
A Rule-Based Language for Complex Event Processing

and Reasoning

Darko Anicic1 Paul Fodor2 Sebastian Rudolph3 Roland Stühmer1 Nenad

Stojanovic1 Rudi Studer1

1 FZI Research Center for Information Technology, University of Karlsruhe, 76131, Germany
2 State University of New York at Stony Brook, USA

3 Institut AIFB, University of Karlsruhe, Karlsruhe, Germany

Abstract. Complex Event Processing (CEP) is concerned with timely detection

of complex events within multiple streams of atomic occurrences. It has useful

applications in areas including financial services, mobile and sensor devices, click

stream analysis etc. Numerous approaches in CEP have already been proposed in

the literature. Event processing systems with a logic-based representation have

attracted considerable attention as (among others reasons) they feature formal se-

mantics and offer reasoning service. However logic-based approaches are not op-

timized for run-time event recognition (as they are mainly query-driven systems).

In this paper, we present an expressive logic-based language for specifying and

combining complex events. For this language we provide both a syntax as well

as a formal declarative semantics. The language enables efficient run time event

recognition and supports deductive reasoning. Execution model of the language

is based on a compilation strategy into Prolog. We provide an implementation of

the language, and present the performance results showing the competitiveness

of our approach.

1 Introduction

Recently there has been made a significant paradigm shift toward real-time computing

in the research, as well as, in industry. Databases and data warehouses are about looking

what happened in the past. On the other hand, Complex Event Processing (CEP) is

about processing real-time events, i.e., about detecting what has just happened or what

is about to happen.

An event represents something that occurs, happens or changes the current state

of affairs. For example, an event may signify a problem or an impending problem,

a threshold, an opportunity, an information becoming available, a deviation etc. The

general task of CEP can be described as follows. Within some dynamic setting, events

take place. Those atomic events are instantaneous, i.e., they happen at one specific point

in time and have a duration of zero. Notifications about these occurred events together

with their timestamps and possibly further associated data (such as involved entities,

numerical parameters of the event, or provenance data) enter the CEP system in the

order of their occurrence.

The CEP system further features a set of complex event descriptions, by means of

which complex events can be specified as temporal constellations of atomic events. The

complex events thus defined can in turn be used to compose even more complex events

and so forth. As opposed to atomic events, those complex events are not considered

instantaneous but are endowed with a time interval denoting when the event started and

when it ended.

The purpose of the CEP system is now to detect complex events within this input

stream of atomic events. That is, the system is supposed to notify that the occurrence

of a certain complex event has been detected, as soon as the system is notified of an

atomic event that completes a sequence which makes up the complex event due to the

complex event description. This notification may be accompanied by additional infor-

mation composed from the atomic events’ data. As a consequence of this detection (and

depending on the associated data), responding actions can be taken, yet this is outside

the scope of this paper.

Our approach for CEP is based on declarative (logic) rules. It has been shown else-

where [13, 16, 15, 2, 7, 12, 17] that logic-based approaches for event processing have

various advantages. First, they are expressive enough and convenient to represent di-

verse complex event patterns. They come with a formal declarative semantics. More-

over declarative rules are free of side-effects (e.g. confluence problem). Second, inte-

gration of query processing with event processing is easy and natural (e.g. processing

of recursive queries). Third, our experience with use of logic rules in implementation of

the main constructs in CEP as well as in providing extensibility of a CEP system is very

positive and encouraging (e.g. number of code lines in logic programming is signifi-

cantly smaller than in procedural programming). Ultimately, a logic-based event model

allows for reasoning over events, their relationships, entire state, and possible contex-

tual knowledge available for a particular domain. Reasoning about temporal knowledge

(i.e., events) and static or evolving knowledge (i.e., facts, rules and ontologies) is a

feature beyond of the state-of-the-art in CEP [1, 6, 14].

Apart from the above mentioned strengths, event processing systems [13, 16, 15,

12, 17] based on various logic formalism have some shortcomings too. One significant

shortcoming is data or event-driven computation. Deductive systems are rather suited

for a request-response computation. That is, for given a request, an inference engine

will evaluate available knowledge (i.e. rules and facts) and respond with an answer. This

means that the event inference engine needs to check if this pattern can be deduced or

not. The check is performed at the time when such a request is posed. If satisfied by the

time when the request is processed, a complex event will be reported. If not, the pattern

is not detected until the next time the same request is processed (though it can be-

come satisfied in-between the two checks). Contrary to this, event processing demands

data-driven computation (as handled by various approaches such as non-deterministic

finite automata (NFA) [1], Petri Nets [11], RETE algorithm [10] etc.). Unfortunately

approaches grounded on NFA and Petri Nets do not feature reasoning capabilities; and

RETE based approaches may be integrated with deductive rules [4] but have difficulties

to handle aggregates over event streams, and to implement different event consumption

policies [8].

[17] follows the mentioned request-response (or so called query-driven4) approach.

It proposes to define queries that are processed repetitively at given intervals, e.g. every

4 If a request is represented as a query (what is a usual case).

10 seconds, trying to discover new events. However, generally events are not periodic or

if so might have differing periods and nevertheless complex events should be detected

as soon as they occur (not in a predefined time window). To overcome this issue, in [7],

an incremental evaluation was proposed. The approach is aimed at avoiding redundant

computations (particularly re-computation of joins) every time a new event arrives. The

authors suggest to utilize relational algebra evaluation techniques such as incremental

maintenance of materialized views.

Our language for CEP, ETALIS, is developed to close the gap between event-driven

and logic-based systems. We present a rule-based language with a clear syntax and a

declarative formal semantics. The language is powerful enough to effectively express

and evaluate all thirteen Allen’s temporal relationships [3]. Unlike other non-logic-

based CEP languages [1, 11], our language features inference capabilities; and unlike

other logic-based approaches, it has a different execution model that compiles complex

event patterns into logic rules and enables timely, event-driven detection of complex

events. Finally unlike RETE-based approaches, recursive rules of our language enable

processing of unbound event streams and applying aggregation functions on them; yet

recursive rules are out of scope of this paper. The contribution also includes an imple-

mentation of the language, and experimental results of our evaluation.

2 Rule-Based Language for Event Processing and Reasoning

2.1 Syntax

In this section we present the formal syntax of the our language for event processing,

while in the remaining sections of the paper, we will gradually introduce other aspects

of the language (i.e. the declarative semantics and run-time detection of complex events

as well as the performance of a prototype based on the language5).

The syntax of the our language allows for the description of time and events. We

represent time instants as well as durations as nonnegative rational numbers q ∈ Q+.

Events can be atomic or complex. An atomic event refers to an instantaneous occurrence

of interest. Atomic events are expressed as ground atoms (i.e. predicates followed by

arguments which are terms not containing variables). Intuitively, the arguments of a

ground atom describing an atomic event denote information items (i.e. event data) that

provide additional information about that event.

Atomic events can be composed to form complex events via event patterns. We use

event patterns to describe how events can (or have to) be temporally situated to other

events or absolute time points. The language P of event patterns is formally defined by

P ::= pr(t1, . . . , tn) | P WHERE t | q | (P).q
| P BIN P | NOT(P).[P, P]

Thereby, pr is a predicate name with arity n, ti denote terms, t is a term of type

boolean, q is a nonnegative rational number, and BIN is one of the binary operators SEQ,

5 Our prototype, ETALIS, is an open source project, available at: http://code.google.

com/p/etalis

AND, PAR, OR, EQUALS, MEETS, DURING, STARTS, or FINISHES. As a side condition,

in every expression p WHERE t, all variables occurring in t must also occur in pattern p.

Finally, an event rule is defined as a formula of the shape

pr(t1, . . . , tn)← p

where p is an event pattern containing all variables occurring in pr(t1, . . . , tn).

After introducing the formal syntax of our formalism, we will give some exam-

ples to provide some intuitive understanding before proceeding with the formal se-

mantics in the next section. Adhering to a stock market scenario, one instantaneous

event (not requiring further specification) might be market closes(). Other events

with additional information associated via arguments would be bankrupt(lehman) or

buys(citigroup,wachovia). Within patterns, variables instead of constants may occur

as arguments, whence we can write bankrupt(X) as a pattern matching all bankruptcy

events irrespective of the victim. “Artificial” time-point events can be defined by just

providing the according timestamp.

Figure 1 demonstrates the various ways of constructing complex event descriptions

from simpler ones in our language for event processing. Moreover, the figure informally

introduces the semantics of the language, which will further be defined in Section 2.2.

Fig. 1. Language for Event Processing - Composition Operators

Let us assume that instances of three complex events, P1, P2, P3, are occurring in

time intervals as shown in Figure 1. Vertical dashed lines depict different time units,

while the horizontal bars represent detected complex events for the given patterns. In

the following, we give the intuitive meaning for all patterns from the figure:

– (P1).3 detects an occurrence of P1 if it happens within an interval of length 3.

– P1 SEQ P3 represents a sequence of two events, i.e. an occurrence of P1 is followed by an

occurrence of P3; thereby P1 must end before P3 starts.

– P2 AND P3 is a pattern that is detected when instances of both P2 and P3 occur no matter in

which order.

– P1 PAR P2 occurs when instances of both P2 and P3 happen, provided that their intervals

have a non-zero overlap.

– P2 OR P3 is triggered for every instance of P2 or P3.

– P1 DURING (0 SEQ 6) happens when an instance of P1 occurs during an interval; in this

case, the interval is built using a sequence of two atomic time-point events (one with q = 0
and another with q = 6, see the syntax above).

– P1 EQUALS P3 is triggered when the two events occur exactly at the same time interval.

– NOT(P3).[P1, P1] represents a negated pattern. It is defined by a sequence of events (de-

limiting events) in the square brackets where there is no occurrence of P3 in the interval.

In order to invalidate an occurrence of the pattern, an instance of P3 must happen in the

interval formed by the end time of the first delimiting event and the start time of the second

delimiting event. In this example delimiting events are just two instances of the same event,

i.e. P1. Different treatments of negation are also possible, however we adopt one from [8].

– P3 STARTS P1 is detected when an instance of P3 starts at the same time as an instance of

P1 but ends earlier.

– P3 FINISHES P2 is detected when an instance of P3 ends at the same time as an instance of

P1 but starts later.

– P2 MEETS P3 happens when the interval of an occurrence of P2 ends exactly when the

interval of an occurrence of P3 starts.

