
A Runtime Quality Architecture for

Service-Oriented Systems

Daniel Robinson and Gerald Kotonya

Computing Department, Lancaster University, Lancaster, LA1 4WA, UK
{robinsdb, gerald}@comp.lancs.ac.uk

Abstract. System quality aspects such as dependability, adaptability to
a changing runtime environment, and concerns such as cost and provider
reputation, are increasingly important in a competitive software service
market. Service-oriented system quality is not just a function of the qual-
ity of a provided service, but the interdependencies between services, the
resource constraints of the runtime environment and network outages.
This makes it difficult to anticipate how these factors might influence
system behaviour, making it difficult to specify the right system envi-
ronment in advance. Current quality management schemes for service-
oriented systems are inadequate for ensuring runtime system quality as
they focus on static service properties, rather than emergent properties.
They also offer the consumer only limited control over the quality of
service. This paper describes a novel consumer-centred runtime archi-
tecture that combines service monitoring, negotiation, forecasting and
vendor reputation, to provide a self-managing mechanism for ensuring
runtime quality in service-oriented systems.

Keywords: Service-Oriented Architecture, Negotiation, Monitoring,
Quality of Service, Software Composition.

1 Introduction

Service-oriented architectures support dynamic composition and reconfiguration
of software systems by making advertised functionality and behaviour available
on an “as-needed” basis [1]. This model of software deployment offers signifi-
cant benefits over the traditional model of software deployment as a product,
including reduced capital investment, dynamic integration and rapid deployment
of platform and network-independent systems [2,3]. However, as the nature of
service-oriented applications continues to vary and the demands on them grow,
features such as dependability, adaptability to a changing runtime environment,
and concerns such as cost and provider reputation are becoming increasingly
important consumer quality considerations.

Current service quality management schemes are largely concerned with pre-
dicting system properties based on the static properties of its components [4].
However, the dynamic nature of a system composed from services requires a
dynamic runtime approach which is able to detect and respond to emergent
problems in the service execution environment, and to the problems that may

A. Bouguettaya, I. Krueger, and T. Margaria (Eds.): ICSOC 2008, LNCS 5364, pp. 468–482, 2008.
c© Springer-Verlag Berlin Heidelberg 2008



A Runtime Quality Architecture for Service-Oriented Systems 469

arise as a result of different services being composed together. Secondly, current
quality schemes offer the consumer only limited control over the quality of a ser-
vice and therefore the system. In summary, the current software service quality
frameworks offer the consumer:

• Limited consumer control over service quality. The third-party nature of
software services means that a consumer has little control over the quality of
services outside the static service level agreement (SLA). SLAs are intended
to define the scope, level, and quality of an externally provided service to-
gether with associated responsibilities. However, they are difficult to enforce,
hard to integrate with specific consumer quality strategies and provide no
obvious way of ensuring runtime system quality.

• Poor support for runtime quality. Whilst there are initiatives for monitoring
and reporting service quality failings [5,6], monitoring alone is inadequate
for ensuring runtime quality. To ensure runtime quality, monitoring must be
supported with effective (re)negotiation and recovery strategies.

• Limited support for customisation. Current quality assurance approaches for
service-oriented systems are restricted to specific quality assurance schemes,
limiting their scope for experimentation and customisation (i.e. variability
in quality contexts).

• Poor support for resource-restricted systems. Quality assurance is particu-
larly challenging for systems that operate in resource-restricted environments
[7]. Not only must a service have an acceptable level of quality; it must be
possible to integrate and orchestrate it within the constraints of the runtime
environment.

We have developed a self-configuring quality framework that uses an adaptable
service brokerage architecture, to integrate consumer strategies with monitoring,
(re)negotiation, forecasting and provider reputation as a means for ensuring
runtime quality. The rest of this paper is organised as follows: Section 2 reviews
current approaches for addressing quality in service-oriented systems. Section 3
describes the architecture of our quality framework. Section 4 describes service
strategy formulation and management. Section 5 uses a small case study to
illustrate the framework. Section 6 reviews the framework and provides some
conclusions.

