
A Rule-Based View sf Query Optimization

Johann Christoph Freytag
IBM Almaden Research Center

650 Harry Road, San Jose, CA 95120-6099

Abstract
The query opbnuzer Is an important system component of a rela-
tional database management system (DBMS) It 19 the responslbtity
of ti component to translate the user-subnutted query - usually
wntten m a non-procedural language - mto an efficient query
evalwtion plan (QEP) which is then executed agamst the database
The research bterature describes a wde variety of optmuzation
strateges for tiferent query languages and Implementation envl-
ronments However, very httle IS known about how to design and
structure the query optmuzation component to nnplement these
strateges

Thus paper proposes a fust step towards the design of a modular
query optlmw We descnbe its operations by transformanon rules
which generate Mferent QEPs from uut~al query spec&at~ons As
we d&ngmsh tiferent aspects of the query optmuxabon process,
our hope ts that the approach taken m this paper wdl wntnbute
to the more general goal of a modular query optmuzer as part of
an extensible database management system

1, Introduction

An nnportant component of today’s relatIonal database management
systems (DBMSs) 1s the query optumzer Usually, the user’s query,
expressed m a non-procedural language, describes only the comhtions
that the final response must satisfy It 1s the optmuxer’s responslbtity
to generate a query evaluation plan (QEP) that computes the
requested result efflclently Many different strate@es for fmdmg a
QEP which evaluates a subnutted query efficiently have been pro-
posed Jarke/Koch and Yu/Chang Bve comprehensrve ovemews
on various query optmnzatlon techmques for centrahzed and dr+
tnbuted DBMSs, respectively [JARK84] [YUCH84]

The difficult task of fmdmg a good, and possibly the best, QEP
has frequently led to the Implementation of a highly sophsticated
but complex optmnzer for relational DBMSs The design and em-

plementation of 0us system component often make changes or
extensions m any of zts parts very tiflcult, or even nnposslble

To overwme the above problems, this paper presents a first step
towards a mod&r query optzmuer The goal of such a component
1s to clearly separate the tiferent aspects of query optmuzation m
its design and Implementation as much as possible, thus makmg It
easier to make changes to one part of the optutuzer anthout af-
fectmg others Instead of addressmg the complex task of a modular
query optmuzer at once, we concentrate on one major aspect of
the optmuxation process The paper describes the translation of a
user-subnutted query mto an algebra-based QEP by trunsfonnutton
rules We demonstrate that transformation rules provide an adequate
descnption of the optmuzation process m a h&level, Implemen-
tation mdependent way Furthermore, we &uss how to use the
set of transformation rules for the unplementatIon of a query
optmuzer to effictently generate QEPs from user-subnutted quenes

The design of a modular query optmnzer IS mouvated by the
general need for extensible DBMSs that can be custonuxed for
tiferent apphcation envuonments Projects such as EXODUS
[CARE86], PROBE [DAYA85], Geneses [BAT086], Postgres
[STON86], and Starburst [SCHW86] address the question of ex-
tenslbtity of relational DBMSs to support storage and retneval
reqmrements for apphcations such as VLSI design, expert systems,
or CAD/CAM Dependmg upon the needs of these vanous apph-
ca0ons, one would hke the optmnzer component to extend to new
query language wnstructs, to mclude new access methods as op-
erations mto QEPs, to explore drfferent optmuxation strategtes, to
use new cost models, etc We show that the rule-based descnpbon
of the translation from a user-subnutted query m QEPs makes It
possible to easdy change or extend the set of possible QEPs that
the query optmnzer can generate

The paper 1s orgamzed as follows In the next section we ~ISCWS
query optmuzation and query evaluation m some more detad and
motivate our approach wbch 1s to apply program transformation
techmques m this wntext In Section 3 we define the source
language and the target language of the query optmuzation process
before Section 4 presents the tiferent sets of transformation rules
necessary to translate non-procedural query speclficatlons mto al-
gebrmc QEPs Fmally, Setion 5 outhnes possible extensions and
&cusses some Implementation-related aspects of usmg the rule-
based approach to query optmuzation

PermissIon to copy wlthout fee all or part of this material 1s granted provided that the copies are not made or distributed for dnect commercial
advantage, the ACM copyrlght notlce and the title of the pubhcatlon and Its date appear, and notlce IS given that copying IS by permlsslon of the
Association for Computmg Machmery To copy otherwlse, or to repubhsh, reqmres a fee and/or specific permlsslon

0 1987 ACM O-89791-236-5/87/0005/0173 7%

173

2. Query Optimization and
Evaluation

Most relational DBMSs consist of two major components the
logcal database processor (LDBP) and the physlcal database pro-
cessor (PDBP) For example, m System R, the LDBP I called the
RelatIonal Data System (RDS) and the PDBP IS called the Relational
Storage System (RSS) [ASTR76]

For the LDBP, we d&mgmsh three deferent processmg phases
that translate a user query mto a program which can then be
executed by the PDBP The three phases are shown m Figure 1

