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Abstract

Background: A variety of key activities within life sciences research involves integrating and intelligently managing
large amounts of biochemical information. Semantic technologies provide an intuitive way to organise and sift
through these rapidly growing datasets via the design and maintenance of ontology-supported knowledge bases. To
this end, OWL—a W3C standard declarative language— has been extensively used in the deployment of biochemical
ontologies that can be conveniently organised using the classification facilities of OWL-based tools. One of the most
established ontologies for the chemical domain is ChEBI, an open-access dictionary of molecular entities that supplies
high quality annotation and taxonomical information for biologically relevant compounds. However, ChEBI is being
manually expanded which hinders its potential to grow due to the limited availability of human resources.

Results: In this work, we describe a prototype that performs automatic classification of chemical compounds. The
software we present implements a sound and complete reasoning procedure of a formalism that extends datalog
and builds upon an off-the-shelf deductive database system. We capture a wide range of chemical classes that are not
expressible with OWL-based formalisms such as cyclic molecules, saturated molecules and alkanes. Furthermore, we
describe a surface ‘less-logician-like’ syntax that allows application experts to create ontological descriptions of
complex biochemical objects without prior knowledge of logic. In terms of performance, a noticeable improvement is
observed in comparison with previous approaches. Our evaluation has discovered subsumptions that are missing
from the manually curated ChEBI ontology as well as discrepancies with respect to existing subclass relations. We
illustrate thus the potential of an ontology language suitable for the life sciences domain that exhibits a favourable
balance between expressive power and practical feasibility.

Conclusions: Our proposed methodology can form the basis of an ontology-mediated application to assist
biocurators in the production of complete and error-free taxonomies. Moreover, such a tool could contribute to amore
rapid development of the ChEBI ontology and to the efforts of the ChEBI team to make annotated chemical datasets
available to the public. From a modelling point of view, our approach could stimulate the adoption of a different and
expressive reasoning paradigm based on rules for which state-of-the-art and highly optimised reasoners are available;
it could thus pave the way for the representation of a broader spectrum of life sciences and biomedical knowledge.

Keywords: Semantic technologies, Knowledge representation and reasoning, Logic programming and answer set
programming, Datalog extensions, Cheminformatics

Background
Life sciences data generated by research laboratories

worldwide is increasing at an astonishing rate turning

the need to adequately catalogue, represent and index

the rapidly accumulating bioinformatics resources into a

pressing challenge. Semantic technologies have achieved
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significant progress towards the federation of biochemical

information via the definition and use of domain vocab-

ularies with formal semantics, also known as ontologies

[1-3]. OWL [4], a family of logic-based knowledge repre-

sentation (KR) formalisms standardised by the W3C, has

played a pivotal role in the advent of Semantic technolo-

gies. This is to a great extent thanks to the availability

of robust OWL-based tools that are capable of deriving

knowledge that is not explicitly stated by means of logical

inference. In particular, OWL bio- and chemo-ontologies
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with their intuitive hierarchical structure and their formal

semantics are widely used for the building of life sciences

terminologies [5,6].

Taxonomies provide a compelling way of aggregat-

ing information, as hierarchically organised knowledge

is more accessible to humans. This is evidenced, e.g. by

the pervasive use of the periodic table in chemistry, one

of the longest-standing and most widely adopted classi-

fication schemes in natural sciences. Organising a large

number of different objects into meaningful groups facil-

itates the discovery of significant properties pertaining to

that group; these discoveries can then be used to predict

features of subsequently detected members of the group.

For instance, esters with low molecular weight tend to be

more volatile and, so, a newly found ester with low weight

is expected to be highly volatile, too. As a consequence,

classifying objects on the basis of shared characteristics

is a central task in areas such as biology and chem-

istry with a long tradition of taxonomy use. Due to the

availability of performant OWL reasoners, life scientists

can employ OWL to represent expert human knowledge

and thus drive fast, automatic and repeatable classifica-

tion processes that produce high quality hierarchies [7,8].

Nevertheless, a prerequisite is that OWL is expressive

enough to model the entities that need to be classified as

well as the properties of the superclasses that lie higher up

in the hierarchy.

Two main restrictions have been identified in the

expressive power of OWL as hindering factors for the rep-

resentation of biological knowledge [9,10]. First, due to

the tree-model property of OWL [11] (which otherwise

accounts for the robust computational properties of the

language) one is not able to describe cyclic structures with

adequate precision. Second, because of the open-world

assumption adopted in OWL (according to which missing

information is treated as not known rather than false) it is

difficult to define classes based on the absence of certain

characteristics. These limitations manifest themselves—

among others—via the inability to define a broad range of

classes in the chemical domain. For instance, one cannot

effectively encode in OWL the class of compounds that

contain a benzene ring or the class of molecules that do

not contain carbon atoms, i.e. inorganic molecules.

These inadequacies obstruct the full automation of

the classification process for chemical ontologies, such

as the ChEBI (Chemical Entities of Biological Interest)

ontology, an open-access dictionary of molecular entities

that provides high quality annotation and taxonomical

information for chemical compounds [6]. ChEBI fosters

interoperability between researchers by acting as the pri-

mary chemical annotation resource for various biological

databases such as BioModels [12], Reactome [13] and the

Gene Ontology [5]. Moreover, ChEBI supports numer-

ous tasks of biochemical knowledge discovery such as

the study of metabolic networks, identification of dis-

ease pathways and pharmaceutical design [14,15]. ChEBI

is manually curated by human experts who annotate

and check the validity of existing and new molecular

entries. Currently, ChEBI describes 36,660 fully annotated

entities (release 110) and grows at a rate of approxi-

mately 4,500 entities per year (estimate based on previous

releases [16]). Given the size of other publicly available

chemical databases, such as PubChem [17] that contains

records for 19 million molecules, there is clearly a strong

potential for ChEBI to expand by speeding up curat-

ing tasks. ChEBI curating tasks span a wide range of

activities such as adding natural language definitions and

structure information or classifying chemical entities by

determining their position in the ChEBI taxonomy. Thus

automating chemical classification could free up human

resources and accelerate the addition of new entries to

ChEBI.

