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A rumor spreading model based on 
information entropy
Chao Wang1, Zong Xuan Tan2, Ye Ye1, Lu Wang1, Kang Hao Cheong3 & Neng-gang Xie1

Rumor spreading can have a significant impact on people’s lives, distorting scientific facts and 
influencing political opinions. With technologies that have democratized the production and 
reproduction of information, the rate at which misinformation can spread has increased significantly, 
leading many to describe contemporary times as a ‘post-truth era’. Research into rumor spreading has 
primarily been based on either model of social and biological contagion, or upon models of opinion 

dynamics. Here we present a comprehensive model that is based on information entropy, which 
allows for the incorporation of considerations like the role of memory, conformity effects, differences 
in the subjective propensity to produce distortions, and variations in the degree of trust that people 

place in each other. Variations in the degree of trust are controlled by a confidence factor β, while the 

propensity to produce distortions is controlled by a conservation factor K. Simulations were performed 
using a Barabási–Albert (BA) scale-free network seeded with a single piece of information. The influence 
of β and K upon the temporal evolution of the system was subsequently analyzed regarding average 
information entropy, opinion fragmentation, and the range of rumor spread. These results can aid in 
decision-making to limit the spread of rumors.

Social communication plays a signi�cant role in the ecology of human beings, and the spreading of rumors is 
no exception. Widespread rumors can shape public opinion in a country1, a�ect election results or in�uence 
the direction of �nancial markets2, 3. �e content of rumors can vary from unsophisticated gossip to aggressive 
marketing material. �e social networks of customers may also be exploited by companies to promote their 
products or services via ‘word-of-email’ and ‘word-of-web’4. Additionally, rumor spreading mechanisms can have 
technological applications. For example, rumor-mongering can form the basis for a class of communication pro-
tocols, known as the gossip algorithms. �ese algorithms have applications in information dissemination and in 
peer-to-peer �le sharing5, 6. �e conversational properties of rumors have also been analyzed to provide a social 
explanation for their pervasiveness7. A realistic model for the spread of rumors will thus have major theoretical 
and practical signi�cance, for example, in minimizing damages caused by rumors, regulating the spread of mis-
information during a time of crisis, and disseminating relevant news.

Daley et al. introduced a standard model of rumor spreading, known as the Daley–Kendal (DK) model8, 9. �e 
DK model and its variants, such as the Maki–�ompson (MK) model10, have been used extensively in the study 
of rumor spreading. Readers can refer to refs 8–10 for more information. With the development of complex net-
works11, 12, rumor propagation dynamics also included the topology of social networks. Moreno et al. investigated 
the stochastic version of the MK model on scale-free networks by using Monte Carlo simulations13. Nekovee et al. 
improved the MK model by formulating the model on networks in terms of interacting Markov chains (IMC) and 
derived mean-�eld equations that describe the dynamics of the model on complex social networks14. Boccaletti 
et al. investigated the in�uence of the source on the propagation dynamics by studying the e�ect of hub nodes on 
propagation ability15. �ey concluded that the propagation ability of hub nodes is strong, but has weak stability. 
Drawing from epidemic theory, Dotts et al.16 then introduced a general model of contagion which, by explicitly 
incorporating memory of past exposures into the susceptible-infected-removed (SIR) model, included the main 
features of existing contagion models and could interpolate between them. From such models, Zhao et al.17, 18  
proposed a susceptible-infected-hibernator-removed (SIHR) model which incorporated the mechanisms of 
memory and forgetting, while Lü et al.19 studied the strengthening of multiple infections and the in�uence of the 
external social factors in the established transmission model.
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Research into the evolution of public opinion is of mutual relevance to models of rumor spreading and infor-
mation exchange since pieces of information shared by multiple people can also be thought of like opinions. In 
the Sznajd model20, magnetization and phase change phenomena of ferromagnetic materials were used to simu-
late the evolution of binary opinions. �e model has since been extended to two-dimensional lattices, small-world 
networks, and scale-free networks21–23. Hegselmann R. et al.24 presented a model based upon bounded con�-
dence, in which individuals would only take into account other opinions that were within a certain con�dence of 
their opinions, and ignore opinions outside that range. Chen et al.25, 26 proposed a majority decision model, where 
the probability of a subject’s belief in an opinion was proportional to the number of agents in the neighborhood 
who held that opinion. Zanette et al.27 approached the topic by considering the heterogeneity of the population 
properties and proposed a model for the co-evolution of opinions and network topology. Based on this frame-
work, a new model for the synchronized evolution of public opinions and networks was proposed by Fu et al.28 
which incorporated the principles of majority preference and minority-avoidance. Other approaches include 
research by Martins et al.29, 30, who applied the Bayesian process to model the exchange of individuals’ opinions 
and Mare et al.31, who studied an opinion persuasion mechanism based on game theory.

