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Abstract We exploit the recent availability of a com-

munity reconstruction of the human metabolic network

(‘Recon2’) to study how close in structural terms are

marketed drugs to the nearest known metabolite(s) that

Recon2 contains. While other encodings using different

kinds of chemical fingerprints give greater differences, we

find using the 166 Public MDL Molecular Access (MAC-

CS) keys that 90 % of marketed drugs have a Tanimoto

similarity of more than 0.5 to the (structurally) ‘nearest’

human metabolite. This suggests a ‘rule of 0.5’ mnemonic

for assessing the metabolite-like properties that character-

ise successful, marketed drugs. Multiobjective clustering

leads to a similar conclusion, while artificial (synthetic)

structures are seen to be less human-metabolite-like. This

‘rule of 0.5’ may have considerable predictive value in

chemical biology and drug discovery, and may represent a

powerful filter for decision making processes.

Keywords Genome-wide metabolic reconstruction �

Recon 2 � Cheminformatics � KNIME � Metabolite-

likeness � Drug-likeness

1 Introduction

The declining productivity of the drug discovery process is

well known (e.g. Empfield and Leeson 2010; Hay et al.

2014; Kell 2013; Kola 2008; Kola and Landis 2004; Rafols

et al. 2014; van der Greef and McBurney 2005). Thus,

many groups have sought to assess in silico those structural

or biophysical properties of successful drugs that might be

used as filters to enrich the contents of drug discovery

libraries with molecules that share those properties. This

has therefore led to concepts such as ‘‘drug-likeness’’ (e.g.

Empfield and Leeson 2010; Hay et al. 2014; Kell 2013;

Kola 2008; Kola and Landis 2004; van der Greef and

McBurney 2005), ‘‘lead-likeness’’ (Gozalbes and Pineda-

Lucena 2011; Holdgate 2007; Oprea et al. 2007, 2001;

Wunberg et al. 2006), and ‘‘ligand efficiency’’ (Hopkins

et al. 2014) by which the potentially desirable properties of

such molecules have been assessed.

We recognise that any molecule bioactive in human

cells (whether as a drug or for purposes of chemical

genomics) must cross at least one membrane, that nutrients

necessarily do so, that natural products remain a major

source of successful (marketed) pharmaceutical drugs

(Gozalbes and Pineda-Lucena 2011; Holdgate 2007; Oprea

et al. 2007, 2001; van Deursen et al. 2011; Wunberg et al.

2006), and that successful drugs require or at least use

membrane transporters (Dobson et al. 2009; Dobson and
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Kell 2008; Giacomini and Huang 2013; Giacomini et al.

2010; Kell 2013; Kell and Dobson 2009; Kell et al. 2013,

2011; Kell and Goodacre 2014; Lanthaler et al. 2011) that

normally are used for the transport of intermediary

metabolites (Herrgård et al. 2008; Swainston et al. 2013;

Thiele et al. 2013). Given the natural role for these trans-

porters as transporters of intermediary metabolites, we and

others have thus suggested (hypothesised) that successful

drugs are in fact much more like metabolites (we use this

term to mean the natural intermediary metabolites of

human metabolism, and do not consider metabolites of the

drugs) than are the typical structures found in drug dis-

covery libraries (e.g. Chen et al. 2012; Dobson et al. 2009;

Feher and Schmidt 2003; Gupta and Aires-de-Sousa 2007;

Hamdalla et al. 2013; Karakoc et al. 2006; Khanna and

Ranganathan 2009, 2011; Peironcely et al. 2011; Walters

2012; Zhang et al. 2011), and following the principle of

molecular similarity (e.g. Bender and Glen 2004; Eckert

and Bajorath 2007; Gasteiger 2003; Maldonado et al. 2006;

Oprea 2004; Sheridan et al. 2004) that ‘‘metabolite-like-

ness’’ is therefore a useful criterion for the design of suc-

cessful drugs (Dobson et al. 2009). At one level, this may

not be seen as surprising given the fact that pharmaceutical

drugs typically bind to proteins at sites to which endoge-

nous metabolites normally bind, but the recognition of the

importance of metabolite-likeness in drug discovery and

chemical genomics remains less than complete.

