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Abstract

Background: The insulin signalling pathway (ISP) is an important biochemical pathway, which regulates some

fundamental biological functions such as glucose and lipid metabolism, protein synthesis, cell proliferation, cell

differentiation and apoptosis. In the last years, different mathematical models based on ordinary differential

equations have been proposed in the literature to describe specific features of the ISP, thus providing a description

of the behaviour of the system and its emerging properties. However, protein-protein interactions potentially

generate a multiplicity of distinct chemical species, an issue referred to as “combinatorial complexity”, which results

in defining a high number of state variables equal to the number of possible protein modifications. This often leads

to complex, error prone and difficult to handle model definitions.

Results: In this work, we present a comprehensive model of the ISP, which integrates three models previously

available in the literature by using the rule-based modelling (RBM) approach. RBM allows for a simple description of

a number of signalling pathway characteristics, such as the phosphorylation of signalling proteins at multiple sites

with different effects, the simultaneous interaction of many molecules of the signalling pathways with several

binding partners, and the information about subcellular localization where reactions take place. Thanks to its

modularity, it also allows an easy integration of different pathways.

After RBM specification, we simulated the dynamic behaviour of the ISP model and validated it using experimental

data. We the examined the predicted profiles of all the active species and clustered them in four clusters according

to their dynamic behaviour. Finally, we used parametric sensitivity analysis to show the role of negative feedback

loops in controlling the robustness of the system.

Conclusions: The presented ISP model is a powerful tool for data simulation and can be used in combination with

experimental approaches to guide the experimental design. The model is available at http://sysbiobig.dei.unipd.it/

was submitted to Biomodels Database (https://www.ebi.ac.uk/biomodels-main/# MODEL 1604100005).
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Background
Biological systems, such as cell signalling pathways, act

sensing input stimuli (e.g. extracellular ligands), and

transmitting, processing and integrating this information

to provide output signals able to regulate many essential

cellular activities. Alterations in such information pro-

cessing capability play a crucial role in the development

of a disease state in many cell types [1,2].

Mathematical models are often used to understand the

functioning of biological systems, thus providing a

description of the behaviour of the system and allowing

useful analysis of its emerging properties [3]. Moreover,

mathematical models are powerful tools for data simula-

tion and can be used in combinations with experimental

approaches to guide the experimental design, whereas

data collected from experiments may help validating and

refining the computational models [4].

Signalling pathways are usually modelled using ordin-

ary differential equations (ODEs), able to quantitatively

describe the dynamics of the chemical species, in terms

of mass action law and kinetic rate constants related to

the speed of the chemical reactions occurring among the

interacting species [5]. As a simpler alternative, logic-

based models [6] have been also used. A detailed
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description of a signalling pathway requires including

site-specific details of protein-protein interactions, since

signalling proteins contain multiple functional domains

and several sites of post-translational modifications.

However, protein-protein interactions potentially gener-

ate a multiplicity of distinct chemical species, an issue

referred to as “combinatorial complexity” [7]. Adopting

ODEs to represent such complexity would require using

a number of state variables equal to the number of pos-

sible protein modifications, thus making model specifi-

cation tedious and error-prone.

In order to deal with the combinatorial complexity of

signalling pathways, a novel approach for model specifi-

cation known as Rule-based Modelling (RBM), has been

introduced in the past years, able to deal with the de-

scription of all molecular interactions in a more efficient

and compact way [8–10]. RBM is based on the key as-

sumption of “modularity”, i.e. the assumption that mo-

lecular interactions only depend on local properties of

the proteins [11,12]. According to this assumption, clas-

ses of reactions involving the same components are de-

fined by means of a “rule” and are associated with the

same rate law. Models specified using RBM can then be

used for simulation using a number of different

population-based or particle-based methods [13]. In

particular, the rules specified can be used to automatic-

ally generate a system of ODEs, which can then be simu-

lated [10].

An impressive example of the power of RBM is repre-

sented by the specification of the epidermal growth fac-

tor (EGF) receptor signalling, in which the interaction

among 1023 distinct chemical species was codified by the

use of only 70 rules [14]. As a more recent example, the

specification of the complex ERBB receptor signalling

network required 544 rules accounting for 18 proteins,

over 30 protein domains, several linear motifs, and 56

sites of lipid and protein phosphorylation [12].

An important advantage of RBM resides in its modu-

larity, which facilitates the integration of different path-

ways, as well as the model extension, when new

knowledge becomes available.

In this work, we present a model of the insulin signal-

ling pathway (ISP), based on RBM. ISP is one of the

most important signalling network, which regulates

some fundamental biological functions such as glucose

and lipid metabolism, protein synthesis, cell prolifera-

tion, cell differentiation and apoptosis. These different

biological responses are achieved by the insulin binding

to its receptor and by the subsequent combined activa-

tion of three major pathways:

(i).The PI3K-AKT pathway, mostly responsible for the

metabolic insulin action via the translocation of the

glucose transporter type 4 (GLUT4) vesicles to the

plasma membrane, which, in turn, allow the glucose

uptake in muscle cells and adipocytes [15];

(ii). The TSC1/2-mTOR pathway, playing a critical role

in protein synthesis since mammalian target of

rapamycin (mTOR) is a central controller for several

anabolic and catabolic processes including RNA

translation, ribosome biogenesis and autophagy, in

response not only to growth factors and hormones

like insulin, but also to nutrients, energy and stress

signals [16];

(iii). The RAS-MAPK pathway, promoting cell survival,

division and motility via extracellular signal-

regulated kinase 1/2 (ERK1/2) complex that, once

phosphorylated, translocates into the nucleus acti-

vating many transcription factors, thus constituting

an important connection between the cytoplasmic

and nuclear events [17].