As the classification of compounds is a key task of the

drug development process [18], the construction of chem-

ical hierarchies has been the topic of various investigations

capitalising on logic-based KR [19-23], statistical machine

learning (ML) [24-26] and algorithmic [27-29] techniques.

In KR approaches, molecule and class descriptions are

represented with logical axioms crafted by experts and

subsumptions are identified with the help of automated

reasoning algorithms; in ML approaches a set of anno-

tated data is used to train a system and the system is

then employed to classify new entries. So, KR approaches

are based on the explicit axiomatisation of knowledge,

whereas ML algorithms specify for new entries super-

classes that are highly probable to be correct. As a con-

sequence, the taxonomies produced using logic-based

techniques are provably correct (as long as the modelling

of the domain knowledge is faithful), but the statistically

produced hierarchies (although much faster) need to be

evaluated against a curated gold standard. Algorithmic

techniques involve the definition of imperative pro-

cedures for determining classes of molecules. These

approaches are usually much quicker than logic-based

techniques but have the disadvantage of requiring a

programmer for defining new classes or for modifying

the existing ones, as opposed to ontological knowledge

bases that can be manipulated and extended by non-

programmers. Here, we focus on logic-based chemical

classification, which in certain cases can complement sta-

tistical and algorithmic approaches [8,15].

In previous work, we laid the theoretical foundation

of nonmonotonic existential rules which is an expressive

ontology language that is sound and complete and that

is suitable for the representation of graph-shaped objects;

additionally, we demonstrated how nonmonotonic exis-

tential rules can be applied to the classification of

molecules [9]. The aforementioned formalism addressed
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the expressivity limitations outlined above; however, the

performance of the implementation—although faster than

previous approaches—was not satisfactory (more than 7

minutes were needed to classify 70 molecules under 5

chemical classes on a standard desktop computer) failing

thus to confirm practicability of the formalism.

In the current work, we describe an improved prac-

tical framework that relies on the same formalism but

with enhanced performance. Our contributions can be

summarised as follows:

1. We present a prototype that performs logic-based

chemical classification based on a sound, complete

and terminating reasoning algorithm; we model
more than 50 chemical classes and we show that the

superclasses of 500 molecules are computed in 33
seconds.

2. We harness the expressive power of nonmonotonic

existential rules to axiomatise a variety of chemical
classes such as classes based on the containment of

functional groups (e.g. esters) and on the exact

cardinality of parts (e.g. dicarboxylic acids), classes
depending on the overall atomic constitution (e.g.

hydrocarbons) and cyclicity-related classes (e.g.
compounds containing a cycle of arbitrary length or

alkanes).

3. We present a surface syntax that enables application
experts to create ontological description of chemical

entities without prior knowledge of logic. The syntax

we propose is closer to natural language than to
first-order logic notation and is uniquely translatable

to logical axioms.

4. We exhibit a significant speedup in comparison with
previous ontology-based chemical classification

implementations.
5. We identify examples of missing and contradictory

subsumptions from the expert curated ChEBI

ontology that are present and absent, respectively,
from the hierarchy computed by our prototype.

Concerning future benefits, our prototype could form

the basis of an ontology-mediated application to assist

biocurators of ChEBI towards the sanitisation and the

enrichment of the existing chemical taxonomy. Automat-

ing the maintenance and expansion of ChEBI taxonomy

could contribute to a more rapid development of the

ChEBI ontology and to the efforts of the ChEBI team to

make annotated chemical datasets available to the pub-

lic. From a modelling point of view, our approach could

stimulate the adoption of a different and expressive rea-

soning paradigm based on rules for which state-of-the-art

and highly optimised reasoners are available; it could thus

pave the way for the representation of a broader spectrum

of life sciences knowledge.

Methods

Knowledge base design

The reasoning task carried out using our methodology is

the identification of chemical classes for molecules, e.g.

assigning water to the class of inorganic molecules or ben-

zene to cyclic molecules. In this section we provide a high-

level description of the knowledge base (KB) we built for

the purposes of our chemical classification experiments.

We use the word ‘classification’ to refer to the detection

of subsumptions between molecules and chemical classes

rather than to the computation of the partial order for

the set comprising the chemical classes and molecules

w.r.t. the subclass relation. The KB consists of nonmono-

tonic existential rules that formally describe molecular

structures and chemical classes; this representation can

subsequently be used to determine the chemical class sub-

sumers of eachmolecule. For a formal definition of syntax

and semantics of nonmonotonic existential rules as well

as decidability proofs, we refer the interested reader to the

relevant articles [9,30,31].

For each chemical entity that we model using rules, we

also provide its axiomatisation in the surface syntax—

a less-logician-like syntax which we designed and which

enables the ontological description of structured objects

without the use of logic. Our surface syntax is in the same

style of theManchester OWL syntax [32] and draws inspi-

ration from a syntax suggested for OWL 2 rules [33].

The main motivation for designing this syntax is to pro-

vide a means for creating ontological descriptions in a

more succinct way and without the use of special sym-

bols. We have formally defined the surface syntax and

its translation into nonmonotonic existential rules, but

we have not implemented an ontology editor that would

allow to write axioms in the new syntax. Similarly, we

have not conducted experiments evaluating the use of

surface syntax by application experts, but given that the

Manchester OWL syntax has been well received by non-

logicians [32] and there is active development of tools

for supporting more human readable ontology query lan-

guages [34], we believe that the suggested syntax has the

potential to facilitate curating tasks. Since our main focus

is to illustrate the transformation of molecular graphs and

chemical class definitions into rules, we omit the technical

details and describe our methodology by means of run-

ning examples. For a complete specification of the surface

syntax including a BNF grammar and mappings to non-

monotonic existential rules we provide an online technical

report [35].