While a variety of metabolite (pathway) databases exist

(Ooi et al. 2010) [e.g. ChEBI (de Matos et al. 2012; De-

gtyarenko et al. 2009; Hastings et al. 2013), HMDB

(Wishart et al. 2013), KEGG (Kanehisa et al. 2012, 2014),

MetaCyc (Altman et al. 2013; Caspi et al. 2014; Karp and

Caspi 2011) and MetaboLights (Haug et al. 2013)], the

recent availability of a highly curated consensus map

(Recon2) of the human metabolic network (and thus of

intermediary metabolites) (Swainston et al. 2013; Thiele

et al. 2013) now provides the most suitable starting point

for the comparison of drugs that have been approved/

marketed [available from DrugBank (Knox et al. 2011;

Law et al. 2014)] and metabolites that are known to be part

of the human metabolic network. We choose this latter

over say HMDB since the measurable presence of a mol-

ecule in a human sample (e.g. Dunn et al. 2014) does not

exclude that it has a nutritional, xenobiotic or gut microbial

origin, and HMDB does contain many ‘metabolites’ that

are not in fact produced via pathways containing proteins

encoded by the human genome. Indeed Peironcely et al.

(2011) noted, for instance, that the ‘metabolite’ debrisoq-

uine was indeed classified in their scheme as a non-

metabolite (and it is indeed a marketed drug).

Thus the primary purpose of this work (in contrast to our

earlier work (Dobson et al. 2009) that included multiple

metabolite databases that were not constrained as here), is

to use the availability of Recon2 to assess precisely how

‘metabolite-like’ known drugs are, partly as an aid to

developing metrics for determining whether drugs are

likely to be substrates for relevant transporters and thus

whether they are likely to be bioactive. The availability of

Recon2 also allows us to reason sensibly about the nature

and extent of metabolite space and how it differs from the

kinds of molecules typically found in drug discovery

libraries.

2 Methods

2.1 Construction of datasets

The list of FDA-approved small molecule drugs was

downloaded from DrugBank 3.0 (http://www.drugbank.ca/

downloads) in November 2013 as an SDF file and consists

of 1491 molecules. This is significantly smaller than the

fuller list (7330 ‘drugs’ via Drugbank and KEGGDrug)

used previously (Dobson et al. 2009). The list of interme-

diary metabolites was extracted from the latest version of

the Recon2 human metabolic network (Thiele et al. 2013).

A further manual curation removed from the ‘drugs’ list

(i) ‘drugs’ (mainly nutritional supplements) that are also

intermediary metabolites produced by enzymes encoded by

the genome and thus part of Recon 2 (though adrenaline

was treated as a drug), and (ii) those ‘metabolites’ listed in

Recon2 that are xenobiotic in nature or simply metals or

salts. However, vitamins and essential amino acids and

fatty acids, while not encoded by the human genome, were

retained as ‘metabolites’ as they are both necessary for

human metabolism and form part of the formal human

metabolic network. The resultant data are in Supplemen-

tary information S3, and consist of 1113 ‘metabolites’ [cf.

5333 ‘metabolites’ previously (Dobson et al. 2009)] and

1381 ‘drugs’. In addition, data on antimalarial compounds

were downloaded from the databases at the EBI (https://

www.ebi.ac.uk/chemblntd).

