
A Rule-Based Framework for Role-Based Delegation

Longhua Zhang
College of Information

Technology, UNC Charlotte
Charlotte, NC 28223, USA

lozhang@uncc.edu

Gail-Joon Ahn
 Dept. of Computer Science,

UNC Charlotte
Charlotte, NC 28223, USA

gahn@uncc.edu

Bei-Tseng Chu
Dept. of Software Information

System, UNC Charlotte
Charlotte, NC 28223, USA

billchu@uncc.edu

ABSTRACT
 In current role-based systems, security officers handle
assignments of users to roles. However, fully depending on this
functionality may increase management efforts in a distributed
environment because of the continuous involvement from
security officers. The emerging technology of role-based
delegation provides a means for implementing RBAC in a
distributed environment with empowerment of individual users.
The basic idea behind a role-based delegation is that users
themselves may delegate role authorities to other users to carry
out some functions on behalf of the former. This paper presents
a role-based delegation model called RDM2000 (role-based
delegation model 2000), which is an extension of RBDM0 by
supporting hierarchical roles and multi-step delegation. The
paper explores different approaches for delegation and
revocation. Also, a rule-based language for specifying and
enforcing the policies based on RDM2000 is introduced.

Keywords: Role, Access Control, Delegation, Rule-Based

1. INTRODUCTION
 In current role-based systems, security officers handle
assignments of users to roles. This function may increase
management efforts in a large-scale, highly decentralized
environment because of the continuous involvement from
security officers. Delegation is a necessary approach to enhance
the scalability of a distributed system since it enables
decentralization of administration tasks. The emerging
technology of role-based delegation provides a means for
implementing RBAC in a fully distributed environment with
empowerment of individual users.

 Delegation is an important factor for secure distributed
computing environment. In the simplest case, Alice delegates her
role to Bob. Upon Bob’s request, a service will be granted if the
requested service is already granted to Alice. Naturally, access
decisions need to take this delegation notion into account. Other

related issues include revocation of delegated roles as well as
how to specify and enforce security policies regarding
delegation and revocation. For example, Alice may want to
revoke Bob from a delegated role. A revocation mechanism
must be provided and security policies must specify this action.

 In this paper, a rule-based framework for role-based
delegation is presented. Generally speaking, a rule-based system
is a system where behaviors are governed by a set of explicit
rules. The framework includes a role-based delegation model
called RDM2000 and a rule-based language for specifying
policies based on RDM2000. The enforcement of policies is also
discussed.

 The rest of this paper is organized as follows. Section 2
describes motivations of this work and related works. Section 3
defines the basic components of RDM2000 including delegation
and revocation. In section 4, we describe the semantics of rule-
based specification language for expressing and enforcing
delegation and revocation policies. Possible extensions are
discussed in section 5. Section 6 concludes this paper.

2. MOTIVATIONS AND RELATED
WORKS

 In this section, we introduce motivations behind this work and
give an overview of related works.

2.1 Motivation
 Delegation requirements arise when a user may need to act on
another user's behalf for accessing resources. There are many
definitions in the literature. In general, delegation is referred to
as one active entity in a system delegates its authority to another
entity to carry out some functions on behalf of the former.
Different types of delegation have been proposed. The most
common delegation types include user to machine, user to user,
and machine-to-machine delegation [2, 7, 8, 10, 11].

 Two views of delegation were summarized [15]: In
administratively directed delegation, an administrative
infrastructure outside the direct control of a user mediates
delegation, e.g. a security officer must mediate all delegations.
In user directed delegation, any user's system may mediate
delegation to resources under the user's control. However, in
both situations it is necessary to enforce predefined delegation
policies to prevent power abuses by individual users.

 Barka and Sandhu further identified a set of characteristics
related to delegation including permanence, totality, and levels
of delegation [8]: permanence refers to types of delegation in
terms of their time duration; totality refers to how completely

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies
are not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy
otherwise, or republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee.
SACMAT’01, May 3-4, 2001, Chantilly, Virginia, USA.
Copyright 2001 ACM 1-58113-350-2/01/0005…$5.00.

153

the permissions assigned to the role are delegated; and levels of
delegation defines whether or not each delegation can be further
delegated and for how many times.

 We focus on user-to-user delegation; especially a user
delegates his role to another user. In our approach, we also deal
with user directed delegation including multi-step delegation in
a role hierarchy.

2.2 Related Works
 Role-based access control is an enabling technology for
managing and enforcing security in large-scale and enterprise-
wide systems. In the past few years, researchers and vendors
have proposed many enhancements of RBAC models. A general
model, commonly called RBAC96 [18, 16] has become widely
accepted by the information security community. In RBAC96,
the central notation is that permissions are associated with roles,
and users are assigned to appropriate roles. Users can be easily
reassigned from one role to another. Roles can be granted new
permissions. And permissions can be easily revoked from roles
as needed. This greatly simplified management of permissions
[18]. Our framework is based on the RBAC96 model.

 A work closely related to ours is RBDM0 model proposed by
Barka and Sandhu [7, 8]. They developed a simple role-based
delegation model. They explored some issues including
revocation, delegation with hierarchical roles, partial delegation,
and multi-step delegation. And they formalized the delegation
model with total delegation and flat roles. One limitation of
RBDM0 is that this work does not address the relationships
among each component of a delegation, which is a critical
notion to the delegation model.