Molecular structures

Next, we describe how a molfile can be converted into a

surface syntax axiom and subsequently a rule that encodes

its structure. We use as an example the molecule of

ascorbic acid, a naturally occurring organic compound
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Figure 1 Ascorbic acid representations.Molfile (left), molecular graph (top right) and description graph (bottom right) encoding the molecular
structure of ascorbic acid.

commonly known as vitamin C. The molecular graph of

ascorbic acid is depicted in the upper right corner of

Figure 1.

Conceptually, the structure of ascorbic acid can be

abstracted with the help of a directed labeled graph such

as the one that appears in the lower right corner of

Figure 1 and which in our framework is called descrip-

tion graph (DG) [9]. The description graph of a molecule

is a labeled graph whose nodes correspond to the atoms

of the molecule (nodes 1–13 for ascorbic acid) plus an

extra node for the molecule itself (node 0) and whose

edges correspond to the bonds of the molecule (e.g. (1,7))

plus some additional edges that connect the molecule

node with each one of the atom nodes (e.g. (0,1)); addi-

tionally, the atom nodes are labeled with the respective

chemical elements (e.g. o for node 1) and the bond edges

with the corresponding bond order (e.g. single for (1,7));

finally, the molecule node is labeled with molecule and

the edges that connect the molecule node with each of the

atom nodes are labeled with hasAtom. In order to sim-

plify the depiction of the ascorbic acid DG in Figure 1

a legend is used for the edge labels; all arrowless edges

are assumed to be bidirectional. In our setting, we fol-

low the implicit hydrogen assumption according to which

hydrogen atoms are usually suppressed (excluding cases

where stereochemical information is provided for the

formed bond and hydrogens are explicitly stated as in

node 13). Finally, we point out that both the nodes and

the edges can have multiple labels, allowing us to also

encode molecular properties, such as charge values for

atoms. The description graph of ascorbic acid can be

converted into the following surface syntax definition. In

the rest of the text we use alphanumeric strings start-

ing with a lower-case letter to denote predicates, that

is names of classes (e.g. ascorbicAcid) and properties

(e.g. hasAtom).

ascorbicAcidSubClassOf

molecule AND (hasAtom SOME Graph(Nodes(1 o, 2 o, 3 o, 4 o, 5 o, 6 o, 7 c, 8 c, 9 c,

10 c, 11 c, 12 c, 13 h)

Edges(1 2 single, 1 10 single, 2 7 double, 3 8 single

4 9 single, 5 12 single, 6 11 single, 7 1 single

8 7 single, 9 8 double, 10 9 single, 11 10 single

12 11 single, 13 10 single)))
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The surface syntax axiom above can next be trans-

lated into the rule below. In fact we need a separate

rule for each conjunct in the head but we use just one

rule here to simplify the presentation; for the sake of

brevity only one direction of the bonds appear and we

shorten an expression of the form ∧C1 . . . ∧ Cn with

∧n
i=1Ci:

ascorbicAcid(x) → molecule(x) ∧13
i=1 hasAtom(x, fi(x))

∧6
i=1 o(fi(x)) ∧12

i=7 c(fi(x)) ∧ h(f13(x))

∧ single(f8(x), f3(x)) ∧ single(f9(x),

f4(x)) ∧i=1,9,11,13 single(f10(x), fi(x))

∧i=5,11 single(f12(x), fi(x))∧i=1,8

single(f7(x), fi(x)) ∧ single(f11(x),

f6(x)) ∧ double(f2(x), f7(x))∧

double(f8(x), f9(x))

The rule above is a typical first-order implication with

a single atomic formula in the body and a conjunction of

atomic formulae in the head. Informally, the rule ensures

that every time that the ascorbic acid molecule instanti-

ated, its structure is unfolded according to its specified

DG. Thus, triggering of the rule implies that (i) new terms

that correspond to the DG’s nodes are generated (exclud-

ing node 0), e.g. f1(x) represents atom node 1 (ii) each

new term is typed according to the label of the rele-

vant node with the help of a unary atomic formula (e.g.

o(f1(x))) and (iii) each pair of terms with correspond-

ing nodes connected in the DG is assigned the respec-

tive label with the help of a binary atomic formula (e.g.

single(f1(x), f7(x))). In order to ensure disjointness of the

several molecular structures on the interpretation level,

distinct function symbols are used in the rule of each

molecule.

General chemical knowledge and chemical classes

Before presenting the modelling of various chemical

classes, we demonstrate how we can encode background

chemical knowledge with surface syntax axioms that can

subsequently be mapped to rules. Three such axioms

appear next.

bond SuperPropertyOf

single OR double OR triple

charged SuperClassOf

positive ORnegative

horc SuperClassOf

h OR c

Examples of such knowledge include the fact that

single and double bonds are kinds of bonds or that

atoms with positive or negative charge are charged; we

can also denote a particular class of atoms, e.g. atoms

that are hydrogens or carbons. The translation of the

above mentioned surface syntax axioms into rules appears

below.

single(x, y) → bond(x, y) negative(x) → charged(x) h(x) → horc(x)

double(x, y) → bond(x, y) positive(x) → charged(x) c(x) → horc(x)

triple(x, y) → bond(x, y)

For our experiments, we represented 51 chemical

classes using rules; we based our chemical modelling on

the textual definitions found in the ChEBI ontology [16].

