. Applying this procedure we

generate 400 different log files.

A RULE-BASED APPROACH FOR PROCESS DISCOVERY 73

4. The relational metrics

The construction of a so-called dependency/frequency (D/F) table from the process log

information is the starting point of our method and was first used in Weijters and Aalst

(2001). An excerpt from the D/F table for the Petri net presented in Figure 1(b) is shown

in Table 1. For each pair of tasks x and y, the following information is abstracted out of

the process log:

1. The overall frequency of task x (notation |X|3);

2. The overall frequency of task y |Y| ;

3. The frequency of task x directly preceded by y |Y > X| ;

4. The frequency of task x directly succeeded by y |X > Y| ;

5. The frequency of x directly or indirectly preceded by y, but before the next appearance

of x, |Y >>> X| ;

6. The frequency of x directly or indirectly succeeded by y, but before the next appear-

ance of x, |X >>> Y|.

The information fields contained in the D/F table, exemplified in Table 1, provide a

basic representation of the data on which we intend to induce the rule sets for detecting

the log-based causal, exclusive, or parallel relations. However, the raw, unnormalized

frequencies of the D/F table cannot be used directly as input features for inducing the rule

set. We propose normalized relative metrics from these raw data that can be used more

generically to represent the cases to be given as training material to the rule induction

method.

The frequencies |X > Y| and |Y > X| from the D/F table are essential for predicting

the causal relation x → y between tasks x and y. When the difference between | X > Y|

and |Y > X| is substantially large, there is a high likelihood that x causes y. We develop

three different relational metrics that use the difference between | X > Y| and |Y > X|:

the causality metric CM, the local metric LM and the global metric GM.

The causality metric CM was first introduced in Weijters and Aalst (2001). If for a

given process log it is true that when task x occurs, shortly later task y also occurs, it

is possible that task x causes the occurrence of task y. The CM metric is computed as

follows: if task y occurs after task x and n is the number of events between x and y, then

CM is incremented with a factor (δ)n, where δ is a causality factor, δ ∈ [0.0, 1.0]. We

set δ = 0.8. The contribution to CM is maximally 1, if task y appears right after task x

and consequently n = 0. Conversely, if task x occurs after task y and again the number

Table 1. An excerpt from the D/F table for the Petri net presented in Figure 1(b).

x y |X| |Y| |Y > X| |X > Y| |Y >>> X| |X >>> Y|

a f 1800 850 0 850 0 850

f g 850 850 0 438 0 850

c d 446 504 0 0 0 0

g h 850 850 412 226 412 438

b f 950 850 0 0 0 0

i h 850 850 226 212 638 212

74 MĂRUŞTER ET AL.

of events between x and y is n, CM is decreased with (δ)n. After processing the whole

log, CM is divided with the minimum of the overall frequency of x and y.

The local metric LM was also first introduced in Weijters and Aalst (2001). Consider-

ing tasks x and y, the local metric LM is expressing the tendency of the succession relation

x > y by comparing the magnitude of | X > Y| versus |Y > X|. The formula for the local

metric LM, considering the probability of 95% likelihood of the causality relation, is:

L M = P − 1.96

√

P(1 − P)

N + 1
, P =

|X > Y |

N + 1
, N = |X > Y | + |Y > X |(1)

The basis of this measure is a statistical confidence interval estimator (Mitchell,

1995). Using the expression from Formula 1, we estimate with a probability of 95% the

likelihood of the causality relation, by comparing the magnitude of | X > Y| versus |Y

> X|. For example, if | A > B| = 30, | B > A| = 1 and | A > C| = 60, | C > A| = 2,

what is the most likely: a causes b or a causes c? Although both ratios
|A>B|

|B>A|
and

|A>C |

|C>A|

equal 30, a is more likely to cause c than b. Our LM measure for tasks a and b gives a

value of LM = 0.85 and for tasks a and c gives a value of LM = 0.90, which is in line

with our intuition.

Let’s now consider again the Petri net from Figure 1(b). If we suppose that the number

of lines in the log corresponding to this Petri net is equal to 1000 (i.e., #L=1000), we

can have the following three situations:

1. | C > E | = 1000, | E > C | = 0, LM = 0.997,

2. | H > G| = 600, | G > H| = 400, LM = 0.569,

3. | F > B| = 0, | B > F| = 0, LM = 0.

In the sequential case (situation 1), because e always succeeds c, LM ∼= 1. When h

and g are in parallel, in situation 2, LM = 0.569, i.e., a value much smaller than 1. In the

case of the choice between f and b, in situation 3, LM = 0. In general, the LM measure

has a value close to 1 when there is a clear tendency of causality between tasks x and y.

When the LM measure is close to 0, there is no causality relation between tasks x and

y. When the LM measure has a value close to 0.5, then x > y and y > x, but a clear

tendency of causality cannot be identified.

LM thus expresses the succession tendency by comparing the magnitude of | X > Y|

versus |Y > X| at a local level. Consider, for example, that the number of lines in our log

is #L = 1000 and the frequencies of tasks a, b and c are | A| = 1000, | B| = 1000 and |

C| = 1000. We also know that |A > B| = 900, |B > A| = 0 and |A > C| = 50 and |C >

A| = 0. The question is whether a is the most likely cause of b or of c. For a causes b,

LM = 0.996 and for a causes c, LM = 0.942, so we can conclude that a causes both b

and c. However, one can argue that c succeeds a less frequently, thus a should be rather

considered the cause of b.

