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Abstract 
The query opbnuzer Is an important system component of a rela- 
tional database management system (DBMS) It 19 the responslbtity 
of ti component to translate the user-subnutted query - usually 
wntten m a non-procedural language - mto an efficient query 
evalwtion plan (QEP) which is then executed agamst the database 
The research bterature describes a wde variety of optmuzation 
strateges for tiferent query languages and Implementation envl- 
ronments However, very httle IS known about how to design and 
structure the query optmuzation component to nnplement these 
strateges 

Thus paper proposes a fust step towards the design of a modular 
query optlmw We descnbe its operations by transformanon rules 
which generate Mferent QEPs from uut~al query spec&at~ons As 
we d&ngmsh tiferent aspects of the query optmuxabon process, 
our hope ts that the approach taken m this paper wdl wntnbute 
to the more general goal of a modular query optmuzer as part of 
an extensible database management system 

1, Introduction 

An nnportant component of today’s relatIonal database management 
systems (DBMSs) 1s the query optumzer Usually, the user’s query, 
expressed m a non-procedural language, describes only the comhtions 
that the final response must satisfy It 1s the optmuxer’s responslbtity 
to generate a query evaluation plan (QEP) that computes the 
requested result efflclently Many different strate@es for fmdmg a 
QEP which evaluates a subnutted query efficiently have been pro- 
posed Jarke/Koch and Yu/Chang Bve comprehensrve ovemews 
on various query optmnzatlon techmques for centrahzed and dr+ 
tnbuted DBMSs, respectively [JARK84] [YUCH84] 

The difficult task of fmdmg a good, and possibly the best, QEP 
has frequently led to the Implementation of a highly sophsticated 
but complex optmnzer for relational DBMSs The design and em- 

plementation of 0us system component often make changes or 
extensions m any of zts parts very tiflcult, or even nnposslble 

To overwme the above problems, this paper presents a first step 
towards a mod&r query optzmuer The goal of such a component 
1s to clearly separate the tiferent aspects of query optmuzation m 
its design and Implementation as much as possible, thus makmg It 
easier to make changes to one part of the optutuzer anthout af- 
fectmg others Instead of addressmg the complex task of a modular 
query optmuzer at once, we concentrate on one major aspect of 
the optmuxation process The paper describes the translation of a 
user-subnutted query mto an algebra-based QEP by trunsfonnutton 
rules We demonstrate that transformation rules provide an adequate 
descnption of the optmuzation process m a h&level, Implemen- 
tation mdependent way Furthermore, we &uss how to use the 
set of transformation rules for the unplementatIon of a query 
optmuzer to effictently generate QEPs from user-subnutted quenes 

The design of a modular query optmnzer IS mouvated by the 
general need for extensible DBMSs that can be custonuxed for 
tiferent apphcation envuonments Projects such as EXODUS 
[CARE86], PROBE [DAYA85], Geneses [BAT086], Postgres 
[STON86], and Starburst [SCHW86] address the question of ex- 
tenslbtity of relational DBMSs to support storage and retneval 
reqmrements for apphcations such as VLSI design, expert systems, 
or CAD/CAM Dependmg upon the needs of these vanous apph- 
ca0ons, one would hke the optmnzer component to extend to new 
query language wnstructs, to mclude new access methods as op- 
erations mto QEPs, to explore drfferent optmuxation strategtes, to 
use new cost models, etc We show that the rule-based descnpbon 
of the translation from a user-subnutted query m QEPs makes It 
possible to easdy change or extend the set of possible QEPs that 
the query optmnzer can generate 

The paper 1s orgamzed as follows In the next section we ~ISCWS 
query optmuzation and query evaluation m some more detad and 
motivate our approach wbch 1s to apply program transformation 
techmques m this wntext In Section 3 we define the source 
language and the target language of the query optmuzation process 
before Section 4 presents the tiferent sets of transformation rules 
necessary to translate non-procedural query speclficatlons mto al- 
gebrmc QEPs Fmally, Setion 5 outhnes possible extensions and 
&cusses some Implementation-related aspects of usmg the rule- 
based approach to query optmuzation 
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2. Query Optimization and 
Evaluation 

Most relational DBMSs consist of two major components the 
logcal database processor (LDBP) and the physlcal database pro- 
cessor (PDBP) For example, m System R, the LDBP I called the 
RelatIonal Data System (RDS) and the PDBP IS called the Relational 
Storage System (RSS) [ASTR76] 

For the LDBP, we d&mgmsh three deferent processmg phases 
that translate a user query mto a program which can then be 
executed by the PDBP The three phases are shown m Figure 1 