It is worth noting that the defined pattern language captures the set of all possible

13 relations on two temporal intervals as defined in [3]. The set can also be used for

rich temporal reasoning.

2.2 Declarative Semantics

We define the declarative formal semantics of our language for event processing in a

model-theoretic way.

Note that we assume a fixed interpretation of the occurring function symbols, i.e.

for every function symbol f of arity n, we presume a predefined function f∗ : Conn →
Con. That is, in our setting, functions are treated as built-in utilities.

As usual, a variable assignment is a mapping µ : V ar → Con assigning a value to

every variable. We let µ∗ denote the extension of µ to terms defined in the usual way:

µ∗ :

v 7→ µ(v) if v ∈ V ar,

c 7→ c if c ∈ Con,

f(t1, . . . , tn) 7→ f∗(µ∗(t1), . . . , µ
∗(tn)) otherwise.

In addition to the set of rulesR, we fix an event stream. The event stream is formal-

ized as a mapping ǫ : Ground→ 2Q+

from ground predicates into sets of nonnegative

rational numbers. It thereby indicates at what time instants what elementary events oc-

cur. As a side condition, we require ǫ to be free of accumulation points, i.e. for every

q ∈ Q+, the set {q′ ∈ Q+ | q′ < q and q′ ∈ ǫ(g) for some g ∈ Ground} is finite.

pattern Iµ(pattern)

pr(t1, . . . , tn) I(pr(µ∗(t1), . . . , µ
∗(tn)))

p WHERE t Iµ(p) if µ∗(t) = true

∅ otherwise.

q {〈q, q〉} for all q∈Q+

(p).q Iµ(p) ∩ {〈q1, q2〉 | q2 − q1 = q}

p1 SEQ p2 {〈q1, q4〉 | 〈q1, q2〉∈Iµ(p1) and 〈q3, q4〉∈Iµ(p2) and q2<q3}

p1 AND p2 {〈min(q1, q3), max(q2, q4)〉 | 〈q1, q2〉∈Iµ(p1) and 〈q3, q4〉∈Iµ(p2)}

p1 PAR p2 {〈min(q1, q3), max(q2, q4)〉 | 〈q1, q2〉∈Iµ(p1)
and 〈q3, q4〉∈Iµ(p2) and max(q1, q3)<min(q2, q4)}

p1 OR p2 Iµ(p1) ∪ Iµ(p2)

p1 EQUALS p2 Iµ(p1) ∩ Iµ(p2)

p1 MEETS p2 {〈q1, q3〉 | 〈q1, q2〉∈Iµ(p1) and 〈q2, q3〉∈Iµ(p2)}

p1 DURING p2 {〈q3, q4〉 | 〈q1, q2〉∈Iµ(p1) and 〈q3, q4〉∈Iµ(p2) and q3<q1<q2<q4}

p1 STARTS p2 {〈q1, q3〉 | 〈q1, q2〉∈Iµ(p1) and 〈q1, q3〉∈Iµ(p2) and q2<q3}

p1 FINISHES p2 {〈q1, q3〉 | 〈q2, q3〉∈Iµ(p1) and 〈q1, q3〉∈Iµ(p2) and q1<q2}

NOT(p1).[p2, p3] Iµ(p2 SEQ p3) \ Iµ(p2 SEQ p1 SEQ p3)

Fig. 2. Definition of extensional interpretation of event patterns. We use p(x) for patterns, q(x) for

rational numbers, t(x) for terms and pr for event predicates.

Now, we define an interpretation I : Ground → 2Q+×Q+

as a mapping from the

ground atoms to sets of pairs of nonnegative rationals, such that q1 ≤ q2 for every

〈q1, q2〉 ∈ I(g) for all g ∈ Ground.

Given an event stream ǫ, an interpretation I is called a model for a rule set R –

written as I |=ǫ R – if the following conditions are satisfied:

C1 〈q, q〉 ∈ I(g) for every q ∈ Q+ and g ∈ Ground with q ∈ ǫ(g)
C2 for every rule atom← pattern and every variable assignment µ we have Iµ(atom) ⊆
Iµ(pattern) where Iµ is inductively defined as displayed in Fig. 2.

Given an interpretation I and some q ∈ Q+, we let I|q denote the interpretation

defined via I|q(g) = I(g) ∩ {〈q1, q2〉 | q2− q1 ≤ q}.
Given two interpretations I and J , we say that I is preferred to J if there exists a

q ∈ Q+ with I|q ⊂ J |q.

A model I is called minimal if there is no other model preferred to I. It is easy to

show that for every event stream ǫ and rule setR there is a unique minimal model Iǫ,R.

Finally, given an atom a and two rational numbers q1, q2, we say that the event

a[q1,q2] is a consequence of the event stream ǫ and the rule base R (written ǫ,R |=
a[q1,q2]), if 〈q1, q2〉 ∈ I

ǫ,R
µ (a) for some variable assignment µ.

It can be easily verified that the behavior of the event stream ǫ beyond the time point

q2 is irrelevant for determining whether ǫ,R |= a[q1,q2] is the case.6 This justifies to take

6 More formally, for any two event streams ǫ1 and ǫ2 with ǫ1(g) ∩ {〈q, q′〉 | q′ ≤ q2} =
ǫ2(g) ∩ {〈q, q′〉 | q′ ≤ q2} we have that ǫ1,R |= a[q1,q2] exactly if ǫ2,R |= a[q1,q2].

the perspective of ǫ being only partially known (and continuously unveiled along a time

line) while the task is to detect event-consequences as soon as possible.