User-Submitted Query
I

--------------_-----

I Query Validation I
-----w--------------

I
---_-------_---__--_--
I Query Optimization I

Q;P

----------------_-----
I Query Translation I
--_------------_---_--

I
Program executable

by the POBP

me 1 Proceasmg Phases of the LDBP

The first phase, the vabdatzon phase, checks the query for syntactic
and semantic correctness, performs stew resolution, and possibly
checks authonzatlon before generatmg some mtemal representation
of the query Durmg the second phase, the optrmzzutzon phase, the
LDBP decides on a good, possibly best, evaluation strategy for the
user-subnutted query Based on the mformation about the repre-
sentation of the data accessed, Its location m the case of a &stnb-
uted DBMS, and the available evaluation strateges, the optmuzer
generates a query evaluation plan (QEP) Fmally, the thud phase,
called the tmnrlat~on phase, transforms the QEP mto a representation
wbch guarantees its fast execution by the PDBP

In many ways, the three-phase translation of a database query mto
a program executable by the PDBP resembles a specmhzed progmm
tmnsfonnatzon problem @3ACK78, BELL84, BURST77, DARL761

Generally speakmg, program transformation pronuses to provtde a
comprehenslve solution to the problem of producmg programs
which try to solve severalbcompatlble goals simultaneously On
the one hand, programs should be correct and clearly structured,
thus allowing easy moddlcatlon On the other hand, one expects
them to be executed efficiently

The transformatlonal approach tnes to separate these two concerns
by dlvldmg the programmmg task mto two steps The first step
concentrates on producmg programs that are wntten as clearly and
understandably as possible without consldermg efficiency Bsues If
lmtlally the question of efficiency 1s completely Ignored, the resultmg
program m&t be wntten very comprehensibly, but nnght be highly

mefflclent or even unexecutable The second step then successively
transforms pro& mto more efficient ones - possibly for a par-
ticular machme envuonment - usmg methods that preserve the
meamng of the ongmal program The kmd of improvements dunng
the second step goes beyond those acbevable durmg the optmuzatlon
phase of compders for conventional programmm g languages

In many ways, these mtentions gmded the design of query languages
for relational database systems, such as QUBL [STON76] or SQL
[ASTR76] Both languages pernut the user to express database
requests m a clear and understandable form that describes properties
of the requested result w&out considermg aspects of an efficient
evahmtion The DBMS e responsible for translatmg the query mto
an executable form whde preservmg its ongmal meamng

In [FREY86a, FREY86b, FREY86c], we apphed program trans-
formation methods to the thud phase of the LDBP, the translation
phase There we showed how to successfully apply techmques
developed m the area of program transformation to problems m
database management systems The algonthms proposed there are
based on sets of transformation rules that generate iterative pro-
grams from QEPs Theu use allows the transformation algonthm
to be easdy extended to handle more complex quenes It IS only
a natural step to wew the second processmg step, le query optl-
mrzation, as another specmhzed program transfonnauon problem
and to apply smular techmques to this processmg phase of the LDBP

Transformation rules, however, do not completely descnbe all as-
pects of query optmuzatron They only determme the source lan-
guage and the target language of thw: processmg phase and defme
how to denve tiferent QEPs m the defined target language from
an nntml query spemfied m the source language In tlus paper we
have chosen a general, non-procedural query representation to be
the source language and an extended relational algebra to be our
target language, both of which are defined m more detad m the
followmg section The rule-based optmuzation describes the central
part of the optmuzation algorithm for SQL [SELI79] The algorithm
1s complex enough to serve as a reahst~c test case to prove the
power of the rule-based descnptlon

In our opuuon, there are two other major elements which are
necessary to completely determme all aspects of query optmuzatlon
On the one hand, we need to descnbe m which order to generate
tiferent QEPs to find a good can&date for the evaluation of the
subnutted query, 1 e , we must define how to search through the set
of all possible QEPs Search strategtes, such as a greedy search, a
breadth-first or depth-first search wth or wthout dynanuc pro-
grammmg, or a k-step look-ahead search are commonly used for
011s purpose On the other hand, we need to compare tiferent
QEPs decldmg whuzh ones are better than others Usually, tti
decision 1s based on the cost of usmg vanous resources, such as
CPU, dtsk I/O, number of messages etc More detads can be.
found m Jarke and Koch [JARK84], and Yu and Chu [YUCH84]

Usmg transformation rules for query optmuzation has attracted
other researchers as well The EXODUS project especially mves-
tigates how to mclude rules mto an architecture of an optrmuer
genemtor [GRAJ387, CARE!861 The work by Graefe and Dewitt
focuses on the archtectural aspects, the design, and the Implemen-
tation of such a tool [GRAE87] They demonstrate to some extent
that It IS possible to separate the generation of QEPs from the cost
function and the search strategy

Although our research goals are qmte smnlar to thelrs, we would
hke to mvestlgate the fundamentals of query optmuzation and
necessary concepts for a modular query opmer first, before
designmg and nnplementmg an optmuzer generator It IS the pur-
pose of this paper to concentrate on the first aspect of query
optmuzation, that I, the rule-based descnption of how to generate
tiferent QEPs from an nutml query spectiication We demonstrate
m the followmg sectlons that transformation rules are adequate to