User-Submitted Query 
I 

--------------_----- 

I Query Validation I 
-----w-------------- 

I 
---_-------_---__--_-- 
I Query Optimization I 
---------------------- 

Q;P 

----------------_----- 
I Query Translation I 
--_------------_---_-- 

I 
Program executable 

by the POBP 

me 1 Proceasmg Phases of the LDBP 

The first phase, the vabdatzon phase, checks the query for syntactic 
and semantic correctness, performs stew resolution, and possibly 
checks authonzatlon before generatmg some mtemal representation 
of the query Durmg the second phase, the optrmzzutzon phase, the 
LDBP decides on a good, possibly best, evaluation strategy for the 
user-subnutted query Based on the mformation about the repre- 
sentation of the data accessed, Its location m the case of a &stnb- 
uted DBMS, and the available evaluation strateges, the optmuzer 
generates a query evaluation plan (QEP) Fmally, the thud phase, 
called the tmnrlat~on phase, transforms the QEP mto a representation 
wbch guarantees its fast execution by the PDBP 

In many ways, the three-phase translation of a database query mto 
a program executable by the PDBP resembles a specmhzed progmm 
tmnsfonnatzon problem @3ACK78, BELL84, BURST77, DARL761 

Generally speakmg, program transformation pronuses to provtde a 
comprehenslve solution to the problem of producmg programs 
which try to solve severalbcompatlble goals simultaneously On 
the one hand, programs should be correct and clearly structured, 
thus allowing easy moddlcatlon On the other hand, one expects 
them to be executed efficiently 

The transformatlonal approach tnes to separate these two concerns 
by dlvldmg the programmmg task mto two steps The first step 
concentrates on producmg programs that are wntten as clearly and 
understandably as possible without consldermg efficiency Bsues If 
lmtlally the question of efficiency 1s completely Ignored, the resultmg 
program m&t be wntten very comprehensibly, but nnght be highly 

mefflclent or even unexecutable The second step then successively 
transforms pro& mto more efficient ones - possibly for a par- 
ticular machme envuonment - usmg methods that preserve the 
meamng of the ongmal program The kmd of improvements dunng 
the second step goes beyond those acbevable durmg the optmuzatlon 
phase of compders for conventional programmm g languages 

In many ways, these mtentions gmded the design of query languages 
for relational database systems, such as QUBL [STON76] or SQL 
[ASTR76] Both languages pernut the user to express database 
requests m a clear and understandable form that describes properties 
of the requested result w&out considermg aspects of an efficient 
evahmtion The DBMS e responsible for translatmg the query mto 
an executable form whde preservmg its ongmal meamng 

In [FREY86a, FREY86b, FREY86c], we apphed program trans- 
formation methods to the thud phase of the LDBP, the translation 
phase There we showed how to successfully apply techmques 
developed m the area of program transformation to problems m 
database management systems The algonthms proposed there are 
based on sets of transformation rules that generate iterative pro- 
grams from QEPs Theu use allows the transformation algonthm 
to be easdy extended to handle more complex quenes It IS only 
a natural step to wew the second processmg step, le query optl- 
mrzation, as another specmhzed program transfonnauon problem 
and to apply smular techmques to this processmg phase of the LDBP 

Transformation rules, however, do not completely descnbe all as- 
pects of query optmuzatron They only determme the source lan- 
guage and the target language of thw: processmg phase and defme 
how to denve tiferent QEPs m the defined target language from 
an nntml query spemfied m the source language In tlus paper we 
have chosen a general, non-procedural query representation to be 
the source language and an extended relational algebra to be our 
target language, both of which are defined m more detad m the 
followmg section The rule-based optmuzation describes the central 
part of the optmuzation algorithm for SQL [SELI79] The algorithm 
1s complex enough to serve as a reahst~c test case to prove the 
power of the rule-based descnptlon 

In our opuuon, there are two other major elements which are 
necessary to completely determme all aspects of query optmuzatlon 
On the one hand, we need to descnbe m which order to generate 
tiferent QEPs to find a good can&date for the evaluation of the 
subnutted query, 1 e , we must define how to search through the set 
of all possible QEPs Search strategtes, such as a greedy search, a 
breadth-first or depth-first search wth or wthout dynanuc pro- 
grammmg, or a k-step look-ahead search are commonly used for 
011s purpose On the other hand, we need to compare tiferent 
QEPs decldmg whuzh ones are better than others Usually, tti 
decision 1s based on the cost of usmg vanous resources, such as 
CPU, dtsk I/O, number of messages etc More detads can be. 
found m Jarke and Koch [JARK84], and Yu and Chu [YUCH84] 

