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Abstract: A desirable feature of an electrical capacitance tomography system is the adaptation
possibility to any sensor configuration and measurement mode. A run-time reconfiguration of a
system for electrical capacitance tomography is presented. An original mechanism is elaborated
to reconfigure, on the fly, a modular EVT4 system with multiple FPGAs installed. The outlined
system architecture is based on FPGA programmable logic devices (Xilinx Spartan) and PicoBlaze
soft-core processors. Soft-core processors are used for communication, measurement control and data
preprocessing. A novel method of FPGA partial reconfiguration is described, in which a PicoBlaze
soft-core processor is used as a reconfiguration controller. Behavioral reconfiguration of the system is
obtained by providing run-time access to the program code of a soft-core control processor. The tests
using EVT4 hardware and different algorithms for tomographic scanning were performed. A test
object was measured using 2D and 3D sensors. The time and resources required for the examined
reconfiguration procedure are evaluated.

Keywords: data acquisition system; soft-core processor; dynamic reconfiguration; behavioral
reconfiguration; impedance tomography

1. Introduction

Electrical capacitance tomography (ECT) is an imaging technique enabling the vi-
sualization of the spatial distribution of electric permittivity [1]. Due to the significant
difference in electric permittivity of liquids and gases, ECT can be successfully applied
to monitor dynamic processes in chemical and process engineering [2], such as a slurry
flow, multi-phase flow [3,4], batch mixing, separation, combustion [5], etc. The potential
for using this technique in medical imaging, e.g., for brain imaging and monitoring lung
ventilation, is also being explored [6,7].

In ECT, a cross-sectional image is reconstructed using measurements of the mutual
capacitance of electrodes surrounding the examined volume. The number of electrodes, i.e.,
spatial sampling, is limited due to the extremely low value of measured capacitances, which
does not allow for decreasing the electrode area. The ECT weaknesses are low capacitance
measurement sensitivity to a permittivity change and poor spatial resolution. High imaging
speed, up to several thousand frames per second, the relatively simple design of the sensor
and its scalability are ECT strengths.

The ECT sensor itself has a relatively simple structure and can be set up on various
installations in laboratory or industrial conditions. The sensor is geometrically scalable, i.e.,
the measured capacitance does not change with the size of the sensor. Capacitance sensors
with different geometries, 2D or 3D configurations and a different number of electrodes
and their arrangement can be used [8,9]. The basic measurement procedure is to apply
an excitation voltage to one selected electrode and to measure the current using another
electrode, which is grounded. Customized electrode excitation strategies for capacitance
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measurements can be used for a given sensor configuration, especially using a multichannel
device. To improve spatial image resolution of ECT, especially 3D ECT, the number of
spatial samples can be increased by physical rotation and shifting of the sensor, or by
electronic scanning of electrodes divided into small segments [10]. The reconfiguration of
the hardware is required to switch between different electronic scanning strategies [11].
The measurement range is very wide due to the large difference in capacitance value for
adjacent and opposing electrode pairs [12]. Run-time gain adjustment in the channels is
necessary to improve the signal-to-noise ratio [13]. ECT can be used for imaging objects
whose electrical conductivity is not negligible [6]. In this case, electrical permittivity is a
complex-valued quantity. The measurement system can register the amplitude and the
phase shift of the signal. The real and imaginary part of the permittivity distribution or
their sum can be reconstructed.

The ability to customize the measurement sequence to suit any sensor configura-
tion and measurement mode is a desirable feature of a universal ECT system. Field-
programmable gate array (FPGA) technology allows for personalizing the system after its
manufacturing to fit a specific application without loss in performance. Reconfigurable ECT
systems based on FPGA technology were proposed in the literature [14–17]. These systems
can be updated or reprogramed using external FPGA development tools in a JTAG mode,
which requires the system to be stopped and restarted. The static JTAG reprogramming
is very inconvenient and time-consuming in the case of a modular system with multiple
FPGAs installed.

The data acquisition hardware developed at our laboratory is modular and has a star
topology [18]. It consists of multiple boards, each equipped with FPGA chips. A central
FPGA, installed together with an ARM processor on the control board, is connected to many
FPGAs installed on the read-out boards. A run-time partial reconfiguration mechanism
was elaborated to simplify the device configuration process. Our custom FPGA support
system (FSS) allows device reconfiguration on the fly without external development tools,
even to the end-user.