We therefore built another measure, the global metric GM:

GM = (|A > B| − |B > A|)
#L

|A| ∗ |B|
(2)

Example values for the GM and LM metrics are given in Table 2.

A RULE-BASED APPROACH FOR PROCESS DISCOVERY 75

Table 2. Illustration of GM and LM measures.

X No. of events | X > A| | A > X| LM GM

B 1000 0 900 0.99 0.90

C 1000 0 50 0.94 0.05

In determining the likelihood of causality between two events x and y, the GM metric

acts as a global metric because it takes into account the overall frequencies of tasks x

and y, while the LM metric is a local metric taking into account only the magnitude of |

X > Y| versus |Y > X|.

The CM, LM, and GM metrics have been developed specifically to be used as

predictors for the causality relation. They are less useful for deciding between ex-

clusive and parallel relations, for which we need to develop other adequate predic-

tors. While we may know a → x and a → y, we do not know whether x #y or

x ‖ y. | X > Y| and |Y > X| frequencies from the D/F table can be used again

to decide between exclusive and parallel relations. When between x and y there is

an exclusive relation, both | X > Y| and |Y > X| frequencies should be zero or a

small value, while for the parallel case both should be relatively high. Because the

rule set to be induced using these metrics as predictors must be general, we have

to take into account also the frequencies of tasks x and y; we therefore normalize

| X > Y| and |Y > X| by dividing it by the minimum of | X| and | Y| . We define the YX

and XY metrics as follows:

– YX: the proportion of |Y > X| accounted by the minimum frequency of x and y i.e.,

YX = |Y >X| /min{| X| ,| Y| };

– XY: the proportion of | X > Y| accounted by the minimum frequency of x and y i.e.,

XY = |X >Y| /min{| X| ,| Y| };

In Table 3 the values for the relational metrics of some task pairs for the Petri net

shown in Figure 1(b) are presented.

5. The induction and evaluation of decision rule sets

In Section 4 we introduced five relational metrics CM, GM, LM, YX and XY to be used as

predictive features for determining the causal and exclusive/parallel relations between

pairs of events. The idea is to use the learning material generated in Section 3, compute

the five relational metrics, and induce decision rule sets that detect the existing log-based

relations between tasks.

When choosing a suitable learning algorithm we have to establish some criteria. First,

we want to obtain a model that can be easily understood; second, we are interested in

a fast and efficient algorithm. Ripper is an algorithm that induces minimal description-

length rule sets (Cohen, 1995). It has been shown that Ripper is competitive with the

commonly-used alternative algorithm C4.5rules (Quinlan, 1993) in terms of error rates,

but more efficient than C4.5rules on noisy data (Cohen, 1995), thus it seems to meet our

requirements.

76 MĂRUŞTER ET AL.

Table 3. Excerpt from the learning material used to induce the rule set for detecting causal relations (Step

1) and the exclusive/parallel relations (Step 2), from the log generated by the Petri net presented in Figure

1(b). x and y represent the task identifiers, CM, GM, LM, YX and XY are the calculated relational measures,

and the relation class (“Rel”); “c” (causal), “n” (non-causal), “e” (exclusive), and “p” (parallel).

Step x y CM GM LM YX XY Rel

1 a f 1.000 1.000 0.998 0.000 1.000 c

1 a b 1.000 1.000 0.998 0.000 1.000 c

1 f g 0.903 1.091 0.996 0.000 0.515 c

1 f h 0.857 1.026 0.995 0.000 0.485 c

1 b a −1.000 −1.000 0.000 1.000 0.000 n

1 c d 0.000 0.000 0.000 0.000 0.000 n

1 g h −0.019 −0.436 0.317 0.485 0.266 n

2 b f 0.000 0.000 0.000 0.000 0.000 e

2 c d 0.000 0.000 0.000 0.000 0.000 e

2 g h −0.019 −0.436 0.317 0.485 0.266 p

2 i h −0.404 −0.035 0.437 0.266 0.249 p

For inducing the rule sets we have to provide a set of examples, each of which has been

labelled with a class. We label each example corresponding to the log-based relations

that can exist between two tasks: “c” for causal, “e” for exclusive, “p” for parallel and

“i” for an inverse causal relation.

We induce two independent rule sets. First we separate the learning material needed

in the first step, i.e., the detection of causal relations. Therefore, we label each instance

of the generated learning material with a “c”, whether there is a causal relation between

the tasks, else with an “n”. In the second step we select from the learning material only

the pairs of tasks sharing the same cause or the same direct successor task. We label

these instances with an “e” or a “p” when there is an exclusive or a parallel relation,

respectively. An excerpt of learning material with this class labelling is presented in

Table 3. Note the pairs (c, d) and (g, h) which are labelled in Step 1 with an “n” (in the

first step they are used as non-causal examples), while in Step 2 they are labelled “e”

and “p” respectively, as labelled examples of exclusive and the parallel relations.