It is also known that distortion during the process of spreading and the spread of distortions thus produced 
are vital aspects in the transmission of rumors. When a rumor spreads, states of panic, coupled with failures in 
the mechanisms of transmission or cognition, may cause the communicated information to be distorted. �e 
‘trembling hand’ e�ect32, whereby individuals cannot control exactly how they reproduce rumors, can also play a 
part33. �us, mistakes inevitably appear. Whether intentionally or unintentionally, existing information becomes 
distorted, and new information is formed and spread.

In this paper, we present the �rst comprehensive model that captures the role of memory, conformity e�ects, 
di�erences in the subjective propensity to produce distortions, and variations in the degree of trust that people 
place in each other, through the concept of information entropy—a measure of the chaos or noise of a particular 
set of data. Unlike the previous models described above, our model is now able to provide a more realistic descrip-
tion of the process by which rumors are propagated and public opinion formed. People have a certain capacity for 
remembering pieces of information, and the noice of that memory can be expected to in�uence the rate at which 
they distort information or make mistakes. Conformity e�ects can also be accounted for as a process whereby 
individuals spread the pieces of information that are most salient within their memory, that is they uncritically 
repeat what they have previously heard. On top of that, network topology plays a role in rumor acceptance, since 
people do not wholeheartedly believe all new information they receive, but trust others based on their relative 
positions within the social network33.

The model
Individuals are modelled as nodes in a BA scale-free network of size N, and the spread of information is modelled 
as occurring in three consecutive phases: spreading, acceptance, and updating. In the following sections, we �rst 
de�ne the relevant variables and parameters, before describing each phase in detail.

Information representation. For simplicity of analysis, each piece of information is de�ned as a binary 
string of length s (e.g. ‘11011’ when s = 5). Since information is binary, there are 2s possible di�erent types of 
information, where each type is labelled with an integer 0 ≤ i ≤ 31. Because the model is so general, each informa-
tion type can alternately be viewed as a piece of news, an opinion, or a (potentially distorted) fact.

Memory capacity. Individuals can remember information, and we assume that every individual has the 
same memory capacity, L. �at is, each individual can remember up to L pieces of information.

Information salience. Within the memory of person n, the frequency of occurrence of the ith type of infor-
mation is denoted by fi. �is provides a measure of the salience of that type of information – if fi is high, it means 
the person has received that type of information many times from others, marking it as highly salient. By having 
individuals repeat the information that is most salient in their memory, as is described later in the spreading 
phase, conformity e�ects can be accounted for.

Information entropy. Hn denotes the classical Shannon information entropy for individual n, de�ned as:

∑= −H f flog (1)n i i i2

where fi is the frequency of information type i, de�ned earlier. Entropy increases as the distribution of di�erent 
types of information becomes more uniform (fi → 1/2s), but decreases as one type of information begins to dom-
inate (fi → 1), re�ecting the greater amount of chaos and noise that an individual has to contend with as they 
remember a wider variety of information.

Probability of distortion. Our model assumes that the propensity for each individual to distort informa-
tion is related to the entropy of the information stored in their memory. �e greater the entropy, the more uncer-
tain their memory is, and the more likely they are to make errors when recalling and reproducing information. 
�e probability of information distortion by individual n is thus de�ned as
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where K ≥ 0, the conservation factor, represents the control force against information distortion, and Hmax is the 
maximum possible information entropy (i.e. when fi = 1/2s). When K is large, the ability to control information 
distortion is strong, and vice versa. As Hn approaches Hmax, the probability of distortion approaches a maximal 
value of ½, whereas as Hn approaches zero, the probability of distortion approaches a minimal value of 1/(eK + 1).

