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A Russian Dolls ordering of the 
Hadamard basis for compressive 
single-pixel imaging
Ming-Jie Sun1,2, Ling-Tong Meng1, Matthew P. Edgar2, Miles J. Padgett2 & Neal Radwell2

Single-pixel imaging is an alternate imaging technique particularly well-suited to imaging modalities 
such as hyper-spectral imaging, depth mapping, 3D profiling. However, the single-pixel technique 
requires sequential measurements resulting in a trade-off between spatial resolution and acquisition 
time, limiting real-time video applications to relatively low resolutions. Compressed sensing techniques 
can be used to improve this trade-off. However, in this low resolution regime, conventional compressed 
sensing techniques have limited impact due to lack of sparsity in the datasets. Here we present an 
alternative compressed sensing method in which we optimize the measurement order of the Hadamard 
basis, such that at discretized increments we obtain complete sampling for different spatial resolutions. 
In addition, this method uses deterministic acquisition, rather than the randomized sampling used in 
conventional compressed sensing. This so-called ‘Russian Dolls’ ordering also benefits from minimal 
computational overhead for image reconstruction. We find that this compressive approach performs 
as well as other compressive sensing techniques with greatly simplified post processing, resulting in 
significantly faster image reconstruction. Therefore, the proposed method may be useful for single-
pixel imaging in the low resolution, high-frame rate regime, or video-rate acquisition.

Imaging is one of the most ubiquitous and useful techniques for gathering information. Imaging is conventionally 
performed using cameras based on detector arrays and though a very mature technology, these have their limita-
tions. Recently there has been a push towards imaging with only a single detector1, 2 and this so-called ‘single-pixel 
imaging’, also closely related to classical ghost imaging3, 4. Rather than capturing a two-dimensional (2D) image 
with a pixelated array, these techniques use an alternative strategy to retrieve spatial information by recording 
only the total light intensities in each component of a spatial sampling basis. �ese intensities corresponding to 
each of the basis components are measured on a single-pixel detector sequentially in time, and together with 
knowledge of the sampling basis, an image can then be reconstructed. �ough detector array technology has 
superior performance in the visible region of the spectrum, single-pixel imaging is particularly well-suited to 
non-conventional imaging, such as multi-wavelength imaging5, depth mapping6–9, 3D pro�ling10, 11.

�e most mature method of single-pixel imaging is the raster scanning approach12, 13, where the object is 
scanned one image pixel at a time. Entering the new century, single-pixel imaging utilized pseudo-thermal ran-
dom speckle patterns to sample a scene14, 15. Advances in computational ghost imaging led to the use of a spatial 
light modulator (SLM) to generate the random patterns3, 4. However, the non-orthogonality of random patterns 
o�en means that more than N measurements are required for a high quality reconstruction of an N pixel image16. 
Improvements can be made by sampling a scene with patterns forming an orthogonal basis set, allowing, in prin-
ciple, a perfect reconstruction of an N pixel image with N measurements17, 18.

�e single frame acquisition time of single-pixel imaging is typically longer than that of a conventional cam-
era due to the need for sequential measurements. Acquisition time can be shortened by reducing the number of 
measurements, however, this potentially leads to loss of information. Compressed sensing can be used to produce 
higher quality image reconstructions from fewer than N measurements by exploiting the sparsity in the spatial 
frequencies present in natural scenes. �is ‘conventional compressive sensing’1, 2, 19, is usually performed by min-
imizing a certain measure of the sparsity. It is widely understood that the number of measurements required to 
form a ‘good’ reconstruction is related to the sparsity of the image2, 20:
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 α α=M N/ ( log(1/ )), (1)

where M is the number of measurements required to form a good reconstruction, N is the total pixel number, and 
α is the sparsity ratio of image expressed in the chosen basis. In practice, α α≈M N4 log(1/ )  is o�en an adequate 
number of measurements for good reconstruction, and the dependence of reconstruction quality on M/N can be 
predicted quite precisely21. In this work we do not consider images that have an exact sparse representation21, 22, 
but rather α represents the proportion of coe�cients greater than some threshold. �e ratio M/N can be consid-
ered as a sampling ratio, and for sparse images, improves as α decreases. �e relationship between α and N 
depends on both the scene and the chosen de�nition of a non-sparse component, however, in general α decreases 
for larger N, or rephrased: the larger the dimensionality of the image, the sparser it becomes (in the spatial fre-
quency basis). �e overall result is that the sampling ratio scales very favourably with larger pixel numbers and 
therefore conventional compressed sensing excels at reconstructions of large (megapixel) images, especially when 
wavelet bases are used23. However, for more modest resolutions, one does not obtain good performance when the 
sampling ratio is below about 30%24. Real-time video applications in the 10–30 Hz regime have resolutions typi-
cally between 32 × 32 and 128 × 128, limited by the modulation rate (22 Khz) of even the fastest SLM devices5, 9, 

18, 25. �ese applications therefore have relatively high α and hence conventional compressed sensing technique 
are o�en only marginally e�ective while also incurring long reconstruction times, again, unsuitable for real-time 
imaging. �erefore alternative compressive approaches have been explored for single-pixel video, such as evolu-
tionary compressive sensing (ECS)5, 11, 25, where the measured patterns are chosen based upon a priori knowledge 
of the scene, taken from the previous frame and requires no lengthy post-processing. ECS can achieve real-time 
imaging but incurs a trade-o� between image quality and real-time robustness25.