Several mathematical models of ISP have been pub-

lished in the last 10 years, focused on different aspects

of insulin regulation, including: insulin binding to its re-

ceptor [18]; insulin receptor autophosphorylation and

subsequent phosphorylation of its substrate together

with receptor cycling and endocytosis [19,20]; insulin

signalling in insulin resistance state in human adipocytes

[21]; translocation of GLUT4 glucose transporter [22];

regulation of mTOR [23,24]; joint regulation of insulin

and amino acids [25]; crosstalk with epidermal growth

factor (EGF) signalling and the mitogen-activated pro-

tein kinase (MAPK) pathway [26].

In this work, we adapted and integrated the informa-

tion provided by three published models [22,24,26] to

implement, up-to our knowledge, the most comprehen-

sive model of the ISP. The three above listed models de-

scribe, using ODEs, the PI3K-AKT, the mTOR and the

RAS-MAPK pathway, respectively, thus covering most

of the essential regulatory mechanisms characterizing

the ISP. The RBM approach was used to implement our

ISP model. This was then partially validated by compar-

ing the model predictions with measurements of some

phosphorylated proteins involved in ISP, such as pAKT-

S473, ppERK1/2-T202-Y204 and pmTOR-S2448. The

model was then used as an in silico tool to predict the

profiles of all the chemical species during insulin per-

turbation and to analyse, by means of parametric sensi-

tivity analysis [27,28], the role of negative feedback loops

in controlling the robustness of the system.

Results and discussion
The model of insulin signalling pathway

Starting from three published models [22,24,26], we im-

plemented the model of ISP as depicted in Fig. 1 using

the Systems Biology Graphical Notation [29].
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The model comprises many of the essential elements

responsible for the insulin action since the three major

sub-pathways of the ISP, briefly described in the follow-

ing, are included.

The PI3K-AKT pathway

For the PI3K-Akt pathway, we mostly refer to the model

in Sedaghat et al. [22]. The model has been used by several

research groups and includes many of the most known

signalling components mediating the translocation of glu-

cose transporter GLUT4. These include the insulin recep-

tor binding and recycle subsystems; the post-receptor

signalling subsystem including both Ser- and Tyr- phos-

phorylation at the insulin receptor substrate1 (IRS1); the

formation of a complex (IRS1_PI3K complex) between

phosphorylated IRS1 and phosphatidylinositide 3-kinase

(PI3K); the phosphatidylinositol 3,4,5-trisphosphates

PI(3,4,5)P3, synthesis; the phosphorylation of protein

kinase B (AKT) and protein kinase C (PKC)-ζ; the trans-

location of GLUT4 to the plasma membrane. Protein

tyrosine phosphatase (PTP1B) and lipid phosphatases

(SHIP2 and PTEN) effects are also considered in the

model.

The TSC1/2-mTOR pathway

For the TSC1/2-mTOR pathway we mostly refer to the

model recently published in Sonntag et al. [24], describ-

ing the mTOR effect in response to insulin and amino

acids. The model considers both mTOR complexes:

mTORC1 and mTORC2. mTORC1 activation is

dependent on the presence of amino acids and is inhib-

ited by the Tuberous sclerosis proteins 1 and 2 (TSC1/2)

activation (i.e. Ser phosphorylation), which, in turn, de-

pends on the 5′ AMP-activated protein kinase (AMPK)

activation. AMPK activation depends on IRS1 Tyr phos-

phorylation, whereas TSC1/2 inhibition (i.e. Tyr

Fig. 1 The model of insulin signalling pathway. The model of Insulin Signaling Pathway obtained by integrating the PI3K-AKT pathway, the mTOR pathway

and the RAS-MAPK pathway, depicted using the Systems Biology Graphical Notation. Coloured nodes resemble the clustering results obtained on

simulated profiles (see Fig. 3). Coloured lines represent important feedback mechanisms; namely: the red line represents the P70S6K-IRS1 negative feedback

loop, the blue line the ERK1/2-GRB2/SOS negative feedback loop
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phosphorylation) depends on AKT phosphorylation at

Thr309. mTORC2, which was recently identified as the

unknown phosphoinositide-dependent protein kinase 2

(PDK2), i.e. the kinase responsible for Ser474 phosphoryl-

ation of AKT [30–32], contributes to the double phosphor-

ylation of AKT together with Thr309 phosphorylation,

operated by the phosphoinositide-dependent protein kinase

1 (PDK1). Sonntag et al. [24] formulate the hypothesis of

the presence of a PI3K variant, which is directly regulated

by the activated insulin receptor and, in turn, activates

mTORC2. We included this hypothesis in our model.

The RAS-MAPK pathway

For the RAS-MAPK pathway, we mostly refer to the

model in Borisov et al. [26], describing both EGF and in-

sulin stimulations. The model includes all the main

chemical mechanisms involved in the RAS-MAPK path-

way: the interaction of Tyr phosphorylated IRS1 with

SHP2 (the SH2 domain-containing tyrosine protein kin-

ase 2) and GRB2-SOS complex (the growth factor

receptor-bound 2 and the son of sevenless complex),

thus forming the SHP2-IRS1 and GRB2/SOS-IRS1

complexes, respectively; the GTP- binding of RAS; the

phosphorylation of RAF proto-oncogene serine/threo-

nine-protein kinase (c-RAF); the interaction of insulin

receptor with Ras GTPase activating protein (RASGAP),

which in turn catalyses the reverse process of Ras deacti-

vation; the activation of the proto-oncogene tyrosine-

protein kinase SRC which fully activates c-RAF; the dual

specificity mitogen-activated kinase 1/2 (MEK1/2); the

extracellular-signal-regulated kinases (ERK1/2).

Integration of the PI3K-AKT, the TSC1/2-mTOR and the RAS-

MAPK pathways

The PI3K-AKT, TSC1/2-mTOR and RAS-MAPK path-

ways contain several overlapping parts, which, in the ori-

ginal papers, were often modelled in different ways

being based on slightly different assumptions. We com-

pared the overlapping reactions across different models

and implemented the most up-to-date version of them

based on the current knowledge of cellular biochemistry.