Probability of acceptance. When a person m receives a piece of information from another person n, per-
son m will not always believe the information received. Rather, acceptance of information depends on how trust-
worthy person m considers person n, which in our model is based upon the relative social status (as measured by 
number of connections) of person n among the neighbors of the receiver. �e more trustworthy n is, the higher 
the probability ηmn that person m will accept the information, where the probability of acceptance ηmn is given by

η =

β
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in which nbd(m) denotes the set of m’s neighbors, kn denotes the degree of node n (i.e. the number of connections 
that person n has with other people), kl denotes the degree of each neighbor l, and β is a parameter called the 
con�dence factor. If β > 0, this means that person m will trust neighbors with more connections, and vice versa. 
In the special case where β = 0, then m will trust all neighbors equally (i.e. accept information from each of them 
with equal probability).

Spreading phase. An individual n begins to disseminate information in the spreading phase. Out of all the 
strings of information currently remembered, the most salient type of information i (i.e. the type i that occurs 
with the highest frequency fi within n’s memory) is selected for transmission, with random arbitration should 
there be two or more types of information with maximum saliency. With probability Pn, this string of information 
becomes distorted through bitwise mutation at a randomly selected point (‘1’ is �ipped to become ‘0’, and vice 
versa). �is mutation occurs within n’s memory – speci�cally, the �rst piece of information of type i in n’s mem-
ory is mutated to become the new type j. �e potentially distorted piece of information is then spread to all of n’s 
neighbors. If individual n currently has no information in memory, then they will not participate in information 
spreading.

Acceptance phase. When each neighbor m receives this new piece of information from n, it will selectively 
accept or reject it. Acceptance occurs with a probability of ηmn, which, as de�ned earlier, depends on how much 
trust agent m gives to agent n. If m accepts, the new piece of information is added to m’s memory bank.

Updating phase. Since each person has a finite memory capacity, the memory bank acts like a 
�rst-in-�rst-out (FIFO) queue, with newly accepted pieces of information displacing the oldest pieces within 
memory once capacity has been reached. Furthermore, the updating of memory banks occurs synchronously 
across individuals: at every time-step t of the process, all individuals try to spread the most salient type of infor-
mation currently known by them at time t to their neighbors, and then all individuals synchronously decide 
whether to accept or reject new information received from their neighbors, a�er which the memory banks are 
updated to re�ect a new set of values at time t + 1. For example, if person n has �ve neighbors, person n will try 
and spread one piece of information to each them, potentially distorting it, and receive �ve pieces of information 
in return. Some of these pieces will be rejected; perhaps only two are accepted. �ese two pieces of information 
will enter person n’s memory bank, and if n was already at maximum memory capacity, the two oldest pieces in 
the bank will be forgotten.

Results
Computer simulations were performed to investigate the model presented here. To ensure su�cient diversity 
of information types, the length of the information bit-strings was set to s = 5, giving 25 = 32 types in total. �e 
Barabási–Albert (BA) scale-free network12 was initialized with m0 connected nodes. New nodes were added to the 
network one at a time. Each new node was connected to m existing nodes with a probability proportional to the 
number of links that the existing nodes already have. �e total number of nodes was N = 3000, with m0 = 5, m = 2 
as the other network parameters. Following the generation of the network, a random individual was selected 
to be the initial propagator, with only one string of information in its memory: ‘00000’. All other individuals 
started with empty memory banks. Since rumor propagation is a�ected by the memory capacity L, a suitable 
value needed to be determined. A�er several calibration trials, a capacity of L = 320 was selected (law of large 
numbers applies). Our simulations also predict that similar results can be obtained for L > 320.

In the subsequent sections, the time-evolution of the network is analyzed in terms of several di�erent metrics: 
average information entropy, opinion fragmentation, and the range of information spread. �is is followed by an 
analysis of the steady-state characteristics of rumor propagation.

Average information entropy. �e average information entropy of the population H , re�ects the level of 
information noise in the entire system. A higher average entropy corresponds to a more uncertain network where 
rumors and distorted information are abundant. H  is de�ned as follows:
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�e evolution of the average entropy of the network over time is shown for several di�erent values of β and K 
in Fig. 1, where the x-axis denotes time (i.e., the number of iterations in the simulation). It can be observed from 
the Figure that in most cases, an entropy explosion occurs sometime between t = 10 and t = 100, with the average 
information entropy shooting upward rapidly. �e e�ect of varying β, the con�dence factor, is signi�cant but not 
very pronounced. In the case where β = −3, the average entropy stabilizes at a higher level than in the other two 
cases. When β = 0 or β = 1, the entropy shoots up to approximately the same value, before gradually decreasing 
and stabilizing at similar levels.