2 Background

Service-oriented systems are distributed and composed from numerous services
which can be discovered and replaced at runtime. It is possible for several ser-
vice providers to offer services with common functionality, but with different
non-functional qualities. Qualities can be considered as constraints over the func-
tionality of a service [8].

A characteristic of distributed systems is the volatility of service quality [9].
It is therefore important that mechanisms are in place for managing the overall



470 D. Robinson and G. Kotonya

system quality [10]. Traditionally, quality of service (QoS) has been associated
with telephony and computer networking, specifying requirements on the data
flowing across the network (such as latency, jitter, number of dropped packets
etc.). To ensure quality in service-oriented systems, application-level QoS must
also be considered [11].

2.1 Service Description, Discovery and Selection

There are several initiatives to improve the characterisation of services by in-
cluding non-functional aspects in their description. These include semantic ap-
proaches, such as the Web Service Modeling Ontology (WSMO) [9] and Ontology
Web Language for Services (OWL-S) [12], and non-semantic approaches such as
WS-Agreement [13].

WSMO and OWL-S both share a similar goal, which is to aid the automation
of service discovery, selection, composition, substitution, and invocation through
richer semantics [14]. WS-Agreement is a Web service protocol used in industry
for establishing an agreement between a service provider and consumer.

When integrated with the service discovery process [12], these initiatives en-
able service providers to differentiate themselves from other providers of similar
services. Service consumers are then able to discover and select providers that
best satisfy their non-functional requirements. However, such initiatives are lim-
ited if there are no services which satisfy consumer requirements, as consumers
must either select the closest match or go without service. Consumers are also
required to trust that providers will provide services as advertised.

2.2 Service Reputation Systems

Reputation systems, such as feedback mechanisms used by online auction sites,
are designed to address issues of trust between parties who have not dealt with
one another before. Reputation systems can be used to help manage quality in
service-oriented systems, by helping to distinguish between low and high quality
service providers [15].

A reputation-based approach to service selection is described in [16] which uses
software agents that share QoS information with one another, based on their in-
teractions with the services they are attached to. Initially, each provider has
the same (or no) reputation. Over time, poor service providers develop a poor
reputation which makes them less likely to be selected for use by the agents.
A reputation-enhanced service discovery protocol is discussed in [17]. This en-
ables service consumers to consider QoS issues when making service selection
decisions, with fewer assumptions about the trustworthiness and reliability of
providers.

Reputation systems enhance service discovery and selection processes, by
incorporating feedback on providers as part of the service selection criteria.
This requires consumers to expend valuable resources auditing the received
QoS of consumed services, and then providing feedback to a reputation system.



A Runtime Quality Architecture for Service-Oriented Systems 471

Reputation systems are also limited when there are no services which satisfy
consumer requirements.

2.3 Service Negotiation

Service negotiation can bring software composed from services closer to meeting
consumer requirements, through the formation of SLAs between service providers
and consumers. Service providers can also benefit from negotiation, by utilising
spare resources to provide a better QoS to those consumers who are prepared to
pay an additional cost.

The negotiation of SLAs has been an active research area in the Web service
community for several years. WS-Agreement [13] enables the specification of an
agreement between a service provider and consumer, and provides a protocol for
the creation of an agreement using agreement templates. The Web Service Level
Agreement (WSLA) [18] is a similar initiative for defining SLAs, and describes
how SLAs may be monitored for compliance. SLA negotiation has also seen
considerable interest in the agent [16,19] and grid [20] communities.

Current initiatives are primarily concentrated on the negotiation of single
services, and have not focused much on the negotiation of end-to-end QoS con-
straints [19]. Current initiatives also lack the ability themselves to effectively
monitor service agreements for compliance.

2.4 Service Monitoring

Monitors are required to determine if services actually meet the terms and con-
ditions agreed between service consumers and providers [21]. Monitors are also
used to detect emergent properties that arise as a consequence of services inter-
acting with each other through composition. Service providers can also impose
conditions of use upon a service consumer, which may be monitored for com-
pliance. The motivation for monitoring is to enable the quality management of
services and service compositions, in response to problems such as networking
issues, changes in the environment and emergent system properties.

Monitoring approaches used in service-oriented systems include: open and
closed-loop control systems [6], assertion-based techniques [22] and approaches
using late-binding and reflection [5]. Open and closed-loop techniques are used
by service providers to stabilise service-oriented software, by collecting runtime
information on services and feeding it to service controllers. In assertion-based
approaches, pre-conditions and post-conditions are asserted on services and their
non-functional properties, such as business processes, communication protocol
preferences, organisational licensing and authentication.

Current initiatives to monitoring are largely manual activities. For example,
service compositions specified as BPEL processes and annotated by a system
designer with comments describing the monitoring to be performed [22], make it
difficult to support quality management in a meaningful way. Such approaches
are limited in handling problematic services, and do not support advanced tech-
niques such as service renegotiation.



472 D. Robinson and G. Kotonya

3 Quality Architecture

Fig. 1 shows the architecture of our proposed quality framework. The frame-
work has been developed using the Jini1 SOA, but is flexible enough to be
applied to other SOAs such as Web services. This flexibility is achieved through
implementation-specific connection interfaces. The Jini SOA was chosen primar-
ily for its service discovery mechanism, relatively small footprint, and to facilitate
the evaluation of the framework in resource-constrained environments.

Monitoring

Measurement

Auditing

Forecasting

Brokerage

Negotiation

SLA Creation / Evaluation

Resource Management

Service
Consumer(s)

Reputation

Rating

Service

Response

Jini SOA

Service
Provider(s)

Invoke

Service

Ratings

Query

Ratings

Consumer

Templates

SLA

Web Services SOA

Provider

Templates

Service

Response

Provider

Rating

SLA

Monitor

Results

Connector

Java Interfaces

Connector

WS Interfaces

Fig. 1. Framework overview

The quality framework comprises mechanisms for discovering, brokering, mon-
itoring and rating services and their providers (see Fig. 1). The next sections
discuss each of these in turn.

3.1 Brokerage Architecture

Existing brokerage models [23,19] focus on particular methods of negotiation, and
are not engineered to be integrated with monitoring and reputation processes. We
have developed a brokerage approach which provides a structural framework for
integrating different methods of negotiation, monitoring and reputation, and sup-
porting the requirements of automated service negotiation and renegotiation in
SOA. Our brokerage model, shown in Fig. 2, is based on a factory architecture
which creates individual brokers for service consumers and providers on demand.

A service provider uses the service discovery mechanism to locate a brokerage
service provider, which in turn supplies it with a broker. The service provider
supplies the broker with templates describing the negotiation models to use,
decision algorithms and strategies for creating and evaluating proposals. These

1 Jini – Sun Microsystems SOA: http://www.jini.org/

http://www.jini.org/


A Runtime Quality Architecture for Service-Oriented Systems 473

Brokerage Brokerage
Service

Service

Provider

Broker

Engine

Broker

Engine

Broker

Engine

Service

Service

Service

Consumer

requests
broker

requests
broker

requests
broker

provides
negotiation
models and 
strategies

provides
negotiation
models and 
strategies

provides
negotiation
models and 
strategies

discovers
brokers

negotiates

negotiates

Service

Provider

Reputation

Rating

Engine

Negotiation Engine

Proposal Engine

Resource

Management

processes messages 
using negotiation models

creates and evaluates 
proposals using strategies 
and reputation information

queries ratings

Fig. 2. Service brokerage architecture

templates are provided to an engine builder interface, which provides the bro-
ker with an engine for processing negotiation messages and service proposals.
Providers also provide additional information enabling their brokers to perform
service resource management on their behalf. For most types of negotiation,
provider brokers enter a passive waiting state until they receive negotiation re-
quests from consumer brokers.

Consumers locate service brokers similarly to service providers. However, there
is no service resource management performed on the consumer side. Once ini-
tialised, consumer brokers typically enter an active state and use the service
discovery mechanism to seek out brokerages that contain brokers of the service
types required by the consumer, up to a specified limit. There are many differ-
ent models of negotiation and types of negotiation decision algorithms. Fixed-
pricing, auction, reverse auction and bargaining negotiation models are identified
in [24]. Barter/bargaining models, request for quotes (RFQs) and auctions are
identified in [25].