Moreover, the integration of the three models required

dealing with the different measurement units adopted to

describe the state variables. Whereas immunoblot ex-

periments permit to obtain important information

concerning the timescale of signalling events, quanti-

tative information about protein expression are often

problematic to retrieve so that the predicted concen-

tration profiles are sometimes reported in micromolar

concentration, as in Borisov et al. [26], or in arbitrary

units (AU), as in Sonntag et al. [24]. In contrast, in

Sedaghat et al. [22], concentration were expressed ei-

ther in molar units or in percentage of total concen-

tration (e.g. GLUT4 cytosol concentration was

considered to be 96 % of the total GLUT4 concentra-

tion in the cell at baseline condition).

Potentially, RBM allows performing both deterministic

and stochastic simulations, provided that variables quan-

tities are expressed in copies of molecules per cell. Even

if in the present work we did not use stochastic simula-

tion, we aligned all the variables to the same unit, i.e.

number of molecules per cells, by multiplying the molar

units by NA*V (NA indicates Avogadro number and V

the cell volume, considered equal to 3e-12 l). All details

about unit conversion from AU and percentage concen-

trations are given in Material and Methods.

The resulting model consists of 42 reaction rules and

101 parameters encoding the interactions among 61 dis-

tinct chemical species. Reactions, parameter values and

initial conditions are all reported in the Additional file 1.

Novelties of the RBM-ISP model

The RBM implementation, facilitated accounting for

a number of the ISP features, such as the phosphor-

ylation of signalling proteins at multiple sites and

with multiple effects, the simultaneous interaction of

molecules with different binding partners and the

subcellular localization of some reactions. The above

listed characteristics are discussed in details in the

following.

Phosphorylation of signalling proteins on multiple sites

Signalling molecules may have different levels of activity,

depending on which residues are phosphorylated. Con-

sider for example IRS1 and AKT. IRS1 has many residues

potentially involved in post-translational modifications

and can be activated or inhibited in its kinase action, de-

pending on the phosphorylated residue being Tyr or Ser

[33,34]. For instance, Tyr-896 phosphorylation is required

for PI3K, SHP2 and GRB2 binding, whereas Ser-636 phos-

phorylation by p70S6K is a mechanism related to insulin

resistance [35]. AKT, in contrast, can be activated by

phosphorylation at Thr309 or Ser474 by PDK1 and

mTORC2, respectively [36].

IRS1 phosphorylation dependent activation/inhibition

was already included in Sedeghat model although con-

sidering Ser phosphorylation regulated by PKC and not

by p70S6K, as in Sonntag model. Here we modelled both

PKC and p70S6K actions and described pIRS1-Tyr896

complex formation/dissociation with PI3K [22], SHP2

and GRB2 [26].

The two phosphorylation sites of AKT were not expli-

citly modelled in Sedaghat et al. [22]. We modelled the

AKT phosphorylation at Thr mediated by PI(3,4,5)P3 as

in Sedaghat et al. model and the AKT phosphorylation

at Ser mediated by mTORC2 as in Sonntag et al. model

and assumed:
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i) AKT phosphorylated either at Thr or both sites to

act on TSC1/2 complex by mediating its

phosphorylation at Tyr and dephosphorylation at

Ser [24];

ii) AKT phosphorylation at Ser or both sites to

inactivate C-RAF [26];

iii)AKT phosphorylation at either Thr or Ser to

activate GLUT4 translocation [22].

Interaction with multiple binding partners

The interaction of the molecules in the signalling path-

ways with numerous different binding partners results in

the potential formation of different complexes. In ISP,

IRS1 phosphorylated at Tyr-896 can bind PI3K as mod-

elled in Sedaghat et al. [22] or GRB2/SOS and SHP2, as

modelled in Borisov et al. [26]. In order to match the

RBM-ISP model specification with the current know-

ledge, we allowed the formation of different complexes.

Thus, IRS1 can bind in a mutually exclusive way GRB2/

SOS and SHP2, but can bind simultaneously GRB2/SOS

and the p85 regulatory subunit of PI3K [37,38].

Information about subcellular localization in reaction rules

The possibility that proteins have to interact is often re-

lated to their physical localization, i.e. their presence in

the extra-cellular space, cytoplasm, nucleus, plasma

membrane, etc. For instance, lipids PI(3,4,5)P3 function

as plasma membrane docking sites that recruit different

proteins containing pleckstrin homology (PH) domains

(e.g. AKT and PDK1) and their co-localization can accel-

erate specific signalling events [39]. Another example is

the interaction of mTORC1 with the Ras homologue

enriched in brain (RHEB) and Rag family on lysosome

membrane, reported by Zoncu et al. [16]. In our model,

we included the information about subcellular

localization for the insulin receptor and GLUT4 trans-

porter, distinguishing between their plasmatic and cyto-

plasmic localization according to the mathematical

description given by Sedaghat et al. [22].