In this paper, the mechanism of a run-time reconfiguration of ECT data acquisition
hardware is presented for the first time. The main element of this mechanism is a par-
tial reconfiguration of FPGA performed by exchanging the code of a PicoBlaze soft-core
processor. A second PicoBlaze soft-core processor acts as a reconfiguration controller and
controls code reloading. The application of a tiny processor as a reconfiguration controller
is an original and cost-effective method in comparison to the application of a 32-bit Mi-
croBlaze RISC processor for this purpose [19]. The originality of the presented work also
lies in the development of a reconfiguration mechanism for a modular system with a
multi-level structure.

The proposed FPGA reconfiguration method is a behavioral reconfiguration [20] in
which the system behavior is modified by a PicoBlaze processor code exchange. It can be
seen as an alternative method to partial reconfiguration (PR). Although the effectiveness
of PR has been demonstrated in many papers, the wider application is limited due to
combination of design and implementation complications. The presented reconfiguration
method, which is relatively simple in comparison to demanding PR, should allow wider
practical application of reconfigurable systems.

The dynamic reconfiguration using a PicoBlaze processor is also proposed. In the case
of time-critical applications, the short switching time guaranteed by the proposed method
is crucial.

Related Work

The idea of FPGA application in data acquisition systems is popular because these
devices have high dynamic performance and allow the performance of fast data transfer
and quite complex preprocessing in real time. Reconfiguration reduces FPGA resource
requirements and simplifies a chip logic compared to a static logic, which impacts system
performance. The example of an FPGA-based reconfigurable system, in which new mea-
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surement protocols can be run without significant hardware modifications, is presented
in [21], for example. The reconfiguration of the system is completed at the microprocessor
level through the exchange of subroutines of real-time application that run on an embedded
microprocessor.

Reconfiguration of the system can be carried out in various ways, including partial [22],
run-time [23] or dynamic reconfiguration [24,25]. For example, in [23], a configuration
bitstream is downloaded to Xilinx Virtex-4 using advanced configuration environment
compact flash (ACE CF) and JTAG. In [24], bitstreams are transferred through the Xilinx
ICAP (Internal Configuration Access Port) interface.

Reconfiguration controllers can have different architecture. In [26], the MicroBlaze
soft-core microprocessor was used as a reconfiguration controller. In [27], a lightweight
RT-ICAP controller was designed to load bitstreams from local scratchpad memory. In [28],
a SelectMAP configuration interface, as an alternative to the ICAP, was used for reconfigu-
ration of Spartan-6 based system.

The challenges of run-time and dynamic reconfiguration designs were respectively
described in [29–31]. The applications of dynamic reconfiguration, where switching time
is a critical parameter, include, for example, computing [32], radar signal processing [33]
and cognitive radio [24,25]. The optimal placement of PR blocks in the sense of switching
time and FPGA resources size are discussed in [34,35], for example. The combination of the
advantages of soft-core processor application for dynamic partial reconfiguration (DPR) is
presented in [36].

For a wider use of reconfiguration, a high-level interface is necessary, an example of
which is presented in [37,38]. The application of Phyton language and the Xilinx PYNQ
library for PR implementation is shown in [22]. In [39], the concept of a straightforward,
portable and extensible open-source communication and synchronization API for FPGA
reconfigurable computing platforms is reported.

In the method proposed in this paper, a code of the PicoBlaze soft-core processor is
exchanged for the reconfiguration of the system. A similar idea was presented in [19],
where reconfiguration was used to change the behavior of a computing system. The
system had a star topology with the central MicroBlaze soft-core processor and many
PicoBlaze coprocessors. Xilinx’s Fast Simplex Link (FSL) interface for MicroBlaze was
used to rewrite code segments of coprocessors. In our solution, PicoBlaze is used as a
reconfiguration controller instead of MicroBlaze. PicoBlaze is a time predictable processor
(which makes it easier to synchronize multiple processors with each other) and uses only
about 150 logic cells (logic cell comprises one LUT, one multiplexer, and one register), which
is much less than in the case of the 32-bit MicroBlaze processor. MicroBlaze requires around
1000 logic cells in the smallest configuration (Xilinx Spartan-6, used in our system, contains
74,637 logic cells) [40]. Reconfiguration implemented using a PicoBlaze soft-core processor
has the benefit of the reduced size of required resources compared to the reconfiguration
implemented using a MicroBlaze processor. The application of a time predictable processor
allows for easy estimation of the reconfiguration time, which is important in the case of
dynamic reconfiguration. Another advantage of our solution in comparison to the design
based on MicroBlaze is the very short time of the implementation phase.

The idea of reconfigurable and upgradable hardware is essential in electrical tomogra-
phy due to the possibility of adapting the sensor to various conditions and applications.
An overview of FPGA technology application in process tomography systems can be
found in [41]. The reconfigurable hardware for imaging techniques, such as electrical resis-
tance tomography (ERT), electrical impedance tomography (ECT), electrical impedance
tomography (EIT) and ultrasonic tomography, is discussed.