On the other hand, the e�ect of varying K, the conservation factor, can be seen to have drastic e�ects. When 
K is su�ciently large, as in the case where K = 10, the entropy explosion does not happen at all, and the average 
information entropy stabilizes at a level very close to zero. In the cases where K ≤ 1, however, the sharp increase in 
entropy occurs with approximately the same temporal dynamics, with the �nal average entropy only increasing 
slightly with a decreasing value of K.

�is nonlinear response to the value of K can be explained as follows: Since the initial propagator only pos-
sesses one type of information (‘00000’), which corresponds to an entropy of Hn = 0 and a distortion probability 
of Pn = 1/(eK + 1), a large value of K results in a Pn that is very low. As a result, the information that is spread dur-
ing the initial stages has a very low chance of distortion, which in turn ensures that the information entropy of 
recipients is kept low, since they mostly end up possessing only the initial undistorted piece of information. �ese 
e�ects compound, such that over a long period time, the uncorrupted information still prevails, and rumors are 
close to absent. But when K is low, the e�ects compound in the opposite direction – a higher initial probability of 
distortion results in higher entropy during the initial stages, and so on – such that eventually a sharp increase in 
average entropy occurs.

�e results thus demonstrate the importance of the conservative factor K. In a vigilant community where 
individuals are very careful to guard against distortion, rumors do not spread, but if the community is just slightly 
more prone to mistakes and fabrications, then rumors and misinformation are bound to break out on a wide 
scale.

Opinion fragmentation. In this section, we use the term ‘opinion’ as a more natural way of describing 
information or beliefs held by individuals that may end up di�ering from the beliefs of others over time. With 
respect to our model, we de�ne an individual to hold the opinion i if the most salient piece of information in their 
memory is of type i (i.e. the piece of information with maximal fi). Let Di be the total number of individuals with 
opinion i. �en we can also de�ne

δ = D N/ (5)i i

as the proportion of individuals who hold the opinion i. By analyzing how δi changes for each opinion over time, 
we can study the fragmentation of opinion across the entire population.

Figures 2 to 4 below show the fragmentation of opinion over time for several values of β and K. �e x-axis of 
each graph denotes time, and the y-axis denotes the string of information corresponding to each opinion type i. 
�e value of δi is represented by color, with red corresponding to a higher proportion of individuals holding that 
opinion, and blue corresponding to a lower one.

When β = −3, individuals trust other individuals who are less well connected. As can be seen from Fig. 2, 
this results in large degree of opinion fragmentation. In Fig. 2(a) to (c), where K ≤ 1, every type of opinion rap-
idly ends up with some level of popular support, despite there being only one initial seed opinion (i = 0, corre-
sponding to the string ‘00000’). As one might expect, the fragmentation is less severe with increasing values of 
the conservative factor K. When K = 0, support for di�erent opinions is more or less equally spread out, but as 
K increases to 1, opinions are clustered around the initial opinion of ‘00000’, which remains the most popular 

Figure 1. Evolution of average entropy over time for di�erent values of β and K. (�e curves are obtained 
by averaging over 103 simulations with the same initial conditions and parameters, on the same generated 
network).
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opinion. As K increases further, the clustering around the initial opinion becomes more pronounced, with little 
opinion fragmentation when K = 3, and even less when K = 6. Finally, when K = 10, this is su�ciently high that 
initial opinion type dominates the network, and there is virtually no fragmentation.

�e case where β = 0 corresponds to the situation where individuals trust all their neighbors equally. It can be 
seen from Fig. 3 that a dominant opinion eventually forms in this situation for all six values of K simulated. We 
call this dominant opinion the public opinion. When K = 0, the public opinion is ‘00100’, which di�ers from the 
initial opinion type 0. However, when K ≥ 0.5, the public opinion is always the same as the initial seed opinion.