3 A Deductive Rule-based Approach for Complex Event

Processing

In Section 1 we have numbered few advantages of CEP approaches based on logic.

The majority of state-of-the-art in CEP is however not based on logic rules [1, 6, 14];

hence these advantages can be seen as features going beyond the state-of-the-art. In

this section we review the features once again, justifying the design principles of our

proposed language.

Expressive, formal, and declarative semantics. In the previous section we have de-

fined formal and declarative semantics of an event processing language. CEP is a real-

time processing, involving very often multi-threading and distributed processing. In

such an environment, declarative semantics guarantees predictability and repeatability

of results produced by an event processing system. This is not case in procedural CEP

languages where, e.g., for the same input stream and the same set of event patterns, the

system may produce two different results. Our proposed semantics is also expressive

enough to capture all thirteen Allen’s temporal relationships [3].

To evaluate expressivity of our language in practice, we have implemented Fast

Flower Delivery use case7 from [9]. The use case describes distribution of flowers from

multiple stores (in a large city). The distribution is handled by a group of drivers who

need to accomplish their assignments in a timely fashion. In the remaining part of this

section we will use some of the use case patterns to demonstrate capabilities of our

language.

Database and rule queries. Database information may serve in enriching an event with

additional data. For instance, whenever a customer purchases flowers an event request

is triggered. A delivery request event (dlv req) consists of the initial event request,

enriched by additional information. This information is taken from a database relation

store info, and can be pulled by a matching store ID (StrID). The relation contains,

e.g., information about the store location, minimum accepted driver’s rank, and the bid-

ding preferences (see [9]).

dlv req(ReqID, Loc1, Loc2, T ime, MinRank, Pref)←
req(ReqID, Loc1, T ime, StrID) WHERE store info(StrID, Loc2, MinRank, Pref).

In the above rule pattern, relation store info contains explicit data. With no restric-

tion, it could also contain a changing (updatable) data; or implicit knowledge derived

by rules, possibly spanning over multiple relations, involving recursions and so forth.

Easy of programming. SQL-based syntax is predominant in today’s CEP systems [1, 6,

14]. It is considered to be easy to understand, as many programmers today are familiar

with database concepts. We propose a rule-based syntax and argue that it is convenient

for CEP. We base our opinion gained on experience in implementation of Fast Flower

7 Complete running implementation of the use case is published under name ETALIS on

the Event Processing Technical Society web site: http://www.ep-ts.com/content/

view/79/.

Delivery use case, as well as, on the implementation of our language. For example, let

us consider the following simple pattern rules.

ce1(Result)← e(Name, Result) SEQ e(Name, Result) WHERE (Name =′ a′, Result = 1).
ce2(Result)← ce1(Result) AND ce1(Result) WHERE (Result = 1).

Their representation in an SQL-like language of Esper8 based on [6] is shown below.

As we see, complex events detect by the first pattern need to be re-inserted in a tempo-

ral stream of events tmpE (using insert in the first Esper statement). If complex event

ce2 was further used in building a more complex event, we would to insert instances of

ce2 event in another temporal stream too. Consequently, very complex (nested) events

in such a language can become easily unreadable. On the other hand, with a rule-based

syntax it is easy to nest (complex) events. Also it is easy to pass data within events via

variable binding which in total gives a more compact and clear syntax of the language.

<Query name= "ce1" text="

insert into tmpE(ceName, Result)

select ’ce1’ as ceName, e1.Result as Result

from pattern [every (+

e1=e(e1.Name=’a’ and e1.Result=1) ->

e2=e(e2.Name=’a’ and e2.Result=1))]"/>

<Query name= "ce2" text="

select ’ce2’ as Name, e1.Result as Result

from pattern [every (+

e1=tmpE(e1.ceName=’ce1’ and e1.Result=1) and

e2=tmpE(e2.ceName=’ce1’ and e2.Result=1))]"/>

Also it is worth mentioning that our prototype implementation consist of about 2500

lines of Prolog code (see Section 5), while Esper 3.3.0 has approx. 150000 lines of code.

Hence rule-based declarative programming results in drastic reduction in code size.

Knowledge-based complex event processing. Events and event pattern rules represent

temporal knowledge, based on which it is possible to derivate more complex dynamic

matters. Apart from this knowledge, there may exists static (or evolving) knowledge

(i.e., facts, rules and ontologies, constituting the domain knowledge). We have already

seen how static data can be used for event enrichment. More importantly, to detect

complex events we can also consult additional (contextual) knowledge, e.g., to prove

semantic relations among matched events (not only temporal relations). While detecting

complex events incrementally (at run time), our formalism may additionally evaluate

the static knowledge (expressed as Prolog rules and facts) to enhance the detection. In

this section we give an example where combining events with static knowledge may be

beneficial in practice.

The following rule detects a route event, i.e., a sequence of a delivery assignment

event (dlv assgn) followed by a driver’s location event (gpsToRegion).

route()← dlv assgn(DrvID, Loc1) SEQ gpsToRegion(DrvID, Loc2) WHERE reachable(Loc1, Loc2).