An ECT system based on reconfigurable electronics was proposed in [14]. In this
system, the acquisition electronics are designed using a programmable system on chip
(PSoC) and a microcontroller unit (MCU), allowing both analog and digital blocks to
be configured. The authors emphasize that the whole electronic platform can be easily
reconfigured to be adapted to different applications and measuring strategies.
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In another example of a reconfigurable system for ECT, wireless sensor networks
(WSN) and the System-on-Chip (SOC) technology were used [15]. The presented design
was based on a Nios II soft-core processor, defined in a hardware description language in
the Cyclone Altera’s FPGA. Another version of this system with a Cyclone V Intel FPGA
and ARM Cortex-A9 processor is reported in [16].

A system with multiplexed single-channel front-end electronics and a capacitance to
digital converter (CDC) chip is shown in [17]. The reconfigurable hardware based on a
Virtex-II FPGA has built-in procedures for image reconstruction. The system enables the
reconstruction using three computationally complex algorithms, including the one-step
LBP and the iterative Landweber algorithm.

Examples of the reconfigurable system were also presented for EIT. The designs were
based on FPGA [42,43] or National Instruments’ DAQ system [44].

The above-mentioned examples of reconfigurable ECT systems allow only static recon-
figuration, which requires the system to be stopped and reprogrammed in a JTAG mode.
The ECT system presented in this article enables run-time reconfiguration. Furthermore, a
new agile, cost-effective reconfiguration method is proposed.

2. Materials and Methods
2.1. EVT4 Data Acquisition System

Systems for ECT based on FPGA technology have been developed in our laboratory for
years. The currently developed EVT4 data acquisition system has a modular architecture
(Figure 1) to allow the usage of different measurement methods with just a simple change
of measurement modules. The system has a star topology consisting of one main board
connected to eight read-out boards combined with eight analog boards. Every analog
board is equipped with four transmitter–receiver channels giving thirty-two measurement
channels at maximum. High-speed 16-bit analog-to-digital converters (ADCs) running at
10 mega samples per second (MSPS) in many channels generate a significant data stream
that is challenging to transmit. The data from the ADCs are transferred to the read-out
board using a LVDS serial link. The whole control logic of a read-out board is placed in
a Xilinx Spartan-6 programmable logic device (FPGA). Read-out boards are connected
to the mainboard using Xilinx GTP multi-gigabit transceivers, with SATA as a physical
standard. The mainboard has eight SATA sockets for connections with the read-out boards
and contains a Spartan-6 FPGA and an ARM Cortex-A8 processor. The Ethernet link is used
to connect the mainboard with a host computer. A detailed description of the architecture
is presented in [18].

The software of the EVT4 capacitance tomography system consists of the embedded
software of the data acquisition system and the host computer software (Figure 1).

The EVT4 client software for data acquisition and image reconstruction installed on
the host computer is written in C++ language and built using Qt libraries. The EVT4
client communicates with the evt4d server working on the mainboard using Ethernet. The
commands are sent using the TCP/IP protocol. To obtain a high data transmission rate,
the server sends the measurement data to the client using the UDP/IP protocol. The EVT4
multi-threaded software consists of two threads for data acquisition, a thread for online
image reconstruction and a graphical user interface (GUI). The main functions of EVT4
software are control of the tomograph, data acquisition, reconstruction and visualization of
the images.
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2.2. Embedded Software

The embedded software consists of several parts distributed between all system
modules. The software on the mainboard is divided between a C language code for the
ARM Cortex-A8 microprocessor and a VHDL code for the FPGA chip Spartan-6.

Two programs are added to the Linux system running on the ARM Cortex-A8 pro-
cessor: multithread server daemon evt4d and GPMC device driver. The evt4d server
is responsible for communication with the host computer over Ethernet. Data transmis-
sion between the ARM processor and the FPGA over GPMC is provided by the custom
GPMC driver.

The Xilinx Spartan-6 FPGA is used for the serial transmission between the mainboard
and read-out boards. The VHDL code implemented on a chip consists of the GPMC and
GTP multi-gigabit transmission controllers. The GPMC controller, which gives the ARM
processor access to the FPGA registers, provides communication between chips. The GTP
controller allows the communication with read-out boards and two FIFO buffers (the one
responsible for sending and one for receiving) generated using Xilinx IP-Core generator.