Usmg transformation rules for query optmuzation has attracted 
other researchers as well The EXODUS project especially mves- 
tigates how to mclude rules mto an architecture of an optrmuer 
genemtor [GRAJ387, CARE!861 The work by Graefe and Dewitt 
focuses on the archtectural aspects, the design, and the Implemen- 
tation of such a tool [GRAE87] They demonstrate to some extent 
that It IS possible to separate the generation of QEPs from the cost 
function and the search strategy 

Although our research goals are qmte smnlar to thelrs, we would 
hke to mvestlgate the fundamentals of query optmuzation and 
necessary concepts for a modular query opmer first, before 
designmg and nnplementmg an optmuzer generator It IS the pur- 
pose of this paper to concentrate on the first aspect of query 
optmuzation, that I, the rule-based descnption of how to generate 
tiferent QEPs from an nutml query spectiication We demonstrate 
m the followmg sectlons that transformation rules are adequate to 
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express tb~s aspect of optmuzation m a b@-level, Implementation- 
Independent manner 

3. The Source Language 
and the Target Language of 
Query Optimization 

Thus section mtroduces the source language and the target language 
for query optmuzation As the source language we use conjunctrve 
querzes that exclude subquenes (m the SQL sense) and aggregate 
quenes of any kmd As we shall buss later, our choice does not 
impose any restnctlons on the rule-based transformation We shall 
demonstrate that our sets of rules can easdy be extended to handle 
more complex quenes 

To descnbe the transformation tiormly and mdependent of any 
particular database query language, we assume that the nutml query 
has the Lep-bke form 

(SELECT 
<project-bst> <selectgrcd-bst> 
<]omgred-hst> <table-hst>) 

which represents the source for the optmuzation phase The &- 
ferent parts of the bst descnbe the proJectIon of the resuitmg 
tuples, the pre&cates appbcable to smgle tables, the Jam predcates, 
and the tables accessed, respectively 

Example 1 

We use the followmg database for the examples m this paper 

EMP (Emp#, Name, Salary, Dept, Status) 

PAPER (Emp#, Title, Subject, Year) 

CONF (Emp#, CName, Year) 

Each tuple m the relation EMP describes an employee by his or 
her employee number, name, salary, department, and status Re- 
latlon PAPER stores the employees who wrote papers recordmg 
the title, the subject, and the year of the pubhcatlon Relation 
CONF records the attendance of conferences by employees m a 
certam year For the query 

Ftnd the name of all professors who pubhshed a database paper 
m the same year (1s they attended the VLDB conference 

the mtemal representation looks as follows 

(SELECT 
(EMP Name) 
((EMP Status=Prof) 
(PAPER SubJect=DB) (CONF CName=VLDB)) 

((EMP Emp#=PAPER Emp#) 
(EMP Emp#=CONF Emp#) 
(PAPER Year=CONF Year)) 

(EMP, PAPER, CONF)) 

II 
As our target language we propose a small set of algebrmc operators 
that are sufficient to express QEPs for the evaluation of those 
quenes we consider We use an extended relatronal algebra SUNX 
the kmd of operators go beyond those of regular relational algebra 

For example, we mtroduce operators to spcctiy the use of a nested- 
loop Jam or a merge-Jam, the sort of a relation, an mdex access, 
or a relation access All operators mampulate some mcommg bst 
of tuples that are ather denved from a relation referenced by 
name, or whch are the output of some other operator, and generate 
a new hst of tuples 

(FSCAN <tpred> rel) 

scans a relation whde applymg the bst of prehcates m 
<tJred>, which nught be empty 

(ISCAN <lpred> mdex <tgred> rel) 

scans a relation usmg the n&x to apply the @ven mdex 
predmates m <idred> before scannmg the table and applymg 
predcates m <tpred> Both predcate bsts nught be empty 

(PROJECT <proJ-hst> hst) 

denotes the project operator whch prolects all mcommg tuples 
onto those attnbutes specfimd by the projection ltst 

(LJOM <Jomgred> hstl bst2) 

denotes a nested loop Jam with hstl bemg the outer bst and 
Irst2 bemg the mner bst of tuples 

(MJOIN <]omqred> bstl bst2) 

de&es a merge jam wtb Itstl bemg the outer hst and lrst2 
bemg the znner hst of tuples 

(SORT <attr-hst> hst) 

sorts and outputs a hst of tuples wluch are ordered accordmg 
to the attnbute bst 

The current set of operators 1s not the most complete one For 
example, rt does not mclude operations to select a hst of tuples 
from an mput bst, to create a temporary relation, or to evaluate 
SQL subquenes We shall demonstrate later how to extend tlus 
set of operators to a more complete set 

Example 2 

Assummg that there exists an mdex I1 on EMP Status one pos- 
sible QEP for the query m Example 1 nught look as follows 

(PROJECT (EMP Name) 
(MJOIN 

((EMP Emp#=PAPER Emp##) 
(CONF Year=PAPER Year)) 
(SORT (PAPER Emp#, PAPER Year) 