To check whether the route is possible, rules defining reachability between two lo-

cation are evaluated.

8 Esper is a CEP system: http://esper.codehaus.org/.

reachable(X, Y)← linked(X, Y).
reachable(X, Z)← linked(X, Y), reachable(Y, Z).

Information about current connections (w.r.t traffic conditions, roads closed due to

maintenance etc.) are encoded through the following links.

linked(L1, L2)
...
linked(Ln−1, Ln)

We see that in order to detect event route, an occurrence of event gpsToRegion

needs to follow an occurrence of dlv assgn. Additionally, the pattern will be matched

only if the two events carry reachable locations (i.e., there exist a semantic relation,

approved through the background knowledge).

Another example demonstrates use of rules for event translation and classification.

Periodically sent drivers’ gps events are translated to city region events (for conve-

nience of store dispatchers).

gpsToRegion(DrvID, Rg)← gps(DrvID, coord(SNH, Lat, EWH, Long))
WHERE trsf rule(coord(SNH, Lat, EWH, Long), Rg).

Prolog rules are used as background knowledge to classify gps coordinates into city

regions.

trsf rule(coord(′N ′, X,′ W ′, Y),′ Manhattan′) : −4042 < X, X < 4049, 7358 < Y, Y < 7370, !.
...

trsf rule(coord(′N ′, X,′ W ′, Y),′ StatenIsland′) : −4034 < X, X < 4040, 7368 < Y, Y < 7399, !.

In this section we arguable demonstrated powerful features of our formalism that go

beyond (non-logic-based) state-of-the-art CEP systems [1, 6, 14]. In the following, we

explain how complex events are detected using event-driven incremental computation,

a feature that is the main difference of our work in comparison to other (logic-based)

state-of-the-art CEP approaches [13, 16, 15, 7, 17].

4 Run-time Detection of Complex Events

This section describes how complex events, defined in Section 2.2, are computed at

run-time. We explain the pattern matching procedure for a sequence of events. In prin-

ciple the mechanism is similar for other operators too, which we omit due to space

restrictions. For details about all operators, an interested reader is referred to [5].

Let us consider a sequence of events represented by rule (1) (e is detected when

an event a9 is followed by b, and followed by c). We can always represent the pattern

(1) as e ← ((a SEQ b) SEQ c). In general, rules (2) represent two equivalent rules.10

We refer to this kind of “events coupling” as binarization of events. Effectively, in bi-

narization we introduce two-input intermediate events (goals). For example, now we

can rewrite rule (1) as ie1 ← a SEQ b, and the e ← ie1 SEQ c. Every monitored event

(either atomic or complex), including intermediate events, will be assigned with one or

more logic rules, fired whenever that event occurs. Using the binarization, it is more

9 More precisely, by “an event a” is meant an instance of the event a.
10 If no parentheses are given, we assume all operators to be left-associative. While in some cases

(e.g., SEQ) this is irrelevant, other operators such as PAR are not associative.

convenient to construct event-driven rules for three reasons. First, it is easier to imple-

ment an event operator when events are considered on “two by two” basis. Second, the

binarization increases the possibility for sharing among events and intermediate events,

when the granularity of intermediate patterns is reduced. Third, the binarization eases

the management of rules. Each new use of an event (in a pattern) amounts to appending

one or more rules to the existing rule set. However what is important for the manage-

ment of rules, we don’t need to modify existing rules when adding new ones (even when

patterns with negations are added).

e← a SEQ b SEQ c. (1)

e← p1 BIN p2 BIN p3... BIN pn.
e← (((p1 BIN p2) BIN p3)... BIN pn).

(2)

In the following, we give more details about assigning rules to each monitored event.

We also sketch an algorithm (using Prolog syntax) for detecting a sequence of events.

Algorithm 4.1 accepts as input a rule referring to a binary sequence ei ← a SEQ b,

and produces event-driven backward chaining rules (i.e. executable rules) for the se-

quence pattern. The binarization step must precede the rule transformation. Rules, pro-

duced by Algorithm 4.1, belong to one of two different classes of rules. We refer to the

first class as to goal inserting rules. The second class corresponds to checking rules.

For example, rule (4) belonging to the first class inserts goal(b(,), a(T1, T2), e1(,).
The rule will fire when a occurs, and the meaning of the goal it inserts is as follows:

“an event a has occurred at [T1, T2],
11 and we are waiting for b to happen in order to

detect ie1”. Obviously, the goal does not carry information about times for b and ie1,

as we don’t know when they will occur. In general, the second event in a goal always

denotes the event that has just occurred. The role of the first event is to specify what we

are waiting for to detect an event that is on the third position.

Algorithm 4.1 Sequence.

Input: event binary goal ie1 ← a SEQ b.

Output: event-driven backward chaining rules for SEQ operator.

Each event binary goal ie1 ← a SEQ b. is converted into: {

a(T1, T2) : −for each(a, 1, [T1, T2]).

a(1, T1, T2) : −assert(goal(b(,), a(T1, T2), e1(,))).

b(T3, T4) : −for each(b, 1, [T3, T4]).

b(1, T3, T4) : −goal(b(T3, T4), a(T1, T2), ie1), T2 < T3,

retract(goal(b(T3, T4), a(T1, T2), ie1(,))), ie1(T1, T4).