The ARM processor uses the device driver for transmission to the read-out boards. At
the address mapped by GPMC, 16-bit words are written to the memory. The data saved
in the FPGA registers are rewritten to the FIFO buffer, from whence they are transferred
using GTP serial transmission to the similar FIFO implemented on the read-out boards.
Transmission in the opposite direction proceeds in the same way.

The read-out’s firmware boils down to the VHDL code describing modules imple-
mented in Xilinx Spartan-6 FPGA and assembler code describing the behavior of soft-core
processors. The VHDL language is used to define the following components: a GTP con-
troller, a block managing communication with the analog board, raw data processor, two
FIFO buffers and three PicoBlaze soft-core microprocessors. The GTP controller is a part
of a communication interface between the mainboard and the read-out boards. As in the
mainboard, FIFO blocks are created using an IP-Core generator. The first FIFO block buffer
is used for storing results of measurements coming from the analog-to-digital converter
or the raw data processor block. The second block is a part of the GTP interface. The
raw data processor is a block responsible for computing measurement results from ADC
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readings. Three PicoBlaze soft-core processors fulfill the following functions: receiving and
interpreting commands from the mainboard, controlling the measurement process held
on an analog board and data transmission. Every read-out board is programmed with the
same code, but each has a different number granted by the mainboard. That number is
critical because it allows the read-out board to figure out to which electrodes the channels
of the steered analog board are connected.

Soft-Core Processors on Read-Out Board

PicoBlaze is a very simple 8-bit soft-core processor implemented using logic synthesis
in an FPGA chip. It uses only about 150 logic cells (logic element comprises one LUT,
one multiplexer and one register). (Xilinx Spartan-6 used in the EVT4 device contains
74,637 logic cells.) The PicoBlaze soft-core processor was selected because of its simplicity
(in terms of programming) and good performance in solving simple tasks. The PicoBlaze
processor is programmed using an assembly language. Each instruction executes in two
clock cycles, which makes the time needed to execute the code easy to calculate.

The schema of read-out board software architecture is shown in Figure 2. Three
PicoBlaze soft-core processors clocked with 100 MHz frequency are used.
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The command interpreter PicoBlaze receives commands from the mainboard. This
processor can interpret four different commands: set a number, make a measurement,
set raw data flag and reset. The mainboard sends a unique number for each read-out
board at boot time. The assigned number (from zero to seven) depends on the order
in which cards are connected to the mainboard. The command interpreter PicoBlaze is
linked with the other two soft-core processors with 8-bit signal lines. When the processor
receives a measurement command, it activates the trigger bit on the line connected to the
measurement control PicoBlaze. A trigger starts the measurement for one excitation with
the settings specified by value on other bits of the communication line. Then, the command
interpreter sends the request to the data transmission PicoBlaze to start the procedure of
sending measurement data to the mainboard. Measurement results can be stored in a FIFO
buffer as unprocessed ADC readings or after computing using the raw data processor block.
The set raw data flag command controls the settings of the multiplexer responsible for
selecting which type of data will be sent to the mainboard. Reset clears the data stored in
FIFO buffers.

The second soft-core processor is responsible for managing the measurement process
by controlling switches on the analog board. The switches determine which channel works
as the excitation circuit and which channels act as measuring circuits of the tomographic
sensor. Other switches adjust the levels of the gains of the amplifiers in the measuring
circuit. The table of the gains for the entire measurements cycle is stored in PicoBlaze’s
scratchpad memory.
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The last PicoBlaze reads the data from four channels stored in the FIFO buffer, encap-
sulates them into frames with a special header, and transfers them over the GTP interface
to the mainboard as 16-bit signed integers.

2.3. PicoBlaze with a Reprogrammable Code Memory

The redesign of the default PicoBlaze structure and application of random access
memory (RAM) instead of read-only memory (ROM) is proposed to allow the replace-
ment of the program code stored in a memory segment from the outside. The second
PicoBlaze processor is used as a reconfiguration controller to reload the program code of
the target processor. The simplified schema of the reconfiguration block allowing PicoBlaze
instruction storage reloading is shown in Figure 3. The redesigned PicoBlaze processor
uses connected RAM in the same way that it uses the default type of instruction storage.
Consecutive instructions are fetched from RAM by setting the corresponding value on the
‘address’ line. The processor is connected only to the data output port of the RAM block.
It was assumed that a self-modifying code is not required, so the processor can only read
from this memory block.
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The reprogramming PicoBlaze processor is connected to the data input port of the
RAM block, discussed above, and has control over the program code of the target PicoBlaze.
The reprogramming processor activates the ‘reset’ line of the programmable PicoBlaze to
stop its operation for the duration of the reconfiguration procedure. By controlling the
settings of the memory ‘address’ line, the processor can access each stored instruction and
change it. Replacement of the selected data stored in the RAM block occurs after activation
of its ‘write_enable’ line for at least one clock cycle.