174

express tb~s aspect of optmuzation m a b@-level, Implementation-
Independent manner

3. The Source Language
and the Target Language of
Query Optimization

Thus section mtroduces the source language and the target language
for query optmuzation As the source language we use conjunctrve
querzes that exclude subquenes (m the SQL sense) and aggregate
quenes of any kmd As we shall buss later, our choice does not
impose any restnctlons on the rule-based transformation We shall
demonstrate that our sets of rules can easdy be extended to handle
more complex quenes

To descnbe the transformation tiormly and mdependent of any
particular database query language, we assume that the nutml query
has the Lep-bke form

(SELECT
<project-bst> <selectgrcd-bst>
<]omgred-hst> <table-hst>)

which represents the source for the optmuzation phase The &-
ferent parts of the bst descnbe the proJectIon of the resuitmg
tuples, the pre&cates appbcable to smgle tables, the Jam predcates,
and the tables accessed, respectively

Example 1

We use the followmg database for the examples m this paper

EMP (Emp#, Name, Salary, Dept, Status)

PAPER (Emp#, Title, Subject, Year)

CONF (Emp#, CName, Year)

Each tuple m the relation EMP describes an employee by his or
her employee number, name, salary, department, and status Re-
latlon PAPER stores the employees who wrote papers recordmg
the title, the subject, and the year of the pubhcatlon Relation
CONF records the attendance of conferences by employees m a
certam year For the query

Ftnd the name of all professors who pubhshed a database paper
m the same year (1s they attended the VLDB conference

the mtemal representation looks as follows

(SELECT
(EMP Name)
((EMP Status=Prof)
(PAPER SubJect=DB) (CONF CName=VLDB))

((EMP Emp#=PAPER Emp#)
(EMP Emp#=CONF Emp#)
(PAPER Year=CONF Year))

(EMP, PAPER, CONF))

II
As our target language we propose a small set of algebrmc operators
that are sufficient to express QEPs for the evaluation of those
quenes we consider We use an extended relatronal algebra SUNX
the kmd of operators go beyond those of regular relational algebra

For example, we mtroduce operators to spcctiy the use of a nested-
loop Jam or a merge-Jam, the sort of a relation, an mdex access,
or a relation access All operators mampulate some mcommg bst
of tuples that are ather denved from a relation referenced by
name, or whch are the output of some other operator, and generate
a new hst of tuples

(FSCAN <tpred> rel)

scans a relation whde applymg the bst of prehcates m
<tJred>, which nught be empty

(ISCAN <lpred> mdex <tgred> rel)

scans a relation usmg the n&x to apply the @ven mdex
predmates m <idred> before scannmg the table and applymg
predcates m <tpred> Both predcate bsts nught be empty

(PROJECT <proJ-hst> hst)

denotes the project operator whch prolects all mcommg tuples
onto those attnbutes specfimd by the projection ltst

(LJOM <Jomgred> hstl bst2)

denotes a nested loop Jam with hstl bemg the outer bst and
Irst2 bemg the mner bst of tuples

(MJOIN <]omqred> bstl bst2)

de&es a merge jam wtb Itstl bemg the outer hst and lrst2
bemg the znner hst of tuples

(SORT <attr-hst> hst)

sorts and outputs a hst of tuples wluch are ordered accordmg
to the attnbute bst

The current set of operators 1s not the most complete one For
example, rt does not mclude operations to select a hst of tuples
from an mput bst, to create a temporary relation, or to evaluate
SQL subquenes We shall demonstrate later how to extend tlus
set of operators to a more complete set

Example 2

Assummg that there exists an mdex I1 on EMP Status one pos-
sible QEP for the query m Example 1 nught look as follows

(PROJECT (EMP Name)
(MJOIN

((EMP Emp#=PAPER Emp##)
(CONF Year=PAPER Year))
(SORT (PAPER Emp#, PAPER Year)

(FSCAN ((PAPER SubJect=DB)) PAPER))
(SORT (EMP Emp#, CONF Year)

(LJOIN ((EMP Emp#=CONF Emp#))
(ISCAN ((Status=Prof)) I1 () EMP)
(FSCAN ((CONF CName=VLDB)) CONF)))))

0
Durmg the transfonuatlon of the user-subnutted query mto a QEP,
we need to generate some “mterme&atc” expresslons that use the
foUowmg three operators

(SCAN <selgred> rel)

denotes a relation scan mcludmg Its selections w&out speclfymg
the access path

(JOIN <Jomgred> <scan-hst>)

175

denotes the 1om of an artntrary number of tables anthout
speclfymg then order <scan-hst> IS a hst of expressIons,
each of which 1s scatmmg a relatton

(TJOIN <Jomgred> hstl hst2)

denotes a two-way JOU v&out specfiymg what kmd of JOIII

to perform

In the next section we shall use all of the above operators m
expressions generated by the Mferent sets of transformation rules