 In ARBAC97 [17], Sandhu et al. developed URA97 for user
role assignment. This assignment is handled by security officers.
The basic concept in ARBAC97 implies that we can use RBAC
for managing RBAC itself. This provides great administrative
convenience and scalability. However, it may increase

management efforts in a distributed environment because of the
continuous involvement from security officers. Our work
borrows the role assignment mechanisms in URA97 to support
role-based delegation.

 A number of researchers have looked at the semantics of
authorization, delegation, and revocation. Li et al. proposed a
logic for authorizing delegation in large-scale, open, distributed
systems [13, 14]. But in their logic, role-based concepts were
not fully adopted; neither did they address revocation
adequately. In [12], Jajodia et al. proposed a logical language
(ASL) for expressing authorization. ASL supports multiple
access control policies. ASL is not role-oriented framework
while we focus exclusively on a language that can specify and
enforce policies for authorizing role-based delegation and
revocation. This kind of language for role-based delegation has
not been studied in the literature.

3. A FRAMEWORK FOR ROLE-BASED
DELEGATION AND REVOCATION

 In this section we propose a delegation model called
RDM2000. This model supports role hierarchy and multi-step
delegation by introducing the delegation relation. Our work is
based on the framework of the RBAC96 model [18, 16] and the
RBDM0 model [7, 8]. Figure 1 illustrates an organizational
role hierarchy and users’ role memberships. To illustrate each
functional component in this model, we use this example in the
rest of this paper.

 Figure 1(a) shows the regular roles hierarchy in an
organization. There is a junior-most role E to which all
employees in the organization belong. There are two
departments in this organization: engineering department and
marketing department. Within the engineering department there
is a junior-most role ED and senior-most role DIR. There are
two projects in this department; each project has a senior-most
project lead role (PL1, PL2) and junior-most engineering role

Figure 1: An example of organizational role hierarchy and users

(b) Users with role memberships
in role hierarchy (a) Role hierarchy

Director (DIR)

Project Lead 1
(PL1)

Project Lead 2
(PL2)

Engineer 1
(E1)

Engineer 2
(E2)

Engineering
Department (ED)

Employee (E)

Production
Engineer 1

(PE1)

Quality
Engineer 1

(QE1)

Production
Engineer 2

(PE2)

Quality
Engineer 2

(QE2)

Marketing
Department

(MD)

Sales
Representative

(SR)

Sales Manager
(SM)

DIR

PL1

PE1

SM

PL2

PE2

QE2

SR

Lon
Tony

Linda

Santosh

Alice
Dongwa

Lejk Gail

Bill Ketan
Sree

154

(E1, E2). Between these two roles there are two incompatible
roles: production engineering (PE1, PE2) and quality
engineering role (QE1, QE2). Within the marketing department
there are only three roles: senior-most sales manager role (SM),
junior-most marketing department role (MD), and sales
representative role (SR) in the middle. Figure 1(b) shows users
and their role memberships after user-role assignment by
security officers. Security officers assign these roles to users.

3.1 Assumptions
 The scope of our model is to address user-to-user delegation
based on role hierarchies. In RBAC96, security officers handle
the user-role assignment. In our model, the delegation from one
user to another is actually assigning the delegated role to a user.
Thus, the delegating user needs to do user-role assignment too.
However, it is necessary to distinguish clearly between user-role
assignment and role delegation. In a user-role assignment, the
security officer must activate the administrative role(s), while in
role delegation, the delegating user may need to activate his/her
regular role(s). Although it is possible to delegate an
administrative role, we only consider the regular role delegation
in this paper. Enabling administrative role delegation may lose
control of the regular role proliferation.
 We have the following assumptions in the RDM2000 model.
We assume that each user-role assignment is unique, so that a
delegation can be identified by a unique user role assignment by
delegated users. We also assume that a user who is a member of
role r (whether it is explicit or implicit membership) cannot be
delegated the same role r, thus preventing cycles in delegations.
For example, project leader Bill with role PL1 cannot be
delegated the role PE1 or QE1 since he has been a member of
these roles implicitly (these roles are junior to role PL1).
However, the role DIR can be delegated to Bill since he is not a
member of this role.
 In some cases, we may need to define whether or not each
delegation can be further delegated and for how many times, or
up to the maximum delegation depth. We introduce two types of
delegation: single-step delegation and multi-step delegation.
Single-step delegation does not allow the delegated role to be
further delegated; multi-step delegation allows delegated user to
further delegate the delegated role until it reaches the maximum
delegation depth. The maximum delegation depth is a natural
number defined to impose restriction on the delegation (It will
be discussed in section 3.2.2). Single-step delegation can be
treated as a special case of multi-step delegation with maximum
delegation depth equal to one.

3.2 Basic Elements and System Functions
 Figures 2 defines the basic elements on which our framework
is based and system functions that are used in this paper. It also
shows the original RBAC96 and RBDM0 components.

3.2.1 Basic elements and system functions: from
RBAC96 and RBDM0
 We consider, essentially, the following entity sets in our
framework: users U, roles R, permissions P, sessions S, and
constraints (see definition 1 in figure 2).

 A user in this model is a human being, a role is a job function
or job title and permission is an approval of executing an object
method (access to one or more objects, or privileges to carry out
a particular task). There are two sets of users involved with a
role r (We extend RBDM0 flat roles to support role hierarchy):

• Original users Users_O(r) are the users who are
assigned to role r (or a role(s) senior to r) by original
user-role assignment;

• Delegated users Users_D(r) are the users who are
assigned to role r (or a role(s) senior to r) by delegated
user-role assignment.