}

Rule (5) belongs to the second class being a checking rule. It checks whether certain

prerequisite goals already exist in the database, in which case it triggers the more com-

plex event. For example, rule (5) will fire whenever b occurs. The rule checks whether

11 Apart from the timestamp, an event may carry other data parameters. They are omitted here

for the sake of readability.

goal(b(T3, T4), a(T1, T2), ie1) already exists (i.e. a has previously happened), in which

case the rule triggers ie1 by calling ie1(T1, T4). The time occurrence of ie1 (i.e. T1, T4)

is defined based on the occurrence of constituting events (i.e. a(T1, T2), and b(T3, T4),
see Section 2.2). Calling ie1(T1, T4), this event is effectively propagated either upward

(if it is an intermediate event) or triggered as a finished complex event.

We see that our backward chaining rules compute goals in a forward chaining man-

ner. The goals are crucial for computation of complex events. They show the current

state of progress toward matching an event pattern. Moreover, they allow for determin-

ing the “completion state” of any complex event, at any time. For instance, we can

query the current state and get information how much of a certain pattern is currently

fulfilled (e.g. notify me if an event is about to happen; for example it is 90% completed).

Further, goals can enable reasoning over events (e.g. answering which event occurred

before some other event, although we do not know a priori what are explicit relation-

ships between these two; correlating complex events to each other; establishing more

complex constraints between them etc.).

Goals can persist over a period of time. It is worth noting that checking rules can

also delete goals. Once a goal is “consumed”, it is removed from the database12. In this

way, goals are kept persistent as long as (but not longer) than needed.

for each(Pred, N, L) : −((FullPred = ..[Pred, N, L]),
event trigger(FullPred), (N1isN + 1),
for each(Pred, N1, L)) ∨ true.

(3)

a(1, T1, T2) : −assert(goal(b(,), a(T1, T2), e1(,))). (4)

b(1, T3, T4) : −goal(b(T3, T4), a(T1, T2), ie1), T2 < T3,
retract(goal(b(T3, T4), a(T1, T2), ie1(,))), ie1(T1, T4).

(5)

Finally, we see that for each different event type (i.e. a and b in our case) we have

one rule with a for each predicate. It is defined by rule (3). Effectively, it implements

a loop, which for any occurrence of an event goes through each rule specified for that

event (predicate) and fires it. For example, when a occurs, the first rule in the set of

rules from Algorithm 4.1 will fire. This first rule will then loop, invoking all other rules

specified for a (those having a in the rule head). In our case, there is only one such a

rule, namely rule (4). In general case, there may be as many of these rules as usages of

a particular event may be manifold in an event program (i.e. set of all event patterns).

Memory management. It is worth mentioning that we have implemented two memory

management techniques to prune outdated events, and hence free up memory in our

running implementation (see Section 5). The first technique modifies the binarization

step by pushing the time constraints (set by pattern’s time window information; users

are always encouraged to write patterns with certain time constraints). The technique

ensures that time window constraints are checked during the incremental event detec-

tion. Therefore unnecessary intermediary sub-complex events will not be generated if

the time constraints are violated (i.e., time expired). Our second solution for garbage

collection is to prune expired events (goals) by using periodic events, generated by the

system. Similarly to the first technique, rules are defined with time window constraints

12 Removing “consumed” goals is often needed for space reasons but might be omitted if events

are required in a log for further processing or analyzing.

and the binarization pushes the constraints to sub-components. This technique how-

ever does not check the constraints at each step during the incremental event detection.

Instead, events (goals) are pruned periodically as system events are triggered13.

5 Implementation and Experimental Results

As a proof of concept, we have provided a prototype implementation of the language.

In this section, we present experimental results of our prototype in comparison to Esper

3.3.014, i.e., we compare a declarative implementation (written in Prolog) versus a pro-

cedural one (written in Java). Esper is an engine primarily relying on state machines,

i.e. a different paradigm that is widely used in CEP systems.

The test cases presented here were carried out on a workstation with Intel Core

Quad CPU Q9400 2,66GHz, 8GB of RAM, running Windows Vista x64. Since our

prototype automatically compiles the user-defined complex event descriptions into Pro-

log rules, we used SWI Prolog version 5.6.6415 and YAP Prolog version 5.1.316. All

tested engines ran in a single dedicated CPU core.

To run tests, we have implemented an event stream generator, which creates time

series data with probabilistic values. Event streams are generated so that every event in

a stream is used for detection of one or more complex events (except the test defined by

rule (7)). The whole output generated from all tests is validated, so we have made sure

that all tested systems produce the same, correct, results.

Figure 3 shows experimental results we obtained for the sequence operator (SEQ).

In particular, Figure 3(a) shows the throughput measurements for a pattern that exhibits

a sequence of three events and the join operation on their Id attribute, see rule (1). The

X-axis shows the event throughput achieved by the three different CEP systems: Esper

3.3.0, and our prototype (P) running on SWI and YAP Prolog, denoted as P-SWI and P-

YAP respectively). The Y-axis shows different sizes of event streams, used for detection

of complex events, defined by rule (6). In this test, our system clearly outperforms Esper.

The throughput achieved by YAP engine is more than twice as big as the one produced

by Esper. In Figure 3(b) we have evaluated the sequence which (apart from the join

operation) also contain a selection parameter K (see rule (7)). K varies selectivity of Y

attribute, ranging from 10% till 100%. When 10%-50% of the input events are selected,

Esper shows significant advantage over our system. Hence in the future we need to

review our implementation so to select events as early as possible. When all events are

taken into account (100% selectivity), our system running on YAP is slightly better than

Esper. We did this test on a stream of 25K events. In Figure 3(c) we extended the tests

(for 100%) to check out whether the system throughput will remain constant for bigger

streams (e.g., 50K-100K).

d(Id, X, Y, Z) : −a(Id, X) SEQ b(Id, Y) SEQ c(Id, Z). (6)

13 Frequency of system events can be programmatically scheduled, depending on available sys-

tem memory.
14 Esper: http://esper.codehaus.org
15 SWI Prolog http://www.swi-prolog.org/.
16 YAP Prolog: http://www.dcc.fc.up.pt/˜vsc/Yap/.

Throughput vs. Stream Size (Sequence)

0

5

10

15

20

25

30

35

25 50 75 100

Event stream size x 1000

T
h

ro
u

g
h

p
u

t
(1

0
0
0
 x

 E
v
e
n

ts
/S

e
c
)

Esper 3.3.0 P-SWI P-YAP

Throughput vs. Workload Change (Sequence)

0

5

10

15

20

25

30

25 50 75 100

Event stream size x 1000

T
h

ro
u

g
h

p
u

t
(1

0
0
0
 x

 E
v
e
n

ts
/S

e
c
)

Esper 3.3.0 P-SWI P-YAP

Throughput vs. Predicate Selectivity (Sequence)

0

50

100

150

200

250

300

350

400

450

500

10% 50% 100%

Predicate selectivity

T
h

ro
u

g
h

p
u

t
(1

0
0
0
 x

 E
v
e
n

ts
/S

e
c
)

Esper 3.3.0 P-SWI P-YAP

Fig. 3. Sequence - (a) Throughput (b) Throughput vs. Predicate Selectivity (c) Throughput vs.

Workload Change

Throughput vs. Negation Selectivity

0

5

10

15

20

25

30

35

40

45

10 50 100

Selectivity of negated events

T
h

ro
u

g
h

p
u

t
(1

0
0
0
 x

 E
v
e
n

ts
/S

e
c
)

Esper 3.3.0 P-SWI P-Yap

Throughput vs. Workload Change (Negation)

0

5

10

15

20

25

30

35

40

45

50

25K 50K 75K 100K

Event stream size

T
h

ro
u

g
h

p
u

t
(1

0
0
0
 x

E
v
e
n

ts
/S

e
c
)

Esper 3.3.0 P-SWI P-Yap

Throughput vs. Workload Change (Conjunction)

0

5

10

15

20

25

30

35

40

25K 50K 75K 100K

Event stream size

T
h

ro
u

g
h

p
u

t
(1

0
0
0
 x

 E
v
e
n

ts
/S

e
c
)

Esper 3.3.0 Etalis - SWI Etalis - Yap

Fig. 4. Negation - (a) Throughput vs. Selectivity (b) Throughput vs. Workload Change (c) Con-

junction - Throughput

Figure 4 presents experimental results for negation (NOT) and conjunction (AND).

Figure 4(a) shows results obtained by evaluating a negated pattern from rule (8). The

pattern is detected when an instance of a is followed by an occurrence of b with no c

in between the two events. We have generated input event streams with different per-

centage of occurrences of events of type c (i.e., 10%-100%). We see that our prototype

(either run by SWI or YAP) dominates over Esper. The test is computed on a stream

of 25K. Figure 4(b) shows that the throughput does not go down even though we in-

creased the stream size (e.g., 50K-100K). We have tested conjunction operator too. The

pattern is specified by rule (9), and results are presented in Figure 4(c). Esper was faster

in this test. Our algorithm for handling conjunction (see [5]) contains twice as many

rules as the algorithm for sequence (i.e., two events in a conjunct may occur in any

order). As a future work, we will try to improve the implementation of conjunction by

corresponding rules in that algorithm.

c(Id, X, Y) : −a(Id, X) SEQ b(Id, Y) WHERE (Y < K). (7)

d(Id, X, Y) : −a(Id, X) SEQ b(Id, Y)NOTc(Id, Z). (8)

d(Id, X, Y) : −a(Id, X) AND b(Id, Y) AND c(Id, Z). (9)

d(Id, X, Y) : −a(Id, X) SEQ (b(Id, Y) OR c(Id, Y)). (10)

tc(X, Y) : −a(X, Y).
tc(X, Y) : −tc(X, Z) SEQ a(Z, Y).

(11)

Figure 5(a) shows results for disjunction, and evaluation of rule (10). In this test our

system running on YAP was the most effective. The throughput for this test is similar

to results for sequence (Figure 3(a)); this means that the presence of a disjunct does not

ruin the performance of the sequence. We have also tested computation of the transi-

tive closure (see rule (11)). The throughput change for different sizes of event streams

are presented in Figure 5(b). Evaluation results were obtained under chronological con-

sumption policy, see [5]. Our system on YAP was the fastest, however the difference

between evaluations running on YAP and SWI was huge. Finally, Figure 5(c) compares

the tested systems w.r.t event plan sharing. We have run an event program containing

the same pattern (similar to rule (6)) multiplying the pattern 1, 8, and 16 times. The

focus was on examining how well the systems can exhibit computation sharing among

patterns. Our system run by YAP was not resistant on increase of pattern rules. However

our prototype executed on SWI was still faster than Esper, see Figure 5(c).

Throughput vs. Workload Change (Disjunction)

0

5

10

15

20

25

30

25K 50K 75K 100K

Event stream size

T
h

ro
u

g
h

p
u

t
(1

0
0
0
 x

 E
v
e
n

ts
/S

e
c
)

Esper 3.3.0 P-SWI P-Yap

Throughput for Transitive Closure

0

10

20

30

40

50

60

70

80

90

100

2500 5000 7500 10000

Event stream size

T
h

ro
u

g
h

p
u

t
(1

0
0
 x

E
v
e
n

ts
/S

e
c
)

Esper 3.3.0 P-SWI P-Yap

Computation Sharing (Sequence)

0

5

10

15

20

25

30

1 8 16

Number of queries

T
h

ro
u

g
h

p
u

t
(1

0
0
0
 x

E
v
e
n

ts
/S

e
c
)

Esper 3.3.0 P-SWI P-Yap

Fig. 5. (a) Disjunction-Throughput (b) Transitive Closure (c) Plan Sharing

.

At the end, let us mention that the cost of compilation of an event program (written

in the proposed language) into Prolog rules is minor (typically few micro seconds).

In this section, we have provided measurement results of our running CEP en-

gine. Even though there is a lot of room for improvements, preliminary results show

that logic-based event processing has the capability to achieve significant performance.

Working 15 months on this project, we have managed to develop a CEP language and a

corresponding system that is competitive to a mature CEP engines such as Esper 3.3.0.

Taking inference capability into account, logic-based CEP goes beyond the state-of-the

art providing a powerful combination of deductive capabilities and temporal features,

while at the same time exhibiting competitive run-time characteristics.

6 Conclusions and Future Work

We propose a language for Complex Event Processing based on deductive rules. The

language comes with a clear declarative, formal semantics for complex event patterns.

We have also provided a prototype implementation of the language, which allows for

specification of complex events and their detection at occurrence time. Our approach

clearly substantiates existing event-driven systems with declarative semantics and the

power of knowledge-based event processing.

7 Acknowledgments

This work was supported by European Commission funded project SYNERGY (FP7-

216089). We thank Jia Ding and Ahmed Khalil Hafsi for their help in the implementa-

tion and testing of ETALIS prototype.

References

1. J. Agrawal, Y. Diao, D. Gyllstrom, and N. Immerman. Efficient pattern matching over event

streams. In SIGMOD, 2008.

2. J. J. Alferes, F. Banti, and A. Brogi. An event-condition-action logic programming language.

In JELIA 06. Springer, 2006.

3. J. F. Allen. Maintaining knowledge about temporal intervals. In Communications of the

ACM 26, 11, 832-843, 1983.

4. A. Alves. Extensions to logic programming inference engines to support cep. In RuleML

’09, 2009.

5. D. Anicic, P. Fodor, S. Rudolph, R. Stühmer, N. Stojanovic, and R. Studer. Etalis: Rule-

based reasoning in event processing. In S. Helmer, A. Poulovassilis, and F. Xhafa, editors,

Reasoning in Event-based Distributed Systems, Studies in Computational Intelligence series.

LNCS, Springer Verlag, 2010.

6. A. Arasu, S. Babu, and J. Widom. The cql continuous query language: Semantic foundations

and query execution. In VLDB Journal, 2003.

7. F. Bry and M. Eckert. Rule-based composite event queries: The language xchangeeq and its

semantics. In RR. Springer, 2007.

8. S. Chakravarthy and D. Mishra. Snoop: an expressive event specification language for active

databases. In Data Knowledge Engineering. Elsevier Science Publishers B. V., 1994.

9. O. Etzion and P. Niblett. Event Processing in Action. Manning Publications Co., Greenwich,

CT, USA, 2010.

10. C. L. Forgy. Rete: A fast algorithm for the many pattern/ many object pattern match problem.

In Artificial Intelligence, 1982.

11. S. Gatziu and K. R. Dittrich. Samos: an active object-oriented database system. In IEEE

Bulletin of the TC on Data Engineering, 1992.

12. P. Haley. Data-driven backward chaining. In International Joint Conferences on Artificial

Intelligence. Milan, Italy, 1987.

13. R. Kowalski and M. Sergot. A logic-based calculus of events. In New Generation Computing.

Ohmsha, 1986.

14. J. Krämer and B. Seeger. Semantics and implementation of continuous sliding window

queries over data streams. In ACM Trans. Database Syst. ACM, 2009.

15. G. Lausen, B. Ludäscher, and W. May. On active deductive databases: The statelog approach.

In ILPS’97, 1998.

16. R. Miller and M. Shanahan. The event calculus in classical logic - alternative axiomatisa-

tions. In Electron. Trans. Artif. Intell., 1999.

17. A. Paschke, A. Kozlenkov, and H. Boley. A homogenous reaction rules language for complex

event processing. In International Workshop on Event Drive Architecture for Complex Event

Process. ACM, 2007.