4. The Rule-Based
Generation of Query
Evaluation Plans

This se&Ion defmes Mferent sets of transformation rules that
successively translate a user-subrmtted query mto Mferent QEPs
The transformation rules that we present m the next subsections
reflect the unportant aspects of the optmuzatton algorithm as de-
scribed by Sehnger et al [SELI79] Their algorithm restricts the
kmd of QEPs generated m the followmg way

1 To access a smgle relation, all avadable access paths are con-
sidered The chmce of &her a relation scan or a scan usmg
an exlstmg mdex generates all possible orders m which we can
retneve tuples from a relation

2 Either a nested-loop JOIII or a merge-Jam implement the]om
operation

3 The mner tuple hst of any JOUI is generated by a non-composrte
expressron, that IS, only a smgle relanon ts accessed

The thud restnction consIderably hn~ts the number of possible
QEPs generated Notice that the QEP of Example 2 does not
satisfy the last restnctlon, thus It wdl not be generated by the
optmuxation algorithm of Sehnger et al However, exchangmg the
mner relatton wth the outer relation of the MJOIN operator pro-
vides a QEP that sat&ies the above restrtctions

4.1 Basic Definitions

To descnbe the dtfferent translation steps of query optmtuation,
we introduce transfonnatlon rules or wwntlng rules IHuET801 For
the purpose of this paper the transformatton rule (g -, 12) specifies
to replace expression 11 by expression r2 For example, let 11 and
t2 be arbitrary expressions, then the rule ((zf true tl f2) -, 11) means
to reduce the conditional expression to the expression tl If the
condition 1s known to be true

We extend the rule notation by mtroducmg restwted rules A
restncted rule (tl + 12) spec&es to replace tl by r2 whenever
con&tion C evaluates to true We do not restrtct the form of
condition C except that all vanables referenced m C must be used
m expression tl and t2 For example, C rmght restnct tl to be a
vanable name denotmg a relation or to be an expression referencmg
some relation names

To reference an arbitrary expression t, m a hst of expressions
(tl r, r,) we use the notation (r,) where ” ” denotes zero
or more subexpresslons to the left or right of some t, For mstance,

let (+ tt t,) denote an expression whtch multtphes an arbitrary
number of mte.gers wtth l bemg the multtphcatton operator The
result of the expression IS 0 d any of the r,‘s IS 0 The transformation
rule ((8 0) - 0) exactly describes tlus artthmek property

For restncted rules, we often use functions m the con&tions to
detenmne properbes of relations, predtcates, or general expresslow
We mtroduce the fun&on Ind(Il, R) to detemune If Zl IS an mdex
on relatton R Furthermore, let p be a predicate then T(p) denotes
the set of relation names referenced by p For example. tf
p = (EMP Status = Prof), then T(p) = jEh4P) We also apply T
to general expressions t to determme the set of relatton names
referenced m t Smularly, we use fun&on A(t, RS) to determme
the set of attnbutes m any expresston t for the set of relations m
RS For example, let p be the hst of predtcates ((EMP Status =
Prof) A (EMP Emp# - PAPER Emp#) A (PAPER Subject = DB))
then A@, {EMPI) ytelds the attnbute set [EMP Empf#, EMP Status]
If no hst of relations IS present, function A returns all attnbutes
referenced m an expression

To determme the or&r of tuples that are returned by a QEP, we
mtroduce two more functtons Let I be an mdex for some relation
R, then 00 denotes the (ordered) attnbute hst whtch determmes
the (ascendmg) order m whtch tuples are retneved from R usmg
mdex 2 Based on the defmtion of 0, we mtrcduce the predicate
< am-set> E O(I) wtth <at&-se.t> bemg a set of attrtbutes
The pre&.ate determmes d any order of attnbutes m the set 1s a
preftx of the ordered attnbute hst O(I) For example, let O(fi be
the hst <Name, Dept, Salary> then IDept,Name) c O(I) IS frue,
whde &lary,Dept) E O(Z) Is falve

We generahze fun&on 0 to fun&on n whtch apples to QEPs
For any QEP Q, n(Q) denotes the order nnposed on the set of
tuples created by Q We can define functton ii recurmvely based
on the set of operators as follows

l QWSCAN <p> rel)) = <>

. O((ISCAN <up> md <tp> rel)) = O(mmf)

l O((PROJECT <pr> hst)) 3: n&t)

l f-i((wom <Jp> hSt1 hSt2)) = ii(hStJ)

. n((hf.JoM <Jp> hStJ b&i))= fl(hfitl)

l B((SORT <a-h&> hst)) = <a-h.%>

4.2. Generating an Algebraic Query
Form

The first transformatton step translates the nut~al form of the query
mto an algebratc form for further mampulatton The followmg
rules perform the desued transformation

l ((SELECTelq(tl)) -

(Selectee g (1 (WAN0 11))))

l ((SELJXTele2(tl) ()I *

(SELECTel q () (WAN0 h))))

l ((SELECTel (PI) +a((SCAN()h) 1) c,’

(SELECTq ()9 (W‘4N(Pl) h))))

l ((SELECTel () q () q) + (PROJECTel (JOINq 4)))