2.2 Software

For the cheminformatics analyses we used the KoNstanz

Information MinEr (KNIME, www.knime.org) (Beisken

et al. 2013; Berthold et al. 2007; Mazanetz et al. 2012;

Meinl et al. 2012; Stöter et al. 2013; Warr 2012). KNIME

is a workflow environment somewhat similar to Taverna

[with which we have previous experience in systems

biology analyses (Li et al. 2008a, b)], but which is slightly

more focussed on cheminformatics. The workflows we

used here included nodes that made use of libA-

nnotationSBML (Swainston and Mendes 2009), the

Chemistry Development Kit (Beisken et al. 2013;
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Steinbeck et al. 2003) and the RDKit (Riniker and Lan-

drum 2013a; b; Saubern et al. 2011) (www.rdkit.org/). We

also used the software MOCK (Handl and Knowles 2007)

for multiobjective clustering.

3 Results

3.1 Comparison of Tanimoto distances between drugs

and natural metabolites

Our first task was to assess the average chemical (structure)

distances between molecules according to a suitable met-

ric. Many molecular descriptors exist for encoding mole-

cules in a manner that allows this (e.g. Bender 2010; Duan

et al. 2010; Koutsoukas et al. 2013; Sastry et al. 2010;

Sheridan and Kearsley 2002; Todeschini and Consonni

2000; Wang and Bajorath 2010), most commonly referred

to as fingerprints (e.g. Faulon and Bender 2010; Flower

1998) and sometimes with rather different properties and

outcomes when matched against structures or biological

activities (e.g. Dhanda et al. 2013; Medina-Franco and

Maggiora 2014). Thus, and while some experience shows

that they are not greatly different from each other when

simply comparing chemical or structural similarity (Dob-

son et al. 2009; Riniker and Landrum 2013a), which is the

focus of the present paper, we looked at a number of

methods for producing molecular fingerprints. Probably

most common are fingerprints derived from structural keys

such as the 166 Public MDL (Molecular ACCess System)

MACCS keys (Durant et al. 2002) based on a predefined

dictionary of 166 substructures [that contain most of the

important features of a larger 960-key set (McGregor and

Pallai 1997)] and hashed to give 1,024 bits.

Given the molecular fingerprint method chosen, there is

a more general acceptance of the metrics for the similarity

of molecules whose (sub)structures are so encoded;

although it has a size-dependence (that does not matter for

this analysis), the Tanimoto distance, that effectively

encodes the numbers of matching and non-matching sub-

structures, is both easy to calculate and pre-eminent

(Maggiora et al. 2014; Willett 2006).

We recognise that some 20 % of recent new chemical

entities are prodrugs (15 % in the top 100 drugs) (Huttunen

et al. 2011), and that some of these are converted non-

enzymically to the active substances; however, these nor-

mally do not differ greatly in structural terms from the

active substance in the marketed entities, so for conve-

nience we shall use the latter. In contrast to Peironcely

et al. (2011), who used supervised learning methods such

as random forests [which are very powerful (Knight et al.

2009)] to predict whether a substance was or was not a

metabolite, we are here interested only in the structural

similarities between candidate molecules and Recon2

metabolites, and we confine ourselves strictly to unsuper-

vised methods of analysis.

We checked a variety of implementations of the

MACCS fingerprints (specifically those used in Open

Babel, CDK and RDKit) and found very little difference

between them, and for what is presented here we used those

in the RDKit implementation. We therefore compared all

metabolites against all metabolites (Fig. 1a), all drugs

against all drugs (Fig. 1b), and all drugs against all

metabolites (Fig. 1c). The metabolite-metabolite similari-

ties (Fig. 1a) reveal multiple clusters, including one that is

made up of CoA derivatives (full details in Figure S1),

while the clusters of drug-drug similarities Fig. 1b are

rather more heterogeneous (the trees are much ‘bushier’).

From Fig. 1c, the drug-metabolite similarities, there are

some interesting clusters, e.g. the block of red and yellow

towards the upper left represented sterols and steroids,

while the larger swathe of red and yellow towards the

bottom represents mainly CoA derivatives. All the data are

given in an addressable form as Excel spreadsheets in

Supplementary Information S1–S3.