The framework architecture is pluggable, enabling a variety of negotiation
models, decision algorithms and proposal strategies to be used. The framework
currently supports two negotiation models. The first is a fixed-price negotiation
model (cf. catalogue shopping) with a decision algorithm that accepts only if
all qualities are within their respective range as specified by the strategy. The
second type is a bargaining model based on static strategies. With the bargain-
ing model, consumer brokers negotiate a single quality at a time. The counter
proposal from the provider broker contains not only its offer for that quality, but
offers for any other qualities which are related to that quality. To avoid deadlock,
consumer brokers must determine any other qualities which have changed since
the last proposal, and agree not to negotiate them later in the session. Once
the consumer broker has finished negotiating with the set of discovered provider



474 D. Robinson and G. Kotonya

brokers for each service, each possible composition is ranked, and the service
proposals for the most acceptable composition are accepted. The remaining pro-
posals are rejected but are recorded in a negotiation cache. The negotiation cache
enables brokers to record the negotiation behaviour and proposals provided by
other brokers they have previously interacted with. The negotiation process is
initiated and led by the service consumer (see activity diagram in Fig. 3).

Evaluate Offer

Discover Brokers

Select Next Broker

Open Negotiation

Select Next Quality

Select Next Service

To Negotiate

Accept Service Proposals of Most Acceptable Composition

Reject Other Proposals

Update

Negotiation Cache

Store Final Proposal

Rank All Compositions

Send Service

References to Consumer

Offer ReceivedRequest Offer

all services negotiated

next service

all qualities negotiated

next quality

all brokers negotiated with

next broker

quality offer acceptable

quality offer unacceptable

Fig. 3. Negotiation process implemented by engine in Fig. 2

Brokers share a common negotiation protocol for exchanging service propos-
als. The negotiation protocol currently supported by the framework is based on
the primitives and protocol described in [24].

3.2 Monitoring Process

The framework actively monitors the quality of negotiated services for viola-
tions and failings at runtime. Changes in service quality are continuously evalu-
ated against system composition acceptability levels, and an early renegotiation
and replacement automatically initiated for failing services. Monitors are im-
plemented as dynamic proxies (cf. decorator pattern), allowing for the creation
of monitors at runtime which transparently intercept requests and responses
between consumers and providers.

We have adopted a passive monitoring mechanism, which has the advantage
that no additional load is placed on the consumer or provider of a service. In
addition, the provider cannot differentiate between consumer and monitor re-
quests (see Fig. 4). The monitoring service also provides a mechanism for au-
diting data collected by another party. The advantage with this approach is
that the consumer does not have to expend additional resources performing au-
diting. However, the consumer expends additional resources in collecting data
and providing it to the auditing service. Another provided approach enables a
service to be monitored independently (cf. probed) from the service consumer.
This provides an advantage for the consumer, but places additional load on the



A Runtime Quality Architecture for Service-Oriented Systems 475

Monitoring
Service

Service
Provider

Service

Service

Service
Provider

invokes

service

invokes

service

Service
Consumer

audit results

Monitor

Measurer

Auditor

Monitor

Measurer

Auditor

etc.

invokes service

invokes service

requests

monitors

Auditor

Forecaster

Fig. 4. Service monitoring architecture

provider. Furthermore, the provider may be able to distinguish monitor requests
from consumer requests, and respond to each differently.

Auditors compare measured service qualities to those specified in the service
contract. If a measured quality does not conform to its contracted value and
constraints, the audit signals a failed quality contract violation. When consumers
are informed of detected problems, they instruct their broker to renegotiate a
new contract. If renegotiation fails, brokers attempt to secure service from an
alternate provider (see Fig. 5).

The auditing data provided to the consumer has an overall result. If a pre-
invocation service audit has passed, the consumer informs the monitor to invoke
the service. If it has failed, the consumer can elect not to invoke the service and
request its broker to renegotiate the problematic service. If a post-invocation
service audit has passed, the consumer informs the monitor to continue mon-
itoring the service. If it has failed, the consumer can again request its broker
to renegotiate. When requesting renegotiation, the consumer provides its broker
with a service contract created from the auditing data, which forms the basis
for any renegotiation attempt.