Lastly, Fig. 4 shows that when β = 1, a dominant opinion forms a�er the evolution of the system for all six val-
ues of K. �is corresponds to the case where individuals trust others who are more well-connected. When K = 0 

Figure 2. Evolution chart of δi (β = −3).
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and K = 0.5, the public opinion (‘00010’ and ‘01000’ respectively) di�ers from the initial information type. For the 
other four cases, the public opinion is the same as the initial opinion.

A general trend that can be observed is that opinion fragmentation decreases as the values of β and K increase. 
�e e�ect of increasing K is due to K’s role in limiting information distortion, as explained in the previous section. 
With less information distortion, fewer opinion types get generated, resulting in less opinion fragmentation. �e 
e�ect of increasing β can be understood intuitively as follows: When β is high, well-connected individuals are 
more trusted, and so dominant opinions propagate more rapidly, since these individuals will share their opinion 
with their many neighbors, who are highly likely to accept their opinion. When β = 0, dominant opinions still 

Figure 3. Evolution chart of δi (β = 0).
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have natural advantage, because well-connected individuals are more like to hold these opinions, and conse-
quently spread them.

On the other hand, when β is less than zero, there is a bias against accepting opinions held by well-connected 
individuals, and towards opinions held by more isolated individuals. Since more isolated individuals are in less 
contact with any opinion groups that may be initially dominant, they are more likely to hold less common opin-
ions, which they then spread to others. Because of this selection pressure towards less common opinions, negative 
values of β easily result in opinion fragmentation.

Figure 4. Evolution chart of δi (β = 1).
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Range of information spread. Another metric that can be used to analyze the spread of information or 
rumors is the range of spreading, i.e., the number of individuals in the network who end up hearing a rumor. 
More precisely, we de�ne Wi as the number of individuals with information type i present in their memory banks, 
and

µ = W N/ (6)i i

as the range of information spread, normalized to the total number of individuals in the network. Figures 5, 6 and 
7 show the changes in the distribution of µi over time for several values of β and K, with color used to represent 
the value of µi.

When β = −3 and K ≤ 1, the spreading of rumors is rampant, as can be seen in Fig. 5(a)–(c). �e diversity of 
information types in the network quickly saturates, with all 32 possible types gaining a positive value of µi in a 
short amount of time. As the value of K increases, the distribution of µi coalesces around the initial information 
type, since the probability of distortion is lowered. At K = 3, there end up being 6 types of information which are 
dominant, in that they have signi�cantly larger µi than the other types of information. Of these 6 types, the initial 
type is the most dominant. �is trend continues with K = 6, except the 5 other types besides the initial type have 
much lower µi. Once K is su�ciently high, as in Fig. 5(f), the initial type rapidly attains maximal range (µi = 1), 
while all other types of information are e�ectively absent (µi = 0).

Setting β ≥ 0 changes the distribution of µi signi�cantly. As can be seen in Figs 6(a)–(d) and 7(a)–(d), when 
β ≥ 0 and K ≤ 3, 6 di�erent types of information come to dominate the network, with each of them approaching 
the maximal range of µi = 1. As the value of K increases, the non-dominant information types fade into obscurity 
more rapidly. When K = 6, there are still 6 information types which spread across the network. However, just the 
initial type is dominant, and the other 5 types spread across about only 20% of the network. Finally, when K is 
increased to 10, only the initial information type prevails, as can be seen in Figs 6(f) and 7(f).

It is evident from these charts that when K ≤ 1, many distorted versions of the original string appear early on. 
�is is due to the high probability of information distortion. But as long as β ≥ 0, the system gradually reaches a 
stable spreading state with 6 dominant types of information. �is can be understood by analyzing the e�ect of the 
con�dence factor β on µi, which is similar to its e�ect on opinion fragmentation.

When β < 0, individuals with less connections are trusted more, and since they are more likely to hold uncom-
mon pieces of information (due to their isolation from well-connected hubs that might in�uence them other-
wise), the information they hold quickly spreads throughout the network. �e rate of spread is further aided 
by the large number of low-degree nodes present in a BA scale-free network. On the other hand, when β ≥ 0, 
well-connected individuals have an advantage in spreading the information they hold. Under their guidance, less 
connected individuals eventually take up the dominant information types, and forget the less common informa-
tion types in their memory. As a result, when K ≤ 1, the network reaches a state with only 6 types of information 
present.