Here we present an alternative approach which can utilize the sparsity in general scenes while avoiding the 
need for a time-consuming computational overhead and relies on a basic presumption that general scenes are 
sparse. Our approach is based on an optimized ordering of the Hadamard basis which we call the ‘Russian Dolls’ 
order, where the reshaped basis patterns are ordered corresponding to their signi�cance for general scenes. We 
numerically compare the reconstructed images obtained using this ‘Russian Dolls’ order against both a standard 
conventional compressive sensing technique and evolutionary compressive sensing. We �nd that for modest res-
olutions this method can produce similar or better image quality when compared to conventional or evolutionary 
compressive sensing.

Principles of image reconstruction
In single-pixel imaging, the measured intensity Si, associated with each measured pattern Pi, is directly pro-
portional to the overlap between the pixelated scene Io and the pattern Pi and a reconstructed image Ir can be 
obtained using the knowledge of Si and Pi

3, 4. If the patterns form an orthonormal basis, then an N pixelated scene 
can be fully sampled a�er performing N pattern projections and measurements, and the reconstructed image Ir 
can be obtained using
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One such orthonormal basis is derived from the Hadamard matrix; a square matrix with elements ±1 whose 
rows (or columns) are orthogonal to one another26, 27. Each pattern is formed by reshaping a row (or a column) of 
the Hadamard matrix into a two-dimensional square array. �e lowest-order Hadamard matrix is of order two:
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Higher order Hadamard matrices are obtained by = ⊗+H H H2 2 2n n1 , where ⊗ is the Kronecker product operator. 
�e i th row/column in the Hadamard matrix can be reshaped to form a square pattern Pi. �ese mathematical 
operations lead to an ordering of the rows/columns (we will mention rows only herea�er because H = HT), which 
we call the ‘Natural Order’.

Figure 1a shows the calculated intensities (IS) corresponding to measurements of 16384 Hadamard pat-
terns (Pi) in a random order, measured from a sample picture. Figure 1b shows the reconstructed images 
(128 × 128 pixels) when using only a fraction C of the complete set, using the �rst N × C rows of the Hadamard 
matrix. �e quality of reconstruction is evaluated using the percentage root mean squared error (RMSE), which 
is calculated by
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where Ir(i, j) and Io(i, j) are the values of the (i, j) th pixel in the reconstructed and original images respectively, m 
and n are the dimensions of the image, and N = m × n is the number of pixels. All images are normalized to unity.

It is a sensible assumption that the larger the signal (Si), the more signi�cant the pattern’s (Pi) contribution 
to the image reconstruction and in order to reduce the number of patterns used, it would be ideal if the most 
signi�cant patterns are always projected and measured �rst, this is the fundamental idea of ECS5, 25. Figure 1c 
shows the intensities in their descending order and Fig. 1d shows the reconstructed images using the most sig-
ni�cant fractions. �e resulting images as well as the relative errors demonstrate that with the same sampling 
ratio, a signi�cance-based ordering of the Hadamard basis provides a better reconstruction from fewer meas-
urements than a random ordering. ECS, however, has a major drawback as one cannot know which patterns will 
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produce the most signi�cant signals a priori and therefore these patterns must be chosen by random sampling 
from frame-to-frame leading to reconstruction errors for quickly moving scenes.

Optimising the Hadamard basis order. �e Hadamard matrices are common means in multiplexed 
imaging, though maybe not the best one28. In this work, we demonstrate an optimized ordering of the Hadamard 
basis, where we use the properties of general scenes to order the patterns such that any truncation of that pattern 
sequence will provide an optimal reconstruction. �e rules to order the Hadamard basis patterns are as follows.

Rule 1: Order the rows such that the top half of H2 n2  are the rows of −H2 n2 1. �is basic principle develops from the 
realisation that each Hadamard matrix contains within it each lower order Hadamard matrix, for example an H8 
Hadamard matrix contains the rows of a H4 Hadamard matrix (scaled by a factor 2), which in turn contains the 
H2 etc, just like a Russian dolls set. More concisely this can be expressed as H2 n2  containing a scaled version of 

−H2 n2 1. From this realisation, along with the fact that using a complete Hadamard basis to reconstruct an image 
provides better signal-to-noise ratio (SNR)17, 18, 29, we reorder a H2 n2  Hadamard matrix such that the �rst half rows 
are −H2 n2 1, the �rst quarter rows are −H2 n2 2, the �rst eighth rows are −H2 n2 3 and so on.

Rule 2: Ordering the third quarter of H2 n2  as the transpose of its second quarter. Following Rule 1, the rows in the 
�rst quarter and the second quarter of H2 n2  are �xed. According to the symmetry of the Hadamard matrix, the 
transpose of the second quarter basis patterns can always be found in the latter half of H2 n2 . �erefore we order the 
third quarter basis patterns as the transpose of the second quarter of H2 n2 . Note that the second and third quarters 
are interchangeable, and with the �rst quarter, both can form the complete Hadamard basis of −H2 n2 1.

Rule 3: Ordering the patterns within each quarter according to the number of blocks they contain. Following Rule 
1 & 2, all basis patterns are catalogued into the four quarters of H2 n2 . One value is then given to each reshaped 
basis pattern, representing the number of blocks it contains. We de�ne a block as an unbroken area of equal value 
(black or white in Fig. 2). We hypothesize that the less blocks a pattern contains, the more probable this pattern 
yields a higher intensity signal for a general scene. �erefore, we order the basis patterns within each quarter 
ascending according to their block number.

Figure 2 gives the example of ordering a 16 × 16 Hadamard matrix using the above rules. By taking each row 
of the H16 matrix (Fig. 2a) and transforming each row into a 4 × 4 2D pattern, a complete set of 16 Hadamard 
basis patterns (Fig. 2b) is obtained, which can be used in single-pixel imaging to reconstruct 4 × 4 resolution 
images. Following Rule 1, the �rst half of the patterns are those from the H8 matrix and the �rst quarter of the pat-
terns are that from the H4 (Fig. 2c). We then choose the transpose of the second quarter patterns from the latter 
half and arrange them into the third quarter (Fig. 2d). Finally, we sort each quarter of the patterns according to 
their block number (Fig. 2e).

Results
In order to test our method for image reconstruction, numerical calculations are performed where a set of images 
Io are sampled by patterns Pi to yield signals Si and images I are then reconstructed using three different 
approaches; ‘Russian Dolls’ ordering, evolutionary compressive sensing and conventional compressive sensing. 
The original images, sampling patterns and resulting images all have resolutions of 128 × 128 pixels. The 
Hadamard matrix is H214, with dimension 16384 × 16384. �e numerical calculations are performed at sampling 
ratios set from 1% to 99% at 1% intervals based on a full pattern set of 16384.

Figure 1. Image reconstruction with di�erent fractions of the complete set of Hadamard patterns. (a) 
Decomposed intensities of 16384 randomly ordered Hadamard patterns. (b) Comparison of reconstructions 
using fractions of the complete set. (c) Intensities in descending order. (d) Reconstructions using the most 
signi�cant fractions of the complete set.
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With the ‘Russian Dolls’ approach, the resulting images are reconstructed by using the sub-set of the ‘Russian 
Dolls’ ordering of the Hadamard patterns along with Eq. 1. �e evolutionary compressive sensing is performed 
optimally, i.e. all patterns are measured and ordered corresponding to their Si values (as in Fig. 1c), and each 
compressive sub-set is taken from the highest Si values. For conventional compressive sensing, we randomise the 
Hadamard patterns using democratisation and recover the image using a sparsity optimisation by minimisation 
of the total image curvature5. �e RMSE of the resulting images are computed using Eq. 4. All simulations are 
performed on a laptop with 2.60 GHz quad core processor and 8.00 GB random access memory (RAM).

In the �rst simulation, we reconstruct a set of 35 images (three examples of which are labelled as ‘Original’ in 
Fig. 3a–c), in which each image contains an object on a black background. �e reconstructed images at a sampling 
ratio of 6% are also shown and labelled correspondingly in Fig. 3a–c. Figure 3d shows the RMSE of the recon-
struction image as a function of sampling ratio, where the RMSE is the average derived from all 35 reconstructed 
images.

Figure 2. ‘Russian Dolls’ Hadamard ordering example. (a) A 16 × 16 Hadamard matrix. (b) �e basis patterns 
of H16. (c–e) �e basis patterns of H16 at di�erent stages during the optimized ordering. (f) An example of 
optimized order of a Hadamard matrix, forming a ‘Russian Dolls’ structure.