 A user can be an original user of one role and a delegated user
of another role. Also it is possible for a user to be both an
original user and a delegated user of the same role. For example,
if Lejk delegates his role DIR to Bill, then Bill is both an original
user (explicitly) and a delegated user (Implicitly) of role PL1.

 A session is a mapping between a user and a set of activated
roles. The function User(s) returns the user associated with a
session and Roles(s) returns the roles activated in a session.

 Hierarchies are a natural means for structuring roles to reflect
an organization’s lines of authority and responsibility. The
Hierarchies are partial orders. A partial order is a reflexive,
transitive, and anti-symmetric relation.

 The user assignment UA is a many-to-many relation between
users and roles. The original user assignment UAO is a many-to-
many relation between original users and roles. The delegated
user assignment UAD is a many-to-many relation between
delegated users and roles. The permission assignment PA is a
many-to-many relation between permissions and roles. Users are
authorized to use the permissions of roles to which they are
assigned.

3.2.2 Basic elements and system functions: beyond
RBAC96 and RDBM0
 Definition 2 in figure 2 defines additional elements and
system functions used in RDM2000.

 We define a new relation in RDM2000 called delegation
relation (DLGT) (see figure 2(b)). The motivation behind this
relation is to address the relationships among different
components involved in a delegation. In a user-to-user
delegation, there are altogether four components1: a delegating
user, the delegating role, a delegated user, and the delegated
role. For example, (Gail, PL2, Dongwa, QE2) means Gail acting
in role PL2 delegates role QE2 to Dongwa. A delegation relation
further divides into original user delegation (ODLGT) and
delegated user delegation (DDLGT) in a multi-step delegation.

 Based on this relation we build a set of functions. For example,
function Prior maps one UA (u1, r1) to another UA (u2, r2) or Ø,
so that (u2, r2, u1, r1) ∈ DLGT or (u1, r1) ∈ UAO; function Path
maps a UA to a delegation path; and function Depth returns the
depth of the delegation path.

1. In order to keep it consistent with RBAC96 model, we do
not include the duration constraint in this relation. However,
we believe duration is an important component in the
delegation, and we will address the duration issue in our
future work.

155

Table 1. Example of can_delegate with prerequisite roles

Delegating Role Prerequisite Condition Max. Depth Candidate Delegated Role Set
PL1 E1 2 {PE1, QE1, PL1}

PL1 SR 1 {ED, PE1, QE1, PL1}

QE2 SR&(-QE1) 1 {ED, E2, QE2}

DT
ODLGT

DDLGT
UA

PA

.

.

.

SESSIONS

RH

Figure 2: Basic elements and system functions for RDM2000

 Definition 1 The following is a list of original RBAC96 and RBDM0 components:
• P, R, U, and S are sets of permissions, roles, users, and sessions respectively
• UA ⊆ U × R is a many to many user to role assignment relation
• PA ⊆ P × R is a many to many permission to role assignment relation
• RH ⊆ R × R is a partial order on R called the role hierarchy or role dominance relation
• Users_O(r) = {u | (∃r’ ≥ r')(u, r’) ∈ UAO}
• Users_D(r) = {u | (∃r’ ≥ r')(u, r’) ∈ UAD}
• Users(r) = Users_O(r) ∪ Users_D(r), note that it is possible Users_O(r) ∩ Users_D(r) ≠ Ø
• Users: R → 2U is a function derived from UA mapping each role to a set of users, where Users(r) = {u | (u, r) ∈ UA }
• User: S → U is a function that maps each session to a single user, user(si) = u | (u, r) ∈ si }
• Roles: S → 2R is a function that maps each session si to a set of roles, where Role(si) ⊆ {r |(∃r≤r') [(user(si), r')∈UA]}
• Permissions: S → 2P is a function derived from PA mapping each session si to a set of permissions where

Permissions(si) = {p | [(∃r ≤ r') (p, r') ∈ PA, r’ ∈ Role(si)]}
• UAO ⊆ U × R is a many to many original user to role assignment relation
• UAD ⊆ U × R is a many to many delegated user to role assignment relation
• UA = UAO ∪ UAD

Definition 2 The following is a list of components added in our delegation model:
• N is a set of natural numbers
• DLGT ⊆ UA × UA = U × R × U × R is a many to one delegation relation
• ODLGT ⊆ UAO × UAD is an original user delegation relation
• DDLGT ⊆ UAD × UAD is a delegated user delegation relation
• DLGT = ODLGT ∪ DDLGT
• DT ⊆ UA × UA is a delegation tree
• Prior: U∪ R → U × R is a function that maps Each UA to another UA or Ø

 Prior(u, r) = {(u', r') | (u, r) ∈ UAD, (u', r', u, r) ∈ DLGT}
 Prior(u, r) = { Ø | (u, r) ∈ UAO }

• A delegation path is a set of ordered user role assignment
Path(u0, r0) = {(u0, r0), (u1, r1), …, (ui, ri), …, (un, rn) | (ui, ri) = Prior(ui-1, ri-1) ∈ UA when i>0}
Path(u, r) = {Ø | (u, r) ∈ UAO }

• Depth: U∪ R → N. A delegation depth is the number of elements in a delegation path minus one
Depth(u, r) = {n | n = |Path(u, r)|, (u, r) ∈ UAD }
Depth(u, r) = {0 | (u, r) ∈ UAO }

(b) A delegation relation (a) RBAC96 model

UA P
Permissions Users R

Roles

UAO

UAD

CONSTRAINT

CONSTRAINTS

156

 A delegation path is a set of ordered user-role assignment
relations. A delegation path is generated when a multi-step
delegation is applied. A delegation path always starts from an
original user-role assignment. Delegation paths starting with the
same original user-role assignment can further construct a
delegation tree. A delegation tree is a user-role
assignment/delegation hierarchy. Each node in the tree refers to a
user-role assignment, each edge to a delegation relation. The layer
of a user-role assignment in the tree is referred as the delegation
depth. For example, we have the following set of delegation
relations:

 D1: (Lejk, DIR, Linda, PL1) ∈ DLGT
D2: (Linda, PL1, Alice, PE1) ∈ DLGT
D3: (Linda, PE1, Dongwa, PE1) ∈ DLGT
D4: (Lejk, DIR, Tony, QE2) ∈ DLGT

 From above delegations, we can get delegation paths P1, P2,
P3, and P4 by applying Path function. Then we can construct a
tree from these paths (See figure 3).

 To impose restrictions on such a hierarchy, we need limit the
depth as well as the width of the delegation tree. There are three
issues to control depth of a delegation: no control, boolean
control, and integer control [20]. Using no control imposes no
restriction on role proliferation. Boolean control can impose
restriction on the depth as well as the width of the delegation
tree; the delegating user decides whether or not the delegated
user can further delegate the delegated role. The role
proliferation depends totally on users themselves using the
boolean approach. There is no high level restriction, say a
policy, to limit the maximum depth of a delegation. Using
integer control can limit the maximum depth, but the drawback
is that it has no control on the width of the delegation tree, so it
is not a tight control on role proliferation. A better solution may
choose integer control at a high level (delegation policy) to
restrict the maximum depth as well as boolean control at a low
level (individual delegation) to restrict the width of a delegation.

3.3 Delegation
 We adopt the notation of prerequisite condition from
ARBAC97. The prerequisite conditions can impose restrictions
on which users can be delegated to a role.

 Definition 3 A prerequisite condition CR is a boolean
expression using the usual "&" (and) and "|" (or) operators on
the term of cr, cr can be x (membership) or –x (non-
membership), where x is a role term, for example, CR = cr1 &
cr2 | (-cr3).

 Definition 4 The following relation authorizes user-to-user
delegation in this framework:

• can_delegate ⊆ R × CR × N
 where R, CR, N are sets of roles, prerequisite conditions, and
maximum delegation depth respectively.

 The meaning of (r, cr, n) ∈ can_delegate is that a user, say
Bill, who is a member of role r (or a role senior to r) can
delegate role r (or a role junior to role r) to any other user, say
Alice, whose current membership or non-membership, in roles
satisfies the prerequisite condition cr without exceeding the
maximum delegation depth n. For example, (PL1, SR, 1) ∈
can_delegate, then Bill can delegate role PE1 to Alice, so that
(Bill, PL1, Alice, PE1) ∈ DLGT. The meaning of (r, ∅, n) ∈
can_delegate is that a user who is a member of role r (or a role
senior to r) can delegate role r (or a role junior to role r) to any
other user. Table 1 shows examples of the can_delegate
relation for the delegation tree in figure 3.

3.4 Revocation
 Revocation is an important process that must accompany the
delegation. For example, Linda delegated role PE1 to Alice;
however, Alice abuses her empowerment by leaking production
secrecy to an external party. Thus she must be revoked from the
delegated role PE1 immediately.

 In this section, our focus is exclusively on delegation
revocation. There may exists two ways to revoke a delegation:

• using duration-restriction constraint
• and allowing user revocation.

3.4.1 Revocation using duration-restriction
constraint
 In this approach, a duration constraint is attached to each
delegation relation so that when the assigned time expires, the
delegation also expires. Duration-restriction revocation is a simple
self-triggered process that ensures the automatic revocation of role
membership. It is extremely useful when the attached duration is a
small time period. It can eliminate the overhead of administrative
effort of manually revoking a delegation. However, duration-
restriction by itself is not enough to ensure security; and the time
period must be set carefully since we might overset or under-set
the time. Since we do not formalize the duration constraint in
RDM2000, the duration-restriction revocation remains for our
future work.

3.4.2 User Revocation
 We consider two types of revocation in this category: grant-
dependent and grant-independent revocation. Grant-dependent
revocation means only users in the delegation path prior to a user
can revoke his role membership. Grant-independent revocation

DLGT Delegation Path
D1 P1: (Linda, PL1), (Lejk, DIR)

D2 P2: (Alice, PE1), (Linda, PL1), (Lejk, DIR)
D3 P3: (Dongwa, PE1), (Linda, PL1), (Lejk, DIR)

D4 P4: (Tony, QE2), (Lejk, DIR)

(Alice, PE1) (Dongwa, PE1)

(Lejk, DIR)

(Linda, PL1) (Tony, QE2)

D1

D2 D3

D4

Figure 3: An example for delegation paths and
delegation tree
D1, D2, D3, and D4 stand for a delegation relation;
P1, P2, P3, and P4 denote a delegation path.

157

means any original user of a role can revoke a delegated user from
the role.