176

The first rule uutmbzes the transformation by takmg any relation,
rcmovmg It from the bst of relations, and attachmg the SCAN
operator to It The generated expresslou 1s stored m a newly
created bst The second rule then removes one relation from the
relation bst, attaches the SCAN operator, and adds the new ex-
presslon to the bst of SCAN expresslons generated so far The
thud rule htnbutes the selection predicates among the different
relations dependmg on the relation names referenced m the pred-
icates If the selection hst and the relation bst are empty, the last
rule substitutes an n-way JOIII followed by a projection for the
selection expresslon Notice that we can apply the second and
thud rule m arbitrary order-

Example 3

For the query of Example 1, the above four rules generate the
expression

(PROJECT (EMP Name)
(JOIN

((EMP Emp#kPAPER Emp#)
(EMP Emp#=CONF Emp#)
(PAPER Year=CONF Year))

((SCAN ((EMP Status=Prof)) EMP)
(SCAN ((PAPER SubJect=DB)) PAPER)
(SCAN ((CONF CName=VLDB)) CONF))))

II

4.3. Generating the Access Paths

Once we have generated an algebmc form of the query, we may
refine the expresslon by usmg mformation about the mternal storage
structure of the relations In particular, prdcates on relations
mght be evaluated by usmg emtmg mdexes The followmg rules
deternune the possible choices for accessmg an mtiwdual relation

. ((SCANp] 4) c,’ (ZSCANp’l II p’; tl))

with Cl = (zmf(zl,t~) A (pl = (p’l u p’\)) A (p’l n p’{ e 0) A
6Qf1.d c WO))

The first rule converts the genenc scan mto a sunple relation scan
wthout usmg any mdexes The second rule takes advantage of an
exlstmg mdex and generates uferent access plans dependmg on
how the selection bst IS spht between the mdex and the relation
The con&bon Cl ensures that II 1s an mdex on the relation
denoted by fl, and that the pre&cate hst IS partmooned such that
all attnbutes that appear m the terms of the mdex pdcate form
a prefix on the attnbute bst that determmes the mdex or&r Notice.
that we also allow the selection bst for the mdex to be empty, m
whch cast all tuples of relation tl are retneved m O(ZZ) order

Con&tion Cl nught be extended to further restnct the appbcation
of the second rule For example, an egstmg mdex nught only be
used d all prticate terms except the last one m attnbute order
test for equabty, only the last term may mvolve an mequabty test

Example 4

Based on the assumption of Example 2 that relation EMP has
an mdex 11 on attnbute Status we nught generate three dlffercnt
expressions from the expression of Example 3 usmg the above
transformation rules They tifer m the access path used for
relation EMP The SCAN operator translates either mto a regular
relation scan mthout usmg the mdex, an mdex scan mthout an

mdex prehcate, or an mdex scan usmg the predcate
(EMP Status=Prof) The other two scans for relations PAPER
and CONF translate mto FSCAN operators, as no mdexes elrlst
for these two relations

II

4.4. Join Processing

Much of the processmg of relational quenes 1s concerned with
explormg tiferent Jam orders among the tables mvolved m the
query, and with choosmg a JOT method In ti sccuon we restnct
ourselves to the jam strateges proposed by Selmger et al [SELI79]
as we already m at the begmmng of Section 3 To implement
these two aspects of jam processmg, we present two sets of rules
The first one generates tiferent JOEI orders The second one
chooses between the tiferent evahmtion strategies for a two-way
JOm, m our case between a nested-loop JOUI and a merge-Jam
Notice that the order m which we present the rules does not imply
an appbcation order for the rules Most of the rules which generate
the different JOIII orders and the JOIII methods can be appbed before
or after the rules which generate the access paths, or we can even
mm both sets It IS the responslbtity of the search strategy to
determme the order m whch to apply the rules

4 4 1 Generating the Joln Orders

The first step of jam p rocessmg LS lmplementcd by a set of three
transformation rules that generate two-way Jam exp-lons, for
~omng relations durmg query evaluation The first two rules are
qmte powerful as they generate many tifercnt Jam orders for the
same matml expression

WltJl Cl = uw 6 nrdum?))

The fvst rule m&&es the transformation by choosmg any relation
to be the OUtemoSt n?latIon of any JOUI The second rule succes-
swely creates two-way JOIIIS by wmbmmg any relation m the
relation bst with the two-way Jam expression generated so far
When the bst of Jam predicates and the bst of relations are empty,
the last rule tids the n-way Jam operator

Unfortunately. this set of rules IS not sufficient to completely reduce
the hst of jam pre&cates, d there are cychc quenes or If two
relations are related by more than one Jam prcd~cate We need
two addtional rules which push pred#zates mto a two-way JOIII

expression d the relations referenced m the pticate are already
present m that expression

l ((JOZN(pl)tl(TJOZN()f2t3)) 2

(JOZN(111 (TJOZN(PI) r2 q)H

l ((TJOZN(pl) (TJOZN()tl t2)t3) 2

(TJOZN () GJOZN (PI) 11 r2) q))

wlth Cl - m.Pl) 6 702)U 7.03))

c.2 = mP1) E T(rdUT(tz))

and

177

The first rule pushes a JOI~ predcate mto the two-way JOUI expres-
non when It IS apphcable The second rule pushes the pre&cate
even further down mto the expresslon to ensure that It ts apphed
as soon as possible