Model predictions

The concentration profiles of all the chemical species

populating the model were simulated upon 60 min, 100

nM insulin stimulation. The 100 nM concentration rep-

resents a well-accepted level of insulin stimulation in cell

cultures commonly found in the literature [40] and used

also by our group [41]. According to Sonntag et al. [24],

we also assumed a constant amino acids stimulation, ne-

cessary to obtain the mTORC1 activation and the feed-

back of p70S6K on IRS1. To assess the model reliability,

model predictions were compared with experimental

data available in our dataset for some phosphoproteins

at time 2, 5, 10, 30 and 60 min following insulin plus

amino acids, i.e. leucine, stimulation [41]. As shown in

Fig. 2, the experimental and predicted profiles of pAKT-

S473 and pmTORC1-S2448 are in good agreement,

since they both show an increasing phosphorylation pat-

tern reaching a steady state in the first 2–5 min and 20–

Fig. 2 Comparison between simulated and experimental data. Comparison between experimental concentration (points) and normalized model

predictions (lines) for pAkt-S473, ppERK1/2, pmTOR-S2448 and pP70S6K-T389. The profile of ppERK1/2-Y202,Y204 obtained by increasing the strength

of the feedback between ERK and GRB2/SOS is shown in dotted lines. Values are reported for experimental data of human skeletal muscle cells (SkMCs)

exposed to EBSS + 100 nM insulin at time 0′, 2′, 5′, 10′, 30′, and 60′. All measurements were taken in three biological replicated, and for each biological

replicates, three technical replicated measurements were taken. All data are expressed in arbitrary units (AU) and rescaled between 0 and 1 for sake

of comparison
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30 min, respectively. The predicted profile for ppERK1/

2-Y202,Y204 is confirmed by experimental data in the

first 10 min, whereas in the last time points it decreases

rapidly in experimental data with respect to model pre-

dictions. The profile observed in experimental data for

ppERK1/2-Y202,Y204, might be more closely matched

by augmenting the strength of the feedback between

ppERK1/2-Y202,Y204 and GRB2/SOS. In Fig. 2 (upper

right panel, dotted line), the simulated profile of

ppERK1/2-Y202,Y204 obtained by multiplying the par-

ameter kcat39 (see Additional file 1) by a factor of 10 is

shown. Note that in the RBM ISP model available on-

line, we decided to leave the parameter of the model un-

changed, i.e. we use the value from the literature [26],

postponing parameter optimization for future studies,

when further data will be available. Unfortunately, the

experimental data of pP70S6K-T389 were not reliable

(only one replicate available), so we cannot compare the

experimental and simulated profiles for this protein,

which is an endpoint of the pathway with an important

feedback action on IRS1. Nevertheless, the simulated

profile shown in Fig. 2 (lower, right panel) resembles ex-

perimental data shown in other papers [21].

We the examined the predicted profiles of all the ac-

tive species and clustered them in four clusters accord-

ing to their dynamic behaviour, as shown in Fig. 3:

1. Fast response, reaching the steady state within 2–5

min (blue)

2. Fast overshooting response, reaching the peak

within 2–5 min and then the steady state after 10–

20 min (green)

3. Slow response, reaching the steady state in 10–20

min (orange)

4. Slow overshooting responses, reaching the peak in

5–10 min and the steady state in 30–60 min

(purple).

Following insulin stimulation, the insulin receptor re-

sponds rapidly by phosphorylating and triggering a cas-

cade of events along distinct pathways. Along the PI3K-

AKT pathway, all mechanisms tightly related to IRS1

Tyr- phosphorylation are characterized by a fast re-

sponse. The same is true for other direct targets of IRS1

phosphorylated at Tyr along the TSC1/2-mTOR cascade,

i.e. AMPK phosphorylation at T172, SHP2-IRS1 and

GRB2/SOS-IRS1 complexes formation. The fast re-

sponse is characterized by either a rapid rise to the

steady state or by a transient overshoot followed by the

steady state condition, depending on the absence/pres-

ence of feedback mechanisms acting on the target mol-

ecule (case 1 and 2, in blue and green, respectively, in

Fig. 3). Mechanisms mostly constituting the TSC1/2-

Fig. 3 Clustering of simulated profiles. Four clusters were identified for the predicted profiles of the active species, according to their dynamic

behaviour: 1) Fast response reaching the steady state within 2–5 min (blue); 2) Fast overshooting responses reaching a peak within 2–5 min and

descending to a steady state after 10–20 min (green); 3) Slow response reaching the steady state in 10–20 min (orange); 4) Slow overshooting

responses reaching a peak in 5–10 min and descending to a steady state in 30–60 min (purple)
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mTOR pathway and playing a role in Ser- phosphoryl-

ation of IRS1 are characterized by a relatively slow not-

overshooting response (case 3, orange in Fig. 3). As ob-

served above, the RAS-MAPK pathway assumes in its

upstream components a rapid response, which becomes

noticeably slower for the downstream ones (case 4, pur-

ple in Fig. 3).

In general, molecules downstream the pathway, related

to relatively slow processes such as transcription activa-

tion or interaction with the environment outside the cell,

such as ERK1/2 and GLUT4, are characterized by slow

response whereas molecules upstream the pathway are

characterized by a fast response so to elicit a rapid signal

propagation. In this context, the overshooting response

followed by the return to a steady state might help to

achieve a rapid signal propagation on one signalling

route, making molecules again available for other signal-

ling routes immediately after.

Model predictions in absence of control mechanisms

A number of simulations were then performed to inves-

tigate the robustness of the system on two target effects

of ISP: GLUT4 translocation and ERK1/2 phosphoryl-

ation. In particular, the role of two major control mecha-

nisms in regulating the target effects was analysed:

� P70S6K-IRS1 negative feedback loop (red line in

Fig. 1);

� ERK1/2-GRB2/SOS negative feedback loop (blue

line in Fig. 1);

To this purpose, the time course of GLUT4 and

ERK1/2 response in presence and absence of the two

regulatory mechanisms listed above was compared

(Fig. 4). The dynamic of doubly phosphorylated ERK1/2

is strongly affected by both P70S6K-IRS1 and ERK1/2-

GRB2/SOS negative feedback loops. On the other hand,

the steady state and dynamic behaviour of GLUT4 in

membrane are not affected by ERK1/2, but are strongly

affected by P70S6K-IRS1 negative feedback loop, thus

confirming the remarkable importance of this latter con-

trol mechanism in determining the system dynamics.