Combining our analysis of opinion fragmentation with this section, it is clear from Figs 2, 3, 4, 5, 6 and 7 that 
the conservation factor K determines the survival of the initial string of information. �e larger the value of K, the 
more likely the initial information type will be retained.

Steady-state characteristics of rumor propagation. �e steady-state characteristics of our model can 
be analyzed by using the distribution of information entropy in steady-state (that is, the distribution of infor-
mation entropy no longer changes). �e number of iterations taken was 2000. �e curves in Figs 8 and 9 are 
obtained by averaging over 103 simulations with the same initial conditions and parameters, on the same gener-
ated network.

Figure 8 shows the density distribution of the information entropy H in the steady-state when K = 1. Our 
simulation results predict that:

 (1) �e distribution of H appears to conform to a Poisson distribution;
 (2) When β = −3, the information entropy is much more widely distributed.

�e �rst observation motivates future work as further exploration is beyond the scope of the current study. 
�e second observation (β = −3) can be understood using the same reasons that explain opinion fragmentation: 
When the population places more trust in less connected individuals, all sorts of rumors become prevalent, such 
that the proportion of individuals with uncertain memory banks becomes larger. As a result, the distribution of 
information entropy has a fatter tail.

Figure 9 shows the relationship between the con�dence factor β and the average information entropy H  in the 
steady-state for di�erent value of K. When β < −1, H  increases as the value of β increases. When β = −1, H  
reaches a maximum of 2.9. As β increases further, a weak collapse of H  occurs, reaching a local minimum of 2.28 
when β = 0. A�er this, a weak upward trend continues until a second collapse occurs at β ≈ 5. Following this 
collapse, H  stays very close to zero. �ese trends can be understood as follows:

From Equation (3), we know that as β tends to negative in�nity, individuals end up trusting only neighbors 
with the smallest degrees of connection, such that the information they receive becomes highly limited. As a 
result, most individuals only have one or two types of information in memory, resulting in a low average entropy 
H . As β increases but remains negative, more small-degree nodes (i.e. individuals with small degrees of connec-
tion) become trusted. Since there is a large number of small degree nodes in the network, and since these nodes 
are more likely to possess uncommon types of information, the information entropy increases rapidly with β.
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However, when β goes from −1 to 0, small-degree nodes begin to lose their advantage over high-degree nodes 
(i.e. well-connected individuals), who already have a natural advantage in spreading information, and who are 
more likely to possess common types of information. �is results in greater homogeneity of information across 
the network, and as such there is a weak collapse in the information entropy H . When β begins to increase from 
0, there is a certain heterogeneity of information as individuals with a large degree begin to play a larger role, 
competing with each other to establish their own information type, or opinion, as the dominant one. �us, H  
grows together with β for a while. As β continues to increase above 5, individuals begin to trust only neighbors 
who are extremely well-connected, and the information received again becomes highly limited. Most individuals 

Figure 5. Evolution chart of µi (β = −3).
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end up only receiving one type of information from the high degree nodes they are connected to, and so the aver-
age information entropy, H  collapses to 0.

Discussion
In general, it can be observed that the network’s performance varies similarly with β and K across all metrics used. 
Information entropy and rumor spreading tend to increase as the conservative factor K decreases. �e relation-
ship with the con�dence factor β is more complex, but it can be seen across metrics that when β is negative and 
small in magnitude, this leads to high levels of information distortion, whereas less distortion is present when 
β = 0 and β = 1. We can deduce that rumors are less likely to spread if people are less likely to distort information 

Figure 6. Evolution chart of µi (β = 0).
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(higher K) or if they are more inclined to trust popular peers with high degrees of connectivity over unpopular 
ones (β ≥ 0).

If we focus only upon the average information entropy, H  or range of rumor spread, µi as metrics, then the 
results may appear dismal. As Fig. 1 shows, it is di�cult to ensure that information entropy remains low unless 
the conservative factor K is at a high value of 10. Similarly, Figs 5, 6 and 7 show that only a high value of K ensures 
that no other information types have a wide spread except the initial one. �ese simulation results predict that the 
creation of rumors may be very di�cult to stem, since a high value of K would require people to have an extremely 

Figure 7. Evolution chart of µi (β = 1).
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low probability of distorting the information they receive (for example, if K = 10, and an agent only possesses one 
piece if information, then their probability of distortion Pn = 0.005%).