We covered a diverse range of classes that can be cate-

gorised into four groups. For each class that we discuss, we

provide the surface syntax definition and its correspond-

ing translation into one or more rules. Certain classes

with an intricate definition (such as the class of cyclic

molecules that appears later) are not expressible in sur-

face syntax; these can be directly added as rules. Here

we show in full detail only a sample of the rules; the

complete set of rules is available in Additional files 1, 2

and 3 [36].

Existence of subcomponents The great majority of the

modelled chemical classes is defined via containment of

atoms, functional groups or other atom arrangements.

Examples of this type include carbon molecular enti-

ties, halogens, molecules that contain a benzene ring,

carboxylic acids, carboxylic esters, polyatomic entities,

amines, aldehydes and ketones. Next we show the surface

syntax axioms that define the classes of carbon molecular

entities, polyatomic entities, carboxylic acids and esters.

In the following axioms we use the keyword ‘GraphNL’

in contrast to the previously used ‘Graph’ as our surface

syntax grammar requires the use of the former when spec-

ifying nodes that are either labeled with negative literals

or are specified to be disjoint.

carbonEntity SuperClassOf

hasAtom SOME c

polyatomicEntity SuperClassOf

molecule AND (hasAtom SOME GraphNL(DisjointNodes(1, 2)

Edges()))

heteroOrganicEntity SuperClassOf

hasAtom SOMEGraphNL(Nodes (1c, 2NOT c NOT h)

Edges (1 2 bond))
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middleOxygenSuperClassOf

o AND(bondSOME GraphNL(DisjointNodes (1, 2)

Edges()))

carboxylicAcidSuperClassOf

molecule AND (hasAtom SOME GraphNL (Nodes (1 c, 2 o, 3 o NOT middleOxygen NOT charged,

4 horc)

Edges (1 2 double, 1 3 single, 1 4 single)))

carboxylicEsterSuperClassOf

molecule AND (hasAtom SOME Graph (Nodes (1 c, 2 o, 3 o, 4 c, 5 horc)

Edges (1 2 double, 1 3 single, 1 5 single, 3 4 single)))

One can find below the corresponding translations

into rules. We define as carbon molecular entities the

molecules that contain carbon; polyatomic entities are

the entities that contain at least two different atoms.

Heteroorganic entities are the ones containing carbon

atoms bonded to non-carbon atoms. Carboxylic acids

are defined as molecules containing at least one car-

boxy group (a functional group with formula C(=O)OH)

attached to a carbon or hydrogen; due to the implicit

hydrogens assumption we are not able to distinguish

between an oxygen and a hydroxy group and, so, we need

to specify that the oxygen of the hydroxy group is not

charged (NOT charged) and participates to only one bond

( NOT middleOxygen). Similarly, carboxylic esters con-

tain a carbonyl group connected to an oxygen ((C=O)O)

which is further attached to two atoms that are carbon or

hydrogen.

Exact cardinality of parts Here we describe chemical

classes of molecules with an exact number of atoms or of

functional groups. Examples include molecules that con-

tain exactly two carbons, molecules that contain only one

atom and dicarboxylic acids, that is molecules with exactly

two carboxy groups. The surface syntax axiom for the

definition of molecules with exactly two carbons appears

next.

exactly2CarbonsSuperClassOf

molecule AND hasAtom EXACTLY 2 c

The translation into rules follows. One can read-

ily verify that the surface syntax formulation is more

direct and intuitive than its equivalent translation into

rules.

molecule(x) ∧ hasAtom(x, y) ∧ c(y) → carbonEntity(x)

molecule(x) ∧ hasAtom(x, y1) ∧ hasAtom(x, y2) ∧ y1 �= y2 → polyatomicEntity(x)

∧2
i=1hasAtom(x, zi) ∧ c(z1) ∧ notc(z2) ∧ noth(z2) ∧ bond(z1, z2) → heteroOrganicEntity(x)

∧3
i=1hasAtom(x, yi) ∧ o(y1) ∧3

i=2 bond(y1, yi) ∧ y2 �= y3 → middleOxygen(y1)

molecule(x) ∧4
i=1 hasAtom(x, yi) ∧ c(y1) ∧ o(y2) ∧ o(y3) ∧

horc(y4) ∧ double(y1, y2) ∧ single(y1, y3) ∧ single(y1 , y4) ∧

notmiddleOxygen(y3) ∧ notcharged(y3) → carboxylicAcid(x)

molecule(x) ∧5
i=1 hasAtom(x, yi) ∧i=1,4 c(yi) ∧i=2,3 o(yi) ∧

horc(y5) ∧ double(y1, y2) ∧i=3,5 single(y1 , yi) ∧ single(y3 , y4) → carboxylicEster(x)
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molecule(x) ∧2
i=1 hasAtom(x, yi) ∧ c(yi) ∧ y1 �= y2 → atLeast2Carbons(x)

molecule(x) ∧3
i=1 hasAtom(x, yi) ∧ c(yi) ∧3

i=2 y1 �= yi ∧ y2 �= y3 → atLeast3Carbons(x)

atLeast2Carbons(x) ∧ not atLeast3Carbons(x) → exactly2Carbons(x)

Exclusive composition We next present classes of

molecules such that each atom (or bond) they contain sat-

isfies a particular property. These features are usually very

naturally modelled with the help of nonmonotonic nega-

tion. Examples include inorganic molecules that consist

exclusively of non-carbon atoms. In spite of the fact that

there are many compounds with carbons considered inor-

ganic, in this work we align our encoding with the ChEBI

definition of inorganic molecular entities (CHEBI:24835),

according to which no carbons occur in these entities;

however, if the modeller wishes it, it is straightforward to

declare exceptions within our formalism using nonmono-

tonic negation. Another example is the class of hydro-

carbons which only contain hydrogens and carbons; also

saturated compounds are defined as the compounds

whose carbon to carbon bonds are all single. The corre-

sponding surface syntax axioms appear next.