It is well known that insulin resistance is associated

with defects in IRS-dependent signalling, implicating its

dysregulation in the initiation and progression of meta-

bolic disease. An emerging view is that the positive/

negative regulation of IRS by autologous pathways is

subverted in disease by increased basal and other tem-

porally inappropriate serine/threonine phosphorylations

[37], which lead to a reduced glucose uptake. Compen-

satory hyperinsulinaemia may rise at this point and lead,

ultimately, to diabetes. Although IRS1 (and IRS2) are

regulated through a complex mechanism involving phos-

phorylation of more than 50 different serine/threonine

residues, in our model P70S6K-IRS1 negative feedback

loop seems essential for a good control of glucose up-

take. Enhancement of P70S6K-IRS1 negative feedback

loop is able to explain a reduced insulin sensitivity and

glucose uptake (Fig. 5). Similarly (although they also

hypothesize a positive feedback from mTOR to a

Fig. 4 Simulated ppERK1/2-T202-Y204 (upper panel) and GLUT4

membrane concentration (lower panel) profiles upon 100 nM insulin

stimulation, with the complete model (black), the model without

p70S6K-IRS1 feedback (red) and the model without the ERK1/2-GS

feedback (blue). This latter does not affect GLUT4 membrane

concentration; therefore GLUT4 simulated profiles with and without

the ERK1/2-GS feedback are superimposable

Fig. 5 Simulated GLUT4 membrane concentration at 60 min upon

different insulin stimulation, with the complete model (black), the

model without p70S6K-IRS1 feedback (red) and the model with

enhanced p70S6K-IRS1 feedback, obtained by increasing parameter

k15 by 100 % of its vaue (green)
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different IRS1 Serine residue), Brännmark et al. [21],

using a minimal model of insulin signalling, show that a

decreased positive feedback mechanism is able to ex-

plain a reduced glucose uptake.

On the other hand, both P70S6K-IRS1 and ERK1/2-

GRB2/SOS negative feedback loops seem essential to

guarantee that doubly phosphorylated ERK shows a

transient behaviour, with a peak at 10 min followed by a

return to the baseline condition. This behaviour has

already been reported in the literature under insulin

stimulus and under epidermal growth factor stimulus

[42]. A transient ERK response prevents a sustained acti-

vation of ERK that would result in continual cell prolif-

eration [42].

Sensitivity analysis

To further investigate the role of the two major control

mechanisms in regulating the target effects, local sensi-

tivity analysis was performed by applying a small per-

turbation (0.1 % of parameter value) to one model

parameter at a time and evaluating the resulting relative

changes of GLUT4 translocation and ERK1/2 phosphor-

ylation (see Methods). Tables 1 and 2 show the sensitiv-

ity coefficients of the model parameters, ranked

accordingly to their absolute value and compared to the

value the coefficients assume upon removal of P70S6K-

IRS1 and ERK1/2-GRB2/SOS negative feedback loops.

These coefficients measure the overall effect, i.e. during

the observation window, of a parameter change on the

outcome, i.e. GLUT4 and ERK response. Positive/nega-

tive values mean that increasing the parameter value has

the effect of enhancing/reducing the response. Since

small absolute values mean that the parameter changes

do not significantly affect the outcome, in Tables 1 and

2, only coefficient greater than 0.1 % (absolute value), ei-

ther in the original or modified model, are reported.

Parametric sensitivity analysis of the complete model

for GLUT4 response reveals that the most sensitive pa-

rameters are related to GLUT4 translocation to plasma

membrane, followed by those related to lipid formation

and IRS1_PI3K complex formation/dissociation. The ab-

sence of p70S6K_IRS1 feedback has a strong impact on

augmenting the sensitivity (absolute value) of parameters

related to lipid formation and IRS1_PI3K complex for-

mation/dissociation.

Parameters related to baseline IRS1 phosphorylation/

dephosphorylation at Tyr/Ser, have lower sensitivity,

which diminishes (absolute value), in general, by remov-

ing P70S6K-IRS1 feedback, with the exception of param-

eter k7p, related to IRS1 phosphorylation at Ser.

Parameters related to PKC mediated IRS1 phosphoryl-

ation at Ser also show increased values after removal of

Table 1 Parametric sensitivity analysis of the complete model for GLUT4 membrane translocation

Parameter Complete model wo_feedback p70S6K wo_feedback
ERK1/2

Process

k_13 −84.89 % −83.59 % −84.89 % GLUT4 translocation

k13p 66.02 % 66.76 % 66.02 % GLUT4 translocation

k13 19.03 % 17.01 % 19.03 % GLUT4 translocation

n_p70 −15.21 % - −15.21 % p70 mediated IRS1 phosphorylation at Ser

k9a 8.25 % 13.87 % 8.25 % lipids PI(3,4,5)P3 formation

k9s −8.25 % −13.86 % −8.25 % lipids PI(3,4,5)P3 formation

k8 7.36 % 10.88 % 7.36 % IRS1_PI3K complex formation

k_8 −7.36 % −10.87 % −7.35 % IRS1_PI3K complex formation

k_14 −5.25 % −5.19 % −5.25 % GLUT4 degradation

k_7 −5.05 % −2.68 % −5.05 % IRS1 dephosphorylation at Tyr

k7 5.05 % 2.68 % 5.05 % IRS1 phosphorylation at Tyr

k_7p 4.45 % 0.53 % 4.45 % IRS1 dephosphorylation at Ser

k15 −4.30 % - −4.30 % IRS1 phosphorylation by P70S6K

Kd_p70 0.72 % - 0.72 % p70 mediated IRS1 phosphorylation at Ser

Vmax 0.65 % 2.18 % 0.65 % PKC and p70 mediated IRS1 phosphorylation at Ser

k4p −0.51 % −0.27 % −0.52 % Phosphorylated receptor internalization

k_21 −0.18 % - −0.18 % TSC1-TSC2 T1462_phosphorylation_by_Akt_pT309

k7p −0.15 % −0.54 % −0.15 % IRS1 phosphorylation at Ser

k41 0.14 % 0.46 % 0.14 % IRS1-GS and IRS1-SHP2 complex disruption

Sensitivity coefficients are ranked accordingly to their absolute values and their corresponding values upon P70S6K-IRS1 and ERK1/2-GRB2/SOS negative feedback

loop removal are also shown. Only coefficient greater than 0.1 % (absolute value) either in the original or modified model are reported. The column “Process” de-

scribes the biological process to which the parameter takes place
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P70S6K-IRS1 feedback. Since ERK1/2-GRB2/SOS feed-

back removal has no effect on GLUT4 translocation, the

sensitivity coefficients do not change with and without

this feedback.