A number of different fingerprints were used to deter-

mine if the extent of closeness of a drug to its nearest

metabolite depended greatly on the fingerprint used. The

various fingerprints used (http://www.rdkit.org/RDKit_

Docs.current.pdf) were provided in the RDKit module

(Riniker and Landrum 2013a) (https://code.google.com/p/

rdkit/wiki/FingerprintsInTheRDKit) of KNIME (http://

tech.knime.org/community/rdkit), and as stated in (Riniker

and Landrum 2013b) were atom pairs (AP), feature-based

circular fingerprint with radius 2 as bit vector (FeatMor-

gan2), and a circular fingerprint with radius 2 as bit vector

(Morgan2). Morgan2 is the RDKit implementation of the

familiar ECFP4, and FeatMorgan2 is equivalent to FCFP4

(Landrum et al. 2011). The features used by the RDKit for

FeatMorgan2 consist of various donors, acceptors, aro-

matic atoms, halogens, basic and acidic atoms. We also

used a representation (referred to in KNIME and here as

‘RDKit’) that is said to be a ‘Daylightlike’ topological

fingerprint based on hashing molecular subgraphs. Most

recently, RDKit has added some extra fingerprints, and for

completeness we included these too. Thus, ‘layered’ is an

experimental substructure fingerprint using hashed molec-

ular subgraphs, while ‘torsion’ is said to be the bit vector

topological-torsion fingerprint for a molecule. As indicated

above, all of the data are tabulated in Fig S3.

Considering first just the Tanimoto similarity (TS) val-

ues using MACCS fingerprints and the 1,024 bitstring

encoding, 90 % of marketed drugs have a ‘nearest

metabolite Tanimoto similarity’ (NMTS, i.e. the TS to the

nearest metabolite) of more than 0.5, 98.5 % over 0.4 and

99 % over 0.34, all highly significant values (Baldi and
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Fig. 1 Heat maps of the overall

similarities between a Recon2

metabolites, b drugs and c each

other. In the latter plot, the

drugs lie on the X-axis and the

metabolites on the Y-axis.

Chemical structures were

encoded using the MACCS

encoding and Tanimoto

distances calculated as

described in Methods. The heat

map representation (Eisen et al.

1998) encodes the numbers as a

colour; in the present version,

for ease of observation, we use

ten discrete colours for the ten

decades of Tanimoto similarity,

with the colours chosen

following the recommendations

of Brewer et al. (1997) (see also

http://www.colorbrewer2.org/).

Also shown are hierarchical

clusterings of the rows and col-

umns (Eisen et al. 1998) using

complete linkage and the default

settings in the hclust function in

R (Color figure online)
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Nasr 2010). The first of those percentages compares with

just 12 % when we did not use the ‘genuine’ human

metabolites of Recon2 (Dobson et al. 2009) (note that there

we used the nearest Tanimoto distance (=1 - TS)). Pro-

vided the molecule is not excessively halogenated, its

NMTS is over 0.5 (e.g. 0.54 for Chlorzoxazone, 0.55

chlormerodrin, 0.6 diclofenac, 0.65 chlorphenesin and so

on). This ‘rule’, by which the very great majority (90 % of)

drugs are within a Tanimoto distance of 0.5 in MACCS

fingerprint space, may be viewed in the context of the well-

known ‘rule of 5’ (Lipinski et al. 1997) (Ro5) mnemonic

for predicting drug lead quality. However, the cumulative

plots of the NMTS for each drug using different finger-

prints (Fig. 2a) do differ quite significantly depending on

which fingerprint is used, and clearly the well-established

MACCS fingerprints lead to a substantially greater degree

of ‘metabolite-likeness’ than do almost all the other en-

codings (we do not pursue this here). Figure 2 also permits

one to read off other metrics such as to note that more than

50 % of drugs have a TS greater than 0.6 to a metabolite

for both MACCS and RDKit encodings.