5.1. Induction a rule set for detecting causal relations

The computed relational measures corresponding to the 400 generated logs are stored
into one file that serves as training material for the induction of the rule sets. This
file contains a total of 341,577 data points. In order to obtain the rule sets, we use
Ripper algorithm (Cohen, 1995). This algorithm produces ordered rules according to
several optional algorithmic parameters. We use the default method, i.e., ordering by
increasing frequency, with the most frequent class as the default rule. After arranging
the classes, Ripper finds rules to separate class1 from classes class2, . . . , classn, then
rules to separate class2 from classes class3, . . . , classn, and so on. To obtain a rule set
for detecting the causal relations, we use only the instances labelled with “c” or “n”. We
obtain 33 ordered rules for class “c” (“n” is the default class); we refer this rule set as

A RULE-BASED APPROACH FOR PROCESS DISCOVERY 77

RIPPER CAUS. The training error rate for RIPPER CAUS is 0.08% (the training error
rate represents the rate of incorrect predictions made by the model relabeling the training
data set). Since training error is not relevant to assess the generalization performance
and quality of a rule set, we estimate its generalization performance using test material
in Section 5.3. Below we present a selection of rules that cover more than 100 positive
instances.

Rule1: IF LM > = 0.949 AND XY > = 0.081 THEN class c [10797 pos, 0 neg]

Rule2: IF LM > = 0.865 AND YX = 0 AND GM > = 0.224 THEN class c [1928 pos, 6 neg]

Rule3: IF LM > = 0.844 AND CM > = 0.214, CM < = 0.438 THEN class c [525 pos, 1 neg]

Rule4: IF LM > = 0.741 AND GM > = 0.136 AND YX < = 0.009 AND CM > =0.267 AND

CM < =0.59 THEN class c [337 pos, 0 neg]

Rule5: IF XY > = 0.6 AND CM < = 0.827 THEN class c [536 pos, 0 neg]

Rule6: IF LM > = 0.702 AND YX < = 0.009 AND GM > = 0.36 THEN class c [273 pos,

0 neg]

Rule7: IF LM > = 0.812 AND CM < = 0.96 AND GM > = 0.461 THEN class c [142 pos,

0 neg]

Because the feature LM appears multiple times in several rules, we can simplify these

rules by considering the intersection of the intervals specified by the LM metric. We

choose to show the rules with a coverage of over 100 positive instances and less than 7

negative instances.

Let us interpret these rules. Suppose that we want to detect the relation be-

tween two tasks x and y. Rule1 has the highest coverage of positive examples:

almost 70% of “c” instances match this rule. If the LM measure has a very

high value (i.e., there is a big difference in magnitude between |X > Y| and

|Y > X| frequencies) and the XY measure is exceeding a small value, there is a

high chance of a causal relation existing between x and y. Similarly, the first con-

dition of Rule2 specifies LM to be high; the second condition requires the global

measure GM to exceed 0.2, i.e., the difference between |X > Y| and |Y > X| fre-

quencies accounted by the overall frequencies of x and y should be sufficiently high.

The third condition specifies that the value for the YX measure must be 0, i.e.,

|Y >X| = 0. In general, the rules require the LM measure to exceed a high value,

YX to be a value close to zero, while XY should be bigger than 0. Also, CM and GM

measures should be sufficient large.

5.2. Inducing a rule set for detecting exclusive/parallel relations

In order to induce the rule set for detecting exclusive/parallel relations from the labelled

examples generated in Section 3, we select only the pairs of tasks which share the

same cause or the same direct successor task. In Table 3 at Step 2, the pairs of tasks in

exclusive and parallel relations and the corresponding relational measures are shown.

We see that tasks g and h have as same common cause the task f and tasks b and f have

as same common cause the tasks a. The pairs in exclusive relation are labelled with “e”

(e.g. the pair of tasks (b, f)) and those in parallel relations with “p” (e.g. the pair (g, h)).

When we induced the rule set for detecting causal relations we were primarily in-

terested in rules that predict the “c” class. Here we want to develop rules for both the

exclusive and parallel relations (“e” and “p” classes). We employ Ripper with the rule

78 MĂRUŞTER ET AL.

ordering parameter set to produce unordered rules: with this setting Ripper induces rules

for both classes rather than leaving the default rule for one of the two. Conflicts are

resolved by deciding in favor of the rule with lowest training-set error. We obtain the

RIPPER ANDOR rule set with 15 unordered rules, 7 for class “e” and 8 for class“p”,

with training error rate 0.38%.
The 14 unordered rules are the following (we omit one rule with very low coverage):

Rule1: IF XY = 0 AND GM > = 0 THEN class e [4734 pos, 32 neg]

Rule2: IF XY < = 0.01 AND CM < = −0.35 AND YX < = 0.04 THEN class e [486 pos, 0 neg]

Rule3: IF YX < = 0.01 AND LM < = 0.31 AND CM > = −0.02 AND CM < = 0.04 THEN class e

[3006 pos, 2 neg]

Rule4: IF YX < = 0.01 AND CM < = −0.26 THEN class e [588 pos, 8 neg]

Rule5: IF YX < = 0.01 AND XY < = 0 AND CM > = −0.06 AND CM < = 0.01 THEN class e

[2704 pos, 7 neg]