(FSCAN ((PAPER SubJect=DB)) PAPER)) 
(SORT (EMP Emp#, CONF Year) 

(LJOIN ((EMP Emp#=CONF Emp#)) 
(ISCAN ((Status=Prof)) I1 () EMP) 
(FSCAN ((CONF CName=VLDB)) CONF))))) 

0 
Durmg the transfonuatlon of the user-subnutted query mto a QEP, 
we need to generate some “mterme&atc” expresslons that use the 
foUowmg three operators 

(SCAN <selgred> rel) 

denotes a relation scan mcludmg Its selections w&out speclfymg 
the access path 

(JOIN <Jomgred> <scan-hst>) 
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denotes the 1om of an artntrary number of tables anthout 
speclfymg then order <scan-hst> IS a hst of expressIons, 
each of which 1s scatmmg a relatton 

(TJOIN <Jomgred> hstl hst2) 

denotes a two-way JOU v&out specfiymg what kmd of JOIII 

to perform 

In the next section we shall use all of the above operators m 
expressions generated by the Mferent sets of transformation rules 

4. The Rule-Based 
Generation of Query 
Evaluation Plans 

This se&Ion defmes Mferent sets of transformation rules that 
successively translate a user-subrmtted query mto Mferent QEPs 
The transformation rules that we present m the next subsections 
reflect the unportant aspects of the optmuzatton algorithm as de- 
scribed by Sehnger et al [SELI79] Their algorithm restricts the 
kmd of QEPs generated m the followmg way 

1 To access a smgle relation, all avadable access paths are con- 
sidered The chmce of &her a relation scan or a scan usmg 
an exlstmg mdex generates all possible orders m which we can 
retneve tuples from a relation 

2 Either a nested-loop JOIII or a merge-Jam implement the ]om 
operation 

3 The mner tuple hst of any JOUI is generated by a non-composrte 
expressron, that IS, only a smgle relanon ts accessed 

The thud restnction consIderably hn~ts the number of possible 
QEPs generated Notice that the QEP of Example 2 does not 
satisfy the last restnctlon, thus It wdl not be generated by the 
optmuxation algorithm of Sehnger et al However, exchangmg the 
mner relatton wth the outer relation of the MJOIN operator pro- 
vides a QEP that sat&ies the above restrtctions 

4.1 Basic Definitions 

To descnbe the dtfferent translation steps of query optmtuation, 
we introduce transfonnatlon rules or wwntlng rules IHuET801 For 
the purpose of this paper the transformatton rule (g -, 12) specifies 
to replace expression 11 by expression r2 For example, let 11 and 
t2 be arbitrary expressions, then the rule ((zf true tl f2) -, 11) means 
to reduce the conditional expression to the expression tl If the 
condition 1s known to be true 

We extend the rule notation by mtroducmg restwted rules A 
restncted rule (tl + 12) spec&es to replace tl by r2 whenever 
con&tion C evaluates to true We do not restrtct the form of 
condition C except that all vanables referenced m C must be used 
m expression tl and t2 For example, C rmght restnct tl to be a 
vanable name denotmg a relation or to be an expression referencmg 
some relation names 

To reference an arbitrary expression t, m a hst of expressions 
(tl r, r,) we use the notation ( r, ) where ” ” denotes zero 
or more subexpresslons to the left or right of some t, For mstance, 

let (+ tt t,) denote an expression whtch multtphes an arbitrary 
number of mte.gers wtth l bemg the multtphcatton operator The 
result of the expression IS 0 d any of the r,‘s IS 0 The transformation 
rule ((8 0 ) - 0) exactly describes tlus artthmek property 

For restncted rules, we often use functions m the con&tions to 
detenmne properbes of relations, predtcates, or general expresslow 
We mtroduce the fun&on Ind(Il, R) to detemune If Zl IS an mdex 
on relatton R Furthermore, let p be a predicate then T(p) denotes 
the set of relation names referenced by p For example. tf 
p = (EMP Status = Prof), then T(p) = jEh4P) We also apply T 
to general expressions t to determme the set of relatton names 
referenced m t Smularly, we use fun&on A(t, RS) to determme 
the set of attnbutes m any expresston t for the set of relations m 
RS For example, let p be the hst of predtcates ((EMP Status = 
Prof) A (EMP Emp# - PAPER Emp#) A (PAPER Subject = DB)) 
then A@, {EMPI) ytelds the attnbute set [EMP Empf#, EMP Status] 
If no hst of relations IS present, function A returns all attnbutes 
referenced m an expression 