Another indication of the rather different nature of the

fingerprints comes from an analysis (Table 1) of the nature,

and frequency of occurrence, of the nearest metabolite,

where each fingerprint encoding has its own predilections

for particular classes of metabolite, reflected also in the

overall number of metabolites that are closest to at least one

drug. These represent about one quarter of all drugs (or

metabolites), an indication of the significant heterogeneity

(Hopkins et al. 2014; Paolini et al. 2006) of drug space.

RDKit has a slightly unusual predilection for cob(1)alamin

and for protoheme, returned as the closest hits on 650 and

73 occasions, respectively (although removing these has

negligible effects on the shape of the plot in Fig. 2a, indi-

cating that this lower degree of metabolite-likeness, which

is a continuous function, is inherent to the encoding).

Scatter plots indicating correlations of ‘nearest metabolites’

with the different encodings are given in Fig. 2b, again

illustrating the substantial differences found using the dif-

ferent encodings. Thus we would stress not only that sim-

ilarity measures differ significantly for the different

encodings, but that in functional terms the well-known

existence of activity cliffs (e.g. Maggiora et al. 2014) means

that quite small differences in molecular similarity may be

highly significant with regard to pharmacological effects. In

contrast to studies of related molecules that look at this (e.g.

Muchmore et al. 2008; Papadatos et al. 2010), we discuss

only the similarities themselves.

In a similar vein, the different encodings produce quite

different assessments of the number of metabolites to

Fig. 1 continued
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Fig. 2 Different structural

encodings produce different

drug-metabolite distances.

a Cumulative plots of nearest

drug-metabolite Tanimoto

distances using various

fingerprints. The number of

drugs with a Tanimoto

similarity of 0.5 or smaller is

arrowed (i.e. all of those to the

right, ca 90 %) have a Tanimoto

similarity greater than 0.5.

b Scatter plots relating the

nearest Tanimoto distance to a

metabolite for each drug; when

the closest metabolites are the

same for both encodings they

are coloured red. Correlation

coefficients are as given. The

blue histograms represent the

distributions of Tanimoto

similarities for each of the

encodings (scaled to fit the

relevant windows).

c Cumulative numbers of

metabolites with a Tanimoto

similarity C0.5 for various

drugs and encodings. d The

variation of the numbers of

metabolites with a Tanimoto

similarity C0.5 for all drugs

using the MACCS encoding,

with some of the highest

labelled by name and with the

chemical structure of arbekacin,

the ‘most promiscuously

metabolite-like’ of all, shown.

e The 14 least metabolite-like

drugs when using the MACCS

encoding. f An assessment of

part of drug-metabolite space

where drugs are largely but not

entirely distant from metabolites

(Color figure online)
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Fig. 2 continued
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Fig. 2 continued
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which each drug displays a Tanimoto similarity exceeding

0.5 (Fig. 2c), with (unsurprisingly, given the data in

Fig. 2a) the MACCS, RDKit and Layered encodings

showing the greatest tendency towards ‘metabolite-like-

ness’. Based on MACCS, 50 % of marketed drugs have at

least 31 metabolites with a TS of 0.5 or more. The ‘winner’

(i.e. the drug with the most metabolites to which it bears a

TS greater than or equal to 0.5) is arbekacin, with 364, and

the relevant data, plus a few named drugs, are given in

Fig. 2d. It is probably worth commenting, albeit this is not

necessarily a surprising finding, that these ‘highly metab-

olite-like’ drugs are natural products or molecules derived

therefrom [see also (Kell 2013; Newman and Cragg 2012)].

The average greatest TS to a metabolite of the five most

drug-like drugs (0.547), the five least drug-like drugs

(0.683), the five most drug-like Ro5 failures (0.496) and

the five least drug-like Ro5 passes (0.557, but minus te-

gaserod, not present in our list) as listed by Bickerton et al.