Rule6: IF XY < = 0.01 AND CM > = 0.29 THEN class e [253 pos, 0 neg]

Rule7: IF XY > = 0.01 AND YX > = 0.02 THEN class p [5146 pos, 0 neg]

Rule8: IF XY > = 0.02 AND CM > = −0.24 AND LM > = 0.33 THEN class p [3153 pos, 0 neg]

Rule9: IF YX > = 0.01 AND CM > = −0.26 AND CM < = −0.07 THEN class p [1833 pos,

1 neg]

Rule10: IF XY > = 0.01 AND CM > = −0.24 AND CM < = −0.04 THEN class p [2227 pos,

3 neg]

Rule11: IF YX > = 0.01 AND CM > = 0.06 THEN class p [1523 pos, 1 neg]

Rule12: IF GM < = −0.01 AND CM > = 0.08 THEN class p [223 pos, 0 neg]

Rule13: IF YX > = 0.02 AND GM < = −0.03 THEN class p [1716 pos, 1 neg]

Rule14: IF XY > = 0.06 THEN class p [3865 pos, 0 neg]

Let us inspect first the RIPPER ANDOR rule set for class “p”. First, Rule7, which

has the highest coverage (it matches almost 93% of the “p” instances in the train-

ing data), requires that both the XY and YX measures exceed zero, as expected: if

there are sufficient occurrences of task x and task y next to each other, then there

is likely to be a parallel relation between them; if there are few such occurrences,

there is likely to be some noise involved and then the relation between tasks is prob-

ably exclusive. Rule14 goes in the same direction as Rule7, but requires only the

measure XY to be higher than zero. The remaining rules for class “p” have also

high coverage; other than Rule7 and Rule14 they include different combinations of

all five measures. For example, Rule8 specifies three conditions: the first one re-

quires XY to be higher than zero; the second condition specifies LM to be higher

that 0.33 (a value for LM that has to exceed 0.33 means that the difference between

|X > Y| and |Y > X| frequencies should be relatively small, which is understandable in

case of parallel tasks); the third condition involving the CM measure is not straightfor-

ward to interpret.

Inspecting the rules for class “e” we expect to find complementary conditions. Rule1

has the highest coverage, but has also 32 counterexamples. This rule specifies that XY

should be zero and GM >= 0, which makes sense: in case of a choice between tasks x

and y we would not expect any occurrence of x and y next to each other, which indeed

leads to XY = 0 and GM = 0. In the other rules for class “e” we see that XY and YX

should be smaller than 0.01, which ensures the detection of an exclusive relation when

there is noise. The involvement of the CM measure becomes clearer when inspecting

all rules, both for the “e” and the “p” class. In general, in case of class “e”, CM should

A RULE-BASED APPROACH FOR PROCESS DISCOVERY 79

be found in an interval close to zero (Rule3 and Rule5), while in case of “p” class,

CM should not reach zero (Rule9 and Rule10). Rule6 and Rule11 both specify that CM

should be larger than zero; the decision on an exclusive or a parallel relation is based on

the XY measure (Rule3), which should be smaller than 0.01, and on YX (Rule11), which

should be larger than 0.01. If there is a choice between tasks x and y and cycles exist,

then x and y do not appear next to each other (rather, y appears somewhere later after x),

so the CM measure has to exceed a certain value, as witnessed in Rule6.

5.3. Evaluation of the rule sets

In the previous section we shown the induction of two rule sets: one for detecting the

causal relations and one for detecting exclusive or parallel relations. A natural step is to

inspect how well these two rule sets generalize by performing evaluation tests.

Estimating the generalization error can be done with a range of methods (Weiss and

Kulikowski, 1991). k-fold cross-validation (k-fold CV) is a commonly-used evaluation

method that can be used to evaluate how well a model will generalize to new data. The

data set is divided into k subsets. Each time, one of the k subsets is used as the test set

and the other k-1 subsets are joined to form a training set. Subsequently, the average

error across the k trials is computed. We set k to the commonly used value of 10 (Weiss

and Kulikowski, 1991).

In order to compare the performance of the 10 obtained models, we consider three

averaged performance indicators: the error rate, precision and recall. Error rate is not

always an adequate performance measure, because it gives skewed estimates of gen-

eralization accuracy when classes are imbalanced in their frequencies. In the case of

identifying the relations between tasks we are interested to see an aggregate of the cost

of false positives and false negatives, expressed in terms of recall and precision. In case

of causal relations, false positives are false causal relations found, i.e., linking tasks

which are not causally related. False negative are actual causal relations that are omitted

from the Petri net. Asserting that precision and recall are equally important, we use the

combined F-measure (Weiss and Indhurkya, 1998) (Eq. (3)). In Eq. (3), TP are class

members classified as class members, FP are class non-members classified as class

members and FN are class members classified as class non-members.