2.4. Reconfiguration Procedure

Although universal, the above design of the reconfiguration block was dedicated for
a data acquisition system, described later. In this system, one of the PicoBlaze processors
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serves as a command interpreter and reconfiguration controller. This processor receives the
command with reprogramming data from the mainboard through the GTP port (Figure 1).
The reprogramming data consist of two bytes with an address of the first changed instruc-
tion, two bytes with a number of transmitted instructions and a bitstream with instructions.
The second (reprogrammed) processor acts as a controller of a front-end measurement
circuit. This processor is equipped with RAM and its program is subject to change.

When the mainboard sends the reconfiguration command, the PicoBlaze processor
responsible for interpretation starts the reprogramming procedure. The PicoBlaze code
responsible for reprogramming is shown in Figure 4. The code consists of three sections
marked with labels: ‘start’, ‘programming’ and ‘end’.

Figure 4. PicoBlaze reprogramming code.

In the beginning, the command interpreter activates ‘reset’ lines of other PicoBlaze
processors to stop their work. Next, it loads the start address in the registers sB and sC,
which are reserved for the instruction address pointer. Then, the processor fetches the
total number of the PicoBlaze code instructions, which will be transmitted during the
ongoing reconfiguration procedure, and stores this number in the sE and sD registers. The
‘read_gtp’ procedure loads the received data byte to the sA register. The maximum size
of the PicoBlaze machine code is 4096 instructions. To save time needed for transmission,
there is a possibility to send only part of the code.

In the programming section, the command interpreter fetches three bytes of one
instruction from the mainboard and sends it to the RAM data input port (‘data_in_port’ in
Figure 1). The address of the current instruction is determined by the value of the address
pointer registers. The PicoBlaze needs three 8-bit ports (‘instruction_X’) to output one
instruction and another two ports (‘address_X’) to control the address line of RAM. The
command interpreter activates the RAM ‘write_enable’ line for four clock cycles. As a
result, the program code stored in RAM is replaced by the new instruction. Then, the
processor increments the address pointer and compares it with the expected total number
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of instructions. If the pointer value is lower than the address stored in sD and sE registers,
the processor jumps to the beginning of the loop (‘programming’ label). Otherwise, the
processor goes to the last section of the code (‘end’ label).

In the end, the processor changes the reset lines to low and jumps to the main program
loop. As a result, all soft-core processors return to the normal operating mode.

2.5. Dynamic Reconfiguration

The dynamic reconfiguration can be achieved using an extension of the presented
method with a reconfigurable PicoBlaze connected to more than one RAM (Figure 5). The
controller code for dynamic reconfiguration is shown in Figure 6. The reconfiguration
controller swaps the processor code using a multiplexer in this mode. The swapping
procedure can be triggered using an interrupt signal. An interrupt event forces the processor
to execute the call to the last program memory address. The instruction at this address is a
jump location to an interrupt service routine (ISR). The programmed PicoBlaze is stopped
by the ‘reset’ signal, active memory block is selected and PicoBlaze is started by the ‘reset’
signal deactivation. This moves the instruction pointer at the beginning of the program. The
reprogrammed PicoBlaze will execute a code from another RAM. The swapping procedure
itself requires only three instructions (six clock cycles). Triggering the procedure with an
interrupt requires executing the three additional instructions.

The reconfiguration controller can reprogram each memory block individually.
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Figure 6. The controller code for dynamic reconfiguration. Reconfiguration triggered using an interrupt.

2.6. FPGA Run-Time Support System Commands and Reconfiguration Procedure

Partial reconfiguration of the EVT4 DAS consists of the reprogramming of a selected
soft-core processor on the read-out board’s FPGA. The elements of the reconfiguration
mechanism (FPGA support system—FSS) are the following: a block providing access to the
PicoBlaze program code memory on the read-out board chip, communication commands
at a different level of the system structure and machine code generation procedures on the
host computer (Figure 7).

Figure 7. Elements of reconfiguration mechanism.

The reconfiguration command is a part of an upper layer communication protocol
between the host computer and the EVT4 DAS. The reconfiguration command is sent in
JavaScript Object Notation (JSON), which consists of four attribute–value pairs. Figure 8
shows a description of this command prepared in a JSON Schema format. The values of
the ‘command’ and ‘picoblaze’ pairs are strings. Using the second string, the application
on the mainboard recognizes which PicoBlaze processor should be reprogrammed. The
‘offset’ value is an address of the program block to be replaced. The last pair with the
‘programCode’ attribute contains a PicoBlaze machine code (sent as character data).
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Figure 8. Structure of upper layer communication protocol command for reconfiguration.