To determme the or&r of tuples that are returned by a QEP, we 
mtroduce two more functtons Let I be an mdex for some relation 
R, then 00 denotes the (ordered) attnbute hst whtch determmes 
the (ascendmg) order m whtch tuples are retneved from R usmg 
mdex 2 Based on the defmtion of 0, we mtrcduce the predicate 
< am-set> E O(I) wtth <at&-se.t> bemg a set of attrtbutes 
The pre&.ate determmes d any order of attnbutes m the set 1s a 
preftx of the ordered attnbute hst O(I) For example, let O(fi be 
the hst <Name, Dept, Salary> then IDept,Name) c O(I) IS frue, 
whde &lary,Dept) E O(Z) Is falve 

We generahze fun&on 0 to fun&on n whtch apples to QEPs 
For any QEP Q, n(Q) denotes the order nnposed on the set of 
tuples created by Q We can define functton ii recurmvely based 
on the set of operators as follows 

l QWSCAN <p> rel)) = <> 

. O((ISCAN <up> md <tp> rel)) = O(mmf) 

l O((PROJECT <pr> hst)) 3: n&t) 

l f-i((wom <Jp> hSt1 hSt2)) = ii(hStJ) 

. n((hf.JoM <Jp> hStJ b&i))= fl(hfitl) 

l B((SORT <a-h&> hst)) = <a-h.%> 

4.2. Generating an Algebraic Query 
Form 

The first transformatton step translates the nut~al form of the query 
mto an algebratc form for further mampulatton The followmg 
rules perform the desued transformation 

l ((SELECTelq( tl )) - 

(Selectee g ( 1 (WAN0 11)))) 

l ((SELJXTele2( tl ) ( )I * 

(SELECTel q ( ) ( WAN0 h) ))) 

l ((SELECTel ( PI ) +a( (SCAN( )h) 1) c,’ 

(SELECTq ( )9 ( W‘4N( Pl ) h) ))) 

l ((SELECTel () q () q) + (PROJECTel (JOINq 4))) 
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The first rule uutmbzes the transformation by takmg any relation, 
rcmovmg It from the bst of relations, and attachmg the SCAN 
operator to It The generated expresslou 1s stored m a newly 
created bst The second rule then removes one relation from the 
relation bst, attaches the SCAN operator, and adds the new ex- 
presslon to the bst of SCAN expresslons generated so far The 
thud rule htnbutes the selection predicates among the different 
relations dependmg on the relation names referenced m the pred- 
icates If the selection hst and the relation bst are empty, the last 
rule substitutes an n-way JOIII followed by a projection for the 
selection expresslon Notice that we can apply the second and 
thud rule m arbitrary order- 

Example 3 

For the query of Example 1, the above four rules generate the 
expression 

(PROJECT (EMP Name) 
(JOIN 

((EMP Emp#kPAPER Emp#) 
(EMP Emp#=CONF Emp#) 
(PAPER Year=CONF Year)) 

((SCAN ((EMP Status=Prof)) EMP) 
(SCAN ((PAPER SubJect=DB)) PAPER) 
(SCAN ((CONF CName=VLDB)) CONF)))) 

II 

4.3. Generating the Access Paths 

Once we have generated an algebmc form of the query, we may 
refine the expresslon by usmg mformation about the mternal storage 
structure of the relations In particular, prdcates on relations 
mght be evaluated by usmg emtmg mdexes The followmg rules 
deternune the possible choices for accessmg an mtiwdual relation 

. ((SCANp] 4) c,’ (ZSCANp’l II p’; tl)) 

with Cl = (zmf(zl,t~) A (pl = (p’l u p’\)) A (p’l n p’{ e 0) A 
6Qf1.d c WO)) 

The first rule converts the genenc scan mto a sunple relation scan 
wthout usmg any mdexes The second rule takes advantage of an 
exlstmg mdex and generates uferent access plans dependmg on 
how the selection bst IS spht between the mdex and the relation 
The con&bon Cl ensures that II 1s an mdex on the relation 
denoted by fl, and that the pre&cate hst IS partmooned such that 
all attnbutes that appear m the terms of the mdex pdcate form 
a prefix on the attnbute bst that determmes the mdex or&r Notice. 
that we also allow the selection bst for the mdex to be empty, m 
whch cast all tuples of relation tl are retneved m O(ZZ) order 

Con&tion Cl nught be extended to further restnct the appbcation 
of the second rule For example, an egstmg mdex nught only be 
used d all prticate terms except the last one m attnbute order 
test for equabty, only the last term may mvolve an mequabty test 