When renegotiating a failed quality, the consumer broker assumes the provider
broker is unable to guarantee a value better than the value which caused the
audit to fail. Instead, the consumer broker expects some offer of improvement in
another service quality or qualities. Improvements in other qualities should raise
the overall acceptability of the renegotiated service to a more acceptable level.
The consumer broker compares the acceptability of the renegotiated service pro-
posal, with the proposals made by any other provider brokers in its negotiation
cache. If the renegotiated service proposal is still the most acceptable, the con-
sumer broker accepts the renegotiated proposal and continues using the service.



476 D. Robinson and G. Kotonya

Monitoring

Monitor

Brokerage

Consumer Broker Provider Broker

Service

audit results

service
invocations

service
invocations

SLA updates

Service
Consumer

Service
Provider

renegotiations

selection / discovery of alternate broker

SLA
updates renegotiation

requests

SLA
updates

Fig. 5. Monitoring and renegotiation

If the renegotiated service proposal is no longer the most acceptable, the con-
sumer broker attempts to gain service from an alternate provider, and rejects
the renegotiated service proposal if successful.

Forecasting is an additional process which complements the auditing performed
by service monitors. Service consumers specify the type of forecasting model to be
used, and any additional parameters and values. During the audit, trends in mea-
sured service qualities are forecast. This enables the auditor to estimate in advance
when a given service quality is about to fail. If a particular quality is estimated
to fail, the audit signals a failing quality. If no contract violation is detected, and
no problems are forecast, the audit signals an acceptable service. The framework
currently provides forecasting models based on moving averages and exponential
smoothing (such forecasting techniques are discussed in [26]).

3.3 Reputation Process

The reputation service provides a method for service consumers to rate the ser-
vices of providers they have used. A service instance is rated once by a consumer,
and is done once the service has been unleased. Services are unleased when either
a contract is violated, or the service lease expires. All ratings received for the
same provider and service type are combined, to develop the overall reputation
for the provider’s ability to supply that particular service type in accordance
with negotiated contracts.

The reputation service provides a query method to determine the overall rat-
ing of a provider for a given service type. Consumer brokers use this method to
limit negotiation sessions to those providers which have an acceptable level of
reputation (as defined in the strategy provided by the consumer). If a consumer
has previously used the service(s) of a particular provider, the consumer’s own
rating is combined with the global rating provided by the reputation service,
according to weights specified in the consumer’s strategy. Provider brokers also



A Runtime Quality Architecture for Service-Oriented Systems 477

query for any rating a consumer may have given its provider in the past, before
agreeing to provide a service to the consumer.

4 Service Strategy and Management

We have implemented strategy templates, based on a quality ontology which
enables services to be described and negotiated in terms of their non-functional
qualities and constraints. Non-functional attributes are specified using metadata
interfaces, which enable a design by contract [27] approach.

Both consumer and provider strategies include three attributes which de-
scribe how any available reputation information should be used. The reputation

threshold is used by consumer brokers to limit negotiation to those providers
who have a level of reputation above a certain value. The threshold is also used
by provider brokers, to limit negotiation to those consumers who have previously
rated the provider above a certain value. The other two attributes are proposal

weight and reputation weight, which are used when computing the overall ac-
ceptability of an offer. These attributes respectively indicate the importance of a
service proposal, when compared to the reputation of the consumer or provider
which made the proposal. Consumer strategies include two further attributes,
personal experience and global experience, to weight the consumer’s own experi-
ence of a particular provider and service against the experience provided by other
consumers.

4.1 Service Acceptability

Each quality, operation and service in a strategy template is given a weighting
from 0.0 to 1.0, so that the sum of all service- and operation-level qualities is 1.0
(the ideal QoS). The acceptability of a single quality proposal Qa is calculated
using the following formula, based on the acceptability formula given in [25], but
extended to factor in the weight of a single quality Qw as it pertains to an overall
QoS. Let Qp be the value proposed for the quality, Ql the least acceptable value
for that quality and Qm the most acceptable value for that quality.