 User revocation has two options: non-cascading and cascading
revocation. Using the delegation tree in figure 4, suppose Bill is
going to revoke Linda from role PL1. Cascading revocation
implies that when Linda is revoked from role PL1, Alice and
Dongwa are revoked from PE1 subsequently. The non-cascade
revocation means only Linda is revoked from PL1. Cascading
revocation revokes a node from the delegation tree together with
the sub-tree below the node, while non-cascading revocation only
revokes the node. If the revoked node is not a leaf node, non-
cascading revocation may leave a "hole" in the delegation tree,
thus leaving conflicts in some delegation path. A possible solution
might be Bill takes over the delegating user's responsibility from
Linda, and changes all delegations: (Linda, PL1, u', r') ∈ DLGT to
(Bill, PL1, u', r') ∈ DLGT. See figure 4.

 We introduce two approaches for implementation of a
cascading revocation: an instant implementation and a dilatory
implementation. The instant implementation revokes all related
delegations with the authorization of a cascading revocation. That
is, if Linda is revoked from PL1, Alice and Dongwa will be
revoked from PE1 immediately. This can be achieved by
browsing over the entire database table for all delegations: {(u, r,
u', r')|(Linda, PL1)∈ Path(u', r')} and revoking them. The instant

approach is difficult to implement in a distributed environment
because of the computational complexity. The dilatory
implementation adopts a run-time revocation. Only Linda will be
revoked from role PL1 with the authorization of a cascading
revocation. After the revocation, assignment (Linda, PL1) does
not belong to UAD. When Alice presents her UAD to activate the
delegated role, system will check the status of each element in the
delegation path: since (Linda, PL1) does not belong to UAD, the
delegation path P2: {(Alice, PE1), (Linda, PL1), (Lejk, DIR)} is no
longer valid. And this UAD will be revoked as well. This dilatory
revocation does not lead to timing attacks since the delegation
path must be validated when a user activates the delegated role.

Definition 5 The following relations authorize delegation
revocation:

• can_revokeGI ⊆ R
• can_revokeGD ⊆ R

 The meaning of (b) ∈ can_revokeGI is that a user, say Bob,
whose current membership includes a delegated role b, can be
revoked from the role by original user of role b. The meaning of
(b) ∈ can_revokeGD is that all users who are prior to him in the
delegation path can revoke a user, say Bob, who has current
membership in delegated role b from the role. Table 2 and 3 show
examples of these relations for the delegation tree in figure 3.

Table 2. Example of can_revokeGI

Revoked Role Revoking Role Set Revoked User Set Candidate Revoking User Set

PL1 {PL1, DIR} {Linda} {Bill, Lejk}

PE1 {PE1, PL1, DIR} {Alice, Dongwa} {Lon, Tony, Bill, Lejk}
QE2 {QE2, PL2, DIR} {Tony} {Santosh, Gail, Lejk}

Table 3. Example of can_revokeGD

Revoked Role Revoking Role Set Revoked User Set Candidate Revoking User Set

PL1 {PL1, DIR} {Linda} {Lejk}

PE1 {PE1, PL1, DIR} {Alice, Dongwa} {Linda, Lejk}
QE2 {QE2, PL2, DIR} {Tony} {Lejk}

(Lejk, DIR)

(Linda, PL1)

(Alice, PE1) (Dongwa, PE1)

(Tony, QE2)

P1

P2 P3

P4

Figure 4: An example for Non-cascading revocation

(Lejk, DIR)

(Tony, QE2)

+

(Bill, PL1)

(Alice, PE1) (Dongwa, PE1)

P2 P3

DLGT Delegation Path before Revocation Delegation Path after Revocation
D1 P1: (Linda, PL1), (Lejk, DIR) N/A

D2 P2: (Alice, PE1), (Linda, PL1), (Lejk, DIR) P2: (Alice, PE1), (Bill, PL1)

D3 P3: (Dongwa, PE1), (Linda, PL1), (Lejk, DIR) P3: (Dongwa, PE1), (Bill, PL1)

D4 P4: (Tony, QE2), (Lejk, DIR) P4: (Tony, QE1), (Lejk, DIR)

158

 In RDM2000, the delegation and revocation policies are
embedded in its components (the delegation and revocation
relations). Next, we propose a rule-based language for explicitly
specification of these policies. In this language, policies are
defined as a set of basic authorization rules. The authorization of
delegation and revocation can be computed using a finite set of
rules.

4. THT RULE-BASED POLICY

SPECIFICATION LANGUAGE
 RDM2000 defines policies that allow regular users to delegate
their roles. It also specifies the policies regarding which delegated
roles can be revoked. In this section we describe a rule-base
language to enforce these policies. There are two reasons that we
choose a rule-based language: first, the delegation and revocation
relations defined in RDM2000 lead naturally to declarative rules;
second, an individual organization may need to add local policies
to further control delegation and revocation, a declarative rule-

base system allows individual organization to easily incorporate
such local policies. We emphasize the use of functions. We also
show how these constructs can be used to express delegation and
revocation policies. We demonstrate the enforcement of these
polices as well.

4.1 The Language
 The main purpose of the rule-based specification language is
to enforce authorizations of delegation and revocation based on
the RDM2000 model. A rule-based language is a declarative
language in which binds logic with rules [19]. An advantage is
that it is entirely declarative so it is easier for security
administrator to define policies. The proposed language is a
rule-based language with a clausal logic.

