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Abstract This paper describes a σ -coordinate scalar transport model coupled with a Bous-
sinesq-type hydrodynamic model. The Boussinesq model has the ability to calculate both
three-dimensional velocity distributions and the water surface motion. To capture ‘disper-
sion’ processes in open channel flow, horizontal vorticity effects induced by a bottom shear
stress are included in the Boussinesq model. Thus, a reasonable representation of vertical flow
structure can be captured in shallow and wavy flow fields. To solve the coupled Boussinesq
and scalar transport system, a finite-volume method, based on a Godunov-type scheme with
the HLL Riemann solver, is employed. Basic advection and advection–diffusion numerical
tests in a non-rectangular domain were carried out and the computed results show good
agreement with analytic solutions. With quantitative comparisons of dispersion experiments
in an open channel, it is verified that the proposed coupled model is appropriate for both
near and far field scalar transport predictions. From numerical simulations in the surf zone,
physically reasonable results showing expected vertical variation are obtained.
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List of symbols
A Cell side vector
c f Roughness coefficient
C Scalar concentration
CB A model constant of BSM
Dx , Dy, Dz Diffusion coefficients in the x∗, y∗ : z∗ directions
Fi Dispersive stresses
F Flux vector evaluated at the cell interface
g Gravitational acceleration
h Water depth
H Total water depth
i + 1/2, i − 1/2 Cell interfaces
ks Roughness height
L , R Left and right sides of a cell interface
n Index for the time marching
Re Reynolds number
Ri Breaking dissipation term
Si j Strain rate tensor
SL , SR Wave speeds
t, t∗ Time
U (u, v, ωσ )
(u, v) Horizontal velocities
ũ, ṽ Depth averaged horizontal velocities
Uαi = (Uα, Vα) Horizontal velocity at arbitrary level z∗ = zα
uτ Friction velocity
V Volume of a computational cell
w Vertical velocity in the physical domain
x, y Horizontal axes in σ -coordinates
(x∗, y∗) Horizontal axes in physical space
z∗ Vertical axis in physical space
�t Time step
�x, �y Grid size in horizontal direction
�σ Grid size in σ direction
ζ Free surface elevation
κ Von Karmann constant
ν Kinematic viscosity of water
νb Wave breaking viscosity
νh

t Horizontal eddy viscosity
νvt Vertical eddy viscosity
ρ Water density
σ Vertical axis in σ -coordinates
�t Turbulent Schmidt number
τ b

i Bottom shear stresses

1 Introduction

Elucidating the mixing mechanism and its prediction has long been an important and interest-
ing topic to hydrodynamic and environmental researchers. After Taylor [24] made significant

123



Environ Fluid Mech

analytical progress on the subject, various extensions were proposed by many, such as Fischer
et al. [8]. In the field, however, due to many factors such as turbulence, complex geometry
and boundary conditions, it is very difficult to accurately predict the scalar transport with
analytical methods. Field measurement is difficult as well, as it is time intensive and often
too expensive or impractical to get the many site-specific variables. Hence, using numerical
methods for the investigation or prediction of mixing process can be a complementary and
practical approach.

For the prediction of flow and transport in a large domain under nondispersive and hydro-
static pressure conditions, use of a coupled model composed of shallow water equation (SWE)
and a depth-averaged transport equation (DAT) is one of the more common approaches. By
ignoring the vertical velocity and the vertical variation of horizontal velocity, such a model
can predict very efficiently flow and transport with acceptable accuracy. Additionally, SWE
and DAT have consistency in view of their eigen structure; the scalar transport advection
equation has the same approximate Riemann solver as the equation of tangential velocity of
the homogeneous SWE [27]. The same numerical method can be applied to solve both the
advection acceleration terms of SWE and the advection term of DAT [27]. However, it is
not possible to get any vertical structure of flow and transport. Thus, they are limited in the
prediction of near field transport [12].

For prediction of near field transport, the most physical and accurate approach among
numerical methods is to solve the three-dimensional (3D) Navier–Stokes equations (NS) cou-
pled with a 3D transport model. A 3D NS model requires massive computational resources,
and it is presently not practical to apply for large domains such as rivers and coasts. Fur-
thermore, in Cartesian coordinates, an additional difficulty arises; the irregular free surface
crosses the regular computational grid constantly, and it becomes complicated to apply the
pressure boundary condition precisely on the free surface [16].