F =
2 ∗ T P

2 ∗ T P + F P + F N
(3)

Performing 10-fold CV experiments with Ripper, we obtain for class “c” an average

error rate of 0.11%, 99.35 precision, 98.09 recall and 98.72 F-measure. Detecting

classes “e” and “p”, Ripper achieves an averaged error rate of 0.46%. On class “e”

Ripper obtains 98.99 precision, 99.68 recall and 99.33 F-measure, while for class “p”

gets 99.72 precision, 99.08 recall and 99.40 F-measure (see Table 4). In our previous

work (Măruşter, Weijters et al., 2002), we developed a logistic regression approach to

detect direct successors (the “c” class), using a global threshold. In case of logistic

regression models based on the same 10-fold CV experiments, we obtain an error rate

of 2.70%, 99.10 precision, 97.52 recall and 98.29 F-measure. Performing a paired t-test,

we compare the performance of the logistic regression model and the rule-set model

to detect the “c” class. The outcome is that there is a significant difference between

80 MĂRUŞTER ET AL.

Table 4. Averaged error rates, precision, recall and F-measures for the 10-fold CV experiments run with

Ripper.

10-fold CV error rate precision recall F[0.1]

Ripper “c” class 0.11% 99.35 98.09 98.72

Ripper “e” class 0.46% 98.99 99.68 99.33

Ripper “p” class 0.46% 99.72 99.08 99.40

the performance (expressed in error rates) of the two models, and the rule-based model

significantly outperform the logistic regression model.

So far we inspected the performance of (i) the first rule set for detecting causal

relations and (ii) the second rule set for detecting exclusive/parallel relations separately.

When we induced the second rule set, we initially selected all the task pairs that share

a common cause or a common direct successor. This selection is made from “perfect”

data, because we know which are the task pairs that share a common cause or a common

direct successor in the learning material. However, in practice we do not know which

are the task pairs causally related. Therefore, it is interesting to check the performance

of the rule set for detecting exclusive/parallel relations based on predicted data, i.e., to

use the first rule set to predict the causal relations. From this new learning material we

select the task pairs that share a predicted common cause or a common direct successor

and we induce with Ripper a new rule set that detects exclusive/parallel relations. The

10-fold averaged error rate of this new second rule set is 0.36%; the averaged F-measure

for “e” and “p” classes is 99.83 and 99.85, respectively. These performance indicators

are comparable with the performance indicators of the first rule set induced from perfect

data (the averaged error rate is 0.46% and the F-measure is 99.33 for “e” and 99.40 for

“p” classes). Because the performance indicators do not differ significantly, we have

support to use the induced first rule set for performing future predictions on causal

relations.

Based on the outcomes of the 10-fold CV experiments we can conclude that both

rule sets (i.e., the rule set that detects causal relations and the rule set that detects exclu-

sive/parallel relations) have a high generalization accuracy on unseen data. However,

this performance was checked on test data which is randomly extracted from the gener-

ated learning material. The learning (and testing) material used so far was generated on

the basis of a fixed and limited set of Petri-nets. In order to check how robust our rule

sets are on relatively new data not originating from the same Petri nets as the training

material, we check the rule set performance on new test material of increased difficulty.

We built a new Petri net with 33 event types, having 6 OR-splits, 3 AND-splits and three

loops (our training material was based on Petri nets with at most one loop). We used the

same methodology to produce noise, imbalance and different log size as presented in

Section 3. Applying the rule set RIPPER CAUS on this new test material results in an

error rate of 0.31%; applying the rule set RIPPER ANDOR results in an error rate of

0.90%. The confusion matrix and the F-measure for the new test material by applying

RIPPER CAUS and RIPPER ANDOR rule sets are presented in Table 5.

We conclude that our rule sets show good generalization performance on new data,

even when generated by a Petri net process model with a different and more complex

A RULE-BASED APPROACH FOR PROCESS DISCOVERY 81

Table 5. The confusion matrix and performance results for the rule sets RIPPER CAUS and

RIPPER ANDOR on new test data with from a more complex Petri net than the training material.

Predicted Predicted

Observed c n Observed e p

c 4246 254 e 1181 19

n 79 104321 p 0 900

Recall 94.36 99.92 Recall 98.42 100.00

Precision 98.17 99.76 Precision 100.00 97.93

F 96.23 99.84 F 99.20 98.96

structure than the Petri nets used to generate the training instances on which the rule

sets were based.

6. Analysis: Effects of noise and imbalance

We concluded in the previous section that our rule sets are able to predict, with high

accuracy, the presence of causal, exclusive and parallel relations between pairs of events.

Nonetheless, the degree of incompleteness and noise of the process log will affect to a

certain extent the quality of the process model. We are interested in investigating the

influence of the number of event types, imbalance, noise and log size in the prediction

of causal and exclusive/parallel relations.

By generating experimental data where variations appear in the number of event

types, imbalance, noise and log size, we attempt to control how our method misses or

incorrectly predicts some relations. We are now interested to investigate the influence

of these variations on the generalization performance of the rule sets.

In order to inspect the rule sets performance when number of event types, imbalance,

noise and log size are varied, we apply rule sets RIPPER CAUS and RIPPER ANDOR

on each of the 400 individual log files and we calculate the following three types of

measures:

1. F C: the F-measure obtained applying the rule set RIPPER CAUS. This F-measure

is calculated with the formula from Eq. (3), where TP are the number of task pairs in

“c” relation classified as “c”, FP are the number of task pairs in “n” relation classified

as “c” and FN are the number of task pairs in “c” relation classified as “n”.