(2012) are as noted.

By contrast, the substance with the lowest NMTS

(perflutren, 0.125) is in fact an injectable contrast agent of

lipid microspheres marketed precisely because it does not

enter cells, while the next three lowest (NTS B 0.2) are

halothane (an inhalational narcotic), lindane (a topical

chlorinated insecticide) and desflurane (a polyfluorinated

inhalational anaesthetic), consistent with the fact that vir-

tually no natural human metabolites are halogenated. Ten

of the 14 least metabolite-like drugs contain at least two

halogens (Fig. 2e).

In a similar vein, it is possible to enquire as to which

metabolites have the most or fewest marketed drugs closely

associated with them in terms of Tanimoto similarity, the

latter in particular as a possible indication of areas of

chemical space that might be deemed to be relatively un-

derexplored. The metabolites with the very lowest TS to

drugs are small and uninteresting (ammonia, water, etc.),

so Fig. 2f illustrates those metabolites that are least similar

to numbers of drugs between 900 and 1,000, at the same

time illustrating the nonlinearity of drug and metabolite

spaces by encoding with colours those metabolites that

nonetheless have 1–5 drugs with a TS greater than or equal

to 0.9 (glycerol is marked and has one, viz. mannitol). One

might consider the sparsely populated areas of ‘metabolite-

likeness space’ to be ones worth pursuing in drug

discovery.

Another means of displaying the data, and a convenient

means of interrogating them for a drug of interest, is given

in Fig. 3, where we display the Tanimoto similarity to all

metabolites for the beta-(adrenergic receptor) blocker

propranolol. All metabolites with a TS greater than 0.5 are

labelled, and structures are shown for (from left to right)

propranolol itself, (-)-salsoline, adrenaline, L-normeta-

nephrine, metanephrine and norepinephrine. While

‘structural similarity’ may be seen as a subjective matter, in

this case the chemical similarities are obvious, and it is

probably not surprising that a beta-adrenergic antagonist

should have similarities of this type.

3.2 Multiobjective clustering of drugs and metabolites

In the above, we clustered (or bi-clustered) the drugs and

the metabolites separately. Another approach to assessing

the mapping of drug and metabolite spaces, and the extent

to which they overlap or otherwise), is to use clustering

methods of both together. These algorithms differ widely

[there is no single ‘correct’ clustering (Everitt 1993)] but

the state of the art is represented by methods such as

MOCK (Handl and Knowles 2007) (MultiObjective Clus-

tering with automatic K) that use multiple objectives

[specifically both closeness and connectivity (Handl and

Knowles 2007; Handl et al. 2005)] simultaneously to

cluster objects on the basis of their ‘similarity’. As with

any multiobjective method, there are multiple ‘best’ solu-

tions represented by a Pareto front (Kell 2012), and we

illustrate this in Fig. 4. Figure 4a shows the overall varia-

tion of ‘optimal’ cluster number for the Pareto front, with

‘knees’ at e.g. 3, 7, 25, 30, 42 and 64 clusters, while Fig. 4b

shows the distribution of drugs and metabolites in the

MOCK solution for 25 clusters. Also marked are the ‘top

ten’ blockbuster drugs by sales from 2010 [NB fluticasone

propionate and salmeterol are part of a combined medicine;

see also (Kell et al. 2013)], while the colour encodes the

cluster membership of compounds when there are only

seven clusters. Cluster 0 is mainly small metabolites like

bicarbonate, but it is evident that the lower clusters all

contain both metabolites and drugs. We also looked at the

distribution of various molecular properties (such as polar

surface area, molecular mass, log P etc.) between clusters,

but no trends nor hotspots were apparent for particular

clusters (not shown).