Example 5

One of the expresslons generated m Example 4 1s

(PROJECT (EMP Name)
(JOIN

((EMP Emp#=PAPER Emp#)
(EMP Emp#=CONF Emp##)
(PAPER Year=CONF Year))

((ISCAN ((EMPStatus= Prof)) I1 () EMP)
(FSCAN ((PAPER Subject=DB)) PAPER)
(FSCAN ((CONF CName=VLDB)) CONF))))

One possible order which we can generate usmg the fust two
rules of thts subsectlon IS by fast Jommg relations EMP and
PAPER before performmg a JOIII wth relation CONF

(PROJECT (EMP Name)
(JOIN ((PAPER YEAR=CONF Year)) ()

(TJOIN ((EMP EmpkCONF Emp#))
(TJOIN ((EMP Emp#kPAPER Emp#))
(ISCAN (EMP Status=Prof) I1 () EMP)
(FSCAN ((PAPER Subject=DB)) PAPER))

(FSCAN ((CONF CName=VLDB)) CONF))))

In order to completely reduce the hst of JOUI prehcates, we need
to apply the next to last rule of tbs subsection before &scardmg
the n-way JOT mth its empty prehcate bst, thus yleldmg the
final expression of thn3 transformation step

(PROJECT (EMP Name)
(TJOIN
((PAPER YEAR==CONF Year)
(EMP Emp#=CONF Emp#))

(TJOIN ((EMP Emp#=PAPER Emp#))
((ISCAN (EMP Status=Prof) 11 () Eh4P)
(FSCAN ((PAPER SubJect=DB)) PAPER))

(FSCAN ((CONF CName=VLDB)) CONF)))

0

4 4 2 Generating the Jom Methods

Once we have generated the Uferent orders m whch to jam all
relations, we must choose a Jam method to unplement the two-way
Jam For the purpose of tis paper, we restnct the possible JOUI

methods to either a nested-loop Jan or a merge-Jam, both of which
are generated by the followmg three rules

l ((TJOZNp1 r1 q) c,‘(MJOZZvP~ fl12))

l ((TJOZNpl r1 r7,) 2 (MJOZNpl (SORTA@j, T(tl)) rl) r2))

l (WOINPl 11 t21 * (WOZ~Pl t1 t2))

wth Cl = MP~,WI)) E WI)) and C2 = ~UIJI,WI)) 4 Wrd)

The fast two rules generate a merge-Jam If expresslon rl does
not return the set of tuples m some order “compatible” with the
Jam predcate, we need to sort the tuples The last rule translates
the two-way Join mto a nested-loop Jam

In the case of a merge-jam, we must retneve the mner tuple bst
m the same order as the outer one Therefore, we introduce an
additional rule which, If necessary, inserts the sort operator to

satisfy tti con&tion

. ((M.mm’pl rl r2) c,’ (MJOZZVpl rt (SORTA(pl, W2)) j2)))

wath Cl =((Q(h) C WI)) A @(AhT(jz))) = WI))) Comhtion
Cl ensures that the rule 19 apphed only d the tuple order of the
mner bst I not the same as the tuple order of the outer hst
generated by tt. and that the SORT operator returns tuples m the
same order as expression tt

To further improve JOUI processmg, System R takes advantage of
exlstmg mdexes on the mner relations Instead of evaluatmg all
terms of the Jom pre&cate by the Jam operator, those are “pushed
down” mto an m&x scan to use them as adhttonal predtcatcs on
the mdex The followmg two rules implement tlus unprovement
which we apply to both JOIII operators, the nested-loop Jam and
the merge-Jam

l ((MJOZNPl fl (ZSCAN() r2 23 14)) c,’

(MJOZZvP’l r1 (ZSCAN @‘\) rz r3 4)))

l ((WozNpl r1 (ZSCAN() r2 r3 4)) 2

(WOZNP’l 11 (ZSCAN (p’l) r2 r3 4)))

wlth
Cl = (@I = ~‘1 U P’:) A Cp’l no’\ = 9) A (M.P’~)) l Wr2)))

For both rules, the predcate hst p1 IS pmtioned mto two parts,
one of which can be evaluated by the mdex, the other part bemg
evaluated by the Jam operator Coru%tlon Cl ensures thy restnc-
bon Smularly, we can define ad&tional rules to push down the
remammg con&tion mto the mner relation scan, thus evahmtmg
the Jam comhtion wUe retnevmg the tuples by the RSS component
[SELI791

Example 6

We can transform the two-way Jams of the final expression m
Example 5 ather mto merge-Jam operations or nested-loop JOIDS

One possible expression generated by the first three rules of this
section IS

(PROJECT (EMP Name)
&JOIN

((PAPER YBAR=CONF Year)
(EMP Emp#=CONF Emp#))