inorganicSuperClassOf

molecule AND hasAtom ONLY ( NOT c)

hydroCarbon SuperClassOf

carbonEntity AND hasAtom ONLY (h OR c)

unsaturatedSuperClassOf

molecule AND hasAtom SOME Graph ( Nodes (1 c, 2 c)

Edges (1 2 double))

unsaturatedSuperClassOf

molecule AND hasAtom SOME Graph (Nodes(1 c, 2 c)

Edges (1 2 triple))

saturatedSuperClassOf

molecule AND NOT unsaturated

Please note that one can use more than one surface syn-

tax axioms (and thus rules) to define classes that emerge as

a result of different structural configurations, which is the

case for saturated molecules. Below we list the respective

translation into rules.

molecule(x) ∧ notcarbonEntity(x) → inorganic(x)

hasAtom(x, z) ∧ notcarbon(z) ∧ nothydrogen(z) → notHydroCarbon(x)

carbonEntity(x) ∧ notnotHydroCarbon(x) → hydroCarbon(x)

molecule(x) ∧ hasAtom(x, z1) ∧ carbon(z1)

hasAtom(x, z2) ∧ carbon(z2) ∧ double(z1, z2) → unsaturated(x)

molecule(x) ∧ hasAtom(x, z1) ∧ carbon(z1)

hasAtom(x, z2) ∧ carbon(z2) ∧ triple(z1 , z2) → unsaturated(x)

molecule(x) ∧ not unsaturated(x) → saturated(x)

Cyclicity-related classes These chemical classes include

the category of molecules containing a ring of any length

as well as other definitions that depend on the cyclicity

of molecules, such as alkanes which are defined as satu-

rated non-cyclic hydrocarbons. Assuming the (somewhat

more technical) definition of cyclic molecules, the surface

syntax axiom for alkanes appears next.

alkaneSuperClassOf

saturated AND hydroCarbon AND NOT cyclic

The corresponding rule translation follows.

saturated(x) ∧ hydroCarbon(x) ∧ notcyclic(x) → alkane(x)

Determining subclass relations

Finally, we demonstrate how meaningful subsumptions

can be derived using a KB containing the rules outlined

in the previous two sections. In order to determine the

superclasses of a certain molecule, we extend the KB with

a suitable fact (i.e., a variable-free atomic formula) and

we examine the model that satisfies the KB under the

stable model semantics (the addition of the fact and the

examination of the model is done automatically by our

implementation). A formal definition of the stable model

semantics is provided by Gelfond and Lifschitz [37]. Intu-

itively, the stable model of a KB is the minimal set of facts

that are derived by exhaustively applying the existing rules

under a particular rule order; a rule is applied if its posi-

tive body can be matched to the so far derived facts and

no atom of the negative body is in the already produced

set of facts for the said matching.
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Figure 2 Architecture of LoPStER. Stages of the classification process using LoPStER.

The initially added fact is the molecule name predicate

instantiated with a fresh constant so that the rule that

encodes the structure of thatmolecule is triggered. For the

case of ascorbic acid, if we append the fact ascorbicAcid(a)

to the previously described KB, we obtain the stable model

that appears below.

From the stable model atoms we can infer the super-

classes of ascorbic acid, that is we deduce that ascor-

bic acid is—among others—an unsaturated, polyatomic,

heteroorganic, cyclic molecular entity that contains car-

bon and a carboxylic ester. If there is no relevant atom

for a chemical class in the stable model, then we con-

clude that the said class is not a valid subsumer, e.g.

since carboxylicAcid(a) is not found in the stable model,

carboxylic acid is not a superclass of ascorbic acid.

Decidability check

TheKB discussed above contains rules with function sym-

bols in the head, such as the rule used to encode the

molecular structure of ascorbic acid. These rules may

incur non-termination during the computation of the sta-

ble model due to the creation of infinitely many terms.

In order to ensure termination of our reasoning pro-

cess and thus decidability of the employed formalism,

we perform a decidability check on the constructed KB.

In a nutshell, the decidability check (also known and as

model-summarising acyclicity [38]) involves transforming

the rules of the KB and inspecting the stable models of the

transformed KB for the existence of a special symbol. If

the KB passes the decidability check, then termination is

guaranteed; this is the case for the types of KBs that were

Stable model for ascorbic acid

Input fact:ascorbicAcid(a)

Stable model: ascorbicAcid(a), molecule(a), hasAtom
(

a, afi

)

for 1 ≤ i ≤ 13, o
(

afi

)

for 1 ≤ i ≤ 6,

c
(

afi

)

for 7 ≤ i ≤ 12, h
(

af13

)

, single
(

af8, a
f
3

)

, single
(

af9, a
f
4

)

, single
(

af12, a
f
i

)

for i ∈ {5, 11},

single
(

af10, a
f
i

)

for i ∈ {1, 9, 11, 13}, single
(

af7, a
f
i

)

for i ∈ {1, 8}, single
(

af11, a
f
6

)

, double
(

af2, a
f
7

)

,

double
(

af8, a
f
9

)

, bond
(

af8, a
f
3

)

, bond
(

af9, a
f
4

)

, bond
(

af12, a
f
i

)

for i ∈ {5, 11}, bond
(

af11, a
f
6

)

,

bond
(

af10, a
f
i

)

for i ∈ {1, 9, 11, 13}, bond
(

af7, a
f
i

)

for i ∈ {1, 8}, bond
(

af2, a
f
7

)

, bond
(

af8, a
f
9

)

,

horc
(

afi

)

for 7 ≤ i ≤ 13, carbonEntity(a), polyatomicEntity(a), heteroOrganicEntity(a),

middleOxygen
(

af1

)

, carboxylicEster(a), atLeast2Carbons(a), atLeast3Carbons(a),

notHydroCarbon(a), unsaturated(a), cyclic(a)

Stable model of the KB with the input fact ascorbicAcid(a) and the rules described in Methods; fi(a) is

abbreviated with afi for 1 ≤ i ≤ 13.
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previously described. Technical details of the aforemen-

tioned condition are out of the scope of this text and can

be found in the relevant sources [38].