Definition 6 A clause, also known as a rule, takes the form:
H← F1&F2&…&Fn

 where H, F1, F2, …, Fn are boolean functions. The rule can
be read as:

Table 5: Utility functions

RSPL Functions Return value Semantics
in(a, b) Truth Value Describe the membership between a and b. b is a member of a.

active(u, r, s) Truth Value Return true if users u have role r activated in session s
revoked(u, r) Truth Value Return true if any one of the user-role assignment in the delegation path

of (u, r) was revoked

delegatable(u, r) Truth Value Return true if user u has the authority to further delegate role r. This
function always returns true if (u, r) is an original user-role assignment.

Table 6: Authorization Functions

Basic authorization functions Derived authorization functions Semantics
 allow(u, p, s) Refer to rule 4

can_delegate(dr, cr, n) der_can_delegate(u1, u2, r, dlg_opt) Refer to rule 1 and rule 5
can_revokeGD(r) der_can_revokeGD(u1, u2, r, rvk_opt) Refer to rule 2 and 7

can_revokeGI(r) der_can_revokeGD(u1, u2, r, rvk_opt) Refer to rule 3 and 8

 Table 4: Mapping system functions

Mapping functions RDM2000 system functions Semantics
depth(u, r) Depth: U∪ R → N Return the delegation depth of a (delegated) user-role assignment

juniorEQ(r, r’) ≤ Role r is junior to role r’

path(u, r) Path: U∪ R →{(u0, r0), …(un, rn)} Return the delegation path of a (delegated) user-role assignment (u, r)

prior(u, r) Prior: U∪ R → U × R Return the user-role assignment previous to (u, r) in the delegation path

permissions(s) Permissions: S → 2P Return all activating permissions in a session

roles(s) Roles: S → 2R Return all activating roles in a session

seniorEQ(r, r’) ≥ Role r is senior to role r’

user(s) User: S → U Maps each session to a single user

users(r) Users: R → 2U Return all users who are members of role r

users_o(r) Users_O: R → 2U Return all original users who are members of role r

users_d(r) Users_D: R → 2U Return all delegated users who are members of role r

159

 to deduce H,
 deduce F1 and
 deduce F2 and

 …
 deduce Fn.

 The fundamental element of our language is a set of
functions. A function has a name, a set of arguments and a
return value. Function itself can be an argument of another
function. A function returning truth-value is also called a
boolean function. There are three categories of functions:
functions mapped from RDM2000 model, utility functions, and
authorization functions.

4.2 Functions
 There is a set of system functions defined in RBAC96,
RBDM0 and RDM2000 models. We map these system functions
to functions in the language (see table 4). Utility functions are
general-purpose boolean functions including in, active, revoked,
expired, and delegatable (see table 5). Authorization functions
define authorization policies and enforcement of these policies.
They further divide into basic authorization functions and derived
authorization functions (see table 6). The semantics of mapping
functions and utility functions are defined in their table
respectively.

4.3 Basic Authorization Rules
 Basic authorization rules take form H ←. They are predefined
security policies embedded within each RDM2000 components.

 Rule 1 A user-user delegation authorization rule is a rule of
the form:

can_delegate(dr1, cr, n) ← .
where dr, cr, and n are elements of roles, prerequisite
conditions, and maximum delegation depths respectively.

 This rule is the basic user to user delegation authorization
policy extracted from can_delegate relation in RDM20000. It
means that a member of the role dr (or a member of any role that
is senior to dr) can assign a user whose current membership
satisfies prerequisite condition cr to role dr (or a role that is junior
to dr) without exceeding the maximum delegation depth n.

 Rule 2 A cascading grant-dependent revocation
authorization rule is a rule of the form:

can_revokeGD(r) ← .
where r is element of roles.

 This rule is the basic cascading grant-dependent revocation
authorization policy extracted from can_ revokeGD relation in
RDM2000. It means that a member of the delegated role r (or a
member of a delegated role that is junior to r) can be revoked
membership of role r by all users who are prior to him in the
delegation path.

 Rule 3 A cascading grant-independent revocation
authorization rule is a rule of the form:

can_revokeGI(r) ← .
where r is element of roles.

 This rule is the basic cascading grant-independent delegation
revocation policy extracted from can_ revokeGI relation in
RDM2000. It means that a member of the delegated role r (or a
member of a delegated role that is junior to r) can be revoked
membership of role r by any original users of role r.

4.4 Authorization Derivation Rules for
Enforcing Policies
 The basic authorization specifies the policies defined in
RDM2000. However, a user cannot be authorized delegation or
revocation through basic authorization rules since these basic
rules are specified based on roles instead of individual users.
Further derivations are needed for enforcement of these policies.

4.4.1 Enforcement of Access Control Policies
 Rule 4 An access control rule forms:

allow(u, r, p, s) ← active(u, r, s) &
 in(p, permissions(s))

where u, r, p, and s are elements of users, roles,
permissions, and sessions respectively.

 This rule implies that permission p is granted user u with role
r activated in session s.

 Access control rule is essential since it says that whether user
u belongs to original users of r or delegated users of r. This is a
basic assumption of our delegation model.