Qa =

∣

∣

∣

∣

Qp − Ql

Qm − Ql

∣

∣

∣

∣

∗ Qw

The formula is used for proposed values which fall within the range of ac-
ceptable values defined by the least and most acceptable values. Whether these
are high or low values depends on whether greater or lesser values are more
acceptable or less acceptable e.g. for a response time quality, a greater number
may be less acceptable and a smaller number more acceptable. This equation is
extended if reputation information is available for the creator of the proposal.
If there exists any prior personal experience of the proposal creator, the reputa-
tion R is computed from both the global rating Rg provided by the reputation
service, and the local personal experience Rl. Let Gw be the weight assigned to
global experience and Lw be the weight assigned to local personal experience,



478 D. Robinson and G. Kotonya

so that 0 ≤ Gw ≤ 1 and 0 ≤ Lw ≤ 1, and Gw + Lw = 1.0. The overall rating R

is then defined as:

R = (Rg ∗ Gw) + (Rl ∗ Lw)

The total quality acceptability Qta is then calculated as follows. Let Pw be
the weight of the proposal and Rw the weight of the reputation information, so
that 0 ≤ Pw ≤ 1 and 0 ≤ Rw ≤ 1, and Gw + Pw = 1.0.

Qta = (Qa ∗ Pw) + (R ∗ Rw)

4.2 Service Composition

The framework is capable of negotiating a composition, but is not responsible for
the actual composing of services (this activity is left to the service consumer).
Each service in the required composition is individually-weighted, enabling the
specification of compositions where one service is more critical than another. Cal-
culating the acceptability of every possible composition is an NP-hard problem.
For example, if a composition with 3 different services is required and there are
10 providers for each type of service, 103 composition comparisons are required
in order to calculate the acceptability of every possible composition. Provider
reputation can be used to limit negotiation to a subset of the available providers,
but the linear programming approach still does not scale. Every additional ser-
vice in a composition introduces another order of magnitude to the number of
compositions which must be compared. There are several proposed solutions to
this optimisation problem [23].

5 Case Study

We have developed a small case study to evaluate the framework and to visualise
the framework processes and system quality at runtime. Simulated consumer
devices, each with different resource constraints and requirements, execute a
navigation application comprised of location, traffic, weather, street maps, and
information services.

First, the system invokes the location service to obtain the location of the con-
sumer. The location data is passed on to the maps, weather and traffic services to
obtain graphical maps, weather and traffic information within an n metre radius
of the consumer. Traffic and map information are integrated to highlight traffic
conditions on the roads. The map information can also be used to request infor-
mation on places of interest (e.g. restaurants, shops, parking, tourist attractions
etc.). The consumers of this application each simulate a navigation device, such
as a mobile phone, internet tablet, or automobile navigation system. Variances
in consumer requirements mean that different providers are more acceptable to
different consumers. In addition, the runtime environments of the different con-
sumers vary from remote locations to busy metropolitan areas, meaning that
invoking services will result in widely different responses.



A Runtime Quality Architecture for Service-Oriented Systems 479

Several providers of each service type are registered with the Jini discovery
service. Each provider offers services with arbitrary differences in levels of QoS
and cost, making some providers more acceptable than others for the different
consumer devices. Once SLAs have been negotiated for each service type in the
navigation composition, monitors are attached and each service in the navigation
process is invoked as required.

Providers are doped in a variety of ways, so that they occasionally violate
negotiated SLA qualities. Monitors detect these violations by auditing service
invocations and forecasting trends. Once notified of a violation, consumers in-
struct their brokers to renegotiate the SLA if the monitored QoS is still within
acceptable limits. If the monitored QoS is not within acceptable limits, if rene-
gotiation is unsuccessful or if the service continues to deteriorate, the consumer
may switch to an alternate provider if available, depending on its strategy.

5.1 Visualising Framework Processes

Software has been developed for visualising the framework processes at runtime.
The negotiation viewer displays the consumers actively negotiating a service or
service composition. The viewer provides a means to view negotiation sessions
between each consumer broker and the provider brokers they negotiate with.

Fig. 6 shows a negotiation session between a consumer device and a MapSer-

vice provider. The final proposal was rejected as another provider was more

Fig. 6. Negotiation session viewer



480 D. Robinson and G. Kotonya

(a) Service invocation acceptability (b) Monitor event viewer

Fig. 7. Example simulation views

acceptable. The first table column contains the negotiation primitive of each ne-
gotiation message; the second column contains the timestamp; the third column
contains the universally-unique identifier (UUID) of the message; the fourth col-
umn indicates whether the message was sent or received by the consumer broker;
and the fifth column contains the UUID of the message being responded to (if
any). The user can view the contents of any message and service proposal.