(MJOIN
((EMP Emp#=PAPER Emp#))
(SORT (EMP Emp#)
(ISCAN ((EMP Status=Prof)) 11 () EMP)

(SORT (PAPER Emp#)
(FSCAN ((PAPER Subject=DB)) PAPER))

(FSCAN ((CONF CName=VLDB)) CONF)))

II

5. Discussion

In ti section we show one possible extension of the current rule
set for d&nbuted query processmg and bnefly discuss some
Implementation-related aspects

5.1. Distributed Queries

Thzs section demonstrates how easy zt IS to extend the current set
of rules by new ones to process dzstrzbuted query processmg We
do not mtend to zmplement the most sophzstzcated query evaluatzon
strategy for dzstrzbuted querzes, our mterest 1s focused more on the
flexzble use of rules for descnbmg one aspect of query optmuxatzon

We mtroduce two rules whzch descrzbe some of the shzppmg strat-
egzes for dzstrzbuted quenes as defined by L&man et al [LOHh484]
To move bsts of tuples between sztes and to store them zf necessary,
we define two new algebrazc operators SHIP and STORE

Transformation Internal Data
Rules Structures

------_----__- __---__-_____

; --------------; / /
I I Rule
->I Translation I'-- --__---_

I

Transformation Procedures
---_----_----------------

(SHIP cszte-name> hst)

shzps a bat of tuples to the deszgnated site

(STORE <rel-name> hst)

stores a hst of tuples m the relatzon <rel-name> z

I I
Optimization I Cost Function I

Strategy f

------__--- 1

I
I

_-____---___-- I
--

!->I Combiner I'

Addztzonally, we Introduce the function Szre, whzch we need for
condztzonal rules Szfe(tt) deterznmes the sate at whzch the tuples
generated by q reside We can define functzon Szte recurszvely,
smular to the functzon 0

I I<---------

I

QUERY APTIMIZER

Based on these new defzmtzons, we define the followzzzg two rules
to generate expresszons which either shzp the outer tuple hst to the
sate where the znner tuple hst resides or vzce versa

(TJOZNpl fl (FSCAN() (STORE T(SZfZP Szre(fl) f2)))))

l ((TJOZNpl tl t2) c,’ (T.OZNpl (SHIP Szte(f.2) fl) t2))

wzth Cl = (Szre(ll) + Szre(t2)). and T bemg a new relation that
stores the result of h at tt’s szte Notzce, that the two rules are
not symmetrzc When we shzp tuples of the outer hst to the uuler
hst’s site, we do not need to store them smce each tuple IS accessed
only once However, d the tuples of the znner hst are shzpped to
the outer hst’s site, we create a new relatzon to rescan the mer
table locally, thus avozdmg repetitzve shzppmg of the mner tuple
hst

5 2. Implementation of the
Rule-Based Optimization

After havmg defined the rules whzch generate dzfferent QEPs from
a user-subzmtted query, the general questzon zs how to bmld a
query optmuzer usmg the rule-based speczfzcatzon We show one
posszble approach m Fzgure 2 which describes the generatzon of a
query optmuzer m two steps The speczfzcatzon of the transformatzon
rules as presented m thzs paper descrzbes the generatzon of QEPs
from mztzal quenes m a h&level, mplementatzon-mdependent
way To guarantee thezr fast execution m any zmplementatzon, we
propose to translate them mto “transfozmatzon procedures” m pro-
graznzmng languages such as C or Pascal Addztzonally, the trans-
lation mto transforznatzon procedures should consider the mtemal
data structures whzch represent a query, thus makzng the transfor-
matzon even more effectzve

Carey et al mvestzgated a szmzlar archztecture for buzldmg an
optmuzer generator as part of the EXODUS project [GRAE87,
CARE861 They especzally suggested the translatzon of transfor-
mation rules znto transfonnatzon procedures and proposed a “hzll-
chmbzng” algontbm to guide the selectzon of rules durzng the op-
tmuzatzon

Figure 2 Generatio of a Query Oplnnizer

As we pomted out m Se&on 2, the transfozmatzon rules descrzbe
only one aspect of query optzmzzatzon We need to add mformatzon
about the search strategy used m the optmnxatzon process, and to
speczfy cost functzons to compare dzfferent QEPs and to select the
best one Therefore, m a second step all three aspects are combzned
to generate the query optmuzer

Of course, thzs approach leads to many open questions Is zt
posszble to show that a gzven set of rules generate only vabd QEPs7
How do we stmcture the rule translatzon process? Can we use
already exzstmg techzuques, methods and tools? Is zt possible to
speczfy mztzally the three aspects of query optumxatzon mdependently
wzthout losmg the requzred efficiency of the opmtzon process?
How can the optmuxer avoid scazmmg all rules each tune zt has to
find those rules that are apphcable on the current query expresston
The defzmtzon of rules m Section 4 already mdzcates a possible
order for applymg the rules durzng the trazzsforznatzon process
These questzons (and others) need to be answered by further
research before we can achzeve our goal of a modular query optz-
rmzer