An example of the reprogramming command used in the communication between the
mainboard and eight read-out boards is shown in Figure 9. The command header contains
the information on which the soft-core processor is selected to be reprogrammed and the
number of code instructions that will be updated. New machine code instructions are sent
in 24-bit packages.

Figure 9. Structure of reconfiguration command sent from the mainboard to the read-out boards.
Reprogramming of the control PicoBlaze processor.

Different template files of a source code are stored at the host computer. Each template
file is responsible for a different measurement sequence (and depends on the number of
electrodes and the sensor layout). A modification or exchange of the code in the template
is possible. The evt4 client software allows for selection between templates prepared for
different sensors. Even the user unfamiliar with the architecture of the device can choose
the values of the gains in the measuring circuit. The software replaces settings stored in
the template files with those selected in the interface. On the other hand, the firmware
developer who knows specific PicoBlaze assembly language can edit source code directly
in the template file to change the whole measurement structure or add new functionalities
to the device.

The selected template file is converted into machine code using a kcpsm6 assembler.
Then, the host computer attaches the resulting bitstream to the reconfiguration command
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and sends it to the main board of the EVT4 hardware. When the reconfiguration command
is detected by the mainboard, the bitstream with a proper command header is broadcast
to every connected read-out board. The command interpreter PicoBlaze on the read-out
boards starts the reprogramming procedure. Finally, the bitstream with a machine code is
inserted into the program memory at the specified offset.

3. Results

The elaborated mechanism of run-time reconfiguration was tested using the EVT4 DAS
described above. Two code templates for the control PicoBlaze processor were prepared.
The first template included an algorithm for a tomographic scan using a 2D tomographic
sensor (Figure 10a) which had 16 electrodes in one ring. The second template contained an
algorithm for a tomographic scan using a 3D sensor equipped with 32 electrodes spread
over two rings (Figure 10b). In ECT, the tomographic scan consists of cycle of stimulations.
A selected electrode is a stimulating electrode and others are sensing electrodes in one stage
of the cycle. The number of stages in the tomographic scan equals the number of electrodes
in the sensor.

Figure 10. The ECT sensors used in the experiments: (a) 2D with 16 electrodes, (b) 3D with 2 rings of
16 electrodes each.

In an ECT sensor, the capacitance value of the opposite electrodes is smaller than for
the adjacent electrodes by two or even three orders of magnitude. The gain adjustment is
required for the measurement values to fall within the measuring range of the input circuits
and to increase the signal-to-noise ratio [13]. The gains for all electrode pairs were selected
for both sensors using the graphical user interface of the EVT4 client application (Figure 11).
The software enables the selection of the gain in the function of the distance between the
stimulating and sensing electrode. The estimated signal value is plotted on the graphs
for both the sensor filled with low permittivity material and the sensor filled with high
permittivity material. Due to the circular symmetry of the cylindrical sensors, the same
gain table was used for each measurement cycle with the different stimulating electrode.
For typical sensors, the gains are increased for pairs of opposite electrodes whereas they are
decreased for pairs of adjacent electrodes. The software automatically adds the gain levels
and corresponding processor instructions to the template file. These instructions are related
to reading the gains from the gain table stored in the PicoBlaze’s scratchpad memory. In
the scan algorithm, the value of the gain in the measuring channel is adjusted at each cycle
using the information about the distance of electrodes. The gain table in which the position
corresponds to the distance between the excitation and sensing electrode was used. An
initial rotation of this table depends on the read-out board number.
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Figure 11. EVT4 client graphical user interface for gain adjustment for: (a) 2D sensor; (b) 3D sensor.
The stimulating electrode is marked in red on the sensor model. The green electrode is the sensing
electrode for which the gain is being set. The estimated signal value at low gain for the sensor filled
with low (Min) and high (Max) permittivity material. The estimated value at high gain (Amplified
Min, Amplified Max). The high gain is set for all electrode pairs except the adjacent electrodes.
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The configurations’ bitstreams for 2D and 3D sensors with two different gains were
prepared for the experiments. The data acquisition system was reconfigured using the
developed run-time reconfiguration mechanism. The tests confirmed correct measurements
using 2D and 3D sensors. The ADC readings of capacitance values for electrode pairs
increased as expected with the gain increase for both sensors (Figure 12).