3.3 The drug-likeness of synthetic ‘druglike’ molecules

and ‘fragments’ and of natural products

Having seen the closeness of successful, marketed drugs to

metabolites when both are MACCS-encoded, it was

important to establish that (while unlikely) this was not a

strange artefact of the MACCS encoding itself. To this end,

and while we and others (e.g. Dobson et al. 2009; Feher

and Schmidt 2003; Khanna and Ranganathan 2011; Med-

ina-Franco and Maggiora 2014; Ohno et al. 2010) have

recognised that marketed drugs do differ structurally from

most molecules in drug discovery libraries, despite their

‘biogenic bias’ (Hert et al. 2009), we sought to see how

similar such non-marketed drug molecules or compounds

are to marketed drugs when we compare them in the same

A ‘rule of 0.5’ for use in drug discovery 331

123



way. The comparison is not entirely favourable to metab-

olites since we already know (Fig. 2) that many of the very

smallest metabolite molecules are simply not druglike, and

this is reflected in the data of Fig. 5. Figure 5a shows a heat

map relating 2,000 structures taken randomly from the

30,000 in the Maybridge fragment library (similar kinds of

map were obtained using subsets of varying sizes up to

15,000) relative to marketed drugs, while Fig. 5b shows

that of a random subset of the Maybridge library vs Recon2

metabolites. Figure 5c shows the cumulative similarities

(all using MACCS encodings) to metabolites for a collec-

tion of molecules from a subset of 1,000 molecules from

the Maybridge fragment library, from the 13,533 com-

pounds in the Tres Cantos Antimalarial Drug Set (Gamo

Table 1 Summary of the most frequently represented ‘closest metabolite’ to FDA-approved drugs, the number of times they appear, and the

number of metabolites that are closest to a drug at least once

Fingerprint encoding Most common

‘closest metabolite’

Times

represented

Total number

of different metabolites

that are ‘closest’ to a

marketed drug at least once

MACCS Docosa-4,7,10,13,16-pentaenoic acid 52 359

Atom pair Linoleic coenzyme A 68 346

Feats Morgan Docosa-4,7,10,13,16-pentaenoic acid 124 319

Morgan Docosa-4,7,10,13,16-pentaenoic acid 77 338

RDKit Methylcobalamin 650 268

Layered Adenosylcobalamin 87 300

Avalon Cortisol 65 213

Torsion Vaccenyl coenzyme A 44 327

Fig. 3 Variation of the Tanimoto similarity for a marketed drug, propranolol, with various metabolites, those with a TS of over 0.5 being

labelled, and structures given for a representative set to illustrate the close chemical similarity (Color figure online)
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Fig. 4 Drug-metabolite clustering using the MACCS encoding and

MOCK, a multiobjective clustering algorithm. a Dependence of

cluster numbers as the weightings of the two main objectives are

varied. The ‘knees’ at cluster numbers of 2, 3, 7, 25, 30 and 64 are

marked. b Cluster membership and its distribution between drugs and

metabolites for when 25 clusters are chosen. Data are ‘jittered’ in the

Y direction to make them clearer (Color figure online)
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Fig. 5 Properties of drugs and

drug fragments. a Heat map

illustrating marketed drug-

compound distances of 2,000

drug fragments selected

randomly from a Maybridge

library (the plot looks very

similar for 15,000 fragments).

b Heat map illustrating

metabolite-compound distances

of 2,000 drug fragments

selected randomly from a

Maybridge library (the plot

looks very similar for 15,000

fragments). c Cumulative plots

of nearest marketed drug-

compound or marketed drug–

fragment Tanimoto distances

for various libraries.