6. Conclusion

We presented a rule-based descnptzon of how to generate dzfferent
QEPs from a user-subzmtted query The rules do not completely
cover all aspects of the optmuxatzon algonthms as descrzbed by
Selmger et al [SELI79] However, we demonstrated that a rule-
based descnptzon allows a h&-level speczfzcatzon of one part of
the query optmuxatzon process AddztzonalIy, we addressed the
problem of how to extend the current rule set and dzscussed some
mztial zdeas for unplementmg a rule-based optzmzzer Despite the
many open problems, we are convmced that tbzs kmd of speczfzcatron
can support the Implementatzon and - at least partially - the gen-
eratzon of a query optmuzer, whzch wzll contnbute to the more

1 Of cause thts operator IS usually used for centrahzed quenes too

179

general goal of bmldmg a modular query optmuzer as part of an
extensible database management system

7. Acknowledgement

We wtsh to thank Guy L&man for several stmmlatmg d~~uss~ons
which clanfled many aspects of the query optmuzatton algorithm
m System R Lam-a Haas’ and Guy L&man’s careful readmg of
an earher draft of ti paper improved the presentation m many ways

Bibliography

[ASTR76]

[BACK781

[BAT0861

[BELL841

[BURS77]

[CARE861

[DARL76]

Astrahan, M et al, SYSTEM R Relattonal Approach
to Database Management, ACM Transacttons of Da-
tabase Systems 1,2 (June 1976) pp 97-137

Backus, J , Can Programmmg be l&rated from the von
Neuman Style? A Functronal Style and ats Algebra of
Programs, Commumcat~ons of the ACM 21,s (August
1978) pp 613-641

Batory, D S et al, GENESIS A Reconfgurable Da-
tabase Management System, Techmcal Report 86-07,
Department of Computer Sctences, The Umverslty of
Texas, Austm (1986)

Bellegarde, F , Rewrttmg Systems on FP Expressrons
that Reduce the Number of Sequences they Yzeld, ACM
Symposmm on LISP and Functional Programmmg
(August 1984) pp 63-73

Burstall, R,M and Darhngton, J , A Transformatzon
Sptem for Developrng Recursrwz Programs, Journal of
the ACM 24.1 (January 1977) pp 44-67

Carey, M et al, The Archrtecture of the EXODUS
Extensrbk DBMS, F’roceedu~gs of the International
Workshop on Object-Onented Database Systems,
Asdomar, Pa&c Grove, Cahforma (September 1986)

Darhngton, J and Burstall, R M, A System whrch
AutomatzcaNy Improves Programs, Acta Informatlca 6,l
(January 1976) pp 41-60

[DAYASS]

[FREYSSa]

[FREY85b]

[FREYSSc]

[GRAE87]

[JARK84]

[HUETSOI

[LOHM84]

[SCHW86]

[SELI79]

[STON86]

[YUCH84]

Dayal, U and Srmth, J , PROBE A Knowledge Onented
Database Management System, Pmceedmga of the
Islamorada Workshop on Large scale Knowledge Base
and Reasomng Systems (February 1985)

Freytag, J C and Goodman, N , Rule-Based Zkanskztron
of RelatIonal Quenes mto Itemhw Pmgrams, Proceed-
mgs ACM SIGMOD 1986, Washmgton, DC (May
1986) pp 206-214

Freytag, J C and Goodman, N , TnansLatwn L&abase
Quenes anto Iteratwe Programs usmg a Pmgram l’kans-
formahon Approach, IBM Research Report RJ 5092
(Apnl 1986)

Freytag, J C and Goodman, N , Translatmg Aggregate
Querws Into Iteratrve Programs, FWceedmgs VLDB
1986, Kyoto, Japan (August 1986)

Graefe, G and DeWltt, D , The EXODUS Optlmuer
Genemtor, N ACM SIGMOD 1987, San
Franctsco, CA (May 1987)

Jarke, M and Koch, J , Quev Ophmuatwn m Database
Systems, ACM Computmg Sweys 16,2 (June 1984)

Huet, G , Conj’luent Reductwns Abstract Proper&s and
Applrcatrons of Term mwntmg Systems, Journal of the
ACM 27,4 (October 1980) pp 797-821

Lohman, G , et al, Q~~IY Pmcessmg tn R l , JBM Re-
search Report RJ 4272 (Aprd 1984)

Schwarz, P et al , Extens~brb~ m the Starburst Database
System, Procekdmg of the Asdomar Workshop on
Object-OrIented Database Systems (September 1986)

Sehnger, P G et al, Access Path Sektwn m a Rela-
twnal Database Management System, Proceedmgs ACM
SIGMOD 1979, Boston, MA (June 1986)

Stonebraker, M and Rowe, L , The Desrgn of Postgres.
Proceedmgs ACM SIGMOD 1986, Washmgton, D C
(May 1986) pp 340-355

Yu, C T and Chang, C C , Dutrzbuted Query Process-
zng, ACM Computmg Surveys 16,4 (December 1984)

180