The user can also view and compare negotiated service proposals from each
provider of a particular service, and view the invoked acceptability of individual
services (see service example in Fig. 7a) and service compositions.

The monitor viewer (see Fig. 7b) shows each consumer currently executing ser-
vices. Each table entry represents a single monitoring event. The entry includes
the UUID and type of the service monitored, the service operation invoked, the
quality audited (profiled RAM usage and response time in the example), the
SLA quality value, the observed quality value, when the audit occurred, and au-
dit result. The observed and forecast values for different qualities are plotted on
a chart where trends in service qualities can be observed over time. Consumers
react to failed/failing services by requesting their brokers to renegotiate, and
may switch provider if renegotiation fails (as shown on Fig. 7a).

The user is also able to view the current and historical reputation of each
provider of each service type, based on the ratings from consumers.



A Runtime Quality Architecture for Service-Oriented Systems 481

6 Conclusions

This paper has presented a runtime quality architecture for service-oriented sys-
tems, that uses a novel service brokerage model to provide a framework for
integrating consumer strategies with different negotiation and monitoring tech-
niques. The framework enables consumers to negotiate service agreements which
are closer to their requirements, and compensates providers accordingly. Services
are monitored during runtime for compliance with the negotiated agreements.
Problematic services are renegotiated, or alternate sources of service provision
are sought. Our approach does not provide a definitive solution to all quality
assurance problems that plague service-oriented systems. However, we believe it
offers a real alternative to current quality frameworks and provides some answers
to the problems that we set out at the beginning of this paper.

Current quality management initiatives allow the consumer only limited con-
trol over the quality of provided services; we have developed a framework that
allows consumers to specify quality-weighted services and to associate these with
consumer strategies. Effective runtime quality assurance must combine monitor-
ing with effective recovery and self-management strategies. We have developed a
portable self-managing quality architecture, that uses a lightweight service bro-
kerage model to integrate pluggable monitoring and negotiation with consumer
quality strategies for ensuring runtime quality. Lastly, we have demonstrated the
effectiveness of the quality architecture with the simulation of a small resource-
constrained example. We are currently investigating improvements to the frame-
work to support runtime quality more efficiently in resource-constrained system
environments.

We are also looking at better ways of expressing and incorporating fallback
mechanisms as part of the consumer strategy, and better ways of integrating a
quality of service ontology. Fallback mechanisms would provide the consumer
with the ability to function in the event that certain framework components or
services are unavailable.

References

1. Turner, M., Budgen, D., Brereton, P.: Turning software into a service. Com-
puter 36(10), 38–44 (2003)

2. Erl, T.: Service-Oriented Architecture: Concepts, Technology, and Design. Prentice
Hall PTR, Upper Saddle River (2005)

3. Sommerville, I.: 31. In: Software Engineering, 8th edn. Addison Wesley, Reading
(2006)

4. Lüders, F., Flemström, D., Wall, A.: Software component services for embedded
real-time systems. In: Proc. Fifth Conference on Software Engineering Research
and Practice in Sweden, Väster̊as, Sweden, Mälardalen University, October 2005,
pp. 123–128 (2005)

5. Baresi, L., Ghezzi, C., Guinea, S.: Smart monitors for composed services. In: IC-
SOC 2004: Proceedings of the 2nd international conference on Service oriented
computing, pp. 193–202. ACM Press, New York (2004)

6. Hoffman, B.: Monitoring, at your service. Queue 3(10), 34–43 (2005)



482 D. Robinson and G. Kotonya

7. Milanovic, N., Richling, J., Malek, M.: Lightweight services for embedded systems.
Wstfeus 00, 40 (2004)

8. O’Sullivan, J., Edmond, D., Hofstede, A.T.: What’s in a service? Towards accurate
description of non-functional service properties. Distrib. Parallel Databases 12(2-
3), 117–133 (2002)