4.4.2 Enforcement of Delegation Policies
 Rule 5 A user-user delegation authorization derivation
rule forms:

der_can_delegate(u1, u2, r, dlg_opt) ←
 can_delegate(dr, cr, n)&

 active(u1, dr1, s)&
 delegatable(u1, dr1)&

 seniorEQ(dr1, dr)&
 in(u2, cr)&
 juniorEQ(r, dr)&
 in(depth(u1, dr1), n).

where u1 and u2 are elements of users; dr, dr1, and r are
elements of roles; cr, and s are elements of prerequisite
condition and sessions respectively; dlg_opt is a Boolean
term, if it is true, then delegatable(u2, r) is true. This
argument is used as Boolean control of delegation
proliferation.

 This rule means that user u1 with a membership of a role
senior to dr can assign user u2 whose current membership
satisfies prerequisite condition cr to role r (r is junior to role dr)
without exceeding the maximum delegation depth n.

 For example, if the security officer specified the following
delegation policies:
 Policy 1: can_delegate(PL1, SR, 2) ←.
 Policy 2: can_delegate(PL1, E2, 1) ←.

 Lejk needs to delegate role PL1 to Linda (suppose the rule
engine will search delegation policies from policy 1 to policy 2).

 To deduce der_can_delegate(Lejkl, Linda,PL1, true),
 deduce can_delegate(PL1, SR, 2)= true and
 deduce delegatable (Lejkl, DIR) = true and
 deduce active(Lejkl, DIR, s) = true and
 deduce seniorEQ(DIR, PL1) = true and

1. dr is used to indicate a delegating role and r to indicate a
delegated role.

160

 deduce = true and
…

 to deduce in(depth(Lejk, DIR), 2),
 deduce depth(Lejk, DIR) return 0
 deduce in(0, 2)=

 true.

 The delegation is authorized by applying policy 1. However,
if Bill wants to delegate QE1 to Sree, rule engine tries both
delegation policies.

 To deduce der_can_delegate(Bill,Sree,QE1),
 deduce can_delegate(PL1, SR, 2)= true and
 deduce active(Bill, PL1, s) = true and

…
 deduce in(Sree, SR) = false, next available
 delegation policy
 deduce can_delegate(PL1, E2,1)= true and

…
 true

 If deduction results for all available policies are false, then
this delegation request will be denied. For example, delegation
from Gail to Linda with role PL2 is denied since there does not
exist a policy for this case.

4.4.3 Enforcement of Delegation Revocation
Policies
 Rule 6 Automatic revocation authorization rules forms:

der_can_revoke_auto_cascade(u, r) ←
revoked(u, r).

where u, r are elements of users and roles.

 This rule means if any of user role assignments in the
delegation path Path(u, r) is revoked excluding the last user role
assignment in the delegation depth, user u is revoked
automatically from role r.

 Rule 7 A cascading grant-dependent revocation
authorization derivation rule forms:

der_can_revokeGD(u1, u, r, rvk_opt) ←
 can_revokeGD (r)&

 active(u1, r1, s) &
 in((u1,r1), Path(u, r)).

where u1and u are elements of users, u1≠u; r is an
element of role respectively. The rvk_opt is a Boolean
term; it decides whether this revocation is cascading or
non-cascading revocation. If it is true, the revocation is
cascading, otherwise non-cascading.

 This rule means that the user u can be revoked from role r by
any other user u1 with role r1 activated, where (u1, r1) ∈
Path(u, r).

 Rule 8 A cascading grant-independent revocation
authorization derivation rule is a rule of the form:

der_can_revokeGI(u1, u, r, rvk_opt)←
 can_revokeGI(r) &
 in(u1, users_o(u, r)).
where u1and u are elements of users, u1≠u; r is a element
of role respectively. The rvk_opt is a Boolean term; it
decides whether this revocation is cascading or non-
cascading revocation. If it is true, the revocation is
cascading, otherwise non-cascading.

 This rule means that the user u can be revoked from role r by
any original user u1.

 In a revocation process, the authorization of a cascading
revocation subsequently authorizes a set of automatic revocations
by applying rule 6, no matter which implementation (dilatory or
instant) is used; and the authorization of a non-cascading
revocation subsequently coalesces a set of delegation path.

5. DISCUSSION
 We have defined basic rules and derivation rules for
specification and enforcement of policies embedded in RDM2000.
We discuss possible extensions for the rule-based framework in
this section. There are many possible extensions we may consider.
First, a delegating user may need to delegate a role to all members
of another role at the same time. For example, sales manager
Linda may want to delegate role PE1 to all sales representatives in
marketing department. This type of delegation is more effective if
we adopt a role-to-role delegation. In another case, Director Lejk
may need to delegate his particular permissions to role PL1. This
kind of permission-centric delegation may be useful for certain
cases. However, integration of these two types of delegation into
our framework will dramatically increase the complexity of
model. To reduce the complexity of the integration of different
kinds of delegation, it should be restricted within proper domain.

 Second, constraints are an important aspect of RBAC96. They
can be used as a power mechanism for laying out higher-level
organization policies. Major examples include incompatible role
assignment, separation of duties (SOD), and Chinese wall policy.
We can always add new rules, such as an integrity rule: error() ←
F1&,…., Fn. It derives an error every time the conditions in rule
body F are satisfied. For example, two incompatible roles PE1
and QE1 in figure 1 can be specified using the following rule:
error()← in(u, users(PE1))& in(u, users(QE1)). This also
demonstrates one of the advantages of the rule-based languages:
the rules are easily extended to include new features. This
constraint representation will be studied in the future.