Example 4 

Based on the assumption of Example 2 that relation EMP has 
an mdex 11 on attnbute Status we nught generate three dlffercnt 
expressions from the expression of Example 3 usmg the above 
transformation rules They tifer m the access path used for 
relation EMP The SCAN operator translates either mto a regular 
relation scan mthout usmg the mdex, an mdex scan mthout an 

mdex prehcate, or an mdex scan usmg the predcate 
(EMP Status=Prof) The other two scans for relations PAPER 
and CONF translate mto FSCAN operators, as no mdexes elrlst 
for these two relations 

II 

4.4. Join Processing 

Much of the processmg of relational quenes 1s concerned with 
explormg tiferent Jam orders among the tables mvolved m the 
query, and with choosmg a JOT method In ti sccuon we restnct 
ourselves to the jam strateges proposed by Selmger et al [SELI79] 
as we already m at the begmmng of Section 3 To implement 
these two aspects of jam processmg, we present two sets of rules 
The first one generates tiferent JOEI orders The second one 
chooses between the tiferent evahmtion strategies for a two-way 
JOm, m our case between a nested-loop JOUI and a merge-Jam 
Notice that the order m which we present the rules does not imply 
an appbcation order for the rules Most of the rules which generate 
the different JOIII orders and the JOIII methods can be appbed before 
or after the rules which generate the access paths, or we can even 
mm both sets It IS the responslbtity of the search strategy to 
determme the order m whch to apply the rules 

4 4 1 Generating the Joln Orders 

The first step of jam p rocessmg LS lmplementcd by a set of three 
transformation rules that generate two-way Jam exp-lons, for 
~omng relations durmg query evaluation The first two rules are 
qmte powerful as they generate many tifercnt Jam orders for the 
same matml expression 

WltJl Cl = uw 6 nrdum?)) 

The fvst rule m&&es the transformation by choosmg any relation 
to be the OUtemoSt n?latIon of any JOUI The second rule succes- 
swely creates two-way JOIIIS by wmbmmg any relation m the 
relation bst with the two-way Jam expression generated so far 
When the bst of Jam predicates and the bst of relations are empty, 
the last rule tids the n-way Jam operator 

Unfortunately. this set of rules IS not sufficient to completely reduce 
the hst of jam pre&cates, d there are cychc quenes or If two 
relations are related by more than one Jam prcd~cate We need 
two addtional rules which push pred#zates mto a two-way JOIII 

expression d the relations referenced m the pticate are already 
present m that expression 

l ((JOZN( pl )tl(TJOZN( )f2t3)) 2 

(JOZN( 111 (TJOZN( PI ) r2 q)H 

l ((TJOZN( pl ) (TJOZN( )tl t2)t3) 2 

(TJOZN ( ) GJOZN (PI ) 11 r2) q)) 

wlth Cl - m.Pl) 6 702)U 7.03)) 

c.2 = mP1) E T(rdUT(tz)) 

and 
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The first rule pushes a JOI~ predcate mto the two-way JOUI expres- 
non when It IS apphcable The second rule pushes the pre&cate 
even further down mto the expresslon to ensure that It ts apphed 
as soon as possible 

Example 5 

One of the expresslons generated m Example 4 1s 

(PROJECT (EMP Name) 
(JOIN 

((EMP Emp#=PAPER Emp#) 
(EMP Emp#=CONF Emp##) 
(PAPER Year=CONF Year)) 

((ISCAN ((EMPStatus= Prof)) I1 () EMP) 
(FSCAN ((PAPER Subject=DB)) PAPER) 
(FSCAN ((CONF CName=VLDB)) CONF)))) 

One possible order which we can generate usmg the fust two 
rules of thts subsectlon IS by fast Jommg relations EMP and 
PAPER before performmg a JOIII wth relation CONF 

(PROJECT (EMP Name) 
(JOIN ((PAPER YEAR=CONF Year)) () 

(TJOIN ((EMP EmpkCONF Emp#)) 
(TJOIN ((EMP Emp#kPAPER Emp#)) 
(ISCAN (EMP Status=Prof) I1 () EMP) 
(FSCAN ((PAPER Subject=DB)) PAPER)) 

(FSCAN ((CONF CName=VLDB)) CONF)))) 

In order to completely reduce the hst of JOUI prehcates, we need 
to apply the next to last rule of tbs subsection before &scardmg 
the n-way JOT mth its empty prehcate bst, thus yleldmg the 
final expression of thn3 transformation step 

(PROJECT (EMP Name) 
(TJOIN 
((PAPER YEAR==CONF Year) 
(EMP Emp#=CONF Emp#)) 

(TJOIN ((EMP Emp#=PAPER Emp#)) 
((ISCAN (EMP Status=Prof) 11 () Eh4P) 
(FSCAN ((PAPER SubJect=DB)) PAPER)) 

(FSCAN ((CONF CName=VLDB)) CONF))) 