Parametric sensitivity analysis of the complete model

for ERK1/2 response shows that the most sensitive

parameters are related to RAS, MEK and RAF activation

and to IRS1 phosphorylation at Tyr and Ser, this latter

mediated by p70S6K.Along both the PI3K-AKT and the

RAS-ERK1/2 pathway, ERK1/2-GRB2/SOS feedback

seems to have an important role on the system robust-

ness. The system dynamics are weakly affected by its

Table 2 Parametric sensitivity analysis of the complete model for ERK1/2 activation

Parameter Complete
model

wo_feedback
P70S6K

wo_feedback ERK1/
2

Process

n_p70 −433.62 % - −553.98 % p70 mediated IRS1 phosphorylation at Ser

kcat33 158.53 % 159.60 % 207.34 % # Mek phosphorylation

kcat32 −157.47 % −158.57 % −202.56 % # Raf inactivation

k7 154.53 % 23.76 % 183.15 % # IRS-1 phosphorylation at Tyr

k_7 −154.50 % −23.96 % −183.05 % # IRS-1 dephosphorylation at Tyr

kcat28 152.95 % 65.18 % 189.32 % Ras activation

kcat29 −152.78 % −65.23 % −188.99 % # Raf activation

kcat30 150.90 % 62.38 % 185.97 % # Raf activation

k_7p 140.15 % 4.82 % 161.27 % # IRS-1 dephosphorylation at Ser

k15 −135.17 % - −155.79 % # IRS1 phosphorylation by P70S6K

kcat35 79.97 % 79.91 % 104.72 % Erk phosphorylation

kcat36 77.83 % 79.00 % 101.60 % Erk phosphorylation

k41 −34.20 % −16.98 % −43.11 % # IRS1-GS and IRS1-SHP2 complex disruption

kcat39 −23.10 % −25.16 % - GS inhibition

Kd_p70 20.02 % - 26.18 % p70 mediated IRS1 phosphorylation at Ser

Vmax 15.35 % 19.63 % 21.95 % PKC and p70 mediated IRS1 phosphorylation at Ser

k8 −13.39 % −9.24 % −17.15 % # IRS-1_PI3-K complex formation (PI3-K activation)

k_8 13.38 % 9.27 % 17.04 % # IRS-1_PI3-K complex dissociation

n 6.66 % 0.11 % 7.10 % PKC mediated IRS1 phosphorylation at Ser

k_21 −5.65 % - −6.50 % # TSC1-TSC2 T1462_phosphorylation_by_Akt_pT309

k9s 4.74 % 0.35 % 5.35 % # lipids PI(3,4,5)P3 formation

k9a −4.71 % −0.28 % −5.48 % # lipids PI(3,4,5)P3 formation

k7p −4.01 % −4.79 % −5.32 % # IRS-1 phosphorylation at Ser

k4p −2.62 % −10.56 % −4.01 % # Phosphorylated receptor internalization

k_39 2.62 % 2.10 % - GS inactivation

k_20 2.20 % - −0.21 % # p70S6K phosphorylation/dephosphorylation mediated by
mTORC1_pS2448

kcat24 −1.71 % 87.60 % 17.49 % Src activation

kcat31 −1.70 % 87.58 % 17.35 % # Raf activation

alpha24 −1.60 % 87.59 % 17.48 % Src activation

k_4 0.77 % 2.59 % 0.88 % # Free receptor externalization

k_16 0.13 % −0.07 % −0.11 % # AMPK_T172 dephosphorylation mediated by IRS1_pY

Kd_pkc 0.11 % −0.02 % 0.00 % PKC mediated IRS1 phosphorylation at Ser

k12 0.10 % 0.04 % −0.03 % # PKC phosphorylation at Threonine

k6 0.08 % 0.12 % −0.01 % # Receptor unbinding and dephosphorylation (inside the cell)

k_2 0.05 % −0.11 % −0.17 % # Receptor binding 2nd insulin molecule

Sensitivity coefficients are ranked accordingly to their absolute values and their corresponding values upon P70S6K-IRS1 and ERK1/2-GRB2/SOS negative feedback

loop removal are also shown. Only coefficient greater than 0.1 % (absolute value) either in the original or modified models are reported. The column “Process”

describes the biological process to which the parameter takes place
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absence (see Fig. 4), whereas the parameter sensitivity

increases (in absolute value) in almost all cases if this

feedback is removed.

Conclusions about the effect of P70S6K-IRS1 feedback

on ERK1/2 response are more controversial. Removing

this feedback has the effect of reducing parameter sensi-

tivity along PI3K_AKT pathway, whereas, along RAS-

ERK1/2 pathway, it has almost no effect for parameters

related to MEK phosphorylation, RAF inactivation and

ERK phosphorylation. It diminishes the sensitivity for

parameters related to RAS, RAF activation and to IRS1-

GRB2/SOS and IRS1-SHP2 complex disruption. It

strongly augments the sensitivity of parameters related

to SRC and RAF activation.

These results highlight the central role of negative

feedback loops in determining not only the dynamics

of a biological system but also its robustness. This

property is of remarkable importance because it pre-

serves the dynamic behaviour of the system against

noise and small biological fluctuations commonly due

to intercellular variability.