 Also, it is important to ensure the correctness and convergence
of rule derivations. The notion of correctness has several
interpretations. First, there is an issue whether the rules impose a
desired discipline on the defined policies. Second, one may
wonder whether some rules would always terminate, and whether
it may be free from internal conflicts. There are no formal
techniques at this stage that would allow us to answer these
questions in a complete general case. However, this lack of formal
answers does not diminish the importance of the language itself.
We can intuitively articulate this issue. The derivation and
evaluation of authorization policies can be computable in
polynomial time, and the computing of access decisions is
conclusive: they are either authorized or denied.

6. CONCLUSION
 In this paper, we have proposed a rule-based framework for
role-based delegation including RDM2000 model and rule-based
specification language. An important contribution of this work is
that our delegation model supports regular role delegation in
role hierarchy and multi-step delegation. A rule-based
declarative language has been proposed to specify and enforce
policies. There are many further issues that need to be explored.
We plan to extend the RDM2000 model to include the role to
role delegation and permission to role delegation. Also, the

161

language needs to be enhanced to include constraint
representation and to study the convergence problem. As a part
of the on-going research efforts, we are implementing the
prototype of the proposed framework for law-enforcement
agencies on a distributed environment.

7. REFERENCES
[1] Gail-Joon Ahn, Ravi Sandhu: The RSL99 Language for

Role-Based Separation of Duty Constraints. ACM
Workshop on Role-Based Access Control 1999: 43-54

[2] Martin Abadi, Michael Burrows, Butler Lampson and
Gordon Plotkin. A calculus for Access Control in
Distributed Systems. ACM Transaction on Programming
Languages and Systems, Vol.15 No. 4, Sept 1993, pages
706-734

[3] Tuomas Aura. Distributed access-rights management
with delegation certificates. Security Internet
Programming. J. Vitec and C. Jensen(Eds.) pp.211-235
Springer: Berlin, 1999.

[4] M. Blaze, J. Feigenbaum, J. Ioannidis, and A.
Keromytis. The role of trust management in distributed
system security. Security Internet Programming. J. Vitec
and C. Jensen(Eds.) pp.185-210 Springer: Berlin, 1999.

[5] M. Blaze, J. Feigenbaum, and J. Lacy. Decentralized
trust management. IEEE Symposium on Security and
Privacy. Oakland, CA. May 1996.

[6] Venkata Bhamidipati and Ravi Sandhu. Push
Architectures for USER ROLE Assignment. Proceedings
of 23rd National Information Systems Security
Conference, pages 89-100, Baltimore, Oct. 16-19, 2000

[7] Ezedin Barka and Ravi Sandhu. A Role-based
Delegation Model and Some Extensions. Proceedings of
16th Annual Computer Security Application Conference,
Sheraton New Orleans, Dec. 11-15, 2000

[8] Ezedin Barka and Ravi Sandhu. Framework for Role-
Based Delegation Model. Proceedings of 23rd National
Information Systems Security Conference, pages 101-
114, Baltimore, Oct. 16-19, 2000

[9] David Ferriaolo, Janet Cugini, and Richard Kuhn. Role-
based access control (RBAC): Features and Motivations.
Proceeding s of 11th Annual Computer Security
Application Conference, pages 241-248, New Orleans,
LA, Dec 11-15 1995.

[10] Henry M. Glad. Access Control for Large Collections.
ACM Transactions on Information Systems, Vol.15,
No.2, April 1997, pages 154-194

[11] Morrie Gasser, Ellen McDermott. An Architecture for
Practical Delegation a Distributed System. 1990 IEEE
Computer Society Symposium on Research in Security
and Privacy. Oakland, CA, May 7-9,1990

[12] Sushil Jajodia, Pierangela Samarati and V.S.
Subrahmanian. A Logical Language for Expressing
Authorizations. IEEE Symposium on Security and
Privacy. May 1997.

[13] Ninghui Li, Joan Feigenbaum, and Benjamin N. Grosof.
A logic-based knowledge representation for
authorization with delegation (extended abstract).
Proceeding 12th intl. IEEE Computer Security
Foundations Workshop, 1999. (extended version is IBM
Research Report RC 21492)

[14] Ninghui Li and Benjamin N. Grosof. A practically
implementation and tractable delegation logic. IEEE
Symposium on Security and Privacy. May 2000.

[15] J. Linn, M. Nyström. Attribute Certification: An
Enabling Technology for Delegation and Role-Based
Controls in Distributed Environments. ACM Workshop
on RBAC 1999: 121-130

[16] Ravi Sandhu. Rational for the RBAC96 Family of
Access Control Models. In Proceedings of 1st ACM
Workshop on Role-based Access control, 1997

[17] Ravi Sandhu, Venkata Bhamidipati, and Qamar
Munawer. The ARBAC97 Model for Role-based
Administration of Roles. ACE Transactions on
Information and System Security. Vol.2, No.1, Feb.
1999, pages 105-135

[18] Ravi Sandhu, E. Coyne, H. Feinstein and C. Youman.
Role-based access control model. IEEE Computer,
29(2), Feb. 1996.

[19] Serge Abiteboul, Stéphane Grumbach. A Rule-Based
Language with Functions and Sets. ACM Transactions
on Database Systems, 16(1): 1-30 (1991)

[20] C. Ellison, B. Frantz, B. Lampson, R. Rivest, B. Thomas,
T. Ylonen. SPKI Certificate Theory, RFC2693,
http://www.ietf.org/rfc/rfc2693.txt, 1999

162