Figure 3. Single object reconstruction comparison. (a–c) Examples of single objects (Original), the 
reconstructed images using ‘Russian Dolls’ approach (RD), evolutionary compressive sensing (ECS), and 
conventional compressive sensing (CS). (d) Comparison based on relative error per pixel as a function of 
sampling ratio. Average reconstruction times at 6% sampling ratio for three approadches are given as well.
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As expected all three approaches show a similar trend in that the reconstruction quality is improved as the 
number of patterns increases. For sampling ratios below 20% ECS and conventional compressed sensing perform 
very similarly, while the ‘Russian Dolls’ ordering result is characterized by some optimal points at 50%, 25%, 12%, 
6% and 3% sampling ratio, which is coincident with our prediction that we can form an optimised reconstruc-
tion with lower resolution using a sub-set of patterns. For moderate sampling ratios from 20–50% all methods 
perform very similarly. For sampling ratios above 50% ECS outperforming the other methods. At sampling ratio 
6%, the average reconstruction times of all 35 images are 0.103 s, 0.111 s and 12.573 s for ‘Russian Dolls’, ECS and 
conventional compressive sensing respectively, where ECS is 10% slower due to the need to rearrange patterns25, 
and conventional compressive sensing is slower due to the increased computational overhead.

�ese results show that even in this low resolution regime conventional compressed sensing still performs 
well for low sampling ratios (i.e. high compression), though with a penalty of long reconstruction times. �e 
Russian Dolls performance for low sampling ratios seems to be excellent, and indeed it achieves the lowest RMSE 
of all methods. By contrast ECS can contain �ner details and does not incur long reconstruction time penalties, 
however, practical implementations require a priori knowledge of the scene which in practice comes from the 
previous frames, resulting in errors in scenes with motion.

In the second simulation, the set contains 35 images (examples labelled as ‘Original’ in Fig. 4a–c), which 
aims to simulate imaging of general scenes and some examples for a 6% sampling ratio are shown in Fig. 4a–c. 
Figure 4d illustrates the comparison results for this set. �e ‘Russian Dolls’ result still shows the same characteris-
tic at the sampling ratios of 50%, 25%, 12%, 6% and 3%, where the relative errors exhibit local minima. However, 
in this simulation, the performance of the ‘Russian Dolls’ approach is diminished due to the absence of a uniform 
dark background, as this maximises the e�ect of a perfect reconstruction. �e evolutionary compressive sensing 
outperforms the other two approaches, however this is in the limit of optimal a priori information (we know all 
values of Si) and any real application does not have this luxury. Conventional compressive sensing performs better 
only when the sampling ratio is small and still requires computationally intensive reconstruction.

Besides the observations above, although the relative error per pixel is an overall criterion assessing how 
similar the reconstructed image is to the original one, it can be inconsistent with visual impression. We also 
note that the conventional compressive sensing performed in this work is only a representative method within 
a broad �eld. We emphasise that these results hold for the speci�c case of moderate resolution, which is chosen 
to be compatible with video rate image acquisition. We have con�rmed that in this moderate resolution regime 
traditional compressed sensing does not have the impact seen for high resolution applications while still requiring 
long reconstruction times. Our ‘Russian Dolls’ technique provides similar RMSE results to the other methods, 
we believe that this method can be useful due to its speed and lack of reliance on a priori information. Ultimately, 
the speci�c imaging application will inform which technique has the best performance and we believe that this 
‘Russian Dolls’ ordering can be useful for low-resolution real-time imaging of moving scenes.

Discussion
In this work, we proposed an optimized order of the Hadamard basis for use in compressive single-pixel imaging 
applications. �e Russian Dolls ordering utilizes the sparsity of natural scenes, similar to transform coding30, 31. 
Our numerical simulations demonstrate that this ‘Russian Dolls’ order of the Hadamard basis can yield a similar 

Figure 4. General scene reconstruction comparison. (a–c) Examples of general scene (Original), the 
reconstructed images using ‘Russian Dolls’ approach (RD), evolutionary compressive sensing (ECS), and 
conventional compressive sensing (CS). (d) Comparison based on relative error per pixel as a function of 
sampling ratio. Average reconstruction times at 6% sampling ratio for three approadches are given as well.
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image quality compared to conventional or evolutionary compressive sensing but with minimal computational 
resource, and is not limited to binary images32. In the case of a properly chosen sampling ratio and imaging a sin-
gle object on a uniform background, this ‘Russian Dolls’ approach outperforms the other methods with regards 
to SNR and image reconstruction, but su�ers from reduced detail. Furthermore, without a computational over-
head, the ‘Russian Dolls’ method reconstructs images signi�cantly faster than conventional compressed sensing. 
�erefore, this method can be utilised to improve real-time performance in single-pixel video applications, par-
ticularly where a priori estimate of the scene is unavailable or unreliable.

Data Availability
�e datasets generated during and/or analysed during the current study are available from the corresponding 
author on reasonable request.
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