As an alternative, the σ -coordinate system, which maps a nonuniform vertical domain
into a rectangular domain [20], can be employed. With this approach the boundary condition
on the free surface can be precisely applied if the water surface curvature is not sharp. Many
successful results using σ -coordinates model, such as POM [2], ROMS [1], and GETM
[5], have been reported. With the σ -coordinate method, Stansby [22] developed a 3D semi-
implicit finite volume method (FVM) for the prediction of shallow water flow and transport
while employing the hydrostatic pressure assumption. Stansby and Zhou [23] later incorpo-
rated a nonhydrostatic pressure solver into the numerical model mentioned above. Although
they obtained closer agreement with experimental data than the hydrostatic pressure model,
the nonhydrostatic pressure solver demonstrated to be a computationally expensive modifica-
tion. To accommodate this cost, a hybrid approach was proposed; inclusion of nonhydrostatic
pressure might need to be restricted to the parts of the flow where its influence was signifi-
cant. Lin and Li (2002) developed a 3D numerical model based on the NS in a σ -coordinate
system. They tested the free surface capturing capability of the proposed model, and very
good results were found. To obtain accurate results, however, a requirement on the verti-
cal resolution should be satisfied, leading to higher computational times associated with a
finer mesh. To increase the computational efficiency, Yuan and Wu (2004) developed an
implicit σ -coordinate finite difference model. Their modeling results were compared with
several analytical solutions and laboratory experiments, and good agreement was obtained.
For practical application in a river or an estuary, Lee et al. [15] developed a width-averaged
2D σ -coordinate flow model and coupled it with a transport model. Their application suc-
cessfully reproduced measured data in an estuary. Bradford [3] proposed a Godunov based
nonhydrostatic flow model and applied it to various wave propagation and runup problems,
and later [4] to wave breaking problems in the surf zone.
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A (generally) less computationally restrictive modeling approach for large-scale prob-
lems is use of the Boussinesq-type equations (BE). The BE model can calculate efficiently
the vertical structure of flows in the shallow water while considering nonhydrostatic pressure,
frequency dispersion of free surface gravity waves, and horizontal and vertical rotational-
ity (e.g. [13]). Recently, Kim and Lynett [12] proposed a depth integrated eddy simulation
(DIES) model, which incorporated subgrid turbulent fluctuation effects into the BE proposed
by [13]. Similar to the coupling of SWE and DAT, a depth-integrated transport (DIT) model
[12] can be coupled with a BE model or DIES, maintaining a consistency of physical assump-
tions as well as and numerical schemes. It was found that DIES and DIT could predict very
well the turbulent transport in the far field. However, an inherent limitation for near field
mixing exists with DIT due to a required assumption of weakly unsteady flow and vertically
well-mixed conditions.

Following this previous work, the development of a coupled model using BE (or DIES)
with a σ -coordinate transport model for the prediction of near and far field transport is sug-
gested; BE is efficient and it can provide an accurate velocity field to a σ -coordinate transport
model under a wide range of hydrodynamic configurations. Unlike DIT or DAT, a σ -coor-
dinate transport model can use vertical velocity information for the prediction of vertical
mixing. In addition, the pair of BE with a σ -coordinate transport model does not require a
large computational cost as there is no requirement for a nonhydrostatic pressure solver.

The outline of this paper is as follows: In the next section, the advection–diffusion equa-
tion in the σ -coordinate is derived. The numerical method for the σ -coordinate transport
model is then provided. Next, a brief explanation about the DIES and the coupling scheme
are described. Finally, verification of the coupled model for near field and far field mixing is
presented.

2 Advection–diffusion equation in σ -coordinates

2.1 Advection–diffusion equation in σ -coordinates

In a physical domain (t∗, x∗, y∗, z∗), the advection–diffusion equation is given by

∂C

∂t∗
+ u

∂C

∂x∗ + v
∂C

∂y∗ + w
∂C

∂z∗

= ∂

∂x∗

(

Dx
∂C

∂x∗

)

+ ∂

∂y∗

(

Dy
∂C

∂y∗

)

+ ∂

∂z∗

(

Dz
∂C

∂z∗

)

(1)

where (x∗, y∗) represents the horizontal axes and z∗ represents the vertical axis. t∗ is the time
and C is the concentration. (u, v) are the horizontal velocities, and w is the vertical velocity
in the physical domain. Dx , Dy , and Dz are the diffusion coefficients in the x∗, y∗ and z∗
directions, respectively.

In this paper, the σ -coordinate space (t, x, y, σ ) is defined as follows.

t = t∗, x = x∗, y = y∗, σ = z∗ + h

H
(2)

in which H = h + ζ is the total water depth, ζ is the free surface elevation, and h is the
water depth. Using Eq. (2) the physical domain is transformed to the rectangular shaped
σ -coordinates domain as shown in Fig. 1. Derivatives are transferred following the chain
rule
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Fig. 1 Grid systems in physical domain (left) and σ -coