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Abstract. We illustrate the potential of strategy-based conditional hedge
transformations in Web-related applications on the example of PρLog: an
extension of logic programming with advanced rule-based programming
features for hedge transformations, strategies, and regular constraints.
We show how to use it in XML querying, validation, and Web reasoning.

1 Introduction

The rule-based approach has been used extensively in many fields, such as expert
systems, machine learning, theorem proving, tree automata, software building
and configuration, program transformation, insurance and banking systems, just
to name a few. In recent years, the rule-based approach has been experiencing
growing popularity in Web applications. One could mention document process-
ing/transformation and Web reasoning as prominent examples. The REWERSE
project [31] provides an extensive reference material on those topics.

The goal of this paper is to illustrate the potential of strategy-based condi-
tional hedge transformations in Web-related applications. To achieve this goal,
first, we present a practical tool: an extension of logic programming with ad-
vanced rule-based programming features for hedge transformations, strategies,
and regular constraints. Second, we show how it can be used it XML querying,
validation, and some basic Web reasoning.

The tool we describe in this paper is PρLog [18] (pronounced Pē-rō-log). It is
a Prolog implementation of the ρLog calculus [27], which extends the host lan-
guage with strategic conditional transformation rules. These rules (basic strate-
gies) define transformation steps on hedges. (A hedge is a sequence of unranked
terms.) Strategy combinators help to combine strategies into more complex ones
in a declaratively clear way. Transformations are nondeterministic and may yield
several results, which fits very well into the logic programming paradigm. Strate-
gic rewriting separates term traversal control from transformation rules. This



allows the basic transformation steps to be defined concisely. The separation of
strategies and rules makes rules reusable in different transformations.

PρLog programs consist of clauses. The clauses either define user-constructed
strategies by (conditional) transformation rules or are ordinary Prolog clauses.
Prolog code can be used freely within PρLog programs. One can include its pred-
icates in PρLog rules, which is especially convenient when arithmetic calculations
or input-output features are needed.

PρLog uses four different kinds of variables in one framework, which allows
to traverse hedges in single/arbitrary width (with individual and sequence vari-
ables) and terms in single/arbitrary depth (with functional and context vari-
ables). It facilitates flexibility in matching, providing a possibility to extract an
arbitrary subhedge from a hedge, or to extract subterms at arbitrary depth. We
illustrate these capabilities on the two examples, bubble sort and rewriting:

Example 1 (Bubble Sort).

swap :: (s_Subhedge1, i_X, s_Subhedge2, i_Y, s_Subhedge3) ==>

(s_Subhedge1, i_Y, s_Subhedge2, i_X, s_Subhedge3) :-

i_X @> i_Y.

The swap strategy looks in the input hedge for two terms i_X and i_Y (these
are individual variables that stand for single terms) where i_X is larger in the
standard order than i_Y (e.g., 5 @> 3 or b @> a) and swaps them. The sequence
variables s_Subhedge1, s_Subhedge2, s_Subhedge3 help to select such terms
at arbitrary places as they stand for arbitrary subhedges of the input hedge.
One can notice that swapping operation is implemented as a Prolog clause, in
the form Head:-Body .

To implement bubble sort (in ascending order), we should keep swapping
elements in the hedge until it is not possible anymore, i.e., we need to compute
the normal form of the input hedge with respect to swapping. This can be easily
done in PρLog with the built-in strategy nf for the normal form computation.

bubble_sort :: s_Input_Hedge ==> s_Sorted_Hedge :-

nf(swap) :: s_Input_Hedge ==> s_Sorted_Hedge,

!.

We put the cut at the end, because the same normal form can be computed
in different ways and we are interested in only one result. One could also write
a more general version of this program, where ordering is a parameter.

Example 2 (Rewriting). Implementation of term rewriting is straightforward:

rewrite(i_Rule) :: c_Context(i_Redex) ==> c_Context(i_Contractum) :-

i_Rule :: i_Redex ==> i_Contractum.

The context variable c_Context permits to descend in arbitrary depth in
the input term, to find the redex i_Redex and construct the output term with
the redex replaced by the contractum. Rewriting operation here is generic, pa-
rameterized with the rule i_Rule that performs the actual transformation of
the redex. Which redex is selected (i.e., which rewriting strategy is applied),



depends on how c_Context matches the input term. PρLog’s built-in matching
corresponds to leftmost-outermost term traversal, but we have shown in [19] that
other rewriting strategies can be easily implemented inside PρLog.

In addition, PρLog permits regular constraints to restrict possible values of
sequence and context variables by regular hedge expressions and regular tree
(context) expressions, respectively. These constraints are very useful, for in-
stance, in validation of a given XML document with respect to a given DTD.

It should be noted that PρLog has not been implemented specifically for
Web-related applications. Its main purpose is to bring strategy-based conditional
hedge transformations in the logic programming framework for general program-
ming. Usually, PρLog code is quite short, declaratively clear, and reusable. The
user has also direct access to the control mechanism via strategies, that permits,
for instance, the usage of clauses in different order for different tasks. The role
of PρLog in this paper is to provide a practical platform to illustrate suitability
of the calculus behind it in XML querying, validation, and Web reasoning.

In the context of XML processing, the approach PρLog is based on can be
classified as positional or pattern-based, where programmer specifies patterns
including variables. Examples of such languages are Xcerpt [8], UnQL [9], XML-
QL [17], QBE [36], XDuce [21], and CDuce [5]. Usually, in the pattern-based
approach, variables in patterns specify the nodes to be selected. With PρLog,
we can select not only nodes but also sequences of nodes, node labels, and the
context around a node that is at arbitrary depth. Moreover, it can naturally
express incomplete query patterns. (Such queries have been introduced in [33].)

Approaches to XML, based on the logic programming paradigm, have been
quite popular. Besides the already mentioned Xcerpt, there is XPathLog [29], an
XPath-based declarative language with variable bindings that can used both for
XML querying and for restructuring and integration of XML sources. Elog [4] is
also a logic programming-based language for manipulation of XML data. XCen-
tric [14, 15], like PρLog, represents XML data as an unranked Prolog term and
uses sequence matching with regular types for querying. In fact, for our experi-
ments we used XCentric’s XML-to-unranked-term translator.

The organization of the paper follows the goals we declared at the begin-
ning: Section 2 describes PρLog. In Section 3 we illustrate capabilities of our
rule-based approach on the examples of XML querying, incomplete querying,
validation, and reasoning. Section 4 discusses some related work from the rule-
based programming perspective.

2 PρLog

As it has already been mentioned in the introduction, PρLog is an implementa-
tion of the ρLog calculus in Prolog, extending the language with strategy-based
conditional hedge transformation rules. In this section we give a brief overview
of basic features of PρLog, explaining them mostly on examples instead of giving
formal definitions.



Terms and hedges (sequences of terms) in PρLog are built over unranked
function symbols and four kinds of variables: individual, sequence, function, and
context variables. These sets are disjoint. In this paper we follow the PρLog
notation for this language, writing its constructs in typewriter font. PρLog
uses the following conventions for the variables names: Individual variables start
with i_ (like, e.g., i_Var for a named variable or i_ for the anonymous vari-
able), sequence variables start with s_, function variables start with f_, and con-
text variables start with c_. The function symbols, except the special constant
hole, have flexible arity. To denote function symbols, PρLog basically follows
the Prolog conventions for naming functors, operators, and numbers. Terms t
and hedges h are constructed by the grammars:

t ::= i_X | f(h) | f_X(h) | c_X(t)

h ::= t | s_X | eps | (h_1, h_2)

where eps stands for the empty hedge and is omitted whenever it appears as
a subhedge of another hedge. a(eps) and f_X(eps) are often abbreviated as a
and f_X. A Context is a term with a single occurrence of hole. A context C can
be applied to a term t, written C[t], replacing the hole in C by t. For instance,
applying the context f(hole,b) to g(a) gives f(g(a),b).

A substitution is a mapping from individual variables to hole-free terms,
from sequence variables to hole-free hedges, from function variables to function
variables and symbols, and from context variables to contexts, such that all
but finitely many individual, sequence, and function variables are mapped to
themselves, and all but finitely many context variables are mapped to themselves
applied to the hole. This mapping can be extended to terms and hedges in
the standard way. For instance, for a given substitution σ ={c_Ctx 7→f(hole),

i_Term 7→g(s_X),f_Funct7→g,s_Hedge17→eps,s_Hedge2 7→(b,c)} and a hedge
h=(c_Ctx(i_Term),f_Funct(s_Hedge1,a,s_Hedge2)), we have that σ(h) =
(f(g(s_X)),g(a,b,c)).

Matching problems are pairs of hedges, one of which is ground (i.e., does
not contain variables). Such matching problems may have zero, one, or more
(finitely many) solutions, called matching substitutions or matchers. For in-
stance, the hedge (s_1,f(i_X),s_2) matches (f(a),f(b),c) in two different
ways: one by the matcher {s_17→(),i_X7→a,s_27→(f(b),c)} and the other one
by the matcher {s_17→f(a),i_X 7→b,s_27→c}. Similarly, the term c_X(f_Y(a))

matches the term f(a,g(a)) with the matchers {c_X7→f(hole,g(a)),f_Y 7→f}

and {c_X7→f(a,g(hole)),f_Y 7→g}. An algorithm to solve matching problems
in the described language has been introduced in [24].

Instantiations of sequence and context variables can be restricted by reg-
ular hedge and regular context languages, respectively. These constraints are
expressed as s_X in RH and c_X in RC, where RH and RC are regular hedge
and context expressions defined by the grammars:

RH ::= eps | (RH RH) | RH|RH | RH∗ | f(RH) | RC(f(RH))
RC ::= hole | RC.RC | RC+ RC | RC⋆ | f(RH,RC,RH)

For RH, juxtaposition stands for concatenation, the vertical bar | for choice,
and ∗ for repetition. For RC, the dot is concatenation, + is choice, and ⋆ is



repetition. These expressions define the corresponding languages that are sets of
ground hole-free hedges (for RH) and sets of ground contexts (for RC):

[[eps]] = {eps}.
[[(RH1 RH2)]] = {(h1, h2) | h1 ∈ [[RH1]], h2 ∈ [[RH2]]}.
[[RH1|RH2]] = [[RH1]] ∪ [[RH2]].

[[RH∗]] =
∪
n≥0

[[RH]]n.

[[f(RH)]] = {f(h) | h ∈ [[RH]]}.
[[RC(f(RH))]] = {C[f(h)] | C ∈ [[RC]], h ∈ [[RH]]}.

[[hole]] = {hole}.
[[RC1.RC2]] = {C1[C2] | C1 ∈ [[RC1]], C2 ∈ [[RC2]]}.

[[RC1 + RC2]] = [[RC1]] ∪ [[RC2]].

[[RC⋆]] =
∪
n≥0

[[RC]]n.

[[f(RH1,RC,RH2)]] = {f(h1, C, h2) | C ∈ [[RC]], h1 ∈ [[RH1]], h2 ∈ [[RH2]]}.

Here [[RH]]0 = {eps}, [[RH]]n+1 = {(h1, h2) | h1 ∈ [[RH]], h1 ∈ [[RH]]n}, [[RC]]0 =
{hole}, and [[RC]]n+1 = {C1[C2] | C1 ∈ [[RC]], C1 ∈ [[RC]]n} for n > 0.

We add regular constraints to matching problems to restrict the set of com-
puted matchers, e.g., matching c_X(f_Y(a)) to f(a,g(a)) under the constraint
c_X in f(a,g(hole)⋆)5 gives one matcher {c_X7→f(a,g(hole)),f_Y 7→g} in-
stead of two for the unconstrained case mentioned earlier.

A ρLog atom (ρ-atom) is a quadruple consisting of a hole-free term st (a
strategy), two hole-free hedges h1 and h2, and a set of regular constraints R where
each variable is constrained only once, written as st :: h1 ==> h2 where R.
Intuitively, it means that the strategy st transforms h1 to h2 when the variables
satisfy the constraint R. We call h1 the left hand side and h2 the right hand
side of this atom. When R is empty, we omit it and write st :: h1 ==> h2.
The negated atom is written as st :: h1 =\=> h2 where R. A ρLog literal (ρ-
literal) is a ρ-atom or its negation. A PρLog clause is either a Prolog clause, or
a clause of the form st :: h1 ==> h2 where R :- body (in the sequel called a
ρ-clause) where body is a (possibly empty) conjunction of ρ- and Prolog literals.

A PρLog program is a sequence of PρLog clauses and a query is a conjunction
of ρ- and Prolog literals. There is a restriction on variable occurrence imposed on
clauses: ρ-clauses and queries can contain only ρLog variables, and Prolog clauses
and queries can contain only Prolog variables. If a Prolog literal occurs in a ρ-
clause or query, it may contain only ρLog individual variables that internally get
translated into Prolog variables.

PρLog inference mechanism is based essentially on SLDNF-resolution adapted
to ρ-clauses. In these rules below, P stands for a program and Q denotes a query.

5 Here we use simplified notation for regular expressions. The complete form would
be f(a(eps),g(eps,hole,eps)⋆,eps). It should also be noted that PρLog uses a
bit different, more verbose syntax for regular operators, but we stick here to more
conventional notation.



id is the built-in strategy for identity. The rules have the form Q1  Q2, trans-
forming the query Q1 into a new query Q2.

R: Resolvent

st :: h1 ==> h2 where R ∧Q 
σ(body ∧ (id :: h2’ ==> h2 where R) ∧Q)

where st is not id, there exists a clause st’ :: h1’ ==> h2’ where R’ :-

body in P such that under the constraint R’, the strategy st’ matches st and
the hedge h1’ matches h1 by the substitution σ.

Id: Identity

id :: h1 ==> h2 where R ∧Q σ(Q)

if under the constraint R, the hedge h2 matches h1 by the substitution σ.

NF: Negation as Failure

(st :: h1 =\=> h2 where R) ∧Q Q

if there exists a finitely failed SLDNF-derivation tree for st :: h1 ==> h2

where R with respect to P .

(We do not define here the standard notions like derivations, finitely failed
SLDNF-derivation tree, etc. They can be found in the literature elsewhere, see,
e.g, [1] for a survey). For Prolog clauses the usual SLDNF-resolution rules apply.

These rules can be applied in different (finitely many) ways to the same
selected query and the same program clause, because there can be more than
one matcher σ. But to guarantee that in derivations we face only matching
problems and not unification problems (i.e., that the hedge h1 in the rules above
does not contain variables), we need to impose well-modedness restrictions on
ρ-clauses and queries. This is a quite technical notion, whose definition can be
found in [27] and which basically is based on the same notion for normal logic
programs [16, 26, 2]. Roughly, the idea of well-modedness it to guarantee that
whenever a ρ-atom is selected in the query, its left-hand side and the strategy
term (input positions) do not contain uninstantiated variables. (For negative ρ-
atoms this restriction extends to the right-hand sides as well, with the exception
that anonymous variables are still permitted in the right-hand side.) This can be
achieved if the variables in the input positions of a ρ-atom in a query occur also
in the output positions (right-hand sides) of at least one of the ρ-literals located
in the query to the left of that ρ-atom. (If the atom is in the body of a clause,
than those variables may occur also in the left-hand side of the head of the
clause.) For instance, the following clause is not well-moded, because s_Y occurs
neither in the right-hand side of str2 :: i_X ==> i_Y nor in the left-hand side
of str1 :: (f(i_X),s_X) ==> (g(i_Z),s_Z):

str1 :: (f(i_X),s_X) ==> (g(i_Z),s_Z) :-

str2 :: i_X ==> i_Y,

str3 :: s_Y ==> s_Z.

In contrast, the clauses in Example 1 and Example 2 are well-moded. The
main reason why we want to avoid unification is that first, it is infinitary (even



with sequence variables only [23]), second, it subsumes context unification whose
decidability is an open problem [32].

Strategies control rule applications. They can be either user-defined ones
(like, e.g., swap, bubble_sort) or the built-in ones (e.g., nf and id). They can
be ground or contain variables (e.g., as rewrite(i_str)), can be atomic or com-
pound. PρLog comes with some predefined strategies, such as compose (sequen-
tial composition of its argument strategies), choice (nondeterministic choice),
map1 (maps its argument strategy to each single term of the input hedge), etc.

3 XML Processing and Web Reasoning in PρLog

In this section, we illustrate how PρLog can be used in XML querying, valida-
tion, and reasoning, pretty naturally and concisely expressing problems coming
from these areas. For these applications, PρLog uses the unranked tree model,
represented as a Prolog term. Below we assume that the XML input is provided
in the translated form.

3.1 Querying

Maier in [25] gives a list of query operations that are desirable for an XML query
language: selection, extraction, reduction, restructuring, and combination. They
all should be expressible in a single query language. A comparison of five query
languages on the basis of these queries is given in [6]. Here we demonstrate, on
the car dealer office example, how these queries can be expressed in PρLog.

Example 3. A car dealer office contains documents from different car dealers and
brokers. There are two kinds of documents. The manufacturer documents list
the manufacturer’s name, year, and models with their names, front rating, side
rating, and rank. The vehicle documents list the vendor, make, model, year,
color and price. They are presented by XML data of the following form:

<manufacturer> <vehicle>

<mn-name>Mercury</mn-name> <vendor>

<year>1998</year> Scott Thomason

<model> </vendor>

<mo-name>Sable LT</mo-name> <make>Mercury</make>

<front-rating> <model>Sable LT</model>

3.84 <year>1999</year>

</front-rating> <color>

<side-rating> metallic blue

2.14 </color>

</side-rating> <price>26800</price>

<rank>9</rank> </vehicle>

</model> ...

</manufacturer>



We assume that sequences of these elements are wrapped respectively by
<list-manuf> and <list-vehicle> tags. To save space, in the queries below
we use metavariable M to refer to the document consisting of the list of man-
ufacturers, i.e., the document with the root tag <list-manuf>. Similarly, the
metavariable V denotes the document with the root tag <list-vehicle>.

Selection and Extraction: We want to select and extract <manufacturer>
elements where some <model> has <rank> less or equal to 10.

select_and_extract :: list_manuf(s_,c_Manuf(rank(i_Rank)),s_) ==>

c_Manuf(rank(i_Rank)) :-

i_Rank =< 10.

Given the goal select_and_extract :: M ==> i_M, this code generates all
solutions, one after the other, via backtracking. The alternatives are generated
according to the ways the term list_manuf(s_,c_Manuf(rank(i_Rank)), s_)
matches M . If a <manufacturer> element contains two or more models with the
rank ≤ 10, it will be returned several times. However, with a little modification
of the code we can make sure that no such duplicated answers are computed:

select_and_extract :: list_manuf(s_,manufacturer(s_X),s_) ==>

manufacturer(s_X) :-

select :: manufacturer(s_X) ==> manufacturer(s_X).

select :: c_Manuf(rank(i_Rank)) ==> c_Manuf(rank(i_Rank)) :-

i_Rank =< 10,

!.

Reduction: From the <manufacturer> elements, we want to drop the <model>
subelements whose <rank> is greater than 10. Besides that, we also want to elide
the <front_rating> and <side_rating> elements from the remaining models.
It can be done in various ways in PρLog. One of such implementations is given be-
low. reduction is defined as the normal form of transforming each manufacturer
element inside list_manuf. A single manufacturer element is transformed by
reduction_step depending whether it contains a model with the rank ≤ 10:

reduction :: list_manuf(s_1) ==> list_manuf(s_2) :-

map1(nf(reduction_step)) :: s_1 ==> s_2,

!.

reduction_step :: manufacturer(s_1,model(s_,rank(i_R)),s_2) ==>

manufacturer(s_1,s_2) :-

i_R > 10.

reduction_step :: manufacturer(s_1,model(i_Name,i_,s_,rank(i_R)),s_2) ==>

manufacturer(s_1,model(i_Name,rank(i_R)),s_2) :-

i_R =< 10.

Then the query reduction :: M ==> i_List produces the list of reduced
manufacturer elements.



Join: We want our query to generate pairs of <manufacturer> and <vehicle>
elements where <mn-name> = <make>, <mo-name> = <model> and <year> =
<year>. The implementation is straightforward:

join :: (list_manuf(s_,

manufacturer(mn_name(i_Manuf_Name),year(i_Year),

s_,model(mo_name(i_Model_Name),s_X),s_),s_),

list_vehicle(s_,

vehicle(i_Vendor,make(i_Manuf_Name),

model(i_Model_Name),year(i_Year),i_Price),s_)

) ==>

(manufacturer(mn_name(i_Manuf_Name),year(i_Year),

model(mo_name(i_Model_Name),s_X)),

vehicle(i_Vendor,make(i_Manuf_Name),

model(i_Model_Name),year(i_Year),i_Price)

).

The query join :: (M,V ) ==> (i_Manuf,i_Vehicle) returns a desired
pair. One can compute all such pairs via backtracking.

Restructuring: We want our query to collect <car> elements listing their
make, model, vendor, rank, and price subelements, in this order.

restructuring :: (list_manuf(s_,

manufacturer(mn_name(i_Manuf_Name),s_,

model(mo_name(i_Model_Name),s_X,i_Rank),

s_),

s_),

list_vehicle(s_,

vehicle(i_Vendor,make(i_Manuf_Name),

model(i_Model_Name),year(i_Year),

i_Color,i_Price),

s_)

) ==>

car(make(i_Manuf_Name),model(i_Model_Name),

i_Vendor,i_Rank,i_Price).

The query restructuring :: (M,V ) ==> i_Car returns a car element.
Backtracking gives all the answers.

3.2 Incomplete Queries

Often, the structure of a Web document to be queried is unknown to a query
author, even if the schema to which the document conforms is familiar to her.
The reason is that the schemas allow much flexibility for documents, expressed
in terms of arbitrary repetition of substructures, or optional or alternative struc-
tures. Even more often, the query author is interested not in the entire structure
of the document but only in its relevant parts. Therefore, a pattern-based Web
querying language should be able to express such incomplete queries. Schaffert



in [33] classifies incomplete queries (four kinds of incompleteness: in breadth, in
depth, with respect to order and with respect to optional elements) and explains
how they are dealt with in the Xcerpt Language. Here we show how they can
be expressed in PρLog. As we will see, it can be done pretty naturally, without
introducing additional constructs for them.

Incompleteness in breadth. In languages that have wildcards only for single
terms, expressing incompleteness in breadth requires a special construct that
allows to omit those wildcards for neighboring nodes in the data tree. In PρLog,
we do not need any extra construct because of sequence variables. Anonymous
sequence variables can be used as wildcards for arbitrary sequence of nodes. Fur-
thermore, if needed, we can use named sequence variables to extract arbitrary
sequence of nodes without knowing the exact structure. This is a very convenient
feature. The second select_and_extract clause from the previous section is a
good example. There the anonymous sequence variable s_ helps to omit the ir-
relevant part of the document. The named sequence variable s_X helps to extract
a sequence of nodes, without knowing its length and structure.

Incompleteness in depth. This kind of incompleteness allows to select data items
that are located at arbitrary, unknown depth and skip all structure in between.
The context variables in PρLog make this operation straightforward: Just place
the query subterm you are interested in under an anonymous context variable.
For instance, to extract only the rank values from the manufacturer elements in
Example 3, we can write a simple clause:

select_rank :: c_(rank(i_Rank)) ==> i_Rank.

Here the anonymous context variable c_ helps to descend to arbitrary depth,
ignoring all the structure in between. We can do even more: If needed, we can
extract the entire context above the query subterm without knowing the depth
and the structure of the context. For this, it is enough just to put there a named
context variable. This has been done in the first select_and_extract clause in
the previous section with the c_Manuf variable:

select_and_extract :: list_manuf(s_,c_Manuf(rank(i_Rank)),s_) ==>

c_Manuf(rank(i_Rank)) :-

i_Rank =< 10.

In fact, this clause also demonstrates how incompleteness in breadth and
depth can be combined in a single rule in PρLog.

Incompleteness with respect to order. It allows to specify neighboring nodes in
a different order than the one in that they occur in the data tree. Since PρLog
does not permit matching in orderless theories,6 we need a bit of more coding
to express incomplete queries with respect to order. For instance, assume that
we do not know in which order the front_rating and side_rating elements
occur in the model in Example 3 and write the clause that extract them:

6 The orderless property is a generalization of commutativity for unranked function
symbols. For orderless matching over unranked terms, see [22].



extract_ratings :: c_(model(s_X)) ==> (i_Front,i_Side) :-

id :: model(s_X) ==> model(s_1,front_rating(i_Front),s_2),

id :: model(s_1,s_2) ==> model(s_,side_rating(i_Side),s_).

In first subgoal of the body of this rule, the id strategy forces the term
model(s_1,front_rating(i_Front),s_2) to match model(s_X), extracting the
value for front rating i_Front. Next, to find the side rating, we force matching
model(s_,side_rating(i_Side),s_) to model(s_1,s_2) that is obtained from
model(s_X) by deleting front_rating(i_Front). This deletion comes for free
from the previous match and we can take an advantage of it, since there is no
need to keep front_rating in the structure where side_rating is looked for.
One can notice that in this example we also used incomplete queries in depth
and breadth.

Incompleteness with respect to optional elements. It allows to query for certain
substructures if they exist, but still let the query succeed if they do not exist.
Since sequence variables can be instantiated with the empty sequence as well,
such incomplete queries can be trivially expressed in PρLog.

3.3 Validation

PρLog permits regular constraints in its clauses for context and sequence vari-
ables. They, in particular, can be used to check whether an XML document
conforms to certain DTD that can be expressed by means of regular hedge ex-
pressions. We demonstrate it in the following example:

Example 4. Let the DTD below define the structure of the document containing
manufacturer elements:

<!ELEMENT list-manuf (manufacturer*)>

<!ELEMENT manufacturer (mn-name, year, model*)>

<!ELEMENT model (mo-name, front-rating, side-rating, rank)>

<!ELEMENT mn-name (#PCDATA)>

<!ELEMENT year (#PCDATA)>

<!ELEMENT front-rating (#PCDATA)>

<!ELEMENT side-rating (#PCDATA)>

<!ELEMENT rank (#PCDATA)>

Then the validation task becomes a PρLog clause where DTD is encoded in
a regular constraint:

validate :: s_X ==> true

where [s_X in list_manuf(manufacturer(mn_name(i_),year(i_),

model(mo_name(i_),front_rating(i_),

side_rating(i_),rank(i_))*)*)]

(With i_ in the constraint we abbreviate the set of all ground terms with
respect to the given finite alphabet.) To check whether a certain document con-
forms this DTD, we take a PρLog term T that represents that document and
write the query validate :: T ==> true. The matching algorithm will try to



match s_X to T and check whether the constraints are satisfied. If the document
conforms the DTD, the query will succeed, otherwise it will fail.

Validation test can be tailored in XML transformations, to make sure that the
result of the transformation conforms a given schema. Similar to the validate

clause above, it is straightforward to express such tasks in PρLog. We do not
elaborate on the details here.

3.4 Basic Web Reasoning

Reasoning plays a crucial role in making data processing on the Web more
“intelligent”. Semantic Web adds metadata to Web resources, which can be
used to make retrieval “semantic”. To query both data and metadata, languages
need to have certain reasoning capabilities. In this section we demonstrate basic
reasoning capabilities of PρLog using the Clique of Friends example from [33].

Example 5 (Clique of Friends, [33]). This example illustrates some basic reason-
ing (mainly the transitive closure of a relation) for the Semantic Web. It does
not use any particular Semantic Web language itself.

Consider a collection of address books where each address book has an owner
and a set of entries, some of which are marked as friend to indicate that the
person associated with this entry is considered a friend by the owner of the
address book. In XML, this collection of address books can be represented in a
straightforward manner as follows:

<address-books>

<address-book>

<owner>Donald Duck</owner>

<entry>

<name>Daisy Duck</name>

<friend/>

</entry>

<entry>

<name>Scrooge McDuck</name>

</entry>

</address-book>

<address-book>

<owner>Daisy Duck</owner>

<entry>

<name>Gladstone Duck</name>

<friend/>

</entry>

<entry>

<name>Ratchet Gearloose</name>

<friend/>

</entry>

</address-book>

</address-books>

The collection contains two address books, the first owned by Donald Duck

and the second by Daisy Duck. Donalds address book has two entries, one for



Scrooge, the other for Daisy, and only Daisy is marked as friend. Daisys
address book again has two entries, both marked as friend.

The clique-of-friends of Donald is the set of all persons that are either direct
friends of Donald (i.e. in the example above only Daisy) or friends of a friend (i.e.
Gladstone and Ratchet), or friends of friends of friends (none in the example
above), and so on. To retrieve these friends, we have to define the relation “being
a friend of” and its transitive closure.

Transitive closure of a relation can be easily defined in PρLog. It can be even
written in a generic way, parameterized by the strategy that defines the relation:

transitive_closure(i_Strategy) :: s_X ==> s_Y :-

i_Strategy :: s_X ==> s_Y.

transitive_closure(i_Strategy) :: s_X ==> s_Z :-

i_Strategy :: s_X ==> s_Y,

transitive_closure(i_Strategy) :: s_Y ==> s_Z.

The relation of “being a friend of” with respect to the address books docu-
ment is defined as follows:

friend_of(address_books(s_,

address_book(owner(i_X),s_,entry(name(i_Y),friend),s_),

s_)) :: i_X ==> i_Y.

The query transitive_closure(friend_of(T)) :: Donald_Duck ==> i_Y,
where T is the PρLog term corresponding to the address book XML document
above, will return one after the other the friend and the friends of the friend of
Donald_Duck: Daisy_Duck, Gladstone_Duck, and Ratchet_Gearloose.

4 Related Work

In this paper, we discussed usability of strategic hedge transformations in Web-
related applications and illustrated it with the rule-based tool PρLog. Although
we have mentioned some of the systems related to PρLog in the introduction,
the comparison made there was based on Web-related applications and not on
general programming capabilities. From the latter point of view, there are a num-
ber of calculi and languages for rule- and strategy-based programming, such as
rewriting logic [28], rewriting calculus [11], ASF-SDF [34], CHR [20], Claire [10],
ELAN [7], Maude [13], the OBJ family of languages [30], Stratego [35], and
TOM [3]. The ρLog calculus, on which PρLog is based on, has been influenced
by the ρ-calculus that forms the theoretical basis of ELAN. However, there
are specific features in ρLog that makes it significantly different from the ρ-
calculus: logic programming semantics, top-position matching, hedge transfor-
mations, four different kinds of variables, and regular constraints.

PρLog design approach is close to the one behind the TOM language. With
this approach, we make our technology available on top of an existing language.
While we extend Prolog with strategies and hedge transformation rules, TOM
extends Java with pattern matching capabilities and a strategy language. The
list matching that TOM uses resembles very much to matching with sequence



variables. However, TOM neither has context/function variables nor permits
regular constraints on variables. The authors of the language indicate XML
transformation as one of the applications TOM is especially suitable for [12].

CHR, like PρLog, extends Prolog in a declarative way. However, its purpose
is different: It is a language for writing constraint solvers. PρLog is not designed
specifically for programming constraint manipulations and we have not experi-
mented with specifying such rules.
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