However, if we look instead at opinion fragmentation as a metric, rumors appear considerably more manage-
able. As Figs 3 and 4 show, as long as β = 0 or β = 1, there is only one dominant opinion type in the long run (the 
opinion type i where δi = 1). Furthermore, as long as K ≥ 1, the �nal public opinion is equal to the initial ‘correct’ 
opinion. Even though the average information entropy H  or range of rumor spread µi, might be quite high, there 
might still be little fragmentation of opinions. �is is because while each agent may have many di�erent types of 
information in memory, the most common type of information, which represents the agent’s opinion, can still be 
the same across all agents. In other words, there may be cases where two persons may each have heard many dif-
ferent versions of the ‘truth’, but the version that they have heard most frequently is common to both of them. 
Viewed in this light, the existence of other rumors is far less damaging, and the conditions required for public 
agreement are much less demanding. All we need is that people are reasonably conservative (K ≥ 1), and that they 
tend to trust people with more connections (β ≥ 0).

�e insights provided by our model have several possible applications. At a rudimentary level, network 
designers and moderators should try to decrease the probability of distortion (that is, decrease K) and increase 
the amount of trust in high-degree nodes (i.e. increase β) if they wish to control the spread of rumors. For exam-
ple, the probability of distortion could be decreased by education that emphasizes critical thinking, the encour-
agement of epistemic best practices like independent fact-checking, and the establishment of truth-seeking and 
rationality as a social norm. However, given that these are long-term solutions that require gradual social change, 
in�uencing the level of trust placed in high-degree nodes might yield more immediate results. In the case of 
Internet platforms, a network architect could establish a mechanism where well-connected and highly active 
users earn higher trust ratings (in the style of Stack Over�ow34), or where posts by highly connected individuals 
appear more frequently in the newsfeeds of followers, thereby giving high-degree nodes a trust advantage and 
limiting the amount of distortion and fragmentation. Conversely, if architects and moderators wish to prevent 
groupthink and increase the diversity of ideas, low-degree nodes could be given the advantage of greater publicity.

Figure 8. �e density distribution of the information entropy of the population (K = 1).

Figure 9. Relationship between β and the information entropy of the population.
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Limitations and Future work
�e current study is based on BA scale-free network. Future simulations will involve other networks for compari-
son. It may also be possible to formulate an analytical treatment of the model, similar to approach taken in ref. 35. 
Whether such analytical functions exist is a subject for future work.

Conclusion
In this paper, we have considered various factors in the process of rumor spreading, including the role of memory, 
conformity e�ects, di�erences in the subjective propensity to produce distortions, and variations in the degree of 
trust that people place in each other. �e relative strength of these e�ects was parameterized using the con�dence 
factor β and the conservation factor K, thereby establishing a realistic and general model of rumor spreading 
based on information entropy. Our simulation results predict that:

 (1) For a given con�dence factor β, the average information entropy decreases with an increase in the conser-
vation factor K of the system.

 (2) When the conservation factor K is small and the con�dence factor β is less than 0, opinions are highly frag-
mented, and many types of rumor are widespread. On the other hand, when β is greater than or equal to 0, 
the entire population converges upon a single type of information: the public opinion. For a given value of 
β, the value of K determines the survival of the initial information type, with larger K resulting in a greater 
probability of survival.

 (3) �e relationship between β and the average information entropy H  is non-monotonic: When β tends 
towards positive or negative in�nity, H  becomes very small. When −20 < β < −1, H  increases with β. As β 
increases from −1 to 0, H  undergoes a weak collapse. A weak upward trend in H  follows as β increases 
from 0 to 5, and when β > 5, H  collapses until it is close to zero.

By basing our model upon information entropy, it takes into account many parameters that emulate real-life 
situations, thereby providing a more realistic framework for research into rumor dynamics, the distortion of 
information, and the fragmentation of opinions. Our results can thus be used to aid network design and 
decision-making that limits the spread of rumors. For instance, the conservation factor K had a pronounced 
non-linear e�ect in inhibiting rumor spread, while a high con�dence factor β, which corresponds to more trust 
placed in well-connected neighbors, also limited the extent of rumor propagation.
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