Conclusions

We implemented a computational model of the ISP, in-

cluding its most important regulatory mechanisms

known at present. The model provides a comprehensive

description of the system, since it integrates three previ-

ously published models [22,24,26] addressing distinct as-

pects of insulin signalling, such as the PI3K-AKT

pathway, the TSC1/2-mTOR pathway, and the RAS-

ERK1/2 pathway.

The model was implemented using the RBM approach,

especially suitable for the specification of complex bio-

chemical systems models, such as signalling networks.

In particular, we made use of the BioNetGen software to

provide a clear and compact representation of the chem-

ical species and the reactions populating the system.

RBM is based on the key assumption that molecular in-

teractions are “modular”, meaning that the network dy-

namics is mostly determined by the local properties of

the proteins involved in the interactions, and thus the

same rate law can be assigned to a defined “class” of re-

actions. Hence, differently from the traditional approach

in which a system is directly described by a number of

ODEs equal to the number of possible interactions and

transformations of chemical species, in the RBM ap-

proach the same system can be described using a re-

duced number of “rules”. In the case of the ISP model

here presented, the dynamic of 61 distinct chemical spe-

cies was encoded by only 42 rules.

The RBM-ISP model was partially validated using ex-

perimental data of some of the phosphorylated proteins

involved in ISP such as pAKT-S473, ppERK1/2-T202-

Y204, and pmTOR-S2448, measured at 0, 2, 5, 30 and

60 min after insulin stimulation. Despite some minor

discrepancy at 60 min for ppERK1/2-T202-Y204, the ex-

perimental and predicted profiles are in good agreement.

As already noted in [41], since a wide range of signals,

including nutrients, energy levels, growth factors, and

amino acids are known to affect insulin signalling path-

way, it is likely that experimental results strongly depend

on the availability of combinations of the above vari-

ables. Moreover, the proteins involved in the insulin sig-

nalling pathway are known to exhibit a number of

different phosphorylation sites, able to interact in differ-

ent ways with different molecules, a complex set of regu-

latory mechanisms, which are not yet completely

understood. In this respect, our model represents the

state of the art knowledge of ISP and can be used to-

gether with experimental data as a useful simulation tool

for the generation of new hypotheses. Moreover, since

the RBM approach allows, thanks to its modularity, the

easy integration of different pathways and the inclusion

of new finer details as soon as they become available,

our model might constitute a starting point model, ready

for the inclusion of new regulatory mechanisms such as

those regarding the regulation of IRS1 through its nu-

merous phosphorylation sites [19,37]. Another example

of regulatory mechanisms that might be integrated

within our model in future studies, is given by Yugi et

al. [43], in which the authors have reconstructed the in-

sulin signal flow from phosphoproteome and metabo-

lome data and developed a kinetic model of the

glycolytic pathway.

Besides presenting the RBM-ISP model, in this work

we showed one of its possible applications in the analysis

of network robustness. Robustness is a fundamental

property that permits to biological systems to preserve

their specific functionality despite external and internal

perturbations due, respectively, to unpredictable envir-

onmental changes and fluctuation of protein concentra-

tions Kitano [44]. Biological robustness is largely related

to the network topology and, in particular, to the pres-

ence of control mechanisms, such as positive and nega-

tive feedback loops [45, 46]. In this work, we investigated

the role of two negative feedback loops involving P70S6K-

IRS1 and ERK1/2-GRB2/SOS in controlling GLUT4

translocation and ERK1/2 phosphorylation, respectively.

The removal of the P70S6K-IRS1 feedback showed rele-

vant differences in the concentration profiles of both

GLUT4 translocation to the cell membrane and ERK1/2

phosphorylation. Removal of the ERK1/2-GRB2/SOS feed-

back resulted in minor differences in ERK1/2 phosphoryl-

ation. However, the comparison between the original

model and the model without the ERK1/2-GRB2/SOS

feedback revealed that GLUT4 translocation and ERK1/2

phosphorylation are more sensitive to changes in the

model parameters in the latter case. The reported results
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highlight how control mechanisms such as negative feed-

back loops may act in a concealed way, determining some

of the fundamental network properties that might not be

observed by simple inspection of the system dynamic be-

haviour, and stress on the need of more and more realistic

models and computational tools, able to deal with large-

scale simulations and interaction of smaller subnetwork

models.

Methods

Initial concentration and unit conversion

We aligned all variables to the same unit, i.e. num-

ber of molecules per cells, by multiplying the molar

units by NA*V (NA indicates Avogadro number and

V the cell volume, considered equal to 3e-12 l).

To convert the AU concentration used in Sonntag

model into number of molecules per cells we consid-

ered IRS1, which is present in both Sonntag and Bor-

isov model as reference concentration, and scaled

other quantities accordingly. So, for example, initial

concentration of mTORC2, which was set to 18.8 AU

in Sonntag et al., was multiplied by the initial concen-

tration of IRS1 expressed in number of molecules per

cells (as derived from [26]) and divided by IRS1 initial

concentration expressed in AU.

As recently pointed out by Nyman et al. [47] the initial

concentrations attributed to insulin receptor IR both at

plasma membrane and in cytoplasm and to IRS1 and

PIK3 molecules in the Sedaghat model, when multiplied

by NA*V resulted in less than one molecule per cell.

The initial concentrations of these four molecules were

thus taken from the Sonntag model.

Finally, in absence of further information from the

literature, concentrations expressed in percentage of

the total concentration in Sedaghat model (namely,

GLUT4, PKC, PI(3,4,5)P3, PI(3,4)P2 and PI(4,5)P2),

were converted into number of molecules per cell by

considering a total number of molecules equal to

IRS1 for GLUT4 (in membrane plus cytoplasm) and

total lipids (i.e. PI(3,4,5)P3 plus PI(3,4)P2 plus

PI(4,5)P2) and a total number of molecules equal to

AKT for PKC.