d Distribution of molecular

weights for the various datasets

used (Color figure online)
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Fig. 5 continued
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et al. 2010), from the 5,697 compounds in the Novartis

antimalarial collection (Guiguemde et al. 2010) (note that

these last two are in fact ‘hits’ or actives), for 3 subsets of

1,000 molecules from ZINC (Irwin et al. 2012), and of

1,000 from the *2,400 natural products molecules in

StreptomedB (Lucas et al. 2013). We also checked to

ensure that we are not biased systematically towards an

appearance of metabolite-likeness by say differences in

distributions of molecular weights in the different sets, and

Fig. 5d shows that we are not, in that a propensity to

metabolite-likeness does not seem to follow systematically

the MW distribution of the libraries. It is interesting to note

that the Novartis and GSK compounds, selected from a

very much larger set on the basis of their bioactivity, were

even slightly more ‘drug-like’ than were those from Recon

2 at the left-hand end, though Recon 2 was most drug-like

overall (note how it and the streptomycete secondary

metabolites ‘pull away’ from the other curves beyond

50 %, Fig. 5c), and it seems that no such ‘MACCS arte-

fact’ contributes to the ‘rule of 0.5’. Interestingly, May-

bridge tends to contain a rather greater diversity of

structures relative to human metabolites, but it is possible

that the libraries might be enriched further for possible

drugs if they were to include a greater degree of metabo-

lite-likeness. It will obviously be of future interest to

determine which fragments or compounds are enriched in

molecules that happen to possess particular bioactivities.

4 Discussion and conclusions

While both drug and drug target spaces are evidently very

heterogeneous (e.g. Adams et al. 2009; Hopkins et al. 2014;

Medina-Franco and Maggiora 2014; Paolini et al. 2006),

and that is reflected in the analyses presented here, it is

highly desirable to be able to find properties that are well

represented in marketed (and hence effective and success-

ful) drugs. Given the complexity of drug space, finding a

simple mnemonic or rule that has utility is to be welcomed.

Indeed, the original ‘rule of 5’ paper states (Lipinski et al.

1997) ‘‘This analysis led to a simple mnemonic which we

called the ‘rule of 5’ because the cutoffs for each of the four

parameters were all close to 5 or a multiple of 5….The ‘rule

of 5’ states that: poor absorption or permeation are more

likely when: there are more than 5 H-bond donors

(expressed as the sum of OHs and NHs); The MWT is over

500; the Log P is over 5 (or M Log P is over 4.15); there are

more than 10 H-bond acceptors (expressed as the sum of Ns

and Os); compound classes that are substrates for biological

transporters are exceptions to the rule.’’ This famous ‘rule

of 5’ (Lipinski et al. 1997) has been highly influential in this

regard, but only about 50 % of orally administered new

chemical entities actually obey it (Overington et al. 2006;

Zhang and Wilkinson 2007) (and see Hopkins et al. 2014);

indeed half of recent ‘new chemical entities’ are natural

products (Newman and Cragg 2012), that do not obey the

Ro5 either. The (also very effective) ‘rule of three’ (Con-

greve et al. 2003) applies solely to leads and not drugs.

While improving drug effectiveness is probably best

addressed using combinations of molecules (e.g. Small

et al. 2011), we have shown that when encoded using the

public MDL MACCS keys, more than 90 % of individual

marketed drugs obey a ‘rule of 0.5’ mnemonic, elaborated

here, to the effect that a successful drug is likely to lie

within a Tanimoto distance of 0.5 of a known human

metabolite. While this does not mean, of course, that a

molecule obeying the rule is likely to become a marketed

drug for humans, it does mean that a molecule that fails to

obey the rule is statistically most unlikely to do so. We note

that this highlighting of the utility of ‘metabolite-likeness’

as a concept in drug discovery in systems pharmacology is

just a first step, as the availability of Recon2 for such

analyses open up many new avenues that we do not discuss

here. The present analysis has necessarily been retrospec-

tive, as we have applied it to existing and successful (i.e.

presently marketed) drugs. However, we consider that this

rule, and the concept of the utility of metabolite-likeness

more generally, may well have significant prospective value

in reversing a current trend in medicinal chemistry (Chen

et al. 2012; Walters et al. 2011) that runs in a direction

precisely opposite to that of metabolite-likeness.
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