0 

4 4 2 Generating the Jom Methods 

Once we have generated the Uferent orders m whch to jam all 
relations, we must choose a Jam method to unplement the two-way 
Jam For the purpose of tis paper, we restnct the possible JOUI 

methods to either a nested-loop Jan or a merge-Jam, both of which 
are generated by the followmg three rules 

l ((TJOZNp1 r1 q) c,‘(MJOZZvP~ fl12)) 

l ((TJOZNpl r1 r7,) 2 (MJOZNpl (SORTA@j, T(tl)) rl) r2)) 

l (WOINPl 11 t21 * (WOZ~Pl t1 t2)) 

wth Cl = MP~,WI)) E WI)) and C2 = ~UIJI,WI)) 4 Wrd) 

The fast two rules generate a merge-Jam If expresslon rl does 
not return the set of tuples m some order “compatible” with the 
Jam predcate, we need to sort the tuples The last rule translates 
the two-way Join mto a nested-loop Jam 

In the case of a merge-jam, we must retneve the mner tuple bst 
m the same order as the outer one Therefore, we introduce an 
additional rule which, If necessary, inserts the sort operator to 

satisfy tti con&tion 

. ((M.mm’pl rl r2) c,’ (MJOZZVpl rt (SORTA(pl, W2)) j2))) 

wath Cl =((Q(h) C WI)) A @(AhT(jz))) = WI))) Comhtion 
Cl ensures that the rule 19 apphed only d the tuple order of the 
mner bst I not the same as the tuple order of the outer hst 
generated by tt. and that the SORT operator returns tuples m the 
same order as expression tt 

To further improve JOUI processmg, System R takes advantage of 
exlstmg mdexes on the mner relations Instead of evaluatmg all 
terms of the Jom pre&cate by the Jam operator, those are “pushed 
down” mto an m&x scan to use them as adhttonal predtcatcs on 
the mdex The followmg two rules implement tlus unprovement 
which we apply to both JOIII operators, the nested-loop Jam and 
the merge-Jam 

l ((MJOZNPl fl (ZSCAN( ) r2 23 14)) c,’ 

(MJOZZvP’l r1 (ZSCAN @‘\ ) rz r3 4))) 

l ((WozNpl r1 (ZSCAN( ) r2 r3 4)) 2 

(WOZNP’l 11 (ZSCAN (p’l ) r2 r3 4))) 

wlth 
Cl = (@I = ~‘1 U P’:) A Cp’l no’\ = 9) A (M.P’~ )) l Wr2))) 

For both rules, the predcate hst p1 IS pmtioned mto two parts, 
one of which can be evaluated by the mdex, the other part bemg 
evaluated by the Jam operator Coru%tlon Cl ensures thy restnc- 
bon Smularly, we can define ad&tional rules to push down the 
remammg con&tion mto the mner relation scan, thus evahmtmg 
the Jam comhtion wUe retnevmg the tuples by the RSS component 
[SELI791 

Example 6 

We can transform the two-way Jams of the final expression m 
Example 5 ather mto merge-Jam operations or nested-loop JOIDS 

One possible expression generated by the first three rules of this 
section IS 

(PROJECT (EMP Name) 
&JOIN 

((PAPER YBAR=CONF Year) 
(EMP Emp#=CONF Emp#)) 

(MJOIN 
((EMP Emp#=PAPER Emp#)) 
(SORT (EMP Emp#) 
(ISCAN ((EMP Status=Prof)) 11 () EMP) 

(SORT (PAPER Emp#) 
(FSCAN ((PAPER Subject=DB)) PAPER)) 

(FSCAN ((CONF CName=VLDB)) CONF))) 

II 

5. Discussion 

In ti section we show one possible extension of the current rule 
set for d&nbuted query processmg and bnefly discuss some 
Implementation-related aspects 



5.1. Distributed Queries 

Thzs section demonstrates how easy zt IS to extend the current set 
of rules by new ones to process dzstrzbuted query processmg We 
do not mtend to zmplement the most sophzstzcated query evaluatzon 
strategy for dzstrzbuted querzes, our mterest 1s focused more on the 
flexzble use of rules for descnbmg one aspect of query optmuxatzon 

We mtroduce two rules whzch descrzbe some of the shzppmg strat- 
egzes for dzstrzbuted quenes as defined by L&man et al [LOHh484] 
To move bsts of tuples between sztes and to store them zf necessary, 
we define two new algebrazc operators SHIP and STORE 

Transformation Internal Data 
Rules Structures 

------_----__- __---__-_____ 

; --------------; / / 
I I Rule 
->I Translation I'-- --__---_ 

--------------- 
I 

Transformation Procedures 
---_----_---------------- 

(SHIP cszte-name> hst) 

shzps a bat of tuples to the deszgnated site 

(STORE <rel-name> hst) 

stores a hst of tuples m the relatzon <rel-name> z 

I I 
Optimization I Cost Function I 

Strategy f 
------------- 

------__--- 1 

I 
I 

_-____---___-- I 
-- 

!->I Combiner I' 