Figure 12. ADC readings in a sensing channel number (pair of electrodes) function at different gains.
Measurement for 2D (top) and 3D sensor (bottom). The first channel is connected to an excitation
electrode. All gains in settings 1 and 3 are equal to 0.162. The gains in settings 2 and 4 are equal to
7.407 except for the channels corresponding to the adjacent electrodes (0.162 for immediately adjacent
electrodes; 3.704 for electrodes distant by two electrodes).

The test object was measured using the 2D and 3D sensors incorporating arbitrarily
selected gain settings. The object was made of PLA using 3D printing and consisted of three
cylinders (Figure 13a). Each cylinder had a different position in the XY plane and the Z axis.
The diameter and height of cylinders were equal to 20 mm. The sensing domain (inside
of a sensor) was a cylindrical volume with a diameter of 98 mm and a height of 25 mm
for the 2D sensor and a height of 70 mm for the 3D sensor. The slice of the test object was
reconstructed from 2D measurements using an iterative Landweber algorithm (Figure 13b).
Two cylinders reconstructed more poorly because only a part of their volume was into the
sensing domain. The slices of the 3D volume reconstructed from 3D measurements are
shown in Figure 13c.
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Figure 13. (a) 3D printed test object of PLA (relative permittivity 2.75). (b) 2D images reconstructed
using the Landweber iterative algorithm. (c) Slices of 3D volume reconstructed using the Landweber
algorithm. Crosshair markers show the mutual position of slices. The segmentation result is shown
by surface shading.

The experiments allowed us to assess the parameters of the developed FPGA run-time
reconfiguration procedure. The time needed to perform a reconfiguration is one of the
most important parameters in dynamic applications and critical in some designs [14]. The
time required to download the bitstream to the RAM of the reprogrammed PicoBlaze
processor is proportional to the bitstream size. Each PicoBlaze instruction is 18 bits wide.
The PicoBlaze can address up to 4096 instructions, which correspond to a maximal memory
size of 73,728 bits. The time required to write this data to the RAM of the programmed
processor consists of the preparation phase and bitstream loading. The reprogramming
procedure’s initial preparation and final completion require 30 reconfiguration controller
instructions. Loading the bits of one instruction to the processor RAM requires the execution
of 32 reconfiguration controller instructions. A bitrate, which describes reconfiguration
speed independent of the bitstream size, can be calculated using the formula:

bitrate =
instructions ∗ bits_per_instruction

instruction_time ∗ (30 + 32 ∗ instructions)
=

73.728 kb
2.62204 ms

≈ 28 Mbps
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where instruction_time equals 20 ns at a 100 MHz clock used in the FPGA. The obtained
bitrate, which is comparable to the bitrate reported in [30,45,46], can be sufficient for many
applications; however, it may be insufficient for some dynamic applications where the
required speed is higher (Table 1).

Table 1. Partial Reconfiguration Speed—Bitrate.

PicoBlaze with reprogrammable code memory (our solution) 28 Mbps
Processor Configuration Access Port (PCAP) in Zynq 7000 under Linux [45] 78.7 Mbps full, 62.8 Mbps partial

8-bit ICAP bandwidth [47] 95.3 Mbps
Ethernet controller + 8-bit ICAP [30,46] 80 Mbps

32-bit ICAP bandwidth [47] 381.5 Mbps
Internal controller + 32-bit ICAP [24] (estimated from other parameters) 320 Mbps

Overclocked (200 MHz) ICAP port [32] 800 MBps
Virtex Ultrascale [32] 800 MBps

The second important parameter of reconfiguration, next to the duration, is the re-
source size required for partial reconfiguration. The components of FSS used for reconfig-
uration in our system do not increase the usage of FPGA’s resources significantly. Only
61 additional logic cells are required to implement the reconfigurable version of our project.
The exchange of the PicoBlaze program memory type and the addition of the logic pro-
viding memory access increases the utilization of FPGA resources needed by our project
by 0.6%.

The elements of the elaborated FPGA support system were tested successfully using
the EVT4 system. The reconfiguration mechanism allows parallel reprogramming of eight
FPGAs on the eight read-out boards. The reconfiguration is initialized by sending the
reconfiguration command (Figure 9) from the mainboard to the read-out boards. The total
reconfiguration time is equal to the time needed for reconfiguration on the read-out board,
since the command transmission from the mainboard does not introduce delay.

In the performed test, about 300 instructions of the measurement control processor
code were downloaded, a process which lasted 192.6 µs. The obtained reconfiguration
time is comparable to the duration of the one stage of the tomographic scan, i.e., the
duration of stimulation using one electrode. Thus, the gain modification before each
stage would considerably increase the length of the tomographic scan. In the case of the
initial configuration of the data acquisition system for a specific sensor, the duration of the
reconfiguration procedure is negligible.