Prototype implementation

The current section provides an overview of LoPStER

(Logic Programming for Structured Entities Reasoner)

the prototype we developed for structure-based chemical

classification. The implementation is wrapped around the

DLV system, a powerful and efficient deductive database

and logic programming engine [39]. DLV constitutes the

automated reasoning component used by LoPStER for

stable model computation of a rule set. Figure 2 depicts

the basic processing steps as well as the different files

that are parsed and produced by LoPStER. LoPStER is

implemented in Java and is available online [36]; both

LoPStER and the rules modelling chemical classes are

open-source and released under GNU Lesser GPL. Next,

we describe in more detail the several stages of execution.

1. CDK-aided parsing. LoPStER parses the molfiles

[40] of the molecules to be classified using the
Chemistry Development Kit Java library [41]. The

molfile is a widely used chemical file format that

describes molecular structures with a connection
table; e.g. the molfile of ascorbic acid appears on the

left of Figure 1. For each molecule, a description

graph (e.g. Figure 1 bottom right) representation is
generated from its molfile according to a

transformation as the one described for ascorbic acid.
2. Compilation of the KB. For each molecule the

description graph representation is used to produce a

set of rules that encode the structure of the molecule,
following the translation that was discussed in the

previous section. These rules along with the

classification rules and the facts necessary to
determine subclass relations are combined to

produce DLV programs (i.e. sets of rules) that are
stored as plain text files on disk. In particular two

kinds of DLV programs are created for each

molecule, the program needed to perform the
decidability check as described before and the

program needed to compute subclass relations

between the molecules and the chemical classes.
3. Invoke DLV for decidability check. During this

step, the model of the program, which was produced

in the previous step for acyclicity testing, is
computed. If the check is successful, then execution

proceeds to the next stage; otherwise, the program is
exited with a suitable output message.

4. Invoke DLV for model computation. This is the

stage where DLV is invoked to compute the stable
model of the KB. Due to the check of the previous

step, the computation is guaranteed to terminate.

5. Stable model storage. At this point, the stable

model computed by DLV is stored in a file on disk to

enable subsequent discovery of the subclass relations.
6. Subsumptions extraction. This is the final phase

where the stable model file is parsed in order to

detect the superclasses of each molecule. All the
subsumee-subsumer pairs are stored in a separate

spreadsheet file on disk.

Results

Empirical evaluation

In order to assess the applicability of our implementa-

tion, we measured the time required by LoPStER to

perform classification of molecules. To obtain test data

we extracted molfile descriptions of 500 molecules from

the ChEBI ontology. The represented compounds were of

diverse size, varying from 1 to 59 atoms. Next, we inves-

tigated the scalability of our prototype by altering two

different parameters of the knowledge base, namely the

number of represented molecules and the type of mod-

elled chemical classes. Initially, we constructed ten DLV

programs each of which contained rules encoding 50 · i

different compounds, where 1 ≤ i ≤ 10, and rules

defining the chemical classes (a sample of which was pre-

viously described) excluding the cyclicity-related classes

(48 classes in total). Next, we repeated the same construc-

tion but this time including the rules for the cyclicity-

related classes (51 classes in total). In the rest of the

section, we refer to the first setting as ‘no cyclic’ and to the

second as ‘with cyclic’.

Additionally and in order to optimise the performance,

we explored how classification times fluctuate depending

on the size of DLV programs. In particular, we parti-

tioned the DLV programs into modules, we measured

classification times for each module separately and we

summed up the times. Each module contains the facts

and the rules describing a subset of the molecules rep-

resented in the initial DLV program; the rules defining

chemical classes are included in each one of the modules.

Thus, the size of each module depends on the number of

encoded molecules. We tested modules of various sizes as

well as DLV programs without any partitioning for both

‘no cyclic’ mode and ‘with cyclic’ mode. Modifying the

size of the module had a clear impact on the measured

times and performing classification with the modularised

knowledge base was always quicker than with the unpar-

titioned one; we observed the shortest execution times for

module size 50 when testing in ‘no cyclic’ mode and for

module size 20 when testing in ‘with cyclic’ mode; the tim-

ings we provide next refer to the aforementioned module

sizes.

Table 1 summarises the classification times for the pre-

viously described KBs. All the DLV programs that were

tested passed the decidability check. The experiments
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Table 1 Timemeasurements for classification

Nomolecules No of rules Time no cyclic Time with cyclic
(sec) (sec)

50 3614 4.81 7.85

100 6832 3.41 8.69

150 18072 4.25 9.97

200 23746 4.55 11.88

250 28502 6.60 18.71

300 31892 8.27 20.63

350 35046 8.14 22.58

400 38095 9.30 24.23

450 41536 9.94 29.68

500 43629 10.40 32.79

The first column is the number of molecules, the second is the number of rules

in the corresponding rule set and the third and fourth are measurements in

seconds for ‘no cyclic’ and ‘with cyclic’ mode, respectively.

were performed on a desktop computer (2GHz quadcore

CPU, 4GB RAM) running Linux. The first column dis-

plays the number of molecules, the second column the

number of rules contained in the corresponding DLV pro-

gram and the third (fourth) column the time needed to

perform classification in ‘no cyclic’ (‘with cyclic’) mode.