Addztzonally, we Introduce the function Szre, whzch we need for 
condztzonal rules Szfe(tt) deterznmes the sate at whzch the tuples 
generated by q reside We can define functzon Szte recurszvely, 
smular to the functzon 0 

I I<--------- 
-------------- 

I 

QUERY APTIMIZER 

Based on these new defzmtzons, we define the followzzzg two rules 
to generate expresszons which either shzp the outer tuple hst to the 
sate where the znner tuple hst resides or vzce versa 

(TJOZNpl fl (FSCAN() (STORE T(SZfZP Szre(fl) f2))))) 

l ((TJOZNpl tl t2) c,’ (T.OZNpl (SHIP Szte(f.2) fl) t2)) 

wzth Cl = (Szre(ll) + Szre(t2)). and T bemg a new relation that 
stores the result of h at tt’s szte Notzce, that the two rules are 
not symmetrzc When we shzp tuples of the outer hst to the uuler 
hst’s site, we do not need to store them smce each tuple IS accessed 
only once However, d the tuples of the znner hst are shzpped to 
the outer hst’s site, we create a new relatzon to rescan the mer 
table locally, thus avozdmg repetitzve shzppmg of the mner tuple 
hst 

5 2. Implementation of the 
Rule-Based Optimization 

After havmg defined the rules whzch generate dzfferent QEPs from 
a user-subzmtted query, the general questzon zs how to bmld a 
query optmuzer usmg the rule-based speczfzcatzon We show one 
posszble approach m Fzgure 2 which describes the generatzon of a 
query optmuzer m two steps The speczfzcatzon of the transformatzon 
rules as presented m thzs paper descrzbes the generatzon of QEPs 
from mztzal quenes m a h&level, mplementatzon-mdependent 
way To guarantee thezr fast execution m any zmplementatzon, we 
propose to translate them mto “transfozmatzon procedures” m pro- 
graznzmng languages such as C or Pascal Addztzonally, the trans- 
lation mto transforznatzon procedures should consider the mtemal 
data structures whzch represent a query, thus makzng the transfor- 
matzon even more effectzve 

Carey et al mvestzgated a szmzlar archztecture for buzldmg an 
optmuzer generator as part of the EXODUS project [GRAE87, 
CARE861 They especzally suggested the translatzon of transfor- 
mation rules znto transfonnatzon procedures and proposed a “hzll- 
chmbzng” algontbm to guide the selectzon of rules durzng the op- 
tmuzatzon 

Figure 2 Generatio of a Query Oplnnizer 

As we pomted out m Se&on 2, the transfozmatzon rules descrzbe 
only one aspect of query optzmzzatzon We need to add mformatzon 
about the search strategy used m the optmnxatzon process, and to 
speczfy cost functzons to compare dzfferent QEPs and to select the 
best one Therefore, m a second step all three aspects are combzned 
to generate the query optmuzer 

Of course, thzs approach leads to many open questions Is zt 
posszble to show that a gzven set of rules generate only vabd QEPs7 
How do we stmcture the rule translatzon process? Can we use 
already exzstmg techzuques, methods and tools? Is zt possible to 
speczfy mztzally the three aspects of query optumxatzon mdependently 
wzthout losmg the requzred efficiency of the opmtzon process? 
How can the optmuxer avoid scazmmg all rules each tune zt has to 
find those rules that are apphcable on the current query expresston 
The defzmtzon of rules m Section 4 already mdzcates a possible 
order for applymg the rules durzng the trazzsforznatzon process 
These questzons (and others) need to be answered by further 
research before we can achzeve our goal of a modular query optz- 
rmzer 

6. Conclusion 

We presented a rule-based descnptzon of how to generate dzfferent 
QEPs from a user-subzmtted query The rules do not completely 
cover all aspects of the optmuxatzon algonthms as descrzbed by 
Selmger et al [SELI79] However, we demonstrated that a rule- 
based descnptzon allows a h&-level speczfzcatzon of one part of 
the query optmuxatzon process AddztzonalIy, we addressed the 
problem of how to extend the current rule set and dzscussed some 
mztial zdeas for unplementmg a rule-based optzmzzer Despite the 
many open problems, we are convmced that tbzs kmd of speczfzcatron 
can support the Implementatzon and - at least partially - the gen- 
eratzon of a query optmuzer, whzch wzll contnbute to the more 

1 Of cause thts operator IS usually used for centrahzed quenes too 
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general goal of bmldmg a modular query optmuzer as part of an 
extensible database management system 
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