2. F E PROP: the F-measure (also using Eq. (3)) obtained with rule set

RIPPER ANDOR, considering the propagated error. This means that in the previous

step, some causal relations were missed or incorrectly found.

An analogous formula is used to compute the F P PROP for pairs of tasks in parallel

relations.

In Figure 2(a) it can be observed how the number of event types is influencing the

averaged F C. Generalization performance decreases slightly when using logs originat-

ing from the Petri net with 22 event types. A possible explanation is that this particular

82 MĂRUŞTER ET AL.

no_event_types

42322212

M
e

a
n

 F
_

c
,996

,994

,992

,990

,988

,986

,984

,982

,980

no_event_types

42322212

M
e

a
n

 F
_

e
_

p
ro

p

,99

,98

,97

,96

a. No. of event types vs. F-C b. No. of event types vs. F-E-PROP

Figure 2. The effect of the number of event types on rule set performance.

imbalance

9510

M
e

a
n

 F
_

c

,994

,992

,990

,988

,986

,984

,982

,980

imbalance

9510

M
e
a
n
 F

_
e
_
p
ro

p

1,00

,99

,98

,97

,96

a. Imbalance vs. F C b. Imbalance vs. F E PROP

Figure 3. The effect of imbalance on rule set performance.

Petri net exhibits more parallel behavior, which is more difficult to be predicted. The

same effect is depicted in Figure 2(b).

How the imbalance in AND/OR splits affects the performance is shown in Figure 3(a).

Inspecting the F C measure we see that when the imbalance is increased, generalization

performance decreases. A different situation is shown in Figure 3(b), where it appears

that if the imbalance is increasing, the generalization performance on detecting exclusive

relations also increases. It seems that a higher level of imbalance helps in distinguishing

between exclusive and parallel relations. When the Petri nets are more balanced, event

pairs in an “e” relation are more easily confused with pairs in a “p” relation. A possible

explanation is that a rule for “p” class with a very high coverage often misclassifies “e”

instances in certain conditions. Rule7 from the model RIPPER ANDOR has the highest

coverage (i.e., 5146 positive and 0 negative examples):

Rule7: IF XY > = 0.01 AND YX > = 0.02 THEN class p

A RULE-BASED APPROACH FOR PROCESS DISCOVERY 83

noise

50201050

M
e

a
n

 F
_

c

1,00

,99

,98

,97

noise

50201050

M
e
a
n
 F

_
e
_
p
ro

p

1,01

1,00

,99

,98

,97

,96

,95

,94

,93

a. Noise vs. F C b. Noise vs. F E PROP

Figure 4. The effect of noise on rule set performance.

log_size (#traces)

1000800600400200

M
e

a
n

 F
_

c

1,00

,99

,98

,97

,96

log_size (#traces)

1000800600400200

M
e

a
n

 F
_

e
_

p
ro

p

,988

,986

,984

,982

,980

,978

,976

,974

a. Size log vs. F C b. Size log vs. F E PROP

Figure 5. The effect of log size on rule set performance.

When classifying “e” instances in case of balanced Petri nets, both XY and YX can

exceed 0.01 and 0.02 (because both “xy” and “yx” can occur in the log with comparable

probability), thus such instances will be incorrectly classified as “p”. When classifying

“e” instances in case of unbalanced Petri nets, either only XY will exceed 0.01 or YX

will exceed 0.02, thus such instances have a smaller chance to be classified as “p”.

Figures 4(a) and (b) display the influence of noise on both performance measures F C

and F E PROP. They show the same expected behavior, namely that if the noise level

increases, generalization performance decreases.

Figures 5(a) and (b) illustrate how the performance measures F C and F E PROP are

influenced by log size. As expected, the incompleteness of the log affecting the gen-

eralization performance of finding causal relations: as log size increases, performance

increases. However, as the log size increases, the performance of detecting exclusive

relations decreases. Inspecting the data we remark that when the log is larger, pairs in

an “e” relation tend to become more easily confused with pairs in “p” relation. One

84 MĂRUŞTER ET AL.

possible explanation relates again to Rule7. When classifying “e” instances in case of

larger logs, both XY and YX can exceed 0.01 and 0.02 (because both “xy” and “yx” can

occur with comparable probability), thus such instances will be incorrectly classified as

“p”. When classifying “e” instances in case of smaller logs, either only XY will exceed

0.01 or YX will exceed 0.02, thus such instances have smaller chance to be incorrectly

classified as “p”.

Based on the above findings, we can formulate four conclusions. First, more noise,

less balance and less cases all have a negative effect on generalization performance.

Causal relations can be predicted more accurately if there is less noise, more balance

and more cases. Second, there is no clear evidence that the number of event types

has an influence on the performance of predicting causal relations. Third, because the

detection of exclusive/parallel relations depends on the detection of the causal relations,

it is difficult to formulate separate conclusions for the quality of exclusive/parallel

relations. It appears that noise is affecting exclusive and parallel relations in a similar

way as the causal relations, e.g., if the level of noise increases, the accuracy of finding

the excusive/parallel relations decreases. Fourth, when mining real process data, the

above conclusions can play the role of useful recommendations. It is difficult to know

the level of noise and imbalance beforehand. However, during the mining process it is

possible to collect data about these metrics through the five predictive metrics that form

the basic features of our rule sets. This information can be used to motivate additional

efforts to collect more data.