9. Toma, I., Foxvog, D., Jaeger, M.C.: Modeling QoS characteristics in WSMO. In:
MW4SOC 2006: Proceedings of the 1st workshop on Middleware for Service Ori-
ented Computing (MW4SOC 2006), pp. 42–47. ACM Press, New York (2006)

10. Menascé, D.A., Ruan, H., Gomaa, H.: QoS management in service-oriented archi-
tectures. Perform. Eval. 64(7-8), 646–663 (2007)

11. Woodside, C.M., Menascé, D.A.: Guest editors’ introduction: Application-level
QoS. IEEE Internet Computing 10(3), 13–15 (2006)

12. Martin, D.L., et al.: Bringing semantics to web services: The OWL-S approach.
In: Cardoso, J., Sheth, A.P. (eds.) SWSWPC 2004. LNCS, vol. 3387, pp. 26–42.
Springer, Heidelberg (2005)

13. Andrieux, A., et al.: Web services agreement specification (WS-Agreement), version
2006-09-07. Technical report, Global Grid Forum (2006)

14. O’Sullivan, J.: Towards a Precise Understanding of Service Properties. PhD thesis,
Queensland University of Technology (2006)

15. Jøsang, A., Ismail, R., Boyd, C.: A survey of trust and reputation systems for
online service provision. Decis. Support Syst. 43(2), 618–644 (2007)

16. Maximilien, E.M., Singh, M.P.: Toward autonomic web services trust and selec-
tion. In: ICSOC 2004: Proceedings of the 2nd international conference on Service
oriented computing, pp. 212–221. ACM Press, New York (2004)

17. Wishart, R., Robinson, R., Indulska, J., Josang, A.: SuperstringRep: reputation-
enhanced service discovery. In: ACSC 2005: Proceedings of the Twenty-eighth Aus-
tralasian conference on Computer Science, pp. 49–57. Australian Computer Society,
Inc., Darlinghurst (2005)

18. Ludwig, H., et al.: Web service level agreement (WSLA) language specification
(2003), http://www.research.ibm.com/wsla/WSLASpecV1-20030128.pdf

19. Yan, J., et al.: Autonomous service level agreement negotiation for service compo-
sition provision. Future Gener. Comput. Syst. 23(6), 748–759 (2007)

20. Czajkowski, K., Foster, I.T., Kesselman, C., Sander, V., Tuecke, S.: Snap: A proto-
col for negotiating service level agreements and coordinating resource management
in distributed systems. In: Feitelson, D.G., Rudolph, L., Schwiegelshohn, U. (eds.)
JSSPP 2002. LNCS, vol. 2537, pp. 153–183. Springer, Heidelberg (2002)

21. Benjamim, A.C., Sauvé, J., Cirne, W., Carelli, M.: Independently auditing service
level agreements in the grid. In: Proceedings of the 11th HP OpenView University
Association Workshop, HPOVUA (2004)

22. Baresi, L., Ghezzi, C., Guinea, S.: Towards self-healing service compositions. In:
PRISE 2004, First Conference on the PRInciples of Software Engineering, Buenos
Aires, Argentina (November 2004)

23. Menascé, D.A., Dubey, V.: Utility-based QoS brokering in service oriented archi-
tectures. ICWS 0, 422–430 (2007)

24. Li, H.: Automated E-business Negotiation: Model, Life Cycle and System Archi-
tecture. PhD thesis, University of Florida (2001)

25. Lock, R.: TRANSACT (Tool for Real-time Automated Negotiation of Secure Au-
thorisation ContracTs). PhD thesis, Lancaster University (2005)

26. Wolski, R.: Dynamically forecasting network performance using the network
weather service. Cluster Computing 1(1), 119–132 (1998)

27. Meyer, B.: Applying “design by contract”. Computer 25(10), 40–51 (1992)

http://www.research.ibm.com/wsla/WSLASpecV1-20030128.pdf

	A Runtime Quality Architecture for Service-Oriented Systems
	Introduction
	Background
	Service Description, Discovery and Selection
	Service Reputation Systems
	Service Negotiation
	Service Monitoring

	Quality Architecture
	Brokerage Architecture
	Monitoring Process
	Reputation Process

	Service Strategy and Management
	Service Acceptability
	Service Composition

	Case Study
	Visualising Framework Processes

	Conclusions
	References