We only display the number of rules for the ‘no cyclic’

mode because there are only six more rules in the DLV

programs with cyclicity-related definitions. The classifica-

tion experiments for each knowledge base were repeated

three times and the results were averaged over the three

runs; also, the durations of Table 1 are inclusive, that is

they count the time spent from before the molfiles parsing

until after the subsumptions extraction. Figure 3 depicts

the plots of the time intervals appearing in Table 1 both

with regard to the number of molecules and the number

of rules contained in the respective DLV program.

The performance results of Table 1 are encouraging for

the practical feasibility of our approach: the classification

of 500 molecules was completed in less than 33 secons

for the suite of 51 modelled chemical classes. The drop

in classification times between the 50 and 100 molecules

case is potentially due to JVM startup overhead. One

can also observe that the rules encoding cyclicity-related

classes introduce a significant overhead for the classifica-

tion times. In fact, it is the class that recognises molecules

with cycles of arbitrary length that incurs the performance

penalty. The rules that encode the class of cyclicmolecules

need to identify patterns that are extremely frequent in

molecular graphs; as a consequence, the amount of com-

putational resources needed to detect ring-containing

molecules is much higher. However, since our class defini-

tion for cyclic molecules detects compounds with cycles

of variable length, which is a significant property for the

construction of chemical hierarchies, we consider this

overhead acceptable.

Discussion and related work

Concerning expressive power, the current approach

allows for the representation of strictly more chemical

classes in comparison with other logic-based applica-

tions for chemical classification. Villanueva-Rosales and

Dumontier [19] describe an OWL ontology of functional

groups for the classification of chemical compounds; in

their work, they point out the inherent inability of OWL to

represent cyclic functional groups and how this impedes

the use of OWL in logic-based chemical classification. As

a remedy, Hastings et al. [21] employ an extension of OWL

[42] for the representation of non-tree-like structures

and, thus, for the classification of molecular structures.

However, the used formalism only allows for the iden-

tification of cycles of fixed length and with alternating

single and double bonds. In the current approach we are

Figure 3 Classification times. Curves of classification times with respect to number of molecules (left) and number of rules (right). The lower line
is for ‘with cyclic’ mode and the upper for ‘no cyclic’ mode.
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able to recognise molecules containing cycles of both arbi-

trary and fixed length and without requiring a particular

configuration of bonds.

Moreover, in both approaches outlined above the

adopted open world assumption of OWL prevents one

from defining structures based on the absence of cer-

tain characteristics. In our approach we operate under the

closed world assumption which permits the definition of

a broad range of chemical classes that were not express-

ible before such as the class of inorganic, hydrocarbon

or saturated compounds. Finally and in comparison with

previous work [9], we take full advantage of the suggested

formalism by specifying a much wider range of chemi-

cal classes and we do not require from the modeller a

precedence relation between the represented structures.

In terms of performance, the classification results

appear more promising than previous and related work.

Hastings et al. [21] report that a total of 4 hours was

required to determine the superclasses of 140 molecules,

whereas LoPStER identifies the chemical classes of 500

molecules in less than 33 seconds. LoPStER is quicker in

comparison with previous work too [9] where 450 seconds

were needed to classify 70 molecules (two orders of mag-

nitude faster). Please note that both cases discussed above

considered a subset of the chemical classes used here.

Regarding the significant change in speed, we identify the

following two factors that could explain it. First, DLV is a

more suitable reasoner for our setting due to its bottom-

up computation strategy as well as its active maintenance

team and frequent releases. Second, we employ a more

efficient condition (model-summarising acyclicity [38]

instead of semantic acyclicity [9]) in order to obtain termi-

nation guarantees which allows for a more prompt decid-

ability check. Finally, the classification times reported here

are slightly improved in comparison with a preliminary

version of this paper due to some modelling optimisations

and the use of a recent new version of DLV.

While conducting the experiments we discovered a

number of missing and inconsistent subsumptions from

the manually curated ChEBI ontology; here we only

mention a few of them. As one can infer from the

molecular graph of ascorbic acid appearing in the top

right of Figure 1, ascorbic acid is a carboxylic ester as

well as a polyatomic cyclic entity. In spite of the fact

that these superclasses were exposed by our classifica-

tion methodology, we were not able to identify them

in the ChEBI hierarchy. Figure 4 shows the ancestry

of ascorbic acid (CHEBI:29073) in the OWL version of

the ChEBI ontology; none of the concepts cyclic entity

(CHEBI:33595), polyatomic entity (CHEBI:36357) or car-

boxylic ester (CHEBI:33308) is encountered among the

superclasses of ascorbic acid. Moreover, ascorbic acid is

asserted as a carboxylic acid (CHEBI:33575) which is not

the case as it can be deduced by the lack of a carboxy group

in the molecular graph of ascorbic acid (the most com-

mon tautomer of which appears in the top right corner of

Figure 1). We interpret the revealing of these modelling

errors as an indication of the practical relevance of our

contribution.

The chemical classification methodology that we

present here is similar to other classification efforts

based on semantic technologies, such as classification

Figure 4 Ascorbic acid superclasses. Superclasses of ascorbic acid for the ChEBI OWL ontology release 102 as illustrated by the ChEBI
graph-based visualisation interface.
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of proteins [7] or lipids [8]. Wolstencroft et al. use a

bioinformatics tool to extract composition information

from protein descriptions and subsequently translate this

information intoOWL axioms; these axioms are next used

to classify the proteins using a DL reasoner. Chepelev

et al. use a cheminformatics tool to process lipid descrip-

tions and produce annotated lipid specifications that are

then classified using an OWL ontology. The motivation

of these two investigations is similar to ours, i.e. alle-

viation of biocurating tasks; what distinguishes the two

approaches from ours is the use of a different ontology

language and the role that this language plays during clas-

sification. In particular, in our work we use nonmonotonic

existential rules instead of OWL which, unlike OWL, are

able to capture cyclic structures. Also, in the sequence

of steps followed by our classification process we do not

rely on a cheminformatics functionality to algorithmi-

cally annotate the molecular descriptions, but instead the

identification of structural features forms integral part of

reasoning. The framework we suggested can be suitable

for the domains of lipids and proteins, as long as they are

restricted to structures of finite size; however empirical

evaluation would be needed to assess the suitability of the

framework in practice. Regarding the application of our

prototype to ChEBI classification, it could be used to clas-

sify ChEBI molecules under the chemical classes defined

here, but more curating effort would be needed to model

the thousands of chemical classes that appear in ChEBI.