7. Case study

To illustrate our approach with real data, we used data from a Dutch governmental

institution responsible for fine-collection4. A case (or process instance) is a fine that has

to be paid; as soon as the fine is paid, the process stops. If there are more fines related

with the same person, each fine corresponds to an independent case. In total there are 99

distinct activities, which can be either manually or automatically executed. We applied

our technique to a process log consisting of 130136 cases.

Because the entire process model is very complex, we focus only on a part of

the process, namely on a sub-process called ‘RETURN OF THE UNDELIVERABLE

LETTER”. In case a person cannot be found at the specified address (he/she has moved

or deceased), the sanction is called an “Undeliverable Letter Return” (ULR). We are

comparing the discovered model with the process model resulting from a case study done

in the traditional approach, i.e., by interviewing the people involved into the process

(Veld, 2002).

The ULR sub-process starts with the task “30” - “undelivered letter return”. A written

verification (“12”) is requested if the sanction is for a company, or an electronic MBA

verification (“23”) is requested in case of a person. The case can be directly judged by

an employee (“13”). This may happen also because a wrong type of verification has

been issued. Before the case is leaving the sub-process, it must be anyway judged by an

employee, even without verification. In Figures 6(a) and (b) are presented the designed

model and the discovered model.

In both models, task “30” is directly followed by tasks “12”, “13” and “23”. Also in

both models, task “13” is directly following tasks “12” and “23”, which is in line with

the description made in the previous paragraph. Task “23” is directly followed by task

A RULE-BASED APPROACH FOR PROCESS DISCOVERY 85

30

1312 23

30

1312 23

a. Designed ULR sub-process b. Discovered ULR sub-process

Figure 6. The designed and the discovered ULR sub-process in case of selected tasks “30”, “12”, “13” and

“23”.

“12” in both models; the explanation can be that when the sanction is for a company,

a GBA verification (“23”) instead of a written verification is incorrectly required and

only afterwards the written verification is required (“12”).

However, we can note that in case of the designed model, there are also “reversed”

direct connections: task “13” is directly followed by tasks “12” and “23” and task “12”

is directly followed by task ‘23”. The explanation can be that such reversed relations

can exist, but rather as exceptions than common practice. This reveals that maybe our

method is able rather to capture the general process model than the process model

containing exceptional paths. We have to conduct more real case studies in order to

ascertain this assumption.

When discovering both sub-processes, we came to process models comparable with

the designed sub-processes. The usefulness of the discovered process model is manifest-

ing in combination with the designed model, i.e., the common parts of these two models

can be considered as the “unquestioning” part of the process, while the differences can

be used to detect the questionable aspects of the investigated process. The discovered

models have been inspected by the domain experts. They concluded that our discovered

models were able to grasp the important aspects of the process. Moreover, the discovered

models revealed aspects that are often questioned when discussing the process model. We

conclude that process discovery can provide useful insights into the current practice of a

process.

8. Conclusions and future directions

We developed an empirical, experimental method for inducing rule sets from process

logs to predict the relations between pairs of process tasks. We generated artificial

experimental data by varying the number of event types, noise, execution imbalance and

log size. On these data we induced rule sets which show high generalization accuracy

on classifying new data.

Our method first employs a rule set to detect all causal relations. After the causal

relations are found, the second rule set detects the exclusive/parallel relations between

tasks that share the same cause or the same direct successor. Knowing the causal and

exclusive/parallel relations, a process model can be built using the α algorithm (Aalst

et al., 2004) which (re)discovers the Petri net process model that explains the data.

Therefore, the contribution of this paper can be seen as successfully complementing the

work reported in Aalst et al. (2004): it resolves limitations of the α algorithm, in dealing

with noise and incomplete process logs.

The two rule sets have a markedly high performance in classifying new data. They are

able to find virtually all relations in the presence of parallelism, imbalance and noise.

86 MĂRUŞTER ET AL.

We also tested our method on a process log generated by a more complex Petri net than

the learning material, resulting in a performance close to that on normal held-out test

material.

Analyzing the experimental data we investigated the influence of process log charac-

teristics on our model performance, which were varied systematically in the generation

of our experimental material. Causal relations can be predicted more accurately if there

is less noise, more balance and more cases. However, causal relations in a structurally

complex Petri net can be more difficult to detect. How process log characteristics are

influencing the prediction of exclusive/parallel relations is less clear. We used a large

set of data from a Dutch governmental institution responsible for the collections of

fines. We focused on one sub-process and we compared our discovered model with the

designed model. The conclusion was that the discovered models conform reality and

moreover, they provide insights into the process current practice.

The current experimental setting confirmed some of our intuitions, e.g. that noise,

imbalance and log size are factors that indeed affect the quality of the discovered model.

However, in real processes more complex situations than we are aware of could be

encountered. Therefore, in future work we plan to perform more real-world case studies

and consequently adapt our method by discovering and considering other factors that

may be influential characteristics of process logs.

Acknowledgments

We would like to thank Dr. Christine Pelletier (University of Groningen) for her valuable

comments and remarks during the review of our paper.

Notes

1. For more information see http://www.processmining.org.

2. T∗ is the set of all sequences that are composed of zero or more tasks of T. W: T∗→ N is a function from

the elements of T∗ to N (i.e., the number of times an element of T∗ appears in the process log).

3. We use a capital letter and || when referring to the number of occurrences of some task.

4. The name of the organization is not given for confidentiality reasons.

References

Aalst, W. van der. 1998. The application of Petri nets to workflow management. The Journal of Circuits,

Systems and Computers, 8(1):21–66.

Aalst, W. van der, Dongen, B. van, Herbst, J., Măruşter, L., Schimm, G., and Weijters, A. 2003. Workflow

mining: A survey of issues and approaches. Data and Knowledge Engineering, 47(2):237–267.

Aalst, W. van der and Weijters, A. 2004. Process mining: A research agenda. Computers in Industry,

53(3):231–244.

Aalst, W. van der Weijters, A., and Măruşter, L. 2004. Workflow mining: Discovering process models from

event logs. IEEE Transactions on Data and Knowledge Engineering 16(9):1128–1142.

Agrawal, R., Gunopulos, D., and Leymann, F. 1998. Mining process models from workflow logs. In Sixth

International Conference on Extending Database Technology, pp. 469–483.

Cohen, W. 1995. Fast effective rule induction. In Proceedings of the Twelfth Int. Conference of Machine

Learning ICML95.

Cook, J. and Wolf, A. 1998a. Discovering models of software processes from event-based data. ACM

Transactions on Software Engineering and Methodology, 7(3):215–249.

A RULE-BASED APPROACH FOR PROCESS DISCOVERY 87

Cook, J. and Wolf, A. 1998b. Event-based detection of concurrency. Proceedings of the Sixth International

Symposium on the Foundations of Software Engineering (FSE-6), pp. 35–45.

Herbst, J. 2000a. Dealing with concurrency in workflow induction. In U. Baake, R. Zobel, and M. Al-Akaidi

(Eds.), European Concurrent Engineering Conference. Society of Computer Simulation (SCS) Europe.

Herbst, J. (2000b). Inducing Workflow models from workflow instances. In Proceedings of the 6th European

Concurrent Engineering Conference. Society of Computer Simulation (SCS) Europe, pp. 175–182.

Herbst, J. and Karagiannis, D. 2000. Integrating machine learning and workflow management to support

acquisition and adaptation of workflow models. International Journal of Intelligent Systems in Accounting,

Finance and Management, 9:67–92.

IDS Scheer. 2002. ARIS Process Performance Manager (ARIS PPM): Measure, analyze and optimize

your business process performance (whitepaper). (IDS Scheer, Saarbruecken, Gemany, http://www.ids-

scheer.com)

Keller, G. and Teufel, T. 1998. SAP R/3 Process Oriented Implementation. Reading MA: Addison-Wesley.

Măruşter, L., Aalst, W. van der, Weijters, A., Bosch, A. van den, and Daelemans, W. 2002. Automated

discovery of workflow models from hospital data. In C. Dousson, F. Höppner, and R. Quiniou (Eds.),

Proceedings of the ECAI Workshop on Knowledge Discovery from Temporal and Spatial Data, pp. 32–37.

Măruşter, L., Weijters, A., Aalst, W., and Bosch, A. 2002. Process mining: Discovering direct successors in

process logs. In S. Lange, K. Satoh, and C.H. Smith (Eds.), Proceedings of the 5th International Conference

on Discovery Science (Discovery Science 2002), Berlin: Springer-Verlag, vol. 2534: pp. 364–373.

Medeiros, A. de, Dongen, B. van, Aalst, W. van der and Weijters, A. 2004. Process Mining: Extending

the α-algorithm to Mine Short Loops. BETA Working Paper Series, WP 113, Eindhoven University of

Technology, Eindhoven, 2004.

Medeiros, A. de, Weijters, A. and Aalst, W. van der. 2004. Using genetic algorithms to mine process models:

Representation, operators and results. BETA Working Paper Series, WP 124, Eindhoven University of

Technology, Eindhoven, 2004.

Mitchell, T. 1995. Machine Learning. McGraw-Hill.

Quinlan, J. 1993. C4.5: Programs for Machine Learning. Morgan-Kaufmann.

Reisig, W. and Rosenberg, G. (Eds.). 1998. Lectures on Petri nets I. Basic models, Berlin: Springer-Verlag.

Veld, A. 2002. WFM, een last of een lust? (Confidential Report), Eindhoven University of Technology.

Weijters, A. and Aalst, W. 2001. Process mining: Discovering workflow models from event-based data, B.

Kröse, M. Rijke, G. Schreiber, and M. Someren (Eds.), Proceedings of the 13th Belgium-Netherlands

Conference on Artificial Intelligence (BNAIC 2001), pp. 283–290.

Weiss, S. and Indhurkya, N. 1998. Predictive Data Mining. San Francisco: Morgan Kaufmann.

Weiss, S. and Kulikowski, C. 1991. Computer Systems That Learn. Morgan Kaufmann.

