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" ABSTRACT

This reseafch-iﬁ motivated ‘by avdesire to integrate some of the diQersé; yetvcoﬁxf
~ plimentary, developments that have taken place dql‘iﬁg the past few years in thé areé of
passive‘ stereo vision. On the one hand, we have approaches based on matching zero-
crossings along epipolar linés, and, vc‘)n the other, pgople have propOséd techniques that .
matcil directly higher level percepté, such as line elements and vofher geometrica’vlk
f‘orms; Our »rule-based p;qgrafn is-a modeét attempt at integratin‘g» thése different
approaches ihtq a singlé program. Suéh integration was made nece‘ss'ary by the» -féct
.that no single method by itself appears capable vof éeherating usable rénge maps of a

scene.



" CHAPTERI INTRODUCTION

Before the famous random-dot stereogram experiments by Julesz [ 1 ] 1t was »

' generally believed that a necessary precursor to binocular fusion was a Tecognition’ of »
monocular cues in each of the two images. The experiments by Julesz caused a para- . -

‘dlgm shift: of sorts in the psychophysics of the human visual system; suddenly, the
preponderance of the research effort shifted toward explaining pract1cally all aspects of -
human stereopsis in terms of low-level processes, as opposed to high-level cognitive
phenomena One of the high points of this post-Julesz period was the development of
the: Marr-Poggro paradrgm [2] Marr and Poggio presented a computauonal theory, -
later nnplemented by Grimson, that provided successful explanation of the Julesz
experlments in terms of the matchings of zero-crossings at different scales, the zero- |

crossings at each scale corresponding to the ﬁltermg of the i 1mages wrth a Laplacran-
_-of-a-Gaussran (LoG) filter [ 3 ]. : .

Durrng the last few 'years it has been recogmzed that while the- Marr-Poggro para-

| drgm may be an elegant model of the low level mechamsms for generatlng depth infor-

mation, not‘to be ignored are the higher level cognitive phenomena that are also capa-

" ble of: producing the same type of information. In a majority of these higher levelz K
'phenomena, there is first an explicit recognition of monocular cues in each image;

depth- perceptron is then generated either directly from the monocular cues, or through
their fusion in a stereo pair. :
In this report, we will present a rule-based procedure that makes a modest attempt
at combining - the Marr-Poggio type. of low-level processing with higher level
knowledge-based processing that takes into account a priori knowledge of the

- geometric nature of object surfaces involved in the binocular fusion process. In our

" current effort, the higher level knowledge based processing is limited to scene with

planar surfaces. One could say that at this time we have limited ourselves to a

polyhedral world. However, it is not hard to concerve of ways in which the present

'method could be extended to worlds with different types of curved surfaces simultane-

ously present. :
‘Basically, our approach represents an integration -- in an opportumstrc framework E

-~ -- of .the following methods for stereo matchlng 1) dominant feature matching, 2) B

matchmg under geometric constramts, 3) zero~cross1ng contour matching, and 4) the .
full MPG matchmg A rationale behind the 1ntegrauon is that wh11e none of these '



' 'methods by themselves is’ capable of y1eld1ng an adequately dense range map, _thelr’ S
: ,synerglsuc combmauon can be expected to. prov1de more - useful mput for scene el

" interpretation. - Another rauonale is that the first three methods provide us w1th o

i - mechanisms to 1nJect higher level constramts into the MPG process. The only dom-

o inant features currently 1mplemented are the straight line features, our 1mplementauon -
' of the method for such features was. inspired by the work of Medioni- and Nevatia [ 5] -
and Ayache et al. 41 For the geometnc constraint based matchrng, we have: been. L

much mSplred by the work of Eastman and Waxrnan [ 6 1 and Hoff and’ AhuJa [7 ] .

S The only geometrlc constraints. currently 1ncorporated in our system are those that are

- given rise to by planar surfaces.. For zero- crossmg ‘contour matchlng -- also called .
fmatchmg under ﬁgural continuity constraints -- we have learned much from the work ‘
of Mayhew and Fnsby [ 8 ] and Gnmson [ 9 ] Our unplementatlon of ﬁgural con- -

The framework for the 1ntegrauon of the methods is. opportumsuc in the sense -

- :; that glven all the available matching strategies, at each stage of processrng the . systemj?

B 1nvokes the one whose apphcabrllty conditions are best satisfied by ev1dence extracted :
S0 far from the i 1mage region. For example, if at the ‘beginning of processmg a parr of

o matchable dommant features is avallable in the two images, the system: w1ll g0 ahead

- -and uuhze them for the determmatlon of the local depth 1nformat10n However in the .
S absence of domrnant features, the system will try to invoke other matchlng strategres
dependlng upon the zero crossing features. extracted from the i image regron A

The opportumsuc framework for. 1ntegratlon 1mplemented as a rule-based pro-

- ,'gram, 'is intended to capture human ‘intuitions about how hlgher level constraints
R should be. 1nJected 1nto a low-level matchmg procedure such as the MPG algorithm. g
BRI Our 1ntu1uon which is in concurrence with the BRPS conjecture made by Mayhew and

§ Fnsby [ 8 I says that if a strong hlgh-level feature can be extracted from an image, the ,

- ,_human v1sual system will go ahead ‘and do so; the stereopuc fusion w111 be subse-

quently dnven by the constraints generated by the hlgh level feature. G
- We do not wrsh the reader to- cons1der our approach a mere smorgasbord of the_
’ already well-known approaches 10 steéreo matchmg The different component

e o approaches in the rule-based system are. not a complete duphcate of their. earher 1mple-

‘mentatlons by other 1nvesugators As ‘a case in potnt when matchmg under geometri-

o cal constramts is mvoked only’ the output of fine zero—crossrng channel i is: constramed o
o by the expected geometrlc form of the: obJect surface. This is. contrary to the 1mple-< E
- mentations proposed by Waxman and Eastman I 6 1 and Hoff and AhuJa [71 where '

: geometncal constramts are. also apphed to coarse channel outputs Our rauonale is-

o ;that the analyucal properues of the coarse: channel output may. bear little resemblance |
S to the analyt1cal properties of the obJect surface. For example, fora planar obJect hke :
* a cube ~against a uniform background the fine channel output if: free of mlsmatch-i‘ :
: -f-'ﬁerrors w111 correspond falrly closely to the three d1mens1onal shapes of the v1srble S e




surfaces of the cube, however, the coarse channel output will, in most cases, look like a
blobular bell shaped function. ‘ :
The above discussion leads us to the followmg dilemma: Ideally, any ava11able_ .

geometrical constraints generated by hypothesized knowledge of object surfaces =~

should be applied to zero-cros‘sings at all scales; however, due to the large 'srnoothin_g

‘operators that come into play for coarse channels, the geometrical properties of

coarse-channel disparities may not correspond to those of object surfaces. And, of :
course, applying the geometrical constraints to just the fine channel output is hazardous-
because of the mismatches in the coarse channel output that could not be el1m1nated by .
not applying any geometrical constramts in these channels. ' Ce
 To.get around these difficulties, we have taken the following approach Geometr-
ical constraints are hypothesized and applied only if certain "robust" features ‘are
detected at the outputs of the finest channel. For example, we considerstroug straight
edges as robust features. If, at the output of the finest channel, the system detects

~ zero-crossing contour segments that are straight and represent large changes in image

brightness levels; the system then fuses these segments by a contour matching scheme.

This fusion generates a straight line in the 3-D space of the scene. ‘Geometrical con-
straints are then enforced by insisting that in the vicinity of this line in 3-D space, the E
disparities. associated with the other zero- crossings be accepted only if the dlsp_arlty '

values are close to that of the line.

There is a further mechanism built into our computatronal procedure for drscard- :
ing a ‘selected geometrical hypothes1s If in the vicinity of the zero- crossings gen-
erated by straight edges, a majority of the other zero-crossings cannot be fused under
the disparity constraint just mentioned, the hypothesized geometrical constraint is dls-
carded, and a search conducted for an alternative hypothesis.. :

* Obviously, binocular fusion under. geometrical constraints generated by straight
edges would not be applicable everywhere in a scene. In other regions, where applica-
ble, we invoke the constraint generated by figural continuity. And if that also is impos-
sible, our rule-based system used as a last resort the stralghtforward MPG matching
scheme. - ‘ : '

- Evidently, in any pass1ve stereo scheme the nature of illumination has a consid-
erable influence on the final results. We will report on experiments conducted with
both natural lighting and under artificial "unstructured” light illumination. The latter
type of illumination was p1oneered by Nishihara [ 10, 11 ] in the PRISM system

Since what we have done can, in a sense, be considered to be a modification of

- the: Marr—Pogg1o—Gr1mson (MPG) procedure, in what follows we will begin with a =
~brief review of this procedure in Chapter 2,- where we also discuss some of the

shortcomings associated with the MPG method. Hopefully, the discussion in Chapter 2
will convince the reader that there is a need to also invoke higher level constraints dur-

ing the matching process. In Chapter 3, we will review the procedures that are



o currently avarlable for enforcmg hlgh-level constramts In Chapter 4 we present in

) ‘detail ‘the matchmg algorlthms included in the rule-based procedure. Chapter 5 then
' _proceeds to present the organization of the rules in the system; this - chapter also

: dlscusses the interaction of the rules with a control matrix which is used by the system

’ to ﬁgure out which matching strategies have already. been tried for a given region of e

" the image and which strategy should be tried next. In Chapter 6, we then discuss some
: vaspects of ‘the 1mp1ementat10n of the system,. partlcularly those - dealmg with the
interaction of OPS83 for-the rule based part and the C language for the rest of the

vlmage processmg routmes In Chapter 7, we show some experrmental results Fmally,

’ concludmg remarks are made in Chapter 8 \ ' - L ‘




CHAPTERT THE MPG APPROACH TO BINOCULAR FUSION

,2;1. Brief Review of the Coarse-to-Fine Matching Strategy

. Figure 1 lill'ustrates what we usually refer to as the MPG p_rocess. Each retinal
image is first convolved with a set of LoG functions, the function being of the form :

‘ 2,2 R 2,2 SR
o[ 25 w222 o
where V2 stands for the Laplacian operator |
' 2 2 .
2_ O K
Vi= _5x2 + 8y2 (2)
and G(x,y) represents the ,smb()thing kernel
o s 2yl ' -
G(x,y) = o"exp —-—1-20_2 BN E

Although the ‘‘width" of the LoG functlon as descrlbed above, is charactenzed by the
' parameter O, it is more frequently referred to by a parameter usually denoted by w,p,
the relationship between the two being

Wap
= = @
22 |
The convolving functions in Figure 1 correspond to wop values of 63, 32, 16, and 8.
As Grimson has pointed out, in the HVS there is. physiological ev1dence for the pres- ‘
ence of a ﬁfth channel with WD equalto4[12].
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For each image, the convolved outputs form a coarse-to-fine representation. -
Large scale variations manifest themselves via zero-crossings only in the coarser (

large wsp ) channels, while the small scale variations generated by surface textures -
“show" mostly in the outputs of the finer channels. In Figure 1, there is an order to the

matching of zero-crossings, which may or may not be representative of the human
-visual system but forms a good strategy for engineering implementations. As depicted .
in the figure, we first match the zero-crossings, taking into account the local orienta-
tions of the zero-crossing contours, in the coarsest channel. [Because of the nature of

~ our rule-based superstructure, it is not necessary for us to directly enforce figural con-

tinuity constraints in the matching process, as was, for example, done by Grimson [ 9].
“In other words, the ﬁgural continuity considerations are subsumed by the rule-based
" procedure.] The disparity values thus generated form a coarse range map of the scene
and are used for vergence control for the next channel -- for a computer 1mplementa- ‘
tion, vergence control merely means: that before matching a pair of zero-crossings. in,
say, the wop = 32 channel, the right-image zero-crossing is shifted by the local dispar-
ity value ‘generated by the wop =64 channel. Of course, it is unlikely that the
wyp =64 disparity would be available exactly where it is needed, in that event a
neighborhood is constructed around the right-image zero-crossing, and the average of
the coarser disparities in the ne1ghborhood is used for vergence control. Further detalls .
on such matters may be found elsewhere [12,13 ]

2 2 Some Computatlonal Aspects of the MPG Algonthm

The computanonal steps. in each channel of the MPG algorlthm consist of the‘

three steps: 1) extraction of zero-crossings, 2) matching of zero-crossings: between the B

two images, 3) disambiguation if multiple candidates are available for matching. In the
following subsections, we will bneﬁy discuss the nature of computatlons mvolved in
each of the steps. ’ e S

221, VExtractv_ion of Zero—Crossings |

In the 1mplementat10n used for this research the left and the nght 1mages wereb |

. convolved with three LoG operators for wsp equal to 16, 8 and 4. We dld not use any

: larger operators to save on computational time. The larger operators s1mply permit the
~ depth range to be greater in our experiments we limited the max1mal depth t0 what .
would correspond toa W2D value of 16 ’ : '



The double convolutlon 1mp11ed by the kernel of Eq (1) has consrderable beanng e

- on the computanonal efﬁcrency of the MPG process Until recently, the LoG function - e

‘in Eq.. Q) was not cons1dered separable and the convolutions involved had to be 1mple-, ’

..mented as two d1men51onal 1ntegrauons "The only way around this dlfﬁculty was to

a8 :approxrmate the LoG form by a difference of two. Gauss1on fun(:tlon and explort the

| ':'separabrhty of a Gaussran ketnel . to reduce two dimensional 1ntegratrons into .

S .;sequences of one-d1mens1onal mtegrauons However, more: recently, Chen et al. 141 o
L '::have shown that it is poss1ble to decompose the LoG kernel and express the decompo- '

o  sition as a- sum “of two parts, _each part belng separable inits: X and y dependences '
g vMore spe01ﬁcally, the LoG kemel was shown to be expressrble as :

S S VzG(x ) hlz(x Y)+h21(x y) E (5)

hh()h(y) o e

hl(g) [ %]ez"zpf (7)

".The factor K is a constant whose quantrty does not affect the posmon of zero-‘
' crossmgs h : ' -

B 2;2;2;;‘i{eprésent~ingvZero-,_Cmss'i_-ngs‘ L

o Although theoret10ally the zero-crossmg contours are supposed to. be closed 1n_

. fpractlce if left-rlght scanning is- used to detect the presence of a zero-crossmg on each‘ v
o raster hne (by looklng for sign reversals in the LoG ﬁltered output), the zero- crossmgs o

~ contours. come out- ‘broken. The: breaks are caused by the near-honzontal segments of

= ,,_what would otherw1se be continuous contours, s1nce in the v1c1n1ty of such- segments 1t' |
- ‘is d1fﬁcult to detect left-to rlght sign reversals In general breaks can also be caused by ,

- the magmtude of the p1xel d1fferences on the two s1des of a zero crossmg not
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exceeding an acceptance threshold.

In order to obtain continuous zero-crossing contours, we use the followmg stra-
tegy All the positive pixels in the LoG filtered image are marked as +1’s, and all the
negative values as 0’s. The zero-crossmg contours are then extracted by following the
boundaries of the positive regions, where the boundaries are defined as the 4-
connectedness neighbor of negative regions. Dunng the contour extraction process,“
each zero-crossing is tagged as either 'p’ or 'n’, depending upon whether or not its
immediatealeft neighbor is lesser or greater than its immediate-right neighbor. If dur-
ing the theleft-to-.right comparison, one of the neighbors is on the boundary, the zero-
' crdssing is classified as ’0’, which is meant to stand for ’other.’ | B
" The above procedure results in the formation of two NxN character arrays,
Ly (x, y) and Ry, (x, y ), for the two images, where N is the 1mage size and equals

256 in our system. The contents of these arrays are

.I.w(x;y) ="p’ if‘a positive zero-crossing exists at (i,y) o ©)
in the left image after the LoG operator is applied |
='n"  if a negative zero-crossing exists at x.y) |
. in the left irhage after the LoG operator is applied -

=0 | else

© Ryxy) =7 1f a posmve zero-crossmg exists at (x,y)
| in the right i image after the LoG operator is apphed
='n" " if a negative zero-crossing exists at xy) -
i the right image after the LoG operator is applied

=0 else.

: 2,2.3.- Determination of the Seareh Window Size '

As shown in Figure 1, after the zero-crossings are extracted from each of the two
images, the outputs of different channels must be matched and the zero-crossings from /
the left and right images paired in each of the channels. While this matching process is

relatively straightforward for the coarsest channel, it must be preceded by vergence for - -

the other channels. In this secnon, we will first describe how the search windows are
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et up to match the zero—crossmgs and the issues affectlng this process o

} “In Frgure 2, we show how a search window is set up to find the match in the right

: 1mage for a left i image zero-crossmg - We transfer the coordinates of the left -image
’ zero-crossing into the right image and*then construct a one-dimensional window of
“width +w2D around the resultmg point. Ideally, as was pornted out by Marr and Pog-

' W2D
'glo [ 3 ], one- should use a search wmdow size of £ , since-in thlS case one can

o show theoretlcally that w1th 95% probabllrty there will be only one rlghtulmage zero- v |

+ 2D
‘crossmg in’ the search wmdow In practlce, *— s1zed search wmdows are too nar-'

row to be practlcal as drfﬁculnes are caused by ShlftS in zero-crossing contours, these
_shifts being produced by the interaction of gray level changes withing the domain of
support of the LoG operator [ 15 ]. To demonstrate these shifts, we have shown in Fig-
" ure 3 the stereo images of a box scene with illumination arranged in-such a manner that
. a shadow is cast on one side of the box in only the left image. To show the effect of

‘ thrs shadow on the shift of. the zero crossing contour, we have used: the ‘notion of -
’ 'scale-space ﬁltermg, introduced first by Witkin {16 ], and considered the gray levels |

': “on only the line PQ of the i images. Flgures 4 (a) and 5 (a) show the gray | levels along

: PQin the two images, respectively. Figures 4 (b) and 5 (b) show the zero-crossmgs :

'obtamed for different choices of wyp for these gray levels. It is clear that the left i image

| 'zero—crossmgs suffer greater shifts for larger wyp than the right image zero-crossings,

~this berng a consequence of the presence of the large gray level change at the shadow
boundary in the left i image. S : -

~ "Due to the zero-crossing contour shrfts 1t is more common to use +W2D search

o wmdows, even-though this implies that the. probablhty of finding a single zero- crossmg

. within the right image search window will be down to 50% and that in rest of the cases

~ there may be more than one candrdate zero—crossmg, leadmg to 1ncreased burden on
' drsamblguatron procedures. T

: -~ If only a single zero-crossing is located w1th1n the search window, 1t is accepted
~asa match prov1ded there is also a match in the orrentatlons of the local zero crossing

- contours If the orientations do not correspond then the left-image zero-crossmg is
: 31mp1y left unmatched. v CE el

. We will now describe how the zero- crossmg orientation 1nformatlon is captured

- A method to compute the local contour orientation was presented in a prior study [ 13

]. ‘The approach there consisted. of computlng the x- and y - directional gradrents by

‘ the apphcatron of Sobel operators and taklng the arctan of the two, y1e1d1ng a value for

USSR

Strictly speaking, this is only true of the coarsest channel in a multi-channel 1mplementatron For
- finer channel, we add to the coordinates of the:left i image the disparities of all the coarser channels
. before setting up the search window. This, as was mentioned before, is called vergence control.



15

AII A’ ‘ ‘
| p g’i /gearch window
Vi Z ]
L N £
x1—W2p ) x1+Wap
B” ' : B’
Xy | X X)
(a) Left image. (b) Right image.

Note:  Two contour points P{ and P{ within the search window + wop,
on the coutour segments A’~B” and A”~-B”,
resptctively, are the match candidates for the left image zero-crossing P;.

Figure 2 Search window in the right image for a zero-crossing in the left image.



(a) Left image.

Figure 3

One box scene.

(b) Right image.
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Figure4  Single blob 1-D image and its scale map (left).
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- orientation which could take any value i in the 1nterval [0, 180]. :
- In our implementation of the MPG procedure, we do not d1rect1y compute the o
orientations of the local zero-crossing contours. The contour orientation 1nformatlon is
'1nd1rect1y taken into account by comparing the local binary bit patterns in the blnary 3
1mages generated during the contour extraction procedure presented in’ Sectlon 2 2. 2 >
We bélieve this approach is much more efficient. - -
' “To explaln the comparison of the b1t pattems, let Ay, and Ay be the values of 3 X
3 bmary 1mage patch of left and the right i image respectlvely, as shown in’ ‘Figure 6. :
The zero-crossmg pixel under ‘consideration is supposedly at the center of the 3x3
‘ matnx Let S be the matchlng magnitude computed by the follow1ng formula

§= ZNEG(A,; XORA ) j o " 10)

=0

:where XOR denotes the loglcal excluswe or, and NEG denotes the loglcal negatlon If ) ,
 all eight elements of the 3 x 3 matrix ‘match the value S is 8, meaning the two contours -

have identical orientations. If one of the eight elements differs, then S is 7, Wthh as
should become evident from Table 1, corresponds to a maximum onentauon d1fference
of 27 degrees The orientation dlfferences for-a'1 bit disagreement can be found by
comparing the orientations for the successive entries in the table. ‘Again from' the

table, when the value of S is 6, meaning that two bits in the left and the nght image |

patterns are in disagreement, the angular d1fference between the correspondmg con-

. tours is at least 34 degrees. Since we did not want the contour orientations to differ by
more than 30 degrees, we used a threshold of 7.on S. In other words, two zero-crossing -

orientations were considered be the same if there was only a one b1t d1sagreement o

“between their corresponding nelghborhood blnary masks :

Our bmary nerghborhood comparison procedure has one advantage over methods; :
“that are more explicit in their usage of local- orientations. Cons1der the followmg two
“blnary patterns in the nelghborhood of a zero- crossmg

0 01
011

11
01
11 “0 01

H)—IH

The orientation entries in the table were generated by the apphcatlon of 3x3 Sobel operators t0 -
the bit patterns shown in the second and the fourth columns. Note that the table itself is not used
during the matching of the zero-crossmgs Itis shown here only for the purpose of Justlfymg the
threshold used on S. : v . .



. (@Leftimage. - (b)Rightimage.

R Figure 6 3 x 3 image patches and their elénients, S
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The Sobel operator would assign the same contour slope to the center point of both the
patterns, since at the center point the first derivative in both cases is the same, only the
second derivatives. are different. Therefore, a matcher that uses. gradient calculation
based orientations would match the two zero-crossings corresponding to the patterns,
although such a match would be erroneous. However, with our scheme, when two pat-
~ terns are. compared, the resulting value of S is 4, which is below the threshold there-
fore the zero-crossings would not be matched. : o
Note that there is an implied assumption here that prior to the settlng up of search
~windows in the manner described above, the two images are already rectified.
Rectification: means that the epipolar lines in the two images are parallel and .
correspond to the rows of the matrices representing the images. More: speciﬁcally, it is
assumed that the correspondents of all the pixels on the i-th row of the left image are
on the i-th row of the right image. In general this will not be the case, espemally when
the optic axes of the two cameras are not parallel, As discussed by Horn [ 17 ], when
the optic axes are convergent, ,the' epipolar lines in each of the image p_lanesr‘ are_alsov
convergent. For example, the epipolar lines in the left image must all radiate out from
the left-image point corresponding to the camera center of the right i image. ‘
| In case the reader is not already familiar, an epipolar line is defined for -each -
image point as that line i in the other image on which the corresponding point must lie. -
Given, say, a left-image pomt we can argue that the ob_]ect point must lie on the ray
passmg through the image point and the left camera center; if we project this ray onto
the right image, we obtain the epipolar line for the left-image point in questlon By
analyzing the geometry associated with epipolar lines, it can be shown that when the
" optic axes are parallel, the epipolar lines must also become parallel. We demonstrate
this with images of an object consisting of lattice pattern, whose horizontal lines and |
vertical line are perpendicular, drawn on a sheet of paper. Figures 7 (a) and (b) show a
stereo pair of images obtained when the camera axes are convergent with an angle of
45 °, From the slant of the lines in the images, it is clear that in this case it would be - o
inaccurate to use one-dimensional search windows for solving the correspondence

problem. The process of rectification consists of transforming each of the images in

- such a manner that the transformed stereo pair corresponds to the case of parallel optic
" axes. In general, such transformations can be complicated. In our research, we have
" circumvented the difficulties of rectification by using keeping the camera optic axes
nearly parallel, usually within 10 °, and objects at.a relatively large distance from the
~ camera baseline. The camera baseline was typlcally 20 inches long and the ObJCCt to :

baseline distance typically 110 inches. Figures 7 (c) and (d) show the stereo images of

the 2-D object taken under such condmons Since we do not use any rectification exph- _

citly, we modify the search windows somewhat and include the +w2D mtervals in the | o .

row above and the row below



2

: Table 1 3 x 3 binary image patches and their associated orientations.

| Orien- | 3x3patch | Orien- ~ 3x3patch
tation | - | ’ "qtationk' S T B
(deg) | (binary image patch) | (deg) | (binary image patch) | ‘

e 000%¥101*%000%* 11 1*111%11 1%
O- [ 111 111 010 | 180 | 111 010 111
ot o111 or1no | | 000 000 101
R ~001* 000 Sl 111 111k
27 |- 111 o110 27| - 110 111

' 111 111 000 100
RN 001 L 111
45 | o011 | 225 110,
] e11 001 | 110 111
63 o011 011 | 243 [ 110 110
ool 111 011 ] 100 110
ol r1r1ro11 o001 0 [ 100 110 111
9 | 011 011 011f 270 [ 110 110 110|
o111 011 001 - | 100 110 111
4 111 011 100 110
M7 [ o011 01T | 297 | 110 110
| 011 001 110 11.1

._ o e , o 100
135 0 o1t . | 315 . 110
ol 001 L 111
TR 111 o 000 100%
153 111 011 333 | o011 111
o100 000 f 0 111 111

. Note :- 3 X3 patches w1th * mark are not used for matchmg, because thelr parlty
EE 1s neutral (nelther posmve nor negatlve)
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; (a) Left image (angle = 45 °). (b) Right image (angle = 45 °).

() Left image (angle = 10 ©). - (d) Right image (angle'vz 10 °).

Figure 7 Perspective disortion in binocular stereopsis.
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The reader should also note that a further correction is usually necessary before -
. the Zero- crossmgs can be matched ‘even with the window modification we Jjust
described. ‘In general, the plane containing the two optic axes will not intersect- the
image planes along lines parallel to the scan lines, assuming of course that the two
- axes are very nearly parallel and ‘‘containable" in a plane. When this ‘happens, the epi-

polar lines although parallel will not lie along the camera scan lines. To get around this
difficulty, the two images must first be row-registered. Although one can v1suahze

L h1gh-prec1sron expenmental set-ups where this would not be a problem, in our expen—

- ments- ‘where the cameras are mounted on ordinary tripods, we must do the Tow-
registration manually before ‘matching. Our camera images are 512x480. From the left
- image, we first extract a 256x256 sub1mage Then, from the right image we extract a.
s1m11ar s1zed sublmage that appears to be best row—reg1stered with the left sub1mage '

o 2.2.4.]Disambi‘guaticn

S1nce, statlsttcally, there w111 be many cases where there are two or more candl-
date zero-crossmgs inside a search window of size +w;p, one has to employ some
| dlsamb1guat10n strategy to select one of the zero-crossings. - Following Marr and Pog-
gio [ 2.], the notion of pullmg effect 1s used by us for drsamblguatlon The pulhng
~effect is intended to lend a certain measure of continuity to the calculated d1spar1t1es
values, meanmg that since d1$par1ty variations can not be chaotic, if there is a choice
~‘one must use that value which is most consistent with the dlsparmes in the neighbor-
hood. Gnmson [9] implemented the pulling effect in the following manner: In the k
th channel, let Ck;» 1=1,2,.. N, be the: candldate zero-crossmgs in a nght image search
1 'wmdow set up for a g1ven left image Zero- crossmg Let d, be the disparity of the i th
candldate “We will accept that dy, for Wthh ‘we- can find a coarser channel zZero-
crossing w1thm a specified nerghborhood of the left i 1mage zero-crossmg, the disparity
“dy.; thatis assoc1ated with the coarser channel zero- Crossing bemg such that

’f’_ldki:_' dkﬂ"' =% . ah

) bwhere wk is the w2D for the k—th channel Th1s pull1ng effect is 111ustrated 1n Flgure 8

e X (a) where C corresponds to dy_;.

- Our. 1mp1ementat1on is qu1te dlfferent from that of Grimson, since we do not at allb
use the coarser channel dlsparmes for the pulling effect. Instead, we 1nsrst that a candl—:

' e _._.jdate zero~crossmg be selected such that
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response
AL
YLD
-w C . W
B disparity
(a) Grimson’s Model
response
.
W > L
_ disparity

(b) Our Model

C is determined by the
coarser channel range data

C’ is determined
by the pulling effect
WaWy;p

Figure 8 Disambiguation models.
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dkl -3 | %dkj <— 1
a d:samb—nerghborhood ' el e o .

B where dlsamb-nelghborhood stands for nelghborhood around the left-1mage ZEero- - "
- crossing in questlon In most of ¢ our programs, the size of this nerghborhood is 20x20.

- This approach to the pullmg effect is: shown in Flgure 8 (b) where C’ is. the average

. shown in the above equation. DR | : - : _

" " The s1ze of our pulhng-effect wrndow was set empmcally We exarmned a large o
" number of stereo pairs and concluded that a larger window, say of - size +Wap, allowed - |
‘more than one cand:ldate match to be accepted wh1ch v1olated the entlre purpose of '

- dlsambrguatlon And, of course, a smaller w1ndow, say of s1ze :t 8D reJected too :

o often all the cand1dates

| 23 PrObl‘erns w:th the MPG Approach'

The dtsarnblguatlon aspect of the MPG approach is not as defensrble as the rest of .
v 'the formahsm -Of course, ata theorettcal plane, the phrlosophy behind d1samb1guauon o

T appears t0-be sound -- as it seeks to enforce contrnu1ty and uniqueness on the com- -
o puted d1spar1t1es -- however, there is a certain looseness in the implementation of the
= idea 1tself For example, in our own 1mplementatlon the size of the window orne uses '

' ‘”for dlsamb-nezghborhood depends upon how' rapidly varying the depth values .are;

: however the ‘mnature of this dependence is poorly understood at this time. Our own

o selectron for the size is made by trial and error. Clearly, a w1ndow de81gned fora class

~of scenes may not. work well for another class. We mamtam that the same is true for
.,other 1mp1ementatrons . S S e T |
- While the above dlfﬁculty 1s more in the nature of how a partrcular aspect of a
o theory should be 1mp1emented we will now: show, with the help of a simple example, a

shortcomrng of the MPG formalism that goes to the heart of the theory. We will show

L that a computatlonal theory of depth perception must not only carry out bottom-up pro-

- ‘cessmg of the sensory 1nformauon as is done in. the MPG approach but it must also o
_ .;1nvoke top-down expectatlon -driven procedures. : I
' " For the example, assume that the obJect surface is made up of three panels, as
shown in F1gure 9. Also assume that the camera positions are such that the panel 2 is -
N not v1s1ble in the left image. If we assume that the surface of the obJect is: randomly
vtextured itis hlghly probable that the zero-crossings in the panel 2 portion in the right
o | 1mage w111 match w1th some zero-crossrngs from. erther panel lor3i in the left 1mage ‘
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Fxgurc 10 illustrates calculated dlspanty valucs along the line PQ shown in the prcv1-v
ous figure. The correct depth values are also shown for comparison. v ,

- To the human visual system, the object surface in Figure 9 presents no difficulties
whatsoever when it comes to depth perception, even in the presence of occlusions, as
shown there. We believe the human visual system uses higher level cognitive process-
ing which invokes object level knowledge to place additional constraints on disparity
values. We also believe that, in most cases, monocular processing is sufficient to gen-
erate these ob_]ect level expectations that are then used in the process of binocular
fusion.. -~ ST
It appears plaus1ble that in the human visual system object-level knowledgc for
binocular stereopsis is triggered by strong high-level features in a scene. So, clearly,
any attempt at generating object-level constraints on acceptable disparities must start
with the detectlon of high- level features. In our work so far, the only high-level
featurcs we have used for this mggenng process are straight edges that are strong and
long. We refer to strong and long straight edges as dominant features.

Therefore, if a computational theory of depth perception is not to suffer from the
kind of shortcoming exemplified by the three-panel example, the dominant features
must first be detected and matched. The resulting structures in 3-D space must then
trigger hypotheses about the orientations of surfaces in the vicinity of the dominant
features. Finally, these hypotheses must generate constraints for acceptable disparities
near the dominant features. Of course, if a sufficient fraction of the available zero- -
crossings can not be matched under a particular hypothesis, that hypothesis must be
rejected in favor of others. Clearly, of no hypotheses do justice to the zero-crossings in
the vicinity of a structure generated by matching a pair of dominant features, then that
structure should be discarded and other possibilities investigated for how the dominant
features should be paired up.. THIS IS THE ESSENCE OF OUR RULE-BASED
APPROACH.

~In the next chapter, we will briefly review the work donc so far in stereo matching
by invoking higher-level constraints. In the subsequent chapter, we will then discuss
how some of these methods were modified for incorporation in our system.
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| " The top portion illustrates an object surface and the two viewpoints.
- Thelower potion shows the left and the right image taken from the
- two viewpoints. Notice that panel 2 is missing from the left viewpoint, -

Figure 9 A three panel model of erroneous correspondence.
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Figure 10  Disparity maps on three scan lines in the sample scene.
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. CHAPTERII REVIEW OF PROCEDURESFOR -
- STEREO MATCHING UNDER HIGH LEVEL CONSTRAINTS - - -

Wh11e the prev1ous chapter dlscussed the MPG formalism and. its shortcommgs
thls chapter will be a review of the stereo matching techniques that stand “at the other
end." By the other end we mean the techniques that accomplish bmocular fus1on ,
solely by h1gh level, 1nclud1ng Ob]CCt level, constramts on dlspantles L

Matchmg Usmg Geometrzcal Constraints

In some of the existing approaches, geometncal constraints are exphcltly used S

during the process of matching zero-crossings. For example, in the work done by East-
- man: and Waxman [ 6 ], a disparity functional is computed that estimates the
’ coefﬁ01ents ofa local planar patch corresponding to a tentative match of a few adjacent
zero- crossmgs in the left and right images. Matches may then be accepted or. rejected
,based upon the magnitude of the disagreements between the disparity functional and
. the computed dlsparlty These authors have made the assumption that their scenes are’
~ continuous. In one of their methods, which they call the nelghborhood-based algo-
rithm, matching proceeds from the coarsest channel to the finest channel. Initially, for '
the coarsest channel, it is assumed that the scene is at a constant depth -- which can be
th'e average depth of the scene. Subsequently, the disparities computed at a given -
o scale determine the location in the next finer channel of the wmdows to be used for
‘searching for correspondents of zero- crossings. ‘
The procedure proposed by Hoff and Ahuja [ 7 ] for enforcmg geometrical con-
- straints consists of two phases : In the first phase, as in the previous method, planar -
_ patches are fitted to tentative matches between zero-crossings, the coefficients of a
planar patch being determined by the use of the Hough transform. Subsequently, in the:

- second phase, the neighboring planar patches are clustered into quadratic surfaces by a :

 least squares method. This then allows enforcement of geometrical constraints at the
quadratic level. The control-flow for the propagation of matching 1nformanon from
the coarsest to the finest channels is the same as in the method of Waxman and East-
man -- which is basically the same as in Grimson’s 1mplementatlons of the Marr-

o Pogglo paradlgm First, in the coarsest channel, it is assumed that the scene can be

~ represented by a constant (planar) surface at the average depth in the scene. And, then,
the disparities computed are used to create a smooth curved surface for predicting the



' search wmdows for the next channel : .
~ The nouon of using geometncal constramts is, we belreve very useful partlcu-

o larly for industrial vision apphcatlons Such constraints.form an 1mportant component'

' _of the’ rule-based approach that w1ll be presented here

o The Constramt on the Ordermg of Features . : : ,

» Images of scenes made of opaque obJect must observe an 1mportant constrarnt )
' monoton1C1ty of rend1t1on of object points. By monotonicity of rendition, we mean the

- following : Suppose we mark all the obJect surface po1nts with a set of ‘marks, no two
- of which are: 1dentlcal On any line running through an image- of the scene, the order of
' appearance of the marks must correspond to the order in the scene. In other words

o there cannot be posmon reversals in, say, the left—nght ordering of the marks ~This

. constraint makes the stereo. correspondence problem ideally amenable to solutron by
- dynarmc programmmg -Of course, since in practlce it is not pos51ble to mark up a
“scene; for using dynarmc programmmg one has to first select a_set of drstrngu1shed,

_po1nts from each i 1mage how such points are selected sets apart the vanous 1mplemen- '

~ " tations of thrs scheme. - Another: distinguishing-aspects of the various 1mplementatlons .
Cs ‘the dJStance of function used for measuring_the closeness - of - correspondence" .
o ”ach1eved between the gray levels along the epipolar lines in the two images. - ‘
. - To 'mention a few of the implementations - that use the dynannc programmmg .

approach Baker ‘and Binford [ 18 ] have used for the distance-function features based
DE -on ‘edge: angles, gray levels on the two sides of an edge relatlve d1spar1t1es (measured' .

. dur1ng a reduced resolutton phase) and interval compress1on ‘that is 1mp11ed by the a

: -correspondence The distance function used by Ohta and Kanade [ 191 uses the simi-~

. larity . of ep1polar line intervals between successive d1st1ngu1shed pomts In another' _
: study, by. Lloyd Haddow and Boyce [ 20 ], the distance functron i based upon dis-

~ tances between dlStlngUISth pomts, edge angles and average gray. levels The 1mple- ‘

o mentation of th1s last. approach is along the lines of relaxanon labellng Note that i 1n‘ all ‘
o three approaches the d1st1ngu1shed po1nts can, for example be edge segments 3 '

Looser Ordermg Constraznt ,. ; b_ : T : \
o Inthe dynamw programmmg approach the ordenng of i 1mage pomts declared d1s-:

; _' ’ ’trngu1shed must be stnctly ma1nta1ned in any. matchmg of the two-images along an epi- .
. polar line.: If we loosen the constramt because of, say, the dlfﬁculty with the

) rectlﬁcauon process, the problem of matchmg 1mage elements, such as edge segments, '

: - along ep1polar hnes can be cast as a graph search problem as was done by Herman and |

“ ’»Kanade F21]. Matchmg of edge segments along eprpolar lines has. also been camed’ .
- out by Medlom and Nevatla [ 5 ] us1ng a relaxatton type approach S '
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Some Other Approaches

‘We would now like to allude briefly to the fact that methods do exist for i 1mprov-
mg the overall accuracy of the calculated depth information that do not resort to the -
invocation of higher level constraint knowledge. For example, Nevatia [ 22 ] has
~ shown that if a progression of closely spaced views are fused together, it is possible to
reduce mismatches in stereo correspondence without sacrificing accuracy in depth cal-
‘culation. Moravec [ 23 ] has also proposed a multi-view stereo-system, with Similar
results. Tsai [ 24 ] has used a statistical approach to combine eight v1ews of a scene
using Jomt moments and window variances.



CHAPTER IV MATCHING METHODS INCLUDED
: IN THE RULE-BASED PROGRAM

e We w111 now. descnbe in greater detall the matchmg schemes that can be 1nvoked' o
- by the rule-based system At any given tlme, a 64x64 control mamx is used to store

information on whlch matchmg scheme to 1nvoke where in an- 1mage, whlch is usually. -

. of size 256x256. Each element of the control matnx, depending upon its mteger value,
_ indicates selectlon of a partlcular ‘matching strategy - Later in this paper we will dis- .~

cuss how the values of" th1s control matnx are 1n1t1ahzed and subsequently, how these e

 values are altered dynarmcally

41 ‘Dominant Féat;ure 'Matchi»ng' )

In 11ne w1th the drscuss1on in the prev1ous sectlon, an 1mportant matchmg strategy; o
cons1sts of extractron and fusion of dominant’ features from the two images: At this

"‘ time, the only type of dommant feature the system is capable of handllng is the -

stralght-hne type. We will now descnbe the procedures used for ﬁrst extractlng stralght _ _‘

o hnes and then fusrng them. o

4.1.1. EX'tl‘éction"of. Straight':L,’ihe.vFeétm.’es L

“In many prev1ous studles, bmocular fus1on has been camed out on strarght lmef

_ features [ 18,21, 5, 4 ]. Baker and Bmford [18] extract edges from the stereo pairand -
represent each edge asa concatenation of piece-wise straight segments, assoc1ated with
‘each. segment being a set of attnbutes like the orientation, s1de-1ntens1t1es, etc. They

- then scan' each nnage ToW by row, and match the segments on- each Tow of the left AR
- image with the segments in th correspondmg row of the right image by using the _
Viterbi algorithm. The procedure used by Herman and Kanade [ 21 ] is very- s1m11ar'f" L
~ except for the fact that matchmg is accomphshed on L-junctions formed by strarght e

) -edge segments In the work reported by Medlom and Nevaua [ 5 ] edges are extracted'



3 i:'sfby the Nevaua;and -abu algonthm [ 25 ] and matched by a relaxatron based procedure
__'_ - ;lwhrch seeks to mmrmrze what they call as dlfferentral dlspanty In the Nevat1a and
Lo ‘Babu edge extraction’ procedure, edge pornts are first detected by using window opera- = -
B " tors, ne1ghbormg edge points are then connected to form continuous contours; these
contours are then fitted with an 1terat1ve stralght 11ne ﬁttmg algonthm which in the first -

t."f'lteratron consrsts -of j Jomrng the extremal pornts on the contour with a strarght edge,

o » k -.and, later, if. the this strarght edge is'too poor a fit to- the contour, selectrng a middle
e ‘_‘vcontour pomt for the purpose of fitting’ straight edges to the two segments thus formed
L and so on.. In the work reported by Ayache and Faverjon [4 ], recursive method i is

R 'taken in order to approxlmate a contour w1th the set of 11near segment srmrlar to the’- o

| ‘ij_f‘.‘_one used by Nevaua and Babu.

For our work We have preferred to use a method that 1s a vanatlon ona scheme -

B first proposed by Freeman [26 ] In our 1mp1ementat10n thresholded outputs of edge
L :f_'operators are’ represented by charn-codes and tested for strarghtness. “The advantage of
L _:'thrs approach 1s that 1t can be- made msensrtlve to small local and structural dev1at10ns'
= ..gfrom strarghtness The compeung approaches, some of whrch were alluded to in the

" 'prev10us paragraph would cons1st of ﬁttmg analyttcally descnbed arcs to- edge pomts

- However, berng analyttc, such. approaches are more’ sultable when we want. a strarght

P ffhne extractron procedure to be msensmve to drstortrons that are somewhat more global R

L : ~':1n nature In any case, our ch01ce should be construed less asa categoncal Judgement B
~ on. which of the two types of approaches is ultrmately sultable for stralght hne extrac- .

8 '_’j"*uon and more as a matter of personal preference ST o R
o s Freeman has suggested three cntena whrch must be satxsﬁed by the cha1n code of-' v
a d1g1ta1 stra1ght hne [27] e = . ‘ , v

g (1) At most two slopes occur m the cham and 1f there are two, they d1ffer by 45° B |
: (2) At least one. of the two slopes occurs 1n runs of length 1

R : »(3) The slope occurs in runs of at most two lengths (except pos31b1y at the ends of the

. arc, where the runs may truncate) and 1f there are > two lengths, they must dlffer

) ;"These condmons, postulated for d1g1tal rendluons of 1deal stra1ght lmes, are not '

- : ..-entrrely sausfactory for stralght hnes extracted from images of objects and scenes. Thev :
© o “real. worl " strarght hnes often exh1b1t small dev1auons from strarghtness, a 11ne :

REE, extractron algorrthm must be forglvmg of those. For example, a vertrcal lme segment a

R -from an 1mage mrght lead to the followmg cham code for 1ts representatron
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As is ev1dent from Flgure 11, this line, even though it violates the three Freeman cr1-_,
teria, would be called straight by most observers. Clearly, we need to ““loosen” the cri-

teria in order to be able to process actual images. This we do in the following manner. -

‘ In the first Freeman criterion, not more than two code numbers are allowed in the '

“chain code of a straight line; in our algorithm, up to three different codes are allowed. o
However, we require that when three different codes are present in a chaln the center'- o
code occur most frequently and that the values in the non-central bins not exceed a
threshold T1, whose value is dependent on the length of the digital arc. By expenmen— R
tation with the type of imagery that is of interest to us, we have found that an appropri-
ate value for T1 is 3 when the length of the digital arc is 41. The reason for why we

" want our stralght line segments to be 41 pixels long will be explamed toward the end
of this subsection. Figure 12 (a) shows a digital arc whose length is 41 but whose
chaln code histogram, as shown in Figure 12 (b), is such that Tl is- 4 Clearly, most _
observers would declare this arc as not straight. -
The next Freeman criterion says that one of codes can only oceur in unit lengths, :

we permit the maximum length of the code number which corresponds to the shortest
runs in the code sequence to be T2, which is also dependent on the arc length and is 2

in the current model. The number 2 was again arrived at through expenmentanon
Figure 13 (a) shows a digital arc of length 41 whose histogram, as displayed in Flgure '
13" (b), is such that T2 is 3; this arc will again not be declared straight by most-
observers. We do not at all use the third Freeman criterion. In the rest of this secnon '
we will first complete a description of our algonthm and then Jusufy the underlylng
rationale with the help of a few examples. e : v

Our criteria imply that the. decision about the stralghtness of a contour segment
(meaning an arc) can be made entirely by examining its chain code: hlstogram For -
each contour segment, a chain- code histogram is constructed such. that the bar
corresponding to each code number -- the code numbers go from 0 to 7 -- represents |
the frequency of the appearance of the code number S

From the chain code h1stogram, we compute two numbers A and N in the fol-
low1ng manner. Let C(i) be the frequency of the chain code number i. Then

A={iIC(i')}’ G -,*(13).'

and '
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where the notation |A| denotes the cardinality of A. In terms of A and N we can make ‘
the following decisions about the straightness property: : o
(1) If the histogram has more than four bars (N>4), this line is not stralght by any -
means. This line segment has at least four different orientations. o
(2) If the histogram has a single bar (N = 1), the line is purely strarght w1th the onen-'
. tation of 0°, 45°, 90°, or 135° with the horizontal line. _
3) 'If the histogram has two bars (N = 2), two cases need be consrdered (let the more‘ _
frequently appearing code be the ma_]or code and the other code be the minor .
~ code): , . :
- A. Ithetwo bars are adjacent to-each other, again there are two cases _
©a. If the maximum run length of the minor code is less than a user -
specrﬁed threshold T2, the line is declared straight. - o
'b.  If the maximum run length of the minor code is greater than T2 the'
line is declared as not straight.’ o
B. If the two bars in the hlstogram are not adjacent, this arc is declared as not
straight. This arc contains at least two different orientations, and the angles- .
of these orientations differ by at least 90° difference. |

(4) If the histogram has three bars. (N 3) the following two cases need be con- i

sidered. : .
A. If the three bars are adJacent to one another the center baris the largest and o

the height of the closest nerghbonng bar is less than a user specrﬁed thres- = o

hold T1, then there are the following two cases to consider:
a. If the maximum run-length of the non-central code (meanmg the valuer_ _
in the non-central bxn in the h1stograrn) is less than T2, the line is

- declared straight. - :

b. If the maximum run-length of the non-central code is greater than the- SR

threshold T2, the line is declared as not straight. _
B. On the three bars in the h1stogram if no two are ad_]acent then the arc is -

declared as not straight. ‘This arc has at least two different orientations, w1th Rt

angles d1ffermg by at 1east 90 °. °.

i The block dragram of Flgure 141 isa deplctlon of the flow of control in th1s algonthm . :;' |

'We would now like to say a few words in support of our modrﬁcatrons to the

Freeman criterion. Figure 15 shows a synthetrc image consisting of a set of digital S

arcs; these have been numbered from 1 through 15. The arcs 1 through 5 satisfy all

three Freeman criteria. However, the arcs 6 through 10 do not satisfy the Freeman cri-

teria, but they do satrsfy our criteria and would be considered as straight by most :
* human observers. For example, for arcs 8 and 9 the value of N, the number of non- -

zero bins in the chain-code histograms, is 3. For that reason, these arcs would not be.
accepted as stra1ght by the Freeman cntena Although the chain codes for the arcs 6 o
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and 7 contain only tvvo slopes, v‘vhich'is one of the requirements of the Fréeman cri-

teria, both the slopes occur in runs of lengths more than one -- whrch is a violation of
the Freeman criteria. Similarly, arc 10 is accepted as straight by our method because
- wedo not use Freeman’s third criterion, R |
- The reader is probably wondenng if some non-stralght lookmg arcs would be‘
C accepted by our. method Note that' the arcs 11 through ‘15 would not be considered
~ straight by most. observers and are. also reJected by our criteria. - While arc 11 is

= , reJected because the two slopes drffer by more than 90 degrees arc 12 is not accepted
- because the run-length of the m1nor code is. greater than the threshold used for declar-

_ 1ng an arc short, which in these cases was set to 3. The minor codes of arc 13 appear
. more frequently than the’ shortness threshold value of 3. In the cham-code hlstograms*

of arc 14, the highest frequency chain-code is not at the center of the three consecutive =

... non-zero. frequency codes. The number of non-zero bins i in the chain-code h1stogram

- forarc 15 is 4, which exceeds the maximum limit of 3, : _
- The apphcatron of the stralght line extraction processrng to Frgure 15 (a) results B
- in Figure 15 (b).  The cham—code hrstogram of each contour drscussed here 1s summar- '
grzemeableZ el e : : SR R L
- The choice of the chain code length L in the stralght hne extractron algonthm is
o currently setto 41. The main determinant of the what L should be set to is the fact that
o longer an arc that meets our straightness criteria the straighter it looks: toa human
B observer Although this would imply that L should be made arbitrarily large in prac-
. tice 1f L 1is - too large, very few strarght line: segments would be extracted from an
image 1f any at all. Through expenmentatlon we deterrmned that the ch01ce of 41 for
L seemed to yreld most of the strarght edges in the scenes of interest to us. We will
- now establrsh the point that- 1f an arc satlsﬁes our strarghtness crrtenon longer L
1mp11es greater strarghtness ;o x :
' Suppose there is a digital arc A of length L whose chain code is glven by C(O),

. ﬁ C(l), C(L—l) and which has been declared to be straight by our algonthm The his-

| . togram of this arc then has only three nonempty bins; let the codes correspondmg to.

- these three consecutlve bins be X, ‘M and Y. Let Po, Py, Py, ... . Py, be the points on
_the digital arc as shown in Frgure 16 ‘We will now introduce a parameter which meas-

- ‘ures the: stralghtness of the arc; this parameter will be the radrus R of the smallest crr-*
cumscribing c1rcle of the arc. (Larger the value of R for a given arc, the straighter the

. arc must be.)’ A cucumscnblng circle is deﬁned as the circle such that at least three
v pornts the startrng pornt Py, the end. pomt Py, and an 1ntermed1ate pornt like, say, Py, -

~ areonitand: any arc segment does not mtersect the crrcle Although, some digital arcs,
i usually they have to look very crooked may not possess a c1rcumscr1b1ng circle, in
- practice such arcs w1ll not be accepted by our strarghtness criteria and can be ignored

L _ for this d1scuss1on -= 1n partlcular the two thresholds T1—3 and T2=2, the Timit of 3on

= the frequencles of X and Y, and the maxrmum Tun length of 2 for both X and Y.-_'_ '
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Table2 Chain code histbgrams of computer generated digitél arcs.

Chain-Code Histogram - | Straight?
Arc # » - N | P-Code
01 2 3 4 5 6 17 F | L
1 {0 0 000 0o o0 28 13|2 6 | yes | yes
2 |0 0 0 O 0 0 21 202 6 yes | yes
3 /o 0o 0 06 0 0 4 01 6 yes | yes
4 {0 0 0 0 0 41 0 oO0f1 5 | yes | yes
5 0 06 0 0 27 14 0 0] 2 4 | yes | yes
6 |0 0 0 0 0 o0 28 13[2]| 6 | no|yes
710 0 0 0 0 0 21 22| 6 | no | yes
8 |0 o 0o 0 0 1 38 213 6 | no | yes|
9 {0 0o 0 0 1 3 1 0|3 5 no | yes| :
10 0 0 0 0 27 14 0 v 2 4 no | yes
11 |0 0 0 0 0 9 o0 322 7 no | no
2 |0 0 0 0 0 0 20 21 {2 7 | no | no
13 0O 0 0 0 0 4 33 44131 .6 no no
14 0O 0 o0 1 1 39 0 0} 3 5 "no | no
15 [0 0 0 0 12 14 9 64 5 | no | no

P-Code : The code number that has the highest frequency

N : The number of codes whose frequencies are non-zero

~( For example, for arc 1 only two codes have non}zero'
frequency. Hence, N =2.) o

: By Freeman’s criterion

: By the loosened craterion

- m




| . eliminate the poss1b111ty of crooked arcs bemg declared strarght ( See the histogram
o f,shown in Figure 17.) ’ B

- To establish that longer L 1mp11es larger R for arcs accepted stralght by our cri-
3 'tena, we should ﬁrst note’ that associated with each L will i in general be different R’s. N
. For exarnple, for the following two arcs, both with L=20 and both accepted as straight
- byour cntena, the values of R are equal to 12 8 and 18. The arcs are descnbed by the -
, cham code: sequences , : o : : :

e Dlgrtal-arcl
' 77676666666665656566
Dlgrtal-arc 2 Sl
66667676676665656566 .

and are shown in Flgure 18. The Values of R were computed by using the formulas -
- which we w111 now. derive. For this derivation, note that for a given L we should only
,be interested in the rmmmum value of R, since the smaller the value of R, the more
1 non-stralght the arc is. In In general the radrus R will be a: mmlmum for those arcs
. whose non-central codes, X or Y, appear at erther the. begmmng or the end of the arc
- sequence. For example, for the arc shown on the left in. Figure 18 the. beginning seg-

~ments (at the top of the arc) correspond to the code 7, which is the non-central code in

the histogram for this arc. The value of R for this arc is: smaller than for the arc on right
whose begmmng and ending segments both correspond to the code 6, the central code

~in the histogram. ‘The cham-code of an arc with the smallest R for a grven L will be
: ‘?erther of the followmg form, or its mirror 1mage, S :

| XXMXMM......MMYYMYM.....M (14)‘

In order to denve the relatronshrp between R ‘and L, we w111 now drfferentrate
between two types of arcs, g1ven rise to by small and large values for L.. ‘When L i is
large, usually greater than 13, the nature of the c1rcumscnb1ng circle will be such: that
the three. pornts at’ whrch the circle’ must rnake contact with the arc will be the first, the

s .third. and the last, as shown in: Flgure 19 on- the left. On the other hand, ~when L is

“small, usually less than 13, two of the three pomts are at the beginning and at the end
-as before, however the third pomt w111 now: be the fifth point from one:of the ends
B Given this reahzauon the rad1us R of the c1rcumscr1b1ng circle may be computed from
- the formula wh1ch g1ves us the radrus R of a c1rcumscr1b1ng c1rc1e for a tnangle of

i srdesa bandc ’ - ‘

. (15)



Digital Arc A

Figure 16  Iiustration of a 'circumscribiﬁ.g circle.
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Digital-are-1 ~ Digialare2

| Figure 18 Two digivta,l a'rcsylwi‘th different code se_quehces.g.



S where S 1s the area of the tnangle The length of the s1des of the tnangles, PonPL or =

o :P0P24L, are determmed by assoc1at1ng a.unit length wrth an arc segment correspondmg _." S

£ . toa smgle code that is even, 0 2,4, or. 6 is 1; and a length of \/_ 2 with each of other

2, b, and'c for the above formula.

codes, Due to’ the fact that arc segments for even -and odd. codes are of different
ER fllengths we. must cons1der two d1fferent*cases for ﬁgunng out how to compute the sides =
ese cases correspond to whether the central code' R

_f-rnthearch1stogram1sevenorodd F T P R S I : o el v :
S In Table 3; we have shown the pararneters a, b ¢ and S for all the four poss1b1e S
SR s1tuatlon these grven rise to by L be1ng large ‘or small, and by the central code, M,‘ '

S i';'.bemg odd or even. The values of R for each of these four cases are dlsplayed below '

T Cas"‘*“1 - R= "\/2'2_' ,‘(L—Z)2 + 22 | orL S 13

. Case-A2 ,';_=%\/(L-4)2+32 forLs13 Can

-.tv(L__Z)z +L2 forL> 5 (18)

:’___
2.

_C
6

V(L—1>2 + (L—4)2 fo_r'{i 5. *1;.""'5 Cay

: Note that the case B 2 does not occur, because the nnmmum value of L is 10 as the .
L s1de-lobes in our arc hrstograms must each contam exactly 3 elements and the central N
B lobe must be greater than the s1de-lobes W S

Uslng the above formulas to compute ‘the smallest values of R dtfferent L we

i obtam R:= 5.6, 12.8, 19.8 and 26.9 for L = 10, 20, 30, and 40, respectively. For arcs
, ‘whose | R values are less than 20, whlch corresponds to L being less than around 35,
R 5 fwould be charactenzed by most human observers as not bemg sufﬁcmntly strarght On' S
. ;the other hand when R exceeds 20 - fequrvalently when L exceeds 35 -= the resultrng B

s ’arcs are deemed to be qurte strarght L

“We have therefore Jusuﬁed the assertlon that w1th our strarghtness cntena, the arc .

_} len gths i eed to be longer than say, 40 We have chosen L= . 41; this, in most scenes of o
C o mterest to,us, Ylelds a reasonable number of strarght hnes f0r dommant feature match-“
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Casel : L=20 o Case2: L=10

Figure19  Two digital arcs with different length L.



' ° Table 3 iv-'»'vParametersif(’)»if_thef computation of R. - -

Central codeiseven -~ |° - Central codeisodd -

| CaseA-l1 | CaseA2 | CaseB-l1 |  CaseB-2
Lislarge. | Lissmall | Lislarge |  Lissmall |
 CC.passes | CC.passes | C.C.passes | ~ C.C.passes
| through |  through | ‘through | through =
| PoPaPL | PoPPL | PoPPL | . PgPyP -

- C.C stands for circumscribing circle.
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412 Detec'tiOn and Deletion of Horizontal Stralght Lines

Stralght line segments that are parallel or nearly S0, to ep1polar lmes -- for our
case these would be honzontal straight lines -- cannot provide reliable disparity 1nfor-
mation. In general, when we establish correspondence between two straight line seg-
ments, we are in effect establishing correspondences between the pixels lying at the

 intersections of the line segments with the epipolar lines. For example, in. F1gure 20if |

we say that line AB in ‘the left image is the correspondent of line A’B’ in the nght'

image, we are in effect saying that the points a1,a,a3, €fc, which are on the intersec-. ', -

tions of lme ‘AB with the epipolar hnes, are the correspondents of the po1nts al ,az,a3, _
etc, in the nght image. When the line’ segments are nearly horizontal, there may be no

~well defined intersections between ‘the segments and the epipolar lines, which can

make impossible the calculatlon of dlsparmes at such points. For example, if the nearly:

horizontal segment CD on the left is matched with the horizontal segment C'D’, it will . :
be virtually impossible to delineate the correspondent for the pixel marked c;. There- =~

fore, it becomes necessary to detect and delete horizontal straight line segments Note-
that we dre not saying that an arc segment not contain any horizontal portions at all,
only that if an arc segment is predomlnantly honzontal it should be deleted before the
matching algorithm is applied. « . : : S

As each contour segment is descnbed by a chain code in our model, the detectmn' :
of a horizontal line, or a nearly horizontal line is. relatlvely easy. By the deﬁmtlon of
chain codes, a honzontal portion of a d1g1tal arc is described by either the code O or the
code 4. Note that straight line’ segments, each 41 ‘elements long, are accepted as
straight on the basis of their chaln code hrstograms, as descnbed in Sectlon 4.1.1. All
such histograms must have no more than thréee adjacent bins and the ‘central bin must
contain the largest count. If for a 41 element segment, the central_ bin corresponds to
the chain codes 0 or 4, we reject such a segment from further conSiderat_ions -- since
such a segment would be mostly horizontal. _ S

The digital arcs numbered 6 through 10 in Figure 21 are’ various examples of arc
segments that were deemed as bemg too close to bemg horizontal. On the other hand,

the d1g1tal arc segments 1 through 5 in Frgure 21 contain many honzontal portions and

! yet were accepted for further cons1deratlon o

© 4.1.3. Binocular Fusion of Straight Line Features

We will now discuss the procedure used for the fusion of straight line features
from the left and right images. For some appl1cat10ns, such fusion may be consrdered _
to be a spec1al case of contour matchmg algorlthms drscussed in[28-32 ] In most of - ‘
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~ Note:  The digital arcs 1 thi'bugh 5 are not regarded as near-horizontal.

‘ The digital arcs 6 through 10 are regarded as near-honzontal

“Therefore, arcs 6 through 10 are not ‘supplied to the stralght llne
matchmg algonthm '

Figure21.  Some example§ of nearly horizOntal’edges"._ )



‘ these algorithms, a small set of parameters is used for measuring the relevant attributes -
- of contours extracted from both images, the snmlanty between the correspondmg con-
- ‘tours is then. estabhshed on the basis of the parameter values. For example, Pavlidis [
30,317 has used polygonal approxxmauons for representing the contours; each contour

s descnbed by an ordered sequence of stranht line arcs, there bemg a set of attributes -

. “associated’ w1th each arc. For each -given contour in the left i image, a correspondmg-._ -

contour is. found in the right 1mage on the basis of the s1rmlar1ty of these attributes.

“This work was followed by that-of Sze et. al. [ 32 1, who used only one attnbute for‘

' -each stralght line arc, the attnbute bemg the slope of the arc.

Our approach is s1m11ar in sp1nt to. that of Sze et al.; the d1fference 11es in our use

of cham codes for representing the strarght hne features, this bemg tantamount tousing - '
o the ﬁnest possrble polygonal. approxrmauon toa strarght line arc. [The reader should_j" o

" note that, in keepmg w1th the discussion in'the preceding section, our stralght lines are - -

- allowed to contam mmor dev1at10ns from geometric stralghtness] In another major' SR

departure from Sze et al., zero-crossmg contours correspondmg to stranht line features

are first: represented by overlappmg strarght hne segments to help us get around the s '

: "drfﬁcultles caused by a straight 11ne edge in the scene not appeanng in its entirety in

:' . the ﬁnal edge image; such a drfﬁculty might be- caused by the contrasts produced by .
5 ,‘ 111ummat10n etc. For example, Figure 22 shows four dtfferent edge images of a a s1ng1e _
| scene with illuminiation 'sources placed at different angles As the reader will notice,

- the same scene edge appears in different lengths in the edge 1mages By using overlap-._ .
, vp1ng segments, the strarght line arcs generated by the same scene edge can be matched :

- even when the two arcs are of unequal lengths in the two 1mages This notion is

explained schematrcally in Figure 23. In Flgure 23 (a), the arcis 41 p1xels long, while

it is only 60 pixels long i in Figure 23 (b). The matchmg algonthm first constructs a list

b _of all the 41 pixel long stra1ght line segments it can drscover in both images. In our

' example, for the left image, the list would contam 1 segment and, for the nght 6seg-
ments. (Table 4 shows all contour segments) Each segment in the left i 1mage is then

: compared with: every segment in the nght image whose starting row 1ndex is within 1 »

of the startmg index of the left i 1tnage segment. By making such compansons, using a
metric to. be discussed below, the .match discovers that the: part PB of the left arc

% f.con'esponds to the arc P’B” in the right i image. As the reader can see, this approach "'

- does. allevrate the problems that m1ght otherw1se be caused by a pan of scene edge not
- showing in one of the two images. | ~ L

- .The stralght line segments, each of whxch is 41 prxels long [see ratronale 1n Sec-

~tion'4.1.1], are then given chain code representat10ns Subsequently, the chain code for

o ‘-each stra1ght line segment in the 1eft 1mage is compared with the chain codes of candt-

, B date segments from the nght image for the purpose of ﬁndmg a'match. Our method for
S comparing two. stralght line segments is ‘based on the notion that their cham codes must_ ,
~ be s1mr1ar The followmg algonthm attempts to capture th1s notton ' ‘
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© Ma"tche‘d' digitél are.

B Figure'23‘ Explanation of the overlapping of straight line extraction. -
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Table 4 The'co'ntour segment data structure of the exﬁmple stereo pair. -

~Image .| Contour | staﬁ-pix— start-pix- | parity b'c'hain code

' No. | colindex | row-index ‘
" Left [Fig. 23 (a)] 1| mu3 | 90 | 1 | 67677761...
1| 106 | - s0 1| 6717177671....
2 | 108 83 1. | 76777676....
L 3 110 | 86 1 .| 7767676]....
Right [Fig. 2/3 ) 4 | 2 | s 1| 76767776...
| 5 14 | 92 1| 67776777....
6 116 |95 1 | 76777677....

_Note:

"Start-pix-col-index" stands for the column index of the startiti_g pixel of an arc.
"Start-pix-row-index" stands for the row index of the starting pixel of an arc.
"Parity" is either 1 or 0 corresponding to the positive or negative of contour parity.



“In the overall algonthm for fusmg stralght line features, whlch is descnbed in the S
rest of this sectlon, first a data structure of overlappmg segments in each image is
' created “Then cand1date segments are matched by a comparison of their chain codes

s f'and a srmﬂanty score is computed If the two segments are found matchable, the algo-
o ;rlthm deletes from the left i image data structure those segments whose starting pixels
i are on the segment that participated in the matchmg process. After all the matches

have been d1scovered in this fashron, the last step carnes out the computatlon of range
- along the: points 1n space that grve rise to. matched pairs of segments. The followmg is :
a step by step descrrptlon of the algorlthm The ﬂow of the computatron is shown in - '

. 'Flgure 24.

g ST RAIGHT LINE MATCHING ALGORIT HM

~ STEP-1:

'Each edge image is represented by a data structure Wthh is. a hst of stralght
- line segments For example, the edge image in Flgure 25is represented by

e _the hst

' i{ SegmemAB(O), SegmentABa), SCngDtAB(z), - v, SegmcntAB(}fl), L
' segmentCD(o), segmentcp(l), segmentcp(g), segmentCD(Ng'), _
- SCngntEF(o), segmenth(l), segmentm:(g), “eey » SCgMENtERN3)s

segmentGH(o), Segmentona), SegmentGH(z), vees SegmentGH(NA) }: ';

o fwhere segmentAB(,) represent the i th 41-element long segment extracted

e xfrom the arc AB. : :
'Each stralght line segment is represented by the followmg data structure

TR {'-Start,-pixel-col-index,-'startepixel—row-index;"parity, chain‘-code },

5 vr'where the ﬁrst entnes are self-explanatory, the th1rd entry is +1 for
& stralght hne segments that represent posmve zero-crossmgs - meamng

S the gray levels are 1ncreasmg perpend1cular to these segments .-
o as wegofromlefttonght-- and -1 - '

“for segments representing negatwe zero-crossmgs o i
~_Finally, the last item, ST o ‘
“which is the chain code for the segment isa hst whlch for the purpose -

! »of explanatron w111 be denoted by

(L(l) L(2),... L(N))

. for the left 1mage arcs and by

(a(1>,R<2_>,;.-.;_‘,R(N)) o




- STEP-1: Create a straight hne segment hst
o ~ for each of the left and nght 1mage '

'STEPQZ Represent'each line segment by the data structure - »

{ stan-plxel-col-mdex start—plxel-row-mdex
panty, cham code } in. the stralght 11ne 11st

: STEP-3 Ciiech», for:the’;posditionalv cerresp'ondencef SR

STEP-4; C'omput'e similarity score and examih‘e

the simlarity of the two contours fromeach image

- ycs
\

"STEP-6 The data corresponds to the matched line segment T

s deleted from the data structure .

* STEP-7: The l'e‘ftvi'mage‘ datt’a sturaettife 1s nil ?

. no

‘Lyes ‘

STEP 8: For all the matched stereo pair,

dlsparmes are computed

Figure 24 - "'Compu’ﬁt\atibo“n'aliﬂow of the straight line f.mate_hiiig._ |

| no




- Figure 25 "'S_t_r'aight lilies into the segment list. |



"S"I"EP-3: :

: STEP-.4:»

‘6‘-'1>‘ :

- for: the right image arcs. Note that both these cham code hsts LT
e represent arcs that contain N+1 pixels. o B
In companng the data structures for two segments from the two 1mages, the' |
algorithm first makes a check for the positional correspondence This is -

done by exammmg {start—plxel-col—lndex, start-plxel-row-mdex} for the _'
two segments. The drfference of start-pixel-col-index’s must be within’ the »

- range of the maximum permissible value for the disparity. . The difference -
of start—p1xe1-row-mdex s must be within a small value wh1ch is meant to-
account for any d1stortlons that might be present in the eplpolar geometry,
this. d1stort10n might be caused by factors such as perspectlve effects, rela- |
tive tilt between the cameras and their opt1c axes while be1ng parallel in the
_ horizontal plane but not so in the verucal plane In the current 1mplementa-
tion, the threshold is set to 1. S TR
A s1m11anty score, denoted by T, is computed for the two segments by com-’_ e
paring their chain codes. Inmally, the value of T is set to 0. At'step i, let -

the cha1n code elements from the two- segments be L(1) and R(1) For. each, :

~1 i=1,.. ..N, the total score Tis accumulated by usmg ‘

if L(1) R(1) then T= T+1 :
if L(i)) = R(@-1) . then T = T + w ,
- if L@ = R(1+1) then T=T+W

| “where O<W<1 Theé number W, which would always be. set to a value L
- greater than zero for matchmg stranht hne segments, captures the intuitive
~notion that if a chain code element is to be matched to'a neighbor of its -
"true" correspondent then such a match must receive: a reduced welght In.
‘the current 1mplementat10n, W has been set.to 0.5, although we w111 show -~

some matching results obtained by setting W to different values In the

‘event the reader is sull wondering about the necessity of us1ng nelghbors in | : | :
the matching process, note the following difficulty caused by the digital L s
‘ representatlon of stralght line segments Figure 26 shows two stra1ght line.

segments from, the left and right i 1mages, these are represented by the fol-f .

8 lowmg cha1n codes

Arc segrrient A : 1-212121212 |

- Arc segment B: 2121212121

‘ Apparently, these 2 cham—code strmgs represent similar d1g1tal contours to. L
 the human eyes. By the algorithm shown above, the- total score T is zero
o when W = 0, However, with W set to 0.5, the similarity - score- 1ncreases o
o 10 Note that the second element of arc A is matchable w1th the ﬁrst and‘ A
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|

: ';Qrc-se_gmentr

e

End

‘ Arc segment

© . Figure 2_6: ~ Chain cod'es'éf two di’gital-arcs.,



STEP-5:

STEP-6:

STEP—7:
STEP-8:
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the th1rd element of arc. B each contnbutmg 05 to the cumulatlve andv .
metry of the snmlanty score of two arcs A and B whlch means the equahty'
of the similarity score produced in either the case, A is in the left i image and
B is in the right image, or the case, B is in the left image and A is in the R
right image, is clearly guaranteed referring to the Figure 27. _
If the similarity score T does not exceed a pre-set threshold, denoted here ‘

by T3, delete the left image segment under cons1deratlon from the left

image data structure created by STEP 1. :

If the similarity score T exceeds a threshold T3 declare the two segments
as matchable. Through expenmentatlon w1th ‘segments of length 41 pixels,

we have found that an appropriate value for T3 is 50. Note that the similar-
ity score of 10 for the example shown in the previous. step really does not
apply to 41 plxel segments. Delete from the left 1mage data structure

'shown in STEP 1 the segment which is examined.

If the left image data structure created in STEP 1 is non-nil, go to STEP 3.

In this step, range values to the scene points that lie on the matched seg-

ments are computed by the following procedure: Let D(i), i=0;1,..,N be the

disparity computed from the ith pixels in the left and the right image seg- L

ments; as defined in' STEP-2, the chain codes of these matching pixels are

denoted by L(i) and R(), respectively. The disparities, D(i), is obtained

from the chain codes L(@i) and R(i) by the followmg formula in which A,
Al, A2 are temporary vanables

"D(@©0)«CL-CR :
where CL= start-plxel-col-mdex for the ﬁrst p1xel
in the left image segment
CR = start-pixel-row-index for the ﬁrst plxel
in the.nght image segment )

- For1<—1step1unulNdo TN
begin
1f(L(1) (0 1, or7))
. Al=1; »
. else 1f(L(1) (2 or 6))
Al=0;
elseif (L ()= (34or5))
A= |
U (RO=01, or7))
jAz Lo




elself(R(l) (2 or6))
A2=0;

S ', elseiif (R(l) (3 4 or 5))
A= Al A2 S
.~ DO= D(1 1>+A
o end

Because of the nature of the overlapplng, a contour match may produce a -
dlspanty value for the pomt where the disparity has. already computed In
~ this’ case the newly computed value'i 1s simply discarded. - :
: Although in most cases, the range map computatlons are camed out over the 256 ‘
X 256 matnces used for representmg ‘images, for dlsplay purposes the range maps

ﬁ "_.»_'3down—samp1ed t0 64 X 64. In Frgure 28, twenty pairs of synthettc digital arcs are o

shown The srrmlanty score scores of each pa1r are summarlzed in Table 5.

,:4.1.4. Effect 'of ,S'cen'e Hluminationion"theVExtravc'ti_onof DominantiF‘eatUres .

How a scene 1s 111um1nated has a cons1derab1e bearmg on the quahty of results ’
obtamed w1th the matchmg of stratght line features In general it is possrble to use
. either normal room llghtmg, or, one can also use the. unstructured light 111ummat10n

- proposed first by N1sh1hara [ 10 ] for their PRISM system. Ordtnanly, for object suf-
faces that' are. of ‘uniform - color and - texture, ‘and that, therefore, may not yield -
sufficiently many gray ‘level variations, a large number of zero-crossmgs will be
obtained with unstructured illumination. However, unstructured illumination will tend
. to obllterate the contrasts between adJommg surfaces ‘which under normal room light-
- ing may ‘cause the edges to become very notlceable “For this reason, for our experi-
' ments we use both illuminations,  The i images recorded under normal room lighting are
" used for the extraction of dommant features, wh11e the those recorded w1th unstruc-

E tured light are used for the rest of the matchmg strategies..

To show the reader the drfferent results that are: obtamed wlth these two 1llumma- :

o .-.'t10ns, the nnage in Frgure 29 (a) was recorded w1th both types. of 111ummatrons present

srmultaneously, the upper half of the scene was 1llummated with unstructured light,

__-wh11e ‘normal room lighting was’ used for ‘the: lower half. Figure 29 (b) shows the 3
_ extracted zero-c"'ssmgs, whrch be r out our claims ‘bout the relatlve advantages of

' """"-'the two 1llum1na ns..
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L(1) R(1)
| LQ) RQ)
L(3) | | ‘R@3)
L&) ’R‘(4b)
LON-1) R(N-1)
La) RO

Note:  L(1) through L(N) denote the chain code of the left arc.
R(1) through R(N) denote the chain code of the right arc.

" An edge between L(i) and R(j) indicates that the mathcing
between i th code of the left arc and j th code of the right arc
is taken into accout for the similarity score computation.
The values 1 and w attached to each edge indicates the .
weight value for the similarity score. :

Figure 27 ~ Symmetry of the similarity score.’
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- Table5 ‘Magnitude of matching by our method.

Left Arc

Matched?

20

127

260

| No. | 'Right Arc | Magnitude
| (Angle)| (Angle) | ofMatch | (Threshold=50)
17 56 | 475 no
2 71 63 49.5 no
3 71 71 54.0 yes
4 0M 76 | 545 yes. -
5 71 90 1580 yes
6 71 104 49.0 no
1 o7 108 46.5 “no
8 71 116 38.5 no
91 N 124 | 340 10
10| 71 127 1305 no
11 56 | 56 540 yes
12| 56 63 | 520 yes
13| s6 | 71 | 415 ‘no
14 - 56 . 16 455 N0
15 56 | 90 415 no
16 56 | - 104 355 no -
17 | 56 108 34.5 ‘no
18 56 116 29.5 ‘1o
19 56 | 124 275 no
56 “no -




. - '(b’) Zéro:créssing; (Wop = 8). s

.~ Figure 29 : i _,A.partlyiunst"ruc"t,ufe‘dj lighted"scéne and its zero crossing,




69 -

4.1.5. Some Disparity Resuits Obtained with Just Straight Line Feature ‘Ma_tching .

Figure 30 (a) illustrates the surface structure of an object which is rather rich in
straight edges; we will use stereo images of this object, shown in Figure 31, to illus-
trate the results obtained with straight line matching. The stereo images were taken
under normal room illumination. The straight line features extracted from the two
images are shown in Figure 32. Each image there shows two types of su'alght 11nes
We have used continuous dark lines for positive straight lines, these are lines across
‘Whl_Ch the gray levels increase from left to right, and negative straight lines, across

these the gray levels decrease in a left to right traversal. The disparities-computed by

matching the straight lines in the stereo pair of Figure 32 are shown in Figure 33.
- Table 6 displays a comparison of the computed disparities w1th those obtained from
the ground truth information at.a set of points marked as A through Kin Flgure 30 '

- 4.2. Geometrically Constrained Matching

~ The second major matching scheme invoked by the rule-based system ‘utilizes
. rnatching under geometrical constraints. As will be explained later, this type of match-
ing is invoked for image reglons that are in the v1c1n1ty of the strarght line features
_matched by the method discussed prev1ously Matching of straight lines from the left
and the right images yields range information about a straight edge in 3D space, the
geometrically constralned matching then extends this to space in the nelghborhood of
the straight edge. . : :

Although the mathematlcal procedure used for matchrng under geometncal con-
straints is essentially the same as that used by Eastman and Waxman [ 6 ], there are
important differences. ‘As rnentloned before in Sectmn 5, we only: apply this type of '
matching to the zero-crossings produced by the ﬁnest LOG filter. Also as should be
evident from the introduction to tlus section, the matchmg is performed only in the
~vicinity of regions where we are able. to match- stralght line features. Furthermore, a
priori known hypotheses about planar surface orientations are used for the geometncal ‘
* constraints. ThlS acts as a powerful consu'alnt on the matcher and ehmmates many 3

false matches. ' P

There are important applications where we may assume that the orientations of the major
surfaces are known and available to the stereo matcher. For example, for a-mobile robot engaged
in hallway navigation, we may safely assume that all the major surfaces are either vertical or
horizontal. We believe that utilization: of such knowledge when avarlable can only lead to more
robust stereo algonthms SR
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Image pomts A though K are the pomts marked as X
o m Flgurc 30 (a) '




We w111 use the triples’ (x,y,z) to denote our d1spartty values w1th X and y taking
integer values from 1 through 64, and z taking a floating point value from 0 tp 31. As
explained in the footnote, this constitutes a reduced resolution disparity map. In 3D
space, let L be a straight line segment derived by the straight line feature ‘matching pro-
cess discussed in the preceding section. Let the coordinates of the terminal points of L
be (x1,¥1,21) and (X2,y2,z2). Let Pg denote a hypothesrzed plane, of orientation 0,
which contains L and which corresponds to one of the object surfaces. For our algo-
rithms, the orientation is expressed in the followmg manner we compute the intersec-
tion of the plane with the y=0 plane, the orientation of P is then measured by. the angle
0 subtended by the intersection line ‘with the x-axis. See Figure 34." As mentioned
before the orientation 0 is assumed to be one of the set { 07,0,,..... } ofa pnon known
onentat1ons of all planar surfaces in the scene. e -

Given an orientation - for a’ hypothes1zed plane and the termmal pomts |
(X1,¥1-21)s. (Xz,yz,ZZ) }, the complete equanon of the plane is glven by ’

X -y "z” 1

1 1oz 1) e
wow owo17% o
X1+1 yl Z1+t&l'l9 1 | 5 L

which merely expresses the fact that the termmals pomts and the pomt» |
(x1+1,y1,z1 +tan@) must lie on the plane The operator I stands for taklng the deter~
minant of its argument. : o

T In geometncally constramed matchmg, our ﬁrst task is to generate the plane that
contains L and whose orientation corresponds to one of the hypothesrzed planes. In the -
64x64 representation for disparity maps, this plane will extend to only 4 pixels on
either side of the line (Figure 34). The choice of 4 is arbitrary. and dictated by the
nature of the scenes we are interested in. If it is believed that the planar surfaces in a

Usually, the: dxspanty maps tend to be of 1ower resolution than the images from: whlch they are
produced (see, for example, the work by. Nishihara [ 10 1). In our processing, the images are
usually of size 256x256, whereas the disparity maps tend to be defined only over 64x64

- matrices. We will denote a disparity map by the triple (x,y,z), where x and 'y take integer values =~ -
0,1,2,.....,63, and z takes floating point. values that span the interval [0,32]. The reason why z is
floating point over this interval has to do with the fact that when straight line features are matched,
the disparities are computed over- 256%256 images, implying that the. range of computed

- disparities would be any integer from -128 to +128; in practice, of course, the disparity range is.

. limited to a much smaller interval, usually [-15, 16]. When computing the reduced resoluuon o
. dlSpal‘lty maps, the dxspanty values are averaged leadmg to ﬂoatmg point 1 numbers
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oLy

Figure 34 'Geometry;of the hypothetiCal range.



polyhedral scene cons1st of large areas, then tlus number could be larger Note that in -

terms of the row-column resolution in the onglnal 1mages, the w1dth of 4in the dxspar-, e

" ity space is' equrvalent to a width of 16.

In the implementation descrrbed by the followrng algonthm, a pass is made o

through the 64x64 disparity map and planar: strips are fitted to all the stra1ght hnes at"' ,
the same time, all the planar strips thus generated bemg of the same. onentatron As
described precxsely in a followrng section ( Sectlon 4.2.3.), the geometncally con-
strained matchmg is carried out in a 16 x 16 square patch on the planar strip mstead of

enforcing the. match ‘within the. entire planar strip at one time. Th1s step is followed by . - '
fitting -all the lines: -again with stnps of another hypothesrzed onentauon and the: pro-, e

cess continued. For each hypothestzed onentatron ‘the. computatlon of the geometrl-

cally constrained matching can be divided into two stages. The first and the second - o
- stages are. called the planar strip generatzon algorithm, and the geomemcally con- - . -
strained matchmg algorithm, respectlvely The algorithm of each stage is shown in the o

followmg part of this section. In advance to the discussion on each algonthm, a data :

structure to record the matching schemes, which we. call the control matnx 1s 1ntro- , )

duced in the followrng subsectlon

4 2 1 Control Matnx

For our. 256x256 1mage matnces, a 64x64 conu'ol matnx is used to. orgamze the .

ﬂow of control durmg the rule based 1mplementatron of bmocular fusron This control : d i
matnx also plays an unportant role in the executron of the geometncally constramed__ o

matcher therefore we w1ll deﬁne it 1n thlS subsectron s : : : :
The initial entries for the control matrlx are provrded by the results of matchlng.

the straight line features. To generate these 1mt1a1 entrres, the image is: divided mto_f' S
64x64 non-overlappmg blocks, each ‘of size. 4><4 HKina glven 4x4 block, the system is =
“able to successfully match a straight line feature, then in the conu'ol matrix an entry of ©
o 1i is made for that block. For all the blocks that overlapp w1th the regrons grown. around - n
| the stralght lines features, the entry in'the control matrix is 2. Elsewhere, the entryis 3. _
. During the executron of the rule-based system, the entries of the control matnx o

o : can be altered on the fly. For example, if it is’ concluded that a region cannot be o

- matched with the help of zero-crossmg contours, by the method dlscussed in Sectlon' ; _ o
" 4.3, then the entries for all the blocks that are strictly within the reglon are’ set to 4. L
In the next chapter, we w111 provrde other mechamsms that can alter the control e

matnx entnes on the fly- durmg the process of matchmg




S, :;notlon of ylcmity is deﬁned by a four—fold growth of a connected reglon from the S

- : »‘p1xe1s whe' “.;C(x,y) is 1

In the followmg algonthm the ﬁrst step grows the reglons where the control ‘i;._ ’

T 4‘5-_'matnx elements should equal 2; the second step.then, for a given value of hypothes1zed o

, ,f.;.plane onentann 9 computes the honzontal component of the correspondmg dlspan-"f

 ties ; at all po1nts where C(x,y) equals 2 ﬁnally, the third step computes the vertical =~

component of the d1spar1t1es, and subsequently, the total hypotheS1zed dtspantles o :

correspondmg to the given®.. - o
In the algonthm H(x,y) represents the planar stnps generated from all the hnes, o

i .’"all the stnps bemg of the same: orientation . The functlon H(x,y) is generated itera- -

 tively by propagatmg z values outwards from the lmes such that the resultmg (x,y,z) s ,

: are always on planes of the des1red onentauon In this iterative computauon Ht(x, y) :
S denotes the partlal strips reconstructed at 1teratlon t; the subscrlpt t takes 1nteger values P
. from 0 through 8. So, when t=0, H()(X y) corresponds to-the hnes themselves R

o The STEP-l in the algonthm descnbed below, creates the control matrix. Subse-
S ,,quently, in the STEP-Z and STEP-3 the planar stnp is generated and stored in the 64 X

Deﬁmng the reglon where the stnp 1s generated ] ER

fort(—lunt114 _

begm

“for x & O unt11 63 Sl
Cobegin

':3fory<—()unul63 e e

» 1f ( any 8-ne1ghbor of Ct—l (x, ) is 1 or 2) b e

- °nd T




STEP-2:

STEP-3:

79 . ' 

Cend

[ Spah t'hevhypothes_is ’iﬂn‘x-tjiiré’ctiovn 1 -

Initially, for all (x,y), Ho(x,y) «Dxy).
Note that D(x,y) is the disparity map corresponding
 to the straight lines features found from thc stereo pair.
fort=1to4 ' : : -
- begin
forx «0 untll 63
begin
fory (—Ounti163 =
begin =
1f((C(x,y)¢lor C(x,y)¢2) ‘ i
and(C(x+ l,y) 10rC(x+1,y) 2)) -
H (x,y) Hyy (x + 1 y) - tan 6
end ,
clself((C(x,y);élor C(x,y)¢2) T
“and (C (x - l,y)—lorC(x l,y) 2))
‘begin -
H, (x,y) Hyy (x 1, y) +tan 6
end -
end
end

[ Span the hypo,thevsis in y-direction]

: fort—5i0'8
begin -
for xe0 unul 63
begin
fory « 0 unt11 63
begin = s
1f((C(x,y)=#1or C(x,)¢2) ‘ o
~ and (C (x ,y+1) lorC(x ,y+l) 2));_,‘ |
begm N o
Sy =Hey (xy+1)- Ht-l (X,Y+2)
H, (xy) =Hi1 (%, y+1).+S
end s



else 1f( ( C (x,y) £1 or C (X,Y) #2 )
‘ and ( C (x,y-l) = 1 orC (X,Y'l) 2 ) )
bemn :
S Ht—l (X’Y'l) Ht—l (x,y 2), :
Ht (X,y) Hl:—l (X, Y'l) SV’ -
,e.n.d:,._,,,
e

The planar strrps H(x,y) is provrde by the ﬁnal result of the recurswe method of _'_ -
B -the STEP 3 whtch is denoted by Hg (x,y) Frgure 35 shows the ﬁow chart of this algo—- o

_f 423 Matchmg Zero’CroSsings"Und“er Planar :St'rip 'O»rientation Constraint‘

Suppose we have N hypotheses for planar surface ortentatrons in a scene. The - ,
= algonthm in the precedmg section: w111 for each matched pair of straight line segments,' o

.. generate a planar strip in 3-D space around the fused stralght line feature. The next

~ order of business is to accept only those hypotheses which lead to a max1mum number. - o
- of zero-crossmg matches on these planar strips. Again from the previous section, each

- planar strip is represented as a disparity map on a 64 x 64 matrix. Therefore, for a pair f
e of stereo 1mages, at thls pomt we will have N 64 x 64 dxspanty maps correspondrng to

~theN hypotheses. In makmg the transition from 25 6 x 256 images t064 x 64 disparity

. :', _maps, the drspanty of a. p1xe1 (l,J) in the 1mage plane is stored at the coordlnates 3
(x —f—l y |-'J-1 ) in d1spanty map : S , _

In enforcmg the constramts correspondmg to the drfferent avallable hypotheses, -

< in practrce it is not adv1sable to use each strip in 1ts entlrety This i is owing to. fact that

-an edge would in general form a boundary between planar faces of dlfferent orienta-

. tions - - the planar faces. correspondmg to different hypotheses. It is also possible that_ o
two' or more ob_]ects mrght be lined up in just the nght manner so that a long edge is - ‘

- created in the images, but, clearly, at dlfferent places along such an edge the planar -

. faces. would have drfferent onentatrons For all these reasons each planar strip is

L d1v1ded into M x M overlappmg square patches, as. shown in Flgure 36, where M |
'-»vequals 16 ‘Each M x M patch is- referred to_-by its . upper left hand comner and
‘ ~;corresponds to a M/4 X M/4 submatnx in the control matrix.

" For example, a patch at location (xo,yo) ina drspanty matnx spans the regron'

B w1th1n the range of xo_x<x0+M/4 and y0<y<y0+M/4 The same ‘patch spans ‘the

L vreg 1 on grven by 4x0_1<4x0+M and 4y0<3<4y0+M m the 1mage frame When M is 16
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- STEP-1: Define the region where the strips
S - are generated
- Use region growing program |
results are stored in the control matrix ,
Cxy) =1:the range is given by the dominant feature match |-

' C(x,y) =2 : the strips are to be generated -

'STEP-Z: Thcfvstrips are g_eng'ratcd _‘hori‘jzontally
using the result of the dominant feature match . -

STEP-3: The Sﬁfipst are 1géhé;éted'verﬁ¢a{11y_ o
using the result of STEP-2 -~ ~

| Figure 35 - Flow“chzirt of the Stl_'ip_ generation algoi'ivth:m'.f,



Xn-+"1:4.£+1

Yo |
xo+1
Cyo+ 1
Yo + 4
: y0+--1-\—/[—+1

4

M pixels in the image coordinates

A

Figure 36 = Planar patch ébordinate system.
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note that in a disparity matrix, the maximal coordinate values for a patch are (61, 61);
that is because for locations beyond these values, complete 16 x 16 patches cannot be
accommodated ina d1spar1ty matrix, ‘Also note that adjacent patches overlap for all
but one row and one column For example the patches located at (xo,yo) and
(xg+1,yo+1) overlap as shown in Figure 36. ’ : : ,
In the algorithm described below, two variables T and S play 1mportant roles in -
'deterrmnmg whether a given hypothesis is good or not. A hypothes1s is considered to
be valid if a sufficient number of zero-crossrngs can be matched on a planar patch, this
number bemg a fraction of the total number of zero-crossings in the patch. The vari- '

~ able S is equal to the total number-of zero-crossings in a patch and T the number of B
zero-crossings which can be successfully matched according to the constraints 1mposed_ o :
by the hypothesis correspondmg to the patch. The va11d1ty of the hypothesrs is then:"_ R

established by comparing T/S against a threshold. v ._
Say, a left image zero-crossing is located at coordinates. (x,y) Then in order to

estabhsh correspondence for the zero-crossing, we construct a search- window of size

+0 in the right image located at x+d where d corresponds to the dlspanty value in the
left image patch, the value of this d1spar1ty is given by Hy, (x/4,y/4). By trial and error,
we have concluded that in practice the value of 5 should be hrmted to umty In other f
words, the search windows are of size il : '

- We have also observed through- expenmentauon that the acceptance threshold on
T/S -- this threshold will be denoted by T4 -- should be a function of the orrentatron of
the plane corresponding to the hypothesrs For example, when the orientation of a

plane is given by 6=0, meaning the plane is parallel to the image planes, the threshold -
T4 should be approx1mately 0.7, whereas. for planes with 9—45deg, the best value for

T4 is around 0.5. :
' The following is an algorrthmlc descrrptron of the above procedure for acceptrng ‘
or rejecting a planar surface hypothesis in the vicinity of a stralght edge. For a given
patch, the procedure, which consists of two- steps, STEP-1 and STEP-Z in mvoked
only if the control matnx entries for the entire patch are 2. R

o STEP—I: [Searching correspondence] o

vLet LP (i,j) and RP (i) be the left and nght 1mage “zero-crossmgs-
matrices," defined in the followmg manner: For i and j spanning the range
(0, 255) we deﬁne the mamces Lp and RP m,the followmg manner

LP or RP (i,] ) ; 1f the coordlnate (1,3) in the i 1mage is -

' ona pos1t1ve contour, - N

_LP or RP (i 1 J )="n’" if the coordinate (i,j) in the i 1mage is
- on a negative contour.



B ’LPOI‘RP(I ])—' h* 1f the coordmate (1,]) 1s the 1mage is
i -ona horxzontal contour

e For every patch : o
- _let (xo,yo) be the patch coordmate in the dlspanty
. Now the number T and S for the patch at
..""~",:,(X0 Yo) L : :
o can be computed by the followmg algonthm .

E .S (—'O :

. :for 1(-—4x0unt114x0+M 1
for J <—4y0 unt114y0+M 1
begm o

lf(LP(l J)— )

Y T<—T+1 .
2 lf(RP(11+H(f 11/4] rJ1/4] ),Jl)— v
Loor

',,j.-.‘;.RP(11+H(]- 11/4] |-Jl/4-| )+1,Jl)—-P,f": .
Sior B
,RP(11+H(T 11/4] r11/4-|) 1,31)— P') o
o Ses+ o
X "-if("LP(i,j)r=’n'-)f LU T
o begin oo
CTeT#+1; B SR LS
| lf(RP(11+H(f l1/4-| fJ1/4'| ),Jl)" '
elor e
i RP(11+H(]- 11/41 r 11/4-| )+1,Jl)—"

S or v e

. ;_RP(ll"l'H(]- 11/4-1 |—_]1/4-| ) 1,_]1)— n ) L V

S(—-S+1

end S

STEP-2 Th1s step is- for compuung the ratio R of T and S. IfR exceeds a certain
£ threshold then all stereo correspondence 1n th1s patch are regarded as




L correct, -
<3
if ( R2 > T4 ) S
return ("ThlS planar patch is good hypothes1s")
.,,"1f(R<T4) .

retum ("ThlS planar patch is not good hypothes1s )

: F1gure 37 shows a ﬂow chart for the algonthm To demonstrate w1th an example
the workmgs of the algonthm, cons1der the three-panel scene shown in Figure 38 ().

_ For this scene, the. dominant stralght hnes, marked as AB and CD, will be. matched by .

the method of Section 4.1.3. At tlns point, our system assumes that a set of hypotheses

about planar surface orientations is avallable for matchmg regions ‘around. the dommant_fv
N ‘stralght lines. For the sake of d1scuss1on, let’s say that the available hypotheses are. as'~ v
, 1llustrated in Flgure 38 (b) This. means that at each plxel in the v1c1n1ty of the matched S
‘straight l1nes, the system will 1nvoke one of these hypotheses and select the best poss1- |

ble one on the basis of number of zero-crossmgs matched _ BE A
~To demonstrate how well this: procedure works, we have shown in F1gure 39 a >

| pa1r of stereo images of an actual 3—panel scene. "Asin the sketch in Flgure 38 (a), the : : J
* dominant edges in the scene are at the j Ju ctions of the panels The top 1mage in Flgure_ e

40 (a) shows the pixels that were matched by the geometrically - constramed matcher
using planar orientation hypothes1s COr

- 4, 3 Matchmg of Zero-Crossmg Contours

A combmed execution of the dommant—feature and the geometncally—constramed v

’ matchers yields good depth maps.in the vicinity of strong edges in a sense. Elsewhere, ) :
the system is dependent upon the two-level ‘matcher that w111 be presented in thlS ’

spondmg to onentauon] shown in Flgure 38
(b). The ﬁgure has a "blocky" appearance because, as mentioned before, the computed h 1

B dlspanty maps are over 64x64 matrices, while the results are displayed using 256><256 :

‘matrices. The ‘bottom ‘plate in Figure 40 (b) shows the pixels’ matched us1ng the‘ L
hypothesis that these pixels are on a plane of orientation orzentatzon?. ' o

In Figure 41, we show the results: obtamed for the stereo 1mages of Flgure 31. We’_'- C

- used- three hypotheses for the orientations of the planes (the range: map of three Rt

| hypotheses are d1splayed in Figure 42); these are dlsplayed in Figure 30 (b) The three IR

o _plates in Flgure 30 (b) show the prxels matched usmg each of the three hypotheses .



STEP-l Compute R and T in the concemed reglon .

« the number of the match successful by the hypothesis H
R (—— the total number of feature pomts the matchmg 1s L

o _ executed S

STEP—2 The stnps are generated vertlcally
' : usmg the result of STEP-2

' Figure37  Flow chart of the geometrically constrained matching algorithm. =
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panel 1 panel 2

. . ; . panel 3
(orientation1) (°“ema“°né) (orientation1)

\A /\

\/D\'

B

(a) The surface shape.

Hypothesis 4 Hypothesis 3

\& Hypothesis 2

Hypothesis 1

\
“(b) Hypotheses.

" Figure 38 An illustrative three panel scene.



- . "(b) Right image;
An _illust_i'__a-tive scene for geometrically co_'ns_trained-matcl_iing'.-
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‘sectlon and 1f that does not work elther, the full 1mplementatlon of the MPG algonthm B
. isused, The matcher is this section is based on the notion of figural continuity of zero-
' "~'.icross1ng contours tlus continuity constralnt says that when the planar surface 1s .
. : - vrewed from tWo nelghbonng v1ewpomts, the zero-crossmg contours in both the stereo ,
S f‘:lmages hust have nearly identical shapes. The idea of ﬁgural continuity was ﬁrst sugs
o gested by Mayhew and Fnsby 5 8 1 because they felt that the ‘sign and the onentat10n of =
e zero-crossmg contour did not' constttute sufﬁ01ent constrarnts for blnocular fus1on in.

S the hutian; visual system. Subsequently, ﬁgural contmulty was, 1ncorporated by Gnm e .

~ ,.a_}‘f’lson [ 9 }i m the MPG algonthm

~In’the two. level matchmg scheme descnbed here ﬁgural cont1nu1ty constramts _'" |

i ‘_;are 1nvoked”for match1ng segments of the Zero-crossing contours produced by thef G

NE Wop=8 channel The disparity map s0 obtained i is then used to generate a h1gher resolu- .

o f?tlon versmn by matchmg the zero-crossmgs for the ﬁnest channel for. wh1ch W2D is 4

| ; 1nvok1ng ﬁgural contmulty constramts is not as arbltrary as it s seems and 1s d1ctated by )

SR the procedure ‘we use for testing: the shape srmrlanty of two. contour segments The

'i _f_ ".{.'Lshape S1m11ar1ty testmg algonthm 1s such that it. needs at least 10 plxels to amve atreli- - s
o “able conclusions. The zero-crossing channel for sz—4 generates 00 many contours- R
- . . that'ate too short to be processed by the shape s1m11anty algonthm Note that random- - |

- L :_dot 1llum1natlon is used to. generate 1mages for all matchmg schemes except the ﬁrstv

| _one that 1s based on: the matchlng of stralght line. features. Our statement about too

o many contours bemg too short is apphcable only under this’ 1llumrnat10n

There is an nnportant p01nt 0 be made about why two channels are sufﬁc1ent for

- i;-lgeneratrng depth values over large depth ranges with the. scheme presented in this sec- - -

» “tion. In the Marr-Pogglo theory, if in each channel the search wmdow for ﬁndmg the

” : : correspondent in the nght 1mage ofa left 1mage zero-cross1ng is equal to +wz1)/2 then “ |
“in over95 percent of the cases there wrll be a smgle zero-crossmg in-the search win- -
- dow If the: search w1ndows are made much larger than thls, one has to' contend w1th' r

the problem of dlsambtguatron, s1nce large wmdows will contam multiple zero-'

N Acrossmgs from. these one must be selected to serve asa correspondent of the left i 1mage' e

- zerocrossing. On the other hand, if the search windows are much smaller, then the pro--

L o 'bablhty of completely mrssmg the correspondent is mcreased In practlce, most 1mple- o
= ‘mentations of the MPG algorithm use +w2D for search. windows, ‘this large' size being

e R made necessary by the dlsplacements 1n the zero-crossmg contours that was d1scussedv
Ly "1nSect10n223 : R S O :

Because, of the hmrtatlon on the max1mum srze of the search wmdow in an MPG o

: type of an algonthm one is forced to use a number of channels usually four, to cover’ a . o
depth range over wh1ch humans are capable of percelvmg depth through stereops1s |

. The ‘d1samb1guatlon problems are not as. severe w1th the two level matcher: dls-," L
A PR atchmg process, even desplte




’Gnmson s figural contmulty nnplementatlon is essentlally a plxel level matcher. On
the other hand, the first level of the matchmg scheme described here 1mplements
stereopsis by actually fusing contour segments. This allows us to use larger search win-
dows without suffering from the disambiguation problem. Contour segments tend to be.
much richer in detail compared to zero- cross1ng pixels even when contour slopes are
assocmted with the latter. For this reason, it is sufficient for us to use two channels.

. In the following subsections, we will first show with examples that the shapes of

zero-crossmg contours do indeed stay the same for the two v1ewpoxnts ‘we use for

stereo. images. This observation is ‘important since it forms the cornerstone of the
matchlng strategy discussed in this section. We will then discuss the ﬁgural cont1nu1ty '
- implementations of Mayhew and Fnsby, and of Grimson; and point out the shortcom-

“ings of those implementations. This will be followed w1th our 1mplementatlon Whlch o

we beheve is supenor to the other two.

4.3.1. Photometric Initariance in Stereo Vision'

- Photometric invariance refers to the fact that the correspondmg areas in the left., '
and right images exhibit similar gray level variations. Since gray level variations are

captured by the zero-crossrngs generated by the apphcatton of LOG filtering to images,
, photometnc invariance translates into the invariance of the shapes of the correspondmg__' o

zero-crossing contours. In Figure 43, we have shown stereo images of a scene with
large flat surfaces. Figure 44 displays the zero-crossing contours obtamed v1a ‘the sz
channel. The similarity of the correspondlng contours is evident. - . B 3
The similarity of zero-crossing contours is violated in the v101mty of range
dJSCOHtll’lllltleS and shadows. Some of the mechamsms that lead to dlstomons of the
contours between the two 1mages are the same as those dmcussed 1n Sectton 2.2. 3. |

| 4.3. 2 Mayhew and Fnsby Implementatlon of Flgural Contmmty

- Mayhew and Fnsby [8 ] have shown that ﬁgural contmulty of zero crossings:
_plays an 1mportant role in b1nocular fusmn in human stereopsis. As for the evidence,

they presented the result of an experiment which measured the latency time for -

stereops1s for image pairs with and without figural continuity cues. Shown in Flgure
45 is a random dot stereogram, supenmposed on which are boxes that define the

© regions: whlch undergo disparity shifts from the left to the right image. Mahew and

‘_F.nsby showe__d that _the_ time it takes to fuse the stereogram is shorter when the box- '
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. @Rightimage.



shaped 11ne features':‘are present, .m ompanson wrth the time that 1t takes wrthout the S

= :_‘box outhne: They‘_argued ‘that- the vstructure of ‘the box shaped outhnes generatedv__«

i 'experlmeﬁts,f

ity cues that facrhtated the process of stereoscoprc fusmn

- Mahew anc Fnsby shoWed that in partrcul at

i . was constructed on the same raster hne in the ‘nght image -- prov1ded no ﬁgural con-

s , .t1nu1ty 1nformatron was used On the. other hand, w1th ﬁgural contlnurty enforced, the R -
L G/M: ratro decreased t0 0. 317 For this: parucular result for each left i 1mage zero cross- Lo
' *?,':mg the ﬁguralcontmurty was enforced over 5 raster hnes by. companng the honzontal’

' :,»coordlnates of the COntour segments assocrated w1th the left i 1mage zero crossing, and a

wxv”’»,.-:‘v_r,.‘candldate ‘n _ht'rmage zero crossing, and 1n81stmg that they be within + 1.’ Further o -

T ’reducttons in. ghost matches could be obtalned w1th figural cont1nu1ty enforced over_
e _vf'longer segments :of zero-crossrng contours, for example, mstead of usrng ﬁve raster

G lmes, we coulduse seven or nine.”

- 433, Grimson’s Implementation o

‘gﬁralContii’uiityf P

B Grrmson [ 12 1 1mp1emented the concept of ﬁgural contrnurty such that a pomt P -

e fon a zero-crossmg contour Ci in- the left image was accepted asa reasonable candidate o
s to'be matched if all points. w1thln a certaln drstance from P on C succeeded in finding
L -correspondences in the’ nght 1mage The outlme of Gnmson s 1mplementatlon is as

’?_'follows '?;.Suppose a ‘point P = (xO,yo), on a zero-crossmg contour in the' Nx N left

FEae »‘frmage has a correspondmg pomt in’ the nght 1mage Now, we examme whether th1s '

,'pornt satlsﬁes the ﬁgural cont1nu1ty constrarnt S

“‘Let us consrder a. zero-crossrng contour segment C of length A whose com-

L bpom‘gnts are (XQ Yo) (xleI) (Xz,Y2) m-:',w(XA—I,YA—l)

To Quantlfy; their results, Mahew and Frlsby measured the ratios G/M in thelf. B )
S "’h_ere M is the number*of zero-crossmgs ona zero-crossmg contour in
: REE the left image- and where M+G is the total number of nght image candidate Zero Cross-
. ings within the respective search"fwmdows Gvrs,}.‘ referred to as the number of ghost o
- zero-crossings ar d, ideally, we would want G to be zero. _Clearly, G/M isa measure Of:' o
"",;-"':;the possrbrhty f 4 false match. D R T
R expenment, G/M took a value of
T ""'i ;"2 17 ‘when matchmg was accomphshedf on a raster hne by raster line basis -- meanmg-' o
o i';that for each Zero-crossing in a given raster. l_mem the left image the search window =
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S (b) Right image.

(@) Leftimage.

| Figure 45 - A pair of synthetic stereo imagés with monoct‘llafly-disc:?iminéblé cues.
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L(X.y) = —1 f ifa pixel (x,y) is on a negative contour

L(x,y)-‘ i apixel (xy)isnoton any ¢0ntour S

f ,‘Let MT be a N X N ‘matrix, whose element MT(x,y) is 1 bit bmary number and i is deter- "
.~ mined such that RS o SR '

L MT(x,y)= '1- | 1f L(x,y) is non-zero and there exists = 1
Sl | f ac orreSPondmg zero-crossmg in the search wmdow |
s =0 o 1f erther L (x,y) is zero or there ex1st , | ,
S ‘o correspondmg zero-crossrngs 1n the search window. -

Now a predetermlned constramt K, wh1ch determme the sufficiency of ﬁgural‘

S contlnulty, 1is 1ntroduced In thlS example, it is assumed that A is longer than K. (In- |

other words, a concemed contour segment is long enough for exarmnmg ﬁgural con-
tinuity.) . Note- that for the s1mpl1c1ty, it is- assumed that any contour point can be -

SR classrﬁed either as posrtrve or as negative.

o Then the algorrthm can be descnbed as‘ follows

]  donee0;
s
- f"'lv{-—'rO"

e *whlle(done 0 or1<A 1 )do
begm e '
1f(L(x1,y1)—lorL(x1 ,yl)—-l orl<K)
l-1+1 ARy t : : :
else
begm . _ -
“call gap_processmg (l,g,success)
: 1f (success = yes") L
| record th1s contour 1n the accepted contour map, s
S done-»l' AR P : SRS
el _’end,, SR L
' else if ( success = no")
L done—l B
: :end S
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end

In this algorithm, a function gap_proeessing 4 g, success) return the answer as
the variable success whether the contour, with length 1 and gap g, thus far examined i is
acceptable candidate or not.

success = "yes" * if this contour is accepted as the candidate
“success = "no" - if this contour is accepted as the candidate

[} "

- success = - if further examination is necessary

4.34. Our Implementétion of Matchihg by Figural Continuity

ZERO-CROSSING FIGURE MATCHING ALGORITHM

The algorithm employed for the zero-crossing figure matchmg is very similar to
the straight line matching algonthm shown previously. In this section the algorithm of
the zero-crossing figure match is presented. It should be noted that the length of the -
contour segment is 15 in this algorithm, while it is 41 in the case of the straight line
matching. S

STEP-1: . Each zero- crossmg unage is represented by a data structure Wthh is a hst
’ - of zero-crossmg segments described as -

{ segment; , segmenty, segments, ....segmentM} .
STEP-2: Each zero-crossing segment is represented by the following data structure

{ 'start-pix-coLindj(, “‘star't-pix-‘row-_indx,- chain-code,
start-pix-col-indx-of-conj, start-pix-row-indx-of-conj } -

where the last two items are instantiated only after a right image contour
segment is found that matches the left image contour segment with starting
indices (start-pix-col-indx, start-pix-row-indx). The matching contour seg-
ment may be called the conjugate segment, hence the symbol ‘conj.’ In the
event a left image segment matches more than one right image segment, the
last two items can be replicated and instantiated with the corresponding

starting values. Information about multiple matches this stored can be used
subsequently when relational constraints are invoked. Each chain code is
represented in the same manner as m stralght line representatlon For the %



" discussion to :foll’ow, a centour. ’s‘egment- from the left image will be denoted

(L( 1) L(2) L(N))

e and a segment from the nght 1mage by

 STEP3:

(R(l) R(2), R(N))

In comparmg the data structures for two segments from the two images, the - |

L j; algonthm ﬁrst makes a check for the posrnonal correspondence The pos1-

tional correspondence is cons1dered as. sufﬁc1ent if the followmg cond1tron S

o f’ils satlsﬁed

S I start—pixel-col~index; — start—pixel-col-index;

<Dpax

| “start-pixel-row—index; — start-pixel-row—index,

- Ly

o where Dmax is: the range of the maxrmum perrmss1ble value for the dlspar-
| S'I_"EP-4:"

A s1rmlanty score, denoted by T is computed for- the two segments by com- |

, paring the1r cham codes. Initially, the value of T is set to 0. At step i let S
pI _._the cham code elements from the two: segments be: L(1) and R(1) For each

B i i —1 N the total score T is accumulated by usmg

o 1fL(1) R(1) thenT T+1

E .Note that the werght value ‘W used in the stralght hne matcher is. not' :
';,employed here. This 1s because the alternatron of two codes dlscussed in

: - the strarght line matcher is unhkely to occur in the case of zero- crossmg. .
- contour segments extracted from random dot pattems used at this stage of

 STEP-5: -

= :our algorrthm

"If the 51m11ar1ty score T does not exceed a pre-set threshold denoted here
: ‘»‘by T5, delete the left 1mage segment under con51derat10n from the left
W - image data structure created by STEP 1, -~ .
~ STEP-6:

1If the smnlanty score T exceeds a threshold T5 declare the two segments

- as matchable. - In the current computahonal model T5 and N are set to 11
~and 15, respectively. Delete from the left i image data structure shown in
e "’STEP 1 those segments whose (start—plxel—col—mdex, start—prxel-row-mdex)v -
:lhe on the matched segment in the left 1mage :
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' STEP-7: [If the lefti image data structure created in STEP 1 is non-nil, go- to'STEP 3.
STEP-8: In this step, range values to the scene polnts that lie on the matched seg-
' ments are computed by the following procedure Let D(1), i=0,1,..,N be the -
 disparity computed from the ith pixels in the left and the right image seg- R
ments; as defined in STEP-2 the chain codes of these matching pixels are
denoted by L(1) and R(), respectively. The dlspantles, D(), is obtained
from the chain codes L(i) and R(i) by the following formula in which A,

Al, A2 are temporary variables: o

D (0) «CL - CR
where CL= start-plxel-col-mdex for the first pixel
in the left i image segment v
" CR = start-pixel-row-index for the first pixel
: i_n the right image segment

For1 — 1 step 1 until Ndo .

- begin
Cif(LG=01, or7))
Al=1;
else1f(L(1) (2 or6))
Al=0; :
else if (L.() =3, 4, orS))
“Al=-1;
if (R @) = (0, 1, or7))
A2=1;
else if(R@)= (2 or 6))
CA2=0;
else1f(R(1) (3 4 orS5))
A2=-1;
A=A1-A2;
D@=DG-1)+A;

end

| The range maps down-sampled to 64 % 64, snmlar to the stralght hne
_ extraction algorithm, : - '
In Figure 46, the contour segments, which are successfully matched by our zero— )
crossing figure matching for the pair image shown in Figure 44, are presented.



 Figureds . Matched zero crossing contour segments of Figuredd.
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4.3.5. Matching of Individual'_Zero-Crossings v

As described before, the matching process of this section is carried out at two lev-
els, the contour segment level (the first level) in the wop=8 channel and the pixel level
- (the second level) matching of zero-crosSings in the wop=4 channel. With the help of
Figure 47, we will illustrate how the two levels act in concert. In Figure 47, a pair of '
the” contour 1mages of the first level are shown in (a) and (b), and the second level 1
image pair are shown in (c) and (d). Contour segment AB in the left i unage is matched
with the contour segment A’B’ from the right image by the figural continuity con-
straint on the first level. Note that when search for the matching contour segment for
AB is conducted we rnake sure that the horizontal coordinate of A’ i is within the hor-

izontal coordinate of A + , as shown in Fig. 47. This match is used to compute a -

disparity map along each matched contour and the resulting disparities stored in a
64x64 matrix. Subsequently, the zero-crossings from the wop=4 channel are matched
md1v1dua11y, as in any channel of the MPG algorithm. For example, if P, is a zero-
crossing produced by the w2D-4 channel with its x-coordinate equal to xy, then to ﬁnd

W2D
around the pomt

its correspondent we first construct a search w1ndow of size *—

x1+d, where d is the disparity value pulled out of the 64x64 d1spanty matrix mon-’
tioned earlier.

~ The reader should note that the search window has half the size of those used in
the MPG algonthms Whereas ‘each channel of the MPG algorithm 1 uses a search win-
dow of tw,p, the search wmdow used here is only half that. As was pointed out in
Section 2.2.3, theoretical cons1derat10ns dlctate that in MPG algonthm the size of the

however when such algorithms are 1mplemented the |

search window should be +

search wmdows are set to: +w2D to account for the shifts in zero crossmg contours
- caused by the interaction of d1fferent intensity variations in an image. To add to the
- discussion of Section 2.2.3, this interaction will be illustrated with the help of a one-
dimensional gray level variation shown in 'Figure 48 (a). This pattern can be
parametrized by the variables A and B, which control the relative heights of two of the
levels in the pattern, and C which controls the separatlon of the spike from the other -

variation. Figure 48 (b) shows the boundaries of the shifts in the zero-crossmgs for dif-

ferent normalized values of the parameters For example ‘when the normahzed value ) L

of separatlon is g1ven by W—C—=0 5 and the value of B/A is 0. 06 the shrft of the zero- ;
D . . )

crossing correspondmg to the edge X is glven by pomt P.

| We believe that if the parameters of gray level vartatlons in an 1mage are such as. s JER
- to cause zero-crossmg shlfts comparable to, say, sz, then the resulung zero-crossmg L



B

(@) Left contour image (w;p=8).  (b) Right contour image (w;p =8).

L Y1

S xgDeg -~ . X2+D -8 + ——

| | v’_}(c)?v'Léf‘t;;(‘:ontoﬁTt imagé ( W2D =4) o S (d) nght contour 1mage ( wap = 4) :

: - Note The zero~crossmg ﬁgure match is apphed only to the fusxon of the images through the channel
- with the size Wop =8 ¢ @ and (b) in'the illustration shown above ). The default matcher is applled o
L the fus10n of the ﬁnest channel 1mages ( (c) and__,(d) in the 1llustrauon shown above ) L

7 Concspot the savocrosing g mach,
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CClwp
(b) Boundaries of Misleading Matching

Fig. 48 Simulation_about‘ the zero-crossing shift by a small blob.



:'contours would be unmatchable by the ﬁgural contmurty matcher If this conjecture is :
- true; ‘then the matchmg of zero—crossmg contour segments should provide us with an - -

. accurate d1spanty 1nformat10n wherever: such a match can be accomphshed The point
. we are trying to. make is that after matchmg contour segments, the resulting disparity
o 1nformatron is qulte robust and there is less of a reason to use +w2D windows for sub- .

ey ‘5‘ . sequent matchmg Slnce smaller w1ndows lead to fewer d1samb1guatlon problems, we

o Wap:
' chose the +—2— wmdows

“The pomt be1ng made is that 1f the s1m1lant1es between contour segments are such v

o that they can'be matched then it is unhkely that there would any significant dev1at10ns .
' in the zero-crossmgs at the next ﬁner channel After all, contour wise sumlarlty arises
i ’because of area: w1de s1m11ar1ty between the two 1mages It 1s hard to conceive ofa case '

LS

L channel for the contour matchlng to: occur, yet there would be s1gn1ﬁcant dev1atlons at
e the w2D—4 level to requlre a search wmdow larger than dlctated by theory '

: 4.4_.}; Th’e’l)efault:;Matcher

g When all else fa11s the systems mvokes the full nnplementatlon of the MPG algo-"“ »
- : nthm so, m a sense, th1s 1s the default matcher F;We have already d1scussed this algo-
o nthm in Sectlon 2 2 i BT STt
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'CHAPTERV A REVIEW OF SOME IMPORTANT RULES

‘5,1, Overview of the ’Rule-B'a‘sed Procedure* '

‘ Unless properly organlzed a rule- based system can qulckly outgrow the ability of _
a researcher to keep the entire system in mental perspective. Each rule usually embo-

dies a small measure -of control information; and, in a system with a large number of

rules the interactions between the rules can be sufﬁmently overwhélming to the point
~ that it may-not be possible to feel confident about the robustness, stability and the con-
vergence of the reasoning procéss. For these reasons, we have grouped the rules in our
- system in two different ways; the first type of grouping is simply to facilitate the
| ‘comprehens1on of the system by a human, and the second type for the flow of control | v_
in the computer program. The ﬁrst type of rule categonzatlon is referred to as Groups .
and the second type Stages. : - : ‘ s
‘The three Groups of rules in the system can be described i in the followmg manner:

| GROUP-I*

These rules are used for dynarmcally altermg the entnes of the control -
* matrix. Note that the initial entries are generated by a deterministic pro-
: ~ cedure on the basis of the output of straight line matchmg An important
~function of these rules is to generate the control matrix entries in such a
_manner. that the stra1ght lines extracted from the right i 1mage satisfy the rela-
s tional constraints on their correspondents in the left image. This group also
" includes rules for 1nvok1ng different possible surface-orientation ‘hypotheses
for the geometncally constrained matcher. A rule-based implementation
~ here allows the incorporation of heuristics like: Of the many possible -
choices for surface orientations, we should first choose one that is the same
© . asthe orientation of one the nelghbonng surfaces; if that does not work
. then choose an orientation that is closest to that of one of neighboring. sur-_'
" faces. Of course, if no orientations are known in the immediate neighbor- -
o hoods, then choose at random a perrm551b1e orientation hypothesis. a




| 'GRO,U'P-Z"’ |

Rules for determ1n1ng the search w1ndow size for the 1mplementat10n of thev, :
- finest MPG channel. These rules make sure that if the MPG matching is -

: .'_bemg camed out without a pnor geometrically constrained matching, then
- the search window size is set equal to 2XWyp. On the other hand, if the S

,‘ " finest channel is be1ng invoked as a follow-up on the geometncally con-.
stramed matcher then these rules set the search w1ndow size to WzD

| ,,GR'oUP-s.. e

'I'hese are. metarules for coordmatmg the ﬂow of control.’ These rules make R o

* sure that the alteration of an entry of the control matrix 1s followed up. by ‘, -
the mvocat10n of the appropnate matchlng strategy ER -

The Stages represent another categonzahon of the same rules, as shown in Flgure- o

49, As i is made clear by the following descnphon, the Stages play an unportant role in R
- the orgamzatlon of the flow of control oI - R

i Stage-l ‘In- th1s stage, e1ther the geometncally constralned match” or: the zero-
i . crossmg figure match is executed dependmg upon the entry in the control
‘matrix. This stage allows the ‘generation ‘of multiple hypotheses for both
the surface orientations and the candldates for zero-crossing figure mathing.
.. 'In the current 1mplementatlon, although mult1ple candidates for ﬁgure__
- matchmg are perrmtted only a smgle hypothes1s is retamed for surface
onentauon e : : ~ : o

| S'tage-2 “ In this stage the best hypothe51s or candldate is selected from amongst

Lo those generated in the prev1ous stage. ‘The hypothe51s or candidate selec-

e tion strategy 1ncludes examlnatlon of the vahd hypotheses/candldates in

s ne1ghbonng reglons - : R

 Stage:3  The default match‘er{iquauedjn_ this stage.
' Hypothests Arrays B

In general in geometncally constramed matchmg it w1ll be poss1ble for mult1p1e -

e 'surface onentatlon hypotheses to: meet the hypothes1s selection criteria, By the same
o __'-token, in - zero-crossmg ﬁgure matchmg, for each zero- crossing: contour in the: left.
S '.unage there w111 be muluple candldates from the nght 1mage The muluple onentatmn
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b Choose-best-geo-con ]

GROUP-1 =

~ JSTAGE-1

{Choose-one-from-right-contours] \

N[Choose-one-from-left-coritours], \

o
()

[Hypothesis-conflict-resoluton]

o
|

[ Geo-to-figure-match ]

[ Figure-match-to-default ] { i 0;

\D 'I
i

N SCarch-WithW-reduéﬁoQ+l ’
{ Search-window-reduction-2 A”l \ STAGE-2

W7

¢

[ Trygeo-con-mach ] 1

[ Stage-1-flow ]

[ “Try-zero-cross-match ]
T Suge2fiow ]

[ Swgedfow |

- STAGE-3

© Figure49 Twotypes of classification of rules.



hypotheses and zero-crossrng contour candldates are stored respectlvely, two arrays
called © and Z. ' ‘ '

» As was explamed in Sectlon 6 2 the 256x256 is d1v1ded into an array of 64x64 o
: patches, each of size 4x4 pixels, for the: construction of the control matrix and the cal-

culatlon of d1spar1t1es Also, as explamed there, éach orientation hypothesrs is com-

puted over a an array of 4x4 patches - meanlng 16x16 pixels -- and, as can be seen |
from Figure ! 50, these patch arrays are overlapped. Therefore, the size of 9 matrix is 61

X 61 to represent onentatlons at all possrble 16x16 pixel subarrays. Each entry in the © _
- matrix is a list of all possrble hypotheses. for surface orientations at the correspondmg
4 16x16 subarray of pixels; therefore, each such entry can be represented as the follow-
8 _mglrst ' a Lo :

For example, 1f we have three hypotheses for a 16x16 subarray of plxels,
O(x,y)= {3, 91,62,93} When the i’ ‘th hypothesis i is tried and found to be unaccept-‘ ‘
~ able, it is removed from the list. In the discussion to follow, we will use the notatlon »

' 9(x y,i) to deéscribe the i-th hypothesis from the list at O(x, y) ' E
From the discussion in Section 6.3, it follows that the size of Z should be 64x64 -
: Each entry in the Z matrix is again a list of possrble candrdates and can be represented
by the followmg form: As was illustrated i in F1g 50, the nght -image candrdate contour
Cs stored as a list of disparities at the plxels of the left-lmage contour Each entry in the
Z matnx therefore looks llke ' e ‘ ‘

» _where zl is the hst of dlsparlty values computed by the zero-crossmg ﬁgure matcher for
the i-th candldate match o , Sl

» Explanation on the' rule de.s‘cription in tﬂhe: if-then form e

L We w111 now bneﬂy descnbe the syntax we w111 be us1ng for presentrng some of
the rules i in this chapter. The rules will be shown with the help of IF-THEN forms To'
1mprove the readablhty of presentat10n some: ‘part of each rule may be presented as an

'_ English sentence. ‘The followmg pornts are to be. noted for the: algonthmrc parts of the

| ~ rules: -The reader should bear i in mmd the drfference between the vanables and con-
o stants, and also the d1fferences between aC program functlon and a loglcal predlcate o
e The left hand s1de (LHS) of a rule can have both mathemat1cal expressrons and 10g1ca1 o

G .:5pred1cates, this bemg consistent: w1th the syntax of 0PSS3 The followmg is a sum- o

o mary of the notatlon used for descnbmg the rules ' - : .




111

1 iY 6l 64
1 T B E i |
' B " © (i,j) : alist with N+1 elements
| 4x4gbupofpached (N,0,,0, .0}
jJ’ ............... X N : The number of accepted hypothesis
’ ! 6; : The orientation of the i th hypothesis
] . . :
! (The coordinates of ®, (i,j), represent -
| ) - the patch spans within the range (i,i+3)
61 ! horlzontally and (j,j+3) vertically.) -
§ Sl
64! N
Leoooo- R S S S S J
(@ Hypovt:hesis array ©
) .

contour s¢gment A " Z/(ij) : A list with M+1 elements

(M, 0,6, -~ ,0u }

M : The number of disparity values
computed by the zero crossing
~ contour matching.

- (The number M can be greater than 1 -
- when more than two contours pass through
the 4 X 4 patch specified by
: the coordinates (i,j). )

(b) Hypothesis array Z

" Figure 50  Hypotheses Arrays © andZ.
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| v (1') : The asterisk (*) mdrcates that the word followmg the astensk stands for the pur-‘ "

: 'poses of explanatlon asa workmg memory ‘element” in OPS-83. Such a word

o . can be matched with the LHS of a rule, and if the match is successful the RHS

of the rule can be executed. In RHS of a rule, a working memory element is L

created, modified, or removed by "make", "modlfy" and "remove c:omman'ds_,_
'lrespectlvely * ' o

@ A variable i denoted’by a word whose firs letter is capitalized.

(3 A constant is denoted by a word w1th lower case letters In the case of a stnng-_
constant, itis denoted by the mar ' '

4 ’A procedure written as a C—Program is. denoted by a name w1th upper case |
letters : : : '

52, GROUP-’I Rules.

These rules come into play when processmg isin Stage- 2. Therefore, these rulesf: '
have the followmg two functions: 1) When for a given - region of an image, as
represented by an element of the control matrix, more than one hypothesis for the local

- planar surface orientation is found to be apphcable, one of these rules must select the
best of those by examining the hypotheses in the neighboring regions. 2) When foran -
~arc of a. zero-crossmg contour in one of the images, the figural matching procedure :
_ yields more than one possible match from the other image, these rules must agaln
| select one on the basis of such decrsrons in the netghborhood U

[ Rule Choose best-geo con ] o S - -
~ IF two or more geometrzcal constraints are sattsﬁed ata poznt (xo,xo) in the control ,
: ..matrtx, THEN choose one by takmg the nezghbormg hypotheses into account

IF( Stage 2 :

and C(X(),X()) =2z s :

~and O(xy,yo, 1) > 1 [more than two entnes] )
THEN : » :
CHOOSE MOST LIKELY THETA (xo, yO, @)

make *stage 2 rule worked ( status = yes )




. where CHOOSE_MOST_LIKELY. THETA is 2 functton defined in the last section of e
- this chapter. This function polls the nelghbormg reglons as g1ven by the nelghborhoods{{ B :
_deﬁnedbythe@matnx o i

R [Rule Choose-one-from-nght—contours]

- IF there are two or more candidates for the zero erosstng ﬁgure match as evzdenced- O

o  by. the existence of multiple entries for an element of matrix Z, THEN choose one by E

 polling. the 8-neighbors using the Z-matrix neighborhoods. This situation will arise - L

- when an arc.in the left zmage has more than one possible maich in the rtg_ht image.

s.-ﬁ..‘_IF( Stage 2 S
 and Clxoyo) =3 E ST
: and Z(yo y0,1) >1 [two or more entnes in Z])
CHOOSE MOST LIKELY Z(xo, yo, Z)

”ma.ke *stage 2. rule worked( status— yes ) |

)

‘ where the.funcuon CHOOSE MOST LIKELY Z is deﬁned in the last sectlon Bas1- ‘ :
o ally, this function chooses a single- dlspanty value from amongst the mulnple ch01ces- -

B available by takmg into account those nelghborhood dlsparmes that are known unam- o

o blguously Agaln, the nelghborhoods used are those correspondmg to the z matnx f .

,[ Rule Choose-one-frem-left-contours ]

e IF two or more arcs from the left tmage have the same correspondent from the rtght e

- » image, THEN discard all but one of the matches by using the relational merman on
o with netghbortng dtgttal arcs; the relattonal mformatton is bemg used only in the posz-_b
o ttonal sense deﬁned below L I : R

» In our model only the honzontal relatlons correspondmg to posmonal dlfferences -
between the arcs are taken into ‘account. (73 study of stereops1s where more elaboratef '

~ relations are uuhzed in stereopsis is- presented in [ 34 1) To illustrate what we mean '

by relatlonal mformatlon generated by posmonal dlfferences, _cons1der the arcs Ay in

) ]V__Flgure 51 whlch can be matched with the digital arc A”. “Let’s say. that the: arc labeled L
A can also me matched with A® and that the nelghbonng arc B has only a single
| conespondent inB’. We will use REL( A,B)to denote the posmonal relation between’ e
- two contour segments in an 1mage For the arc. posmons shown 1n Flgure 51, we may g -

'wnte O R




j’;f}‘jf Note that these relatlonal values can eas1ly be computed from the mfonnatlon that R
e .res1des in the contour segment list. The rule under d1scuss1on will select either A or
S Ao for matchmg w1th A’ by usmg the relatmnal values in the manner d1scussed below

o IF ( Stage 2
" and right d1g1ta1 A’ has

" two left d1g1ta1 arcs, A and Ao,
pos51bly to be matched )

 REL(A,B)
,,.",REL (A' B’)¢

SN [ Rule Hypothe51s-conﬂlct-resolut10n I

' ’I"_,_;'_IF a planar-swface orientation . hypotheszs is not m agreement w1th orlentatlon e

: " hypotheses atr any of netghbors m the: THEATA matrzx whose zmages regzons overlap
S owith the region. under;’conszderaaon, THEN discard the hypothesis.. A ‘most 1mportant' L
1mphcauon of thi lej is that geomemcally constraing .matchmg w111 not be used in- ",{-'_ s




the 1mmed1ate V1c1n1ty of comers formed by scene surfaces Unfortunately, th1s has to -
“be the case since orientation hypotheses are enforced at the same time over large image

~ blocks -- 16x16 to be precise - and so geomemcally constrained matching would lead

-0 erroneous matches in the v1c1n1ty of j Junctlons between surfaces of different orienta-

~ tions. Therefore, in the 1mmed1ate v1c1n1ty of surface _]unctxons the system must rely e

- on other matchers

IF( Stage 2

“and C(Xo,Yo) 2
. and @(Xo,yo 1) EER
and@(xo Yo, 2)¢@(XI’YI’2))' Lo T
[wherexo le <x0 +4, andyo <y1 <y9 +4]

© - discard @(xo yo 2) and @(xl,yl 2)

s " 'make *alter.- C request(X xo,Y yo)

. make *alter: - C request(X xg, Y = yl) _

. .make *stage 2_rule worked ( status = yes )

[ Rule Imt-C-matnx-set I R SR R
IF the 0PS83 program is mmated THEN the control matnx must ﬁrst be mltlahzed

IF ( Stage 1
i *start) -
THEN
CREATE INIT C MATRIX (C)
- remove *start v
. In stage processmg.done = no )
S The control matnx is 1n1t1ahzed on the bas1s of dommant feature matchlng, this is done
by the functmn CREATE INIT C_ MATRIX deﬁned at the end of th1s chapter

3 [Rule Geo-to-ﬁgure-match] e v |
IF geametrically constramed matchmg is- not successful THEN the zero- crossmg E

e ﬁgure matchmg zs to be mvoked

[Rule Flgure match-to—default] o
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© " (a) Left contour image (w;p=8).  (b) Right contour image (wyp = 8).

 Fig.51 "Relational,conStfainité of the Zero-érossing‘ﬁglifg match. |
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' successful THEN the default matchmg algorlthm should be applled

(*alter C request(X xo,Y YO)) o
N . -
'A'-'i.f;(C:(Xo;YO)=2)"a“, =
. thenC(xg,y0) &35
o elseif (C(xpy0)=3)
- then C(xo,y0) <4

‘remove *alter_C_requeet (X =xg, Y =yo) —

X

5.3, .GROUP;z _gules

The rules:in. thlS category control the s1ze of the search wmdow in the ﬁnest MPG
channel. Note that this is the only channel that is invoked after zero-crossmg ﬁgure v
matching. Also, note that when we establish a. planar surface orientation in:a regionof -

- the image,. venﬁcauon of this. orientation is done by matching zero-crossings by using -

asingle MPG channel. The size: of the search windows used in thlS channel is also con-
trolled by the rules in this group ’ ' : '
[ Rule Search- window-reduction-1 ] , - : -
IF the zero- crossmg ﬁgure match is succes.sful THEN reduce the search wmdow to"
half of the finest channel in the default MPG matcher B '

TIF ( Stage 3 : 5
and W. value i is unspec1ﬁed
~and Cs =4;" SRR
~ and C(XO’YO) 3) v
W ~ 2. : o ;

Note that the search wmdow is- speaﬁed by +W and that Cs is the value of the vanable
wap in a MPG channel. The LHS condition that Cs=4 means that only the ﬁnest chan-.
- nel.of the MPG algorithm would be affected - , : :

[Rule ‘SCarchfWIIldow:reductlop-z 1
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- IF in geometrzcally constrained matchzng a planar surface orientation hypotheszs is
“under verification THEN the search window is made very small and corresponds toa
small disparity interval around that correspondmg to the hypothes1zed plane. on both
s1des of the hypothetzcal plane ’ o : : : ' :

IF ¢ Stage = 1

~and W value i is unass1gned
. C( X0,¥0)=2) -
THEN

We 1;

~ 5.4. GROUP-3Rules

- The GROUP—B rules are ereated for c'00fdinating the flow of eontrei SV"IF‘hese: i'ules
make sure that the alteration of an entry of the control matrix is followed up by the -
| invocatlon of an appropnate matchmg strategy. : :

_ 5.‘4;1. Cont_rdl of TransitiOn between Stages

' v[Rule Transition- from-stage—to stage]
IF stage 1 has termznated THEN proceed to stage 2 IF stage 2 has tenmnated THEN

| proceed to stage 3
- This'is',a sen'al tran'sition of stages from 1 to 2, and then from2t03. . -

' '_IF( Stage—l
- and In_stage processmg done— yes )
: Stage 2 .
- In:stage ; processmg done =’no’
~make *stage 2 rule worked ( status = yes )

| =

’._'IF( Stage 2. ,
o and In _stage_ processmg_done = yes )
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THEN
{ _
Stage =3
In_stage processmg_done ="no’

)

IF( Stage=3
- -and In_stage_processing_done = yes’ )
THEN
o .
- End of the processing
}

5.4.2. Control of Stage 1

[ Rule Stage- -ﬂow 1 :

IF processmg is in stage 1, THEN a matcher, whtch can either be the geometrtcal con-
strained matching or the zero- crossmg ﬁgure matching, is sought from left to right and
from top to bottom. : :

, The rule is applied starting at the cOordinates (0,0) in the cdntrdl matrix. Let (xb,
yo) denote the current working element in the control . matrix. The function -
INCREMENT COORDINATE computes the next control matrix element to be con- -
s1dered : : :

, '_IF ( Stage = 1
X=Xg, Y=Yo
and Done =’no’) B
THEN
{

make *matcher select(xo yo);
INCREMENT COORDINATE (xo Yo, Done)

_1.

where xg and Yo stand for the coordmates in the control matnx and the working
| memory element *matcher_ select will match with all the WME’s that are capable of
tnggenng strategy selection rules. In this case, the strategy selectlon rules will be fired
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for the, location (xo,yo) in the control matrix.

, IF ( Stage =1

7 X— X0» Y_YO R »

_ and Done = yes )
In-stage processmg—done(xo, yo) (-- yes g

As w111 be shown presently, the varlable In-stage-processmg done is agam set to "no’ if
stage 21 is 1nvoked for the same locatlon in. the control matnx S T o

[ Rule‘Try—geQ-con-‘rnatch 1 -
' | IF ( *matcher-select -
X=x0,Y=yp
C(XO’YO—Z))

: THEN
_TRY GEO HYPOTHESIS (X Y, W D, 6, Success)
. if (success # "yes’) . -

‘ make *alter. C request ( X =Xy, Y yO)

remove *matcher_select (X =xg, Y = Yo)

)
[Rule Try?zerc#‘cross4match ]

o IF( *matcher select
X =x0,Y=yy
- C(Xo,yO—3))
THEN B
{ .
:TRY FIGURE MATCH (X Y, Z Success)

o dif (Success #’ yes’ )
-~ make *alter_C_request (X =xg, Y yo)
' remove *‘matcher,fselect (X =x9,Y=yp)
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v 5.4.3. Control of Stage2

‘[ Rule Stage-2 -flow ]
IF stage = 2, THEN the Stage-2 rules are to be made avallable for firing as long as the

.LHS’s of any of them can be satisfied.

IF( Stage=2
and In_stage_processing_done = 'no’
. and *stage_2_rule_worked (status = ’yes’ )
) '
THEN
{
fire rules;

}

IF ( Stage 2
and In_stage_] processmg donc = no
‘and *stage_Z_rule_worked (status = 'no’ )
- THEN
{ o
- In_stage_processing_done « ’yes™
. CREATE_DISPARITY_MAP

'5.4.4. Control of Stage 3

[ Rule Stage-3-flow }
IF the stage is 3, THEN the de_fault matcher is called, the callmg order being from left
to right and from top to bottom i in the control matrix.

- For all points (X0;Yo) Where the control matrix indicates the necessity of the -
default matcher (in other words C (xg,yp) = 4), the default matcher is invoked. For the
coarsest channel, the value of vergence is set to zero, which 1s1n kccping with. our
assumption that the optic axes of the cameras are nearly parallel. In the subsequent
channels, for the points where the previous channels have not provided any disparities,
the value of vergence is determined by interpolating the previous channel disparity
map. The following is the flow of the computation in the default matcher.
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. IF(Stage=3

‘and Done = "no’ ‘)'

" make *default_matCh (xo , yo); - o
- INCREMENT_COORDINATE (g, yo, Done);

-IF (*default match (X xo, Y yo)
THEN
DEFAULT _MATCH (xo, Yo ,Dn W)
remove *default match X0 5 Yo);

5.5. Functions Called by the Rules e
~ We Will ;n’owe deﬁne the functions that were used in the rules.
(1) "MATCH ---- Pomt-Wlse Matcher

For. a given zero-crossing in the left image, this functlon 1s 1nvoked to ﬁnd the :
E matchlng zero—crossmg in the nght 1mage by the MPG process ‘

MATCH (XYDWCS Dn)

: Th1s functlon returns the dlspanty value Dn computed at the posmon (X Y) in the con-
- trol matrix for the MPG channel with w2D equal to Cs. D is the current disparity value
generated by the previous channels and constltutes vergence for the current call. The
' number W is the search w1ndow size. '

@ ,INCREMEN_TF_COORDINATE (X,Y, Done)

if(X#64)
S XeX+1oo
celse o
Cif(Y#64)
YeY+1
X1 “
'elsei-_» B B
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Done « ’yes’ -

}

CREATE_DISPARITY_MAP

' if (Clxo,y0)=1) =
D(xg,yo) < the value glven by stralght hne matchmg
if (C(xo,y0) =2) | ' '
D(x9,yo) ¢ Dn of MATCH
if (Cxoy0) =3) ,
D(xp,y0) <= Z(Xg.Y0) = -
) ) , e

TRY_ GEO HYPOTHESIS (X,Y, W D, 6, Success) o
For a 4 x 4 planar patch (we will remind the reader that a patch is defined over -
the control matrix; therefore, a 4x4 planar patch translates into a 16x16 image
block) with top left coordinates (X Y), verify the geometncal constraint -

~ corresponding to planar scene surface orientation of angle 6. Since this function - .
must call the function MATCH, the arguments X, Y, W and D must also be sup-
plied. If the MATCH function succeeds in matching a sufﬁc1ent1y large number

of zero-crossings, and TRY_GEO_ HYPOTHESIS returns ’yes’ for the variable

‘Success. For each patch, the function TRY_GEO_HYPOTHESIS is called as
many times as there are hypotheses for that patch in the © matrix. If none of the o

hypotheses can be verified, then a failure of geometncally constramed matchmg,
is declared for that patch

D « this is.the disparity that must be valid in the
_ patch if all the image points in the patch did
indeed fall on the planar surface corresponding to
the orientation hypothesis under verification.

W« detcrrmncd by the [ Rule Search wmdow-reductmn 2 ]
explained earlier. The window size to be used in :
finding a match for a left i 1mage zero- crossmg W111
be +—W '

Cs W2D=4 The parameter Cs specifies which
channel output will be used for hypothesis o
 verification. Cs=4 means that the ﬁncst MPG channcl
zero- crossmgs will be used.
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The functlon TRY GEO HYPOTESIS calls the MATCH functlon for each con-
~ trol'matrix element in thé patch -- for a total of 16 times since each patch is 4x4.
~During each such call, if MATCH i is successful, the updated dlspanty value i is
b, : computed for that element of the control matrix. Out of 16 such attempts for a
patch; * at least a fractron ‘T4 - of them must be successful for'

| - TRY_GEQ_ - HYPOTHSIS to return *yes’ for the variable ’Success’, where T4 1s S

. 'a planar-surface—orlentauon dependent threshold d1scussed in Sect1on 4. 2 3 7 e

(5 TRY_FIGURE_MATCH (X Y z Success) S
U If at location (X, Y) in the control matnx the entry is 3, then this. funcuon w111
~ be invoked to attempt a- zero-crossmg ﬁgure match. For this figure match, all
| ‘15-p1xel contour segments will be considered: whose beginning pixels are w1th1n ‘
e the 4x4 block of the image represented by the location (X Y) of the control
~ matrix. The d1spar1ty values generated by figure matching are stored 1n ‘the Z
, matrrx F1nally, a value is returned for the variable ’Success’ on the basxs of
E " Success « ’yes’ if there is at least one successful match .
Success «’ no 1f there 1s no. successful match

(6) DEFAULT MATCH (X Y, Dn W) gl o
' This function invokes the full MPG process when the control matrix entry at (X S
Y) is 4 The MPG process is invoked by repeated calls to MATCH for different zero-
' crossmg channel outputs. Note that the channel selecuon in MATCH is controlled by
the parameter ‘Cs. For example when Cs is 16, then the zero-crossmgs produced by' R
the w,p=16 channel will be used for stereopsis. . - 2
- This function is also called after the ﬁgural matching is camed out. Note that‘

ﬁgural matching is carried out on only the Zero crossing contours produced by the WZD, o

=8 .channel. Wherever ‘contour segments produced by that channel can be success-" .

o 'fully matched by the funcnon TRY _FIGURE_MATCH, we then invoke the ﬁnest

-channel of ‘the MPG process. by a call 'to the functlon DEFAULT_MATCH. Th1s is

taken care of by the second IF clause 1n the followmg algonthm1c descnptlon of the_ -

functlon
K 1f(C(X Y) 4)
. call MATCH(X Y 0 16 16 Dn)
- 1f (Dn isempty) -

D « propagate the dlspanty of the nelghbors by
o - the 1nterpolat10n techmque ' '
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a]lMATCH(X Y 0,8, 8 Dn)
f(CX, Y)= 3or4)
: begm .
el 1f (Dn is empty) c
.- D « propagate the d1spar1ty of the nelghbors by -
v the 1nterpolat10n techmque v
“else e
'D¢Dn L
or CX, Y)=4)

call MATCH(X, Y, 0, W, 8, Dn)

- (where the value W is given by -
[ Rule Search-wmdow-reductlon-l D
-end - '

M CHOOSE MOST._ LIKELY THETA (X Y @) -

-+ For thé location (X, Y) in the control matrix, examine the 8- nelghbors by examin-

1ng the entries in the ® matrix. (Note that there is one-to-one correspondence between

the elements of the control matrix and the elements of the © matrix, the elements in the | B

latter represent 4x4 overlapped groupings of the patches corresponding to the former.) -

- From such a neighborhood, find the most 11ke1y onentatlon hypothes1s by countmg the
number of the single entry elements in @ :

(9) CHOOSE_ MOST LIKELY. Z(X Y, Z) :
.- From the list of d1spar1t1es in the 8-neighbors of the (X Y) locatlon in the. control '
matrix, the nelghborhood being obtamed from the Z matrix, retain for further con-

. s1deratlon those that are unambiguous in the sense that only a single disparity entry

exists in the Z matrix. Now take the average of these unambiguous entries and com-
pare those poss1b1e at (X Y) with thlS average. Retam one that is the closest.

’ (10) CREATE INIT C_ MATRIX (C) : : S
Usmg the results from dominant feature matchmg, 1n1t1a11ze the control matnx )
’Thls process corresponds to the STEP-1 of the planar strzp generatlon algorzthm dis- -

- cussed in Sectlon 422,
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CHAPTER VI IMPLEMENTATION WITH
- AN EXPERT SYSTEM LANGUAGE

6.1. Introduction

This chapter will briefly address some of the issues dealing with the interfacing of
the rule-based part in OPS83 [ 33 ] and the rest of the software in the C language.. ~ -

. Our original desire was to set up the rule based program for strategy selection as.a
consultant to the main stereo processing software in C. In other words, we wanted the' _
OPS83 part to serve as a subroutine to the rest of the system However, OPSS3 does' '_
~ not perrmt that, since in our lab it could only be initiated by the UNIX operatmg sys- "
tem. *We, therefore, ended up setting a top level program in OPSS3 which called the
rest- of the stereo matching software in C and also called the strategy selection parts
written usmg the OPS83 rule wntlng facilities. The organization of the whole program

~is shown'in Flgure 52.

6.2. Call'ing the Rule-Based Part from the C Program

When rule-based decision making is necessary in the C program, OPS83 rules are

invoked. The procedure for this part itself is very simple in principle. In the C pro- |

- gram the name of the main procedure ( or function ) of the expert system is simply
- called just like a 11brary function. The followmg presents the structure of the program.

/* main program written in C */c_ mam 0 {
typedef int opsInteger
OPSinteger array [ array_ size ],
OPSinteger result '

consult (array 1, &result ) }
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OPS program file o » ' . Cprogram file

B
- module programl (start) . »1' = c_main_ 0O{
~external procedure c_main O; | | ~ typedef int opsInteger
procedure start () { |- ‘OPSinteger array [ array_sme ],
{ | S OPSmteger result :
call c_main (); - : R
) v o o /* Image Processmg */
o , . : LoG operatation
procedure consult 22 Chain code descnption '
( &array_l:out array_type, - R Straight line extraction
&Result) { S %3 etc. o
Tun (); s o N ’ : o
DR M : N -L+— ‘consult ( arraly_1, &result);
}H A v ST o
R : v MPG default matching -
module expert () o by : ' o
type array_type = :
- array (array_size:integer); | [ - /* C funcs used in the
rule rulel < 7, o : expert system rules */
&1 ( premises ) B B o (ex MATCH, - =
> . | ' ~ TRY_GEO HYPOTHESIS
actions | S U R 4 |~ inSections.s)
call c_funcl (); — — S ,
) A ; |—1> c_funcl ()
‘rulerule2 . - — C-function program
&1 ( premises ) - ' o E7RE
> . : | — c_func2 () -
actions ' 1 o o
call c_func2 (); - : J | C-function program
Ly I i

Note: *1. At the begmnmg of the OPS program the control of program is transferred to C program : 7,
v -~ %2 Inthe strategy selection part of the C program, the expert syetem "consult" is called
~ *3, Rules are fired by the function "run". - ' o

' *4 The subordinate C-functions can be called in any part of the OPS prgram. o

Figure 52 Interacti(')ns: betWeen the OPS program-and C prog'_rams.
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. modul_e,eXpert(i)_g o
'vtype array_ type array ( array snze mteger ),'
~==rules of the expert system
. rule rulel :

- --actions

: ,-'}:

- pro:cedure’consult ( &array;l : out array_type, &Return_valu_e : out integer )

‘run (), ij: -- procedure " run " ex:sts in the shell

}, } S ' : ' : ‘ :

* As this example indicates, when the consultatlon ofa expert system is requlred

s1mp1y the name of the procedure written in OPS83, "consult” in the example above, is
~ called in the C program. - The type of parameters must be matched (As the C compﬂa— .
tion and OPS compilation are executed separatedly, the parameter dlsagreement isnot
examlned by either of the compilers.) In the procedure consult the "run" command is
executed in order to fire rules. : R

6.3.».»Example of Rule Representation

 In the previous chapter, we showed only the fuuctional forms of the rules. In actu-
ality, ‘each Tule must correspond to the format specified by OPS83. The following
example illustrates in OPS83 format the rule for choosmg the- best geometnc con- -
straint. o ‘ '

rule choose-best-geo-con
&1 (mode task = integrate_match; stage =2); -

‘&2 (control ctl [&X ][&Y]=2); s

&3 (hypothesis theta [&X][&Y][1]>1);

" remove &2;

: remove &3; : o
call choose most_likely_theta (&X &Y &Hypothesrs,&Theta),‘



* mmake stage_2_rule_worked ( status = *yes’ ); i

' Two hnes Just above the mark = >" are the "IF" p'art of a rule The lmes below the -

" mark "- ->" are the "THEN" part of a rule If scene classification allow the geometn—
o 'cally constramed ‘matching, it'is executed usmg a subprogram wntten in C If i it is not

. 'successful this reglon is ‘recorded- as" smoothly contmuous and probably the zero-ja :
S crossmg ﬁgure matchmg is mvoked by the other program L : LE
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CHAPTER VII EXPERIMENTAL RESULTS

“We' “will now show range maps computed using our rule based: procedtifé‘ and
compare the: results with those obtained with a straightforward application of the MPG

- algorithm.: In addition to the range maps, we will also show the reduction in possible »
- ambiguous matches with our scheme; a match is potentially ambiguous if for a zero- -

crossing in the left image there is more than one zero-crossing in the search window in :
- therightimage. ‘

11 Conﬁguiations of the Experimental System -

_Our experimental setup is as shown in Figure 53. Random dot illumination is
vertical and aimed straight down on objebts placed on a table. The cameras are -
arranged in such a manner that their optic axes are nearly parallel, which eliminates the -
need for i image rectification to satisfy the epipolar constraints. Any residual mlsahgn-'
ments between the cameras are removed by hand adjusting their aiming angles’ until
the .images . produced by them both are row-aligned. The random dot illumination 1s
- produced by a slide projector using a computer generated 1024x1024 pixels random-
- dot pattern. For regular illumination, the same slide progector with a blank slide is
used. The cameras are placed about 99 inches from the center of the scene and the
camera aiming angle is about 2.3 degrees from the perpendicular to the work table,
making for an angle of 4.6 degrees between the optic axes. The images were digitized

. over 512 x 480 matrices with 8 bits for representing each gray level. - After LoG filter-

ing, 256 x 256 pixel pictures were supplied to the pattérn matching algorithm.

7.2. Stereo Images and Depth Maps -

The imaigcs observed by the left and the righ_t‘cameras for a_two box scene lit by
regular light are shown in Figure 54 (a) (b). This pair of images is used for the dom- _
inant feature'km'atching. The finest LoG operator is applied to thése images. Then, as



131

-
-
-
-
-
-
-——
B o ; e T T
o S - 3 , |
P
-
-
-
-
-
-
-
-

.
h - ) B ;

|- Leftcamera’

s

Gednrl‘ét‘ry;of experimental system.

.' Figure 53




132

ight image.

(b) R

image.

(a) Left

54 A stereo scene (regular lighting).

igure

F



133

" ‘kthe dormnant feature, long stralght lines are extracted The zero-crossmg contours
~which are extracted through the finest LoG operator ( wop=4 ), are shown in Flgure 55
(a) and (b). The result of the donnnant feature extractlon or stra1ght l1ne extraction, is
shown in Figure 56 (a) and (b). e v |
: For the geometncally constramed matchrng, zero-crossmg figure matchmg and -
. default matchmg the same scenes. it by the unstructured (random—dot) lighting is util-
~jzed. Three different types of feature. extractlng LoG-operators, wap = 16, wyp = 8,
“and wyp =4, are employed. - After applyxng these. operators, the locally steepest
' changes of the gray level were extracted as zero-cross1ng contours For the illustration

-+ a pair-of zero-crossmg contours with wyp = 8 is shown in Figure 57.

. As described in the previous chapter invocation of different matchmg procedures _

i controlled by the entries in the control matnx “For the scene under discussion, the
~ control. matrix as it exists just before the default matcher is mvoked is shown in Figure
58. In the ﬁgure the control matrix entries, are d1splayed by using d1fferent gray levels.

The darkest grey level corresponds to the posmons ‘where the dommant feature match-v 2

~ ing s successful. The second darkest _grey level represents the posmon where the -

'geometncally constrained. matchmg is’ successful The -third darkest ‘gray levels -

“ correspond to- the zero- -CTossing figure match. And ﬁnally, the lightest grey level
~ denotes the. positions to which default matchmg is ass1gned As was mentioned prev1-
" ously, the contents of the control matrix are not static and change dunng processrng
By 1nvok1ng the default matchrng where dictated by the control matrix and com-

l[putlng the final’ d1spar1t1es, the resulung depth map is shown in Figure 59. The depth’ '
- 1s generated by usmg a zeroth order 1nterpolat10n on the computed d1Spar1t1es

_ 7 3. Companson wnth the MPG Algorlthm o

, We w111 now 1llustrate a few comparatlve results obtained w1th our method and .
_with ‘the MPG algonthm The. depth ‘map obtained with the MPG algorithm for the
stereo. pair of Figure 54 is shown in Flgure 60 The same zeroth order 1nterpolatlon is

o used for the MPG. case also

, * While. the ﬁgures 59 andr 60 prov1de a quahtatlve companson of the results
obtamed with our and the MPG methods, it is also possible to perform a‘'quantitative
o companson by keepmg track of the number of left-lmage zero cross1ngs ‘that have

more than one poss1ble Zero- cross1ng in the nght image for a potential match and for' '

E wh1ch one of these zero- cross1ngs cannot be selected by the d1samb1guatlon process. If
‘ this number of zero—crossmgs is d1v1ded by the total number of zero-crossmgs avarl-

e _pable, we get a measure of robustness of the match1ng process
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- (b) Right image.

~ (a) Left image.

8, unstructured lighting). -~

Figure 57 Zero-crossing contours (w;p
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Figure 58 Control matrix.
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~ As presented in the previous chapter, our method uses a narrow width disambi-

~guation window. - Therefore, the disparity value on some occasion, may nullify the

* values given by the matching. This nullification occurs in two cases : . if the range pro-
vided by the coarser channel is entirely wrong, or if the value given by the pulling
~ effect is inconsistent with the currently measured disparity value. The latter case is
' Ehkely to occur in both methods, the usual MPG and rule-based method, with almost the
“same rate. The drfference of the rate of the occurrence of the nullification mostly
: reﬂects the amount of the misleading 1nformatron by the coarser channel.
Table 7 shows the counts of several aspects in the d1samb1guauon process regard- :
‘1ng four scenes shown in Flgure 55, 61, (a), (b), and (c). The computatron was exe-
cuted in both the usual MPG method and the integrated rule-based approach. For each
~ method, three numbers are counted: total number of i 1mage points which have any
zZero-crossing match (A) the number of i image points where the matching was entirely
nullified by the dlsambrguatlon (B), and the number of image points where a better
g range value was chosen among the candrdates by the d1samb1guat1on (©). The upper -
number of each box of the table is for the usual MPG approach The lower number in
~each box of the table is for our rule-based matching model. ‘As the total number of
~matches for both methods is different, the ratios ‘B/C, and C/A are also computed and
- shown in terms of percent in Table 7. In the case of the usual model, all matching .
: 'operatlons are taken into account. In the case of the rule-based model, the number_

_ represents the quantity of matchmgs in the default matching. The algorithms used in

“ both methods are exactly the same, for matching in all. -aspects such as the matchmg
crrtena, disambiguation processing, search space size etc. S
-The numbers for both methods appearing in the column C/A are approximately
zthe same. Thls is reasonable because the number of the feature points ‘in a certain
search space is completely determmed by the relation between the LoG operator size
and the search space size as shown by the Marr-Poggro theory. Looking closely at the
" table, one may find a weak tendency that the the lower number is larger: than upper |
- number. One poss1b1e explanatron for this is that the ambiguous occasion’ w111 occur
- _ more likely when the zero-crossing figure match i is, not apphcable et :
~~ - We assumed that the matching" nulhﬁcatron occurs. more frequently if the range
~ measurement in the coarser channel was less accurate. If our claim is true, the differ-
ence of the number in the: column B/A ( expressed as percent ) in the box corresponds
- 't0 ' Wjp=8. This indicates the difference of the frequency of the mrsleadmg informa-
~ tion caused by the coarser channel, WZD—16 This value in the case ‘of the usual
R method is 245 percent on the average -of four i images. The same value in the case of
- our model is 16 8 percent.. Snrularly, for the boxes correspondmg to W2D—4 the values '

o are 13 3 and 8.5 respectlvely This sort. of drfference is not observed in the coarsest
B "_channel fus1on ( The values are 15 O and 15. 0 respectlvely) This is because: there
R '_ex1sts no coarser channel and the same ﬁxatron pomts ( zero-d1spar1ty ) are employed
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Table 7 Comparison between the MPG and our method.

lmage | | Total No. | No. Nullified | No.Disamb. |
No. | Wjp | Matching by Disamb. (Ratio) Affected | (Ratio)
| = | —=x100
A B X100 e A 10
16 | 3010 | 366 12 865 | 28
: 1562 | 206 13 457 29
. g 5638 1408 | 24 2134 | 37
' 2823 484 | 17 927 | 32
4 | 7184 - 946 13 1538 | 21
6419 | 555 | 8 | 1168 18
16 2554 | 367 | 14 834 | 32
1482 | 209 | 14 | 463 31
) g | 5789 | 1514 | 27 | 2557 44
' 3492 | 648 | 18 1243 | 35
4 6424 | 988 15 1885 29
o 5470 | 510 | 9 1191 . 21
ui6 3044 | 511 16 928 30
A0l 1378 244 | 17 | 466 33
3 g | 5787 1391 24 2270 39
= 2765 476 17 1060 38
4 7356 1004 13 1711 23 |
' 6326 50 | 9 1223 19
16 35717 | - 655 | 18 926 25
920 143 | 15 o258 28
e s | 6163 1444 23 1769 28
1722 281 | 16 49 | 28
1 g | 7207 898 | 12 1229 | 17
e 5754 490 8 805 | 13

Upper numbers are for the usual MPG model
Lower numbers are for the integrated rule-based model

I

&



" It can be clalmed that the rmsleadmg 1nformatlon by the coarser channel occurs more -

L frequently in the usual method than our 1ntegrated rule-based method. This is because, :
- for the ﬁxatlon pomt determination prior -to the medlum channel ranging, the ranges

- determined by the geometrically constramed matchlng and zero-crossmg ﬁgure match

o are taken into account in the rule-based model, -

Cis 4 the reduction i 1s about 14 percent

L Another point to be d1scussed is the total number of the matches As some part of -
" the matchmg process in the MPG method is replaced by other methods, the number of
: ,-pomt-wrse matches normally- appeanng in the MPG method is s1gnlﬁcant1y reduced.

As this method 1 uses the local orientation, and the sign of the zero-crossmgs as the attri-
butes, the possibility of the erroneous correspondence in the usual MPG is occasionally

- higher than it is in other higher level matchmg The reduction of the number of point-
wise matches may lead to the reducuon of the number of erroneous matching. The

-column of A in Table 7 indicates the total number of the point-wise matches. In the

' case where W2D is 16 or 8, the reductton is about 56 percent In the case where W2D

: /; e
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" CHAPTER VII CONCLUSIONS

“In this report we have shown that the MPG procedure, although a landmark
development in the evolving science of stereo vision, suffers from major deficiencies »
on;account'-of its being a purely bottom-up approach. We pointed out that this pro- -
cedure will generate disparity values at all those points which exhibit photometric
~ differences. Since such points in a scene are a result of a complex interaction between

“illumination and the surfaces in the scene, their locations cannot be predicted in
advance. Therefore, in most cases, especially if the scene surfaces are smooth, the pix-
els at which the disparities get calculated can be more or less randomly located, mak-
ing difficult the process of 1nterpolatlon for the purpose ¢ of computmg contmues look-
ing depth maps. : -

" In our work, our position has been that the problem with the MPG algorithm can
be alleviated by injecting high level object knowledge into the: matchmg process. In
thlS report we took a first step in that direction by assuming that all the object surfaces
- were planar and then this knowledge was directly used in the matchmg process.

‘ * Although, our use of object surface constraints by itself cannot be considered to
be new, what is new in our work 1s the integration- of such constraints with other .
» approaches to the matching process -- it seems plausible that such integration is also
carried out by the human visual system. Since it is entirely likely that the human visual
system latches on to any stnklng geometrical detail and since such details probably are
fused at the outset -- if only to facilitate the fusion of less striking scene details -- in -
our combination method, we first extract dominant features, these being the stranht
lines constituted by joining of the planar faces of the scene objects.

In our rule based approach we showed how the s‘trarght line feature matchrng was

followed by the ﬁgural continuity ‘matcher. And, the ﬁ‘gural continuity matcher was fol-
lowed by the default matcher, which is full blown implementation of the MPG algo-
rithm: By embedding all these matching algorithms in a rule-based setting, the system . -
became capable of invoking each of the methods on an opportunistic basis, meaning if,

say, the figural continuity matcher did not produce acceptable results in a region of the

image, the system could then automatically go ahead and invoke the default matcher.
The bookkeeping for which matcher to apply where was done with the help of a 64x64

control matrix for 256x256 images.
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Clearly, this report is only a first step in our attempt to inject high level
knowledge into the process of binocular fusion. We are sure that future attempts would
try to deal with higher order surfaces in scenes of greater complexity that what we
have shown. ' ’
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