In this work, we represent and reason about chemi-

cal knowledge using an ontology language. However, the

majority of axioms constituting the ontology, that is the

molecule descriptions, are sourced through molfiles that

are parsed using cheminformatics libraries. The informa-

tion provided by these files includes connectivity between

atoms, types of atoms and bonds and charges of atoms.

This information is converted into logical axioms that

are subsequently processed by an automated reasoning

algorithm to identify the chemical classes of the

molecules. This approach has the advantage of allow-

ing the knowledge modeller to define new classes in a

declarative way, that is without the need of writing code

for detecting their subsumees. However, a feature that

could be detected using cheminformatics algorithms and

become part of the ontology axioms is the existence of

ring atoms. The benefits of such a modification could be

twofold: it could considerably speed up the computation

of all cyclicity-related classes (e.g. determining whether an

atom is a ring atom can be done very quickly using the

CDK library) and at the same time could allow for the def-

inition of strictly more cyclicity-related classes, such as

carbocyclic compounds.

An alternative approach could be to build rules from

chemical identifiers other thanmolfiles, such as InChi [43]

or preferred IUPAC names [44]. In particular, InChi with

its abilitiy to encode isotopical and stereochemical infor-

mation (which can be critical for biological applications)

could lead to richer chemical modelling. Also, widely used

chemical databases, such as ChemSpider [45], could be

used as a resource for adding to rules information about

molecular properties.

A category of molecules that our framework does not

cover is tautomers. A tautomer is each of two or more

isomers that exist together in equilibrium, and are readily

interchanged by migration of an atom (usually hydrogen)

or group within the molecule. InChi handles tautomerism

by allowing a compound to contain mobile hydrogen

atoms, that is some hydrogens are marked as being able

to occur in different positions. This is an approach that

could be adopted by our methodology too, if we extended

our formalism with the ability to represent disjunctive

hasParticipant

locatedIn

reactant

product

Figure 5 Transport reaction description graph.
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hasPart

linked

Figure 6 Jasmonic acid description graph.Molecular graph of jasmonic acid (left) and description graph of jasmonic acid based on the
functional groups partonomy (right).

information. However, enriching nonmonotonic existen-

tial rules with disjunction would require to alter the design

and implementation of the reasoning algorithm, so treat-

ing tautomers could be part of a future extension of our

framework.

Conclusion
We presented an implementation that performs logic-

based classification of chemicals and builds upon a sound

and complete reasoning procedure for nonmonotonic

existential rules; our prototype relies on the DLV system

and is considerably quicker than previous approaches. For

our evaluation, we represented a wide variety of chem-

ical classes that are not expressible with OWL-based

formalisms and described a surface syntax that could

enable cheminformaticians to define ontological descrip-

tions of chemical entities intuitively and without the need

to use first-order logic notation; additionally, our software

revealed subclass relations that are missing from theman-

ually curated ChEBI ontology as well as some erroneous

ones. We demonstrated thus the capabilities of a datalog-

based ontology language that displays a favourable trade-

off between expressive power and performance for the

purpose of structure-based classification.

Future research

For the future it would be interesting to further apply

our framework towards supporting classification of other

complex biological objects. For instance, one can exploit

the expressive power of rules to represent biochemical

processes and infer useful relations about them. Figure 5

depicts a description graph abstraction of a chemical reac-

tion example discussed by Bölling et al. [46]. The process

consists of parts that are arbitrarily interconnected and

can thus be naturally modelled using our formalism. In the

same vein, our methodology could provide rigorous defi-

nitions for the representation of lipid molecules that can

be systematically classified according to their structural

features. Low et al. [47,48] introduced the OWL DL

Lipid Ontology which contains semantically explicit lipid

descriptions. One could achieve more accurate modelling

by casting lipids in terms of rules that capture frequent

cyclic patterns in a concise way; for example, Figure 6

illustrates a description graph for jasmonic acid—one

of the lipids encountered in the abovementioned OWL

ontology.

Further work could involve the building of an ontology

editor for the creation of surface syntax expressions and

their automatic conversion into nonmonotonic existential

rules. We will also seek to extend our prototype to accom-

modate subsumption between chemical classes so as to

generate a complete multi-level chemical hierarchy using

ideas from our recent work [49,50]. We could extend our

formalism with numerical value restrictions [51] in order

to express e.g. classes depending on molecular weight.

Moreover, it could be of interest exploring the integration

of our prototypewith Protégé [52], Life Sciences platforms

[53] and chemical structure visualisation tools [54,55] as

well as defining a mapping of the introduced formalism to

RDF [56].

Additional files

Additional file 1: Timemeasurements and produced hierarchy of the

classification experiments. Description of data: Full list of computed
subsumptions and time measurements for each of the five experiments
discussed in Empirical evaluation.

Additional file 2: Logic programwithout cyclicity-related rules.

Description of data: Set of rules modelling the chemical classes excluding
the cyclicity-related classes.

Additional file 3: Complete logic program. Description of data: Set of
rules modelling all the chemical classes.
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