4. Discussion

In this paper, the run-time reconfiguration mechanism of a data acquisition system
for electrical capacitance tomography was elaborated. The original mechanism allows
reconfiguration, on the fly, of a modular EVT4 system with multiple FPGAs installed on
separate read-out boards. The reconfiguration using this mechanism is performed without
resetting the device. This solution definitely facilitates the possibility of adapting the device
to any sensor and any measurement sequence, as it does not require the programming
of each FPGA system individually in a JTAG mode. The communication commands
developed for the reconfiguration constitute an extension of the communication layer used
to control the data acquisition system.

The implementation of different measurement sequences that are necessary in ECT
applications will, in one program, result in a complicated code with many parameters
and many conditional statements. In general, it would be difficult or even impossible to
consider all possible sensors and measurement strategies in one finite state machine (FSM)
implemented using VHDL or PicoBlaze code. Instead, a simple program dedicated to a
given sensor and optimized for speed can be loaded by the user at the run-time.

An EVT4 firmware developer with only general knowledge about the system architec-
ture can change measurement structure or add new functionalities to the device on a higher
level. The PicoBlaze assembly language must be known to design a new template file. The
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reconfiguration block in the FPGA chip is also easy to extend with more programmable
PicoBlaze processors. For example, in the EVT4 system, there is the possibility to change
the program memory block of the data transmission PicoBlaze, as well. This provides an
opportunity to develop more functionalities in the future.

The proposed application of the PicoBlaze soft-core processor for behavioral reconfig-
uration is relatively simple for a potential user, whereas the Xilinx partial reconfiguration
design option has a reputation as a solution demanding expert-level skill [48]. Additionally,
the introduced method of reconfiguration is not patented and does not require licensing, as
does the commercial Xilinx solution.

The simple reconfiguration controller implemented using a PicoBlaze processor is
an original element of the proposed method. This solution provides the effectiveness of
the reconfiguration mechanism. Adding such a reconfiguration controller to the design
does not noticeably increase the resource utilization of the FPGA. The obtained bitrate
(28 Mbps) can be sufficient even for dynamic applications. However, it may be insuffi-
cient for time-critical applications. The added reconfigurable blocks do not significantly
increase the number of necessary FPGA cells in the presented data acquisition system. In
the case of a data system with many PicoBlaze processors used for data preprocessing,
the increase in FPGA resources will be significant. In a computing system where many
PicoBlaze processors compose a multicore accelerator, the cost of reconfiguration may be
significant. The reconfigurable PicoBlaze requires about 40% more logic cells than standard
PicoBlaze (150 logic cells). A multicore system with one reprogramming processor and
many reprogrammed processors will have approximately 1.4 times fewer cores than a
system consisting of only unconfigurable processors.

In our solution, the bitstreams used for reconfiguration do not occupy the FPGA
cells. Bitstreams are stored in the memory of a host computer instead of in (local) FPGA
scratchpad memory because our system does not require dynamic reconfiguration. The
process of switching to the other configuration is slow, but the number of configurations is
not limited by the FPGA’s size.

An extension of the presented method for dynamic partial reconfiguration was sug-
gested. In the proposed solution of dynamic reconfiguration, several bitstreams can be
preloaded to the FPGA and switched dynamically. The code swapping and interrupt ser-
vice subroutines require only 12 clock cycles, i.e., 120 ns at 100 MHz clock frequency. This
time is independent of the code size. The given time is only part of a total response time of
a real-time system that, for example, has to analyze data to react to changing conditions.

The PicoBlaze soft-core processor ensures lower performance and slower response to
simultaneous inputs than native VHDL. Our PicoBlaze based method may be an option if
fast reconfiguration is required but the slower FSM is satisfactory.

5. Conclusions

In this paper, we showed the original application of run-time reconfiguration in a data
acquisition system for ECT. Our method ensures a high speed of data acquisition due to
the execution of only a small part of the general algorithm at a given time interval. The
originality of the presented work also lies in the application of elaborated reconfiguration
in a system with a multi-level structure where the host computer controls a process of
modification of code in the peripheral FPGAs.

The elaborated run-time reconfiguration method allows for switching between dif-
ferent configurations of the measurement channels in the ECT system. Generally, this
procedure can also be used to modify the whole sensing cycle of the ECT system or to
modify the data preprocessing algorithm performed by the other PicoBlaze processors. In
the future, several algorithms will be predesigned in such a way that the user can easily
reconfigure the system for different types of sensors and a variety of sensing procedures.
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