Initial concentrations are reported in Additional file 1:

Table S1.

Parameter values

Reaction rules and parameters (reported in Additional

file 1) were taken from the original models and oppor-

tunely rescaled, when necessary, for sake of models inte-

gration accordingly to the changes made for the unit of

measurements so to express parameters for first order

reaction in 1/min and parameters for second order reac-

tions in 1/(molecules*min).

The feedback of activated PKC and p70S6K on IRS1

and the modulatory effect of AKT on PTP, SHIP2 and

PTEN, were modelled using Hill kinetics rather than lin-

ear kinetics for consistency among different models. De-

tailed functions and parameters are given in the

Additional file 1.

Experimental design

Muscle cell lines were stimulated with 100 nM insulin at

time 0 for the following durations: 0′, 2′, 5′, 10′, 30′,

and 60′. AKT, pAKT-S473, ERK1/2, ppERK1/2-T202-

Y204, mTOR, pmTOR-S2448, P70S6K, and pP70S6K-

T389 were measured using Western blot in technical

triplicates. The experiment was repeated three times,

thus three biological replicates are available for each

condition.

Cell cultures

Human skeletal muscle cells (SkMCs) and growth

medium (SkGM) were purchased from Lonza. SkMCs

are isolated from normal donors from gestational tissue

usually from the quadriceps or psoas tissue and are sold

in second passage. Cells were proliferated on 6-well

plates between 5 and 7 passages at 37 °C, 5 % CO2,

grown to 90 % confluence and exposed to differentiation

medium (DMEM:F12 w/2 % Horse Serum and gentamy-

cin) for ten days. Glucose was not added to the medium,

but was present in the DMEM at 1000 mg/L. Cells were

serum-starved with DMEM O/N and then switched to

Earle’s Balanced Salt Solution (EBSS) for one hour, after

which they were exposed to EBSS + 100 nM insulin. The

100 nM concentration represents a well-accepted level

of insulin stimulation in cell cultures commonly found

in the literature [40].

Immunoblotting

Cells were lysed with Cell Signalling lysis buffer, soni-

cated, and centrifuged at 14KG for 30 min at 4 °C. Cell

Signalling Lysis buffer was composed by 20 mM Tris–

HCl (pH 7.5), 150 mM NaCl, 1 mM Na2EDTA, 1 mM

EGTA, 1 % Triton, 2.5 mM sodium pyrophosphate,

1 mM bglycerophosphate, 1 mM Na3VO4, 1 μg/ml leu-

peptin, We also added Halt Protease and Phosphatase

inhibitor cocktail. The Pierce 660 reagent was used to

determine protein concentrations and lysates were

loaded onto Invitrogen Nupage gels for Western blot

transfer using the Biorad semi-dry Trans-blot apparatus.

Blots were blocked with Licor blocking buffer and incu-

bated overnight at 4 °C with target antibodies. Cell Sig-

nalling supplied all primary antibodies. In details, the

antibodies used were: Akt total – Cell Signalling #2920;

Akt Phospho (Ser473) – Cell Signalling #9336; ERK1/2

total – Cell Signalling #4695; ppERK1/2 (T202-Y204) –

Cell Signalling #9106; Cell Signalling #9461; mTOR –
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Cell Signalling #2983; pmTOR (S2448) – Cell Signalling

#2971; P70S6K – Cell Signalling #9202; pP70S6K (T389)

– Cell Signalling #9206. All were used at a 1:1000

concentration.

Band densities were quantified using the Licor Odys-

sey system using the integrated intensity value for each

band. To correct for the antibody efficiency, all band

densities for each protein were expressed relative to the

baseline time 0′. Moreover, to allow for comparison

among different membranes, the ratios between phos-

phorylated and total proteins were calculated; total pro-

tein concentration is constant across time points as

shown in [41]. Since for each protein, the total and the

phosphorylated fractions were loaded in the same lane,

this latter step also corrected for possible differences in

the quantity of sample loaded in each gel. Finally, tech-

nical replicates were averaged.

Computational modelling

The model of the insulin signalling pathway was imple-

mented using BioNetGen [9], a software for the rule-

based modelling.

To simulate the network dynamics, we first generated

the network of all possible reactions that may occur in

the system starting from the listed reaction rules and it-

eratively applied them to the set of seed species, and

then performed a deterministic simulation through nu-

merical solving of a system of ODEs.

Parametric sensitivity analysis

For a generic prediction depending on λ1, λ2 … λn model

parameters (and initial concentrations) and on time t:

y tð Þ ¼ f λ1; λ2;…λn; tð Þ

the sensitivity of y at time t with respect to λi is de-

fined as:

si tð Þ ¼
∂f λ1;…λi;…λn; tð Þ

∂λi

λi

y tð Þ

and for each model parameters, the overall sensitivity

can be derived as:

Si ¼

Z t

t0

si τð Þdτ

and averaged across the observed time window [48, 49].

In order to implement the parametric sensitivity ana-

lysis, we exported our model in sbml language and ran

the sensitivity analysis using COPASI [50].

Additional files

Additional file 1: Model_details. Tables listing: (1) model inputs; (2)

constant parameters; (3) the initial concentration of different chemical

species; (4) the rules and functions used in the model, in BioNetGen

syntax; (5) the model parameters. (DOCX 32 kb)

Additional file 2: Protein_data. Experimental data of pAKT-S473,

pmTORC1-S2448 and ppERK1/2-Y202,Y204 at time 2, 5, 10, 30 and 60 min

following insulin plus amino acids, i.e. leucine, stimulation [41]. Data are

available in three bioplogical replicates (A, B and C in the file). To correct

for the antibody efficiency, all band densities for each protein are

expressed relative to the baseline time 0′. Moreover, to allow for

comparison among different membranes, the ratios between

phosphorylated and total proteins are calculated. (XLSX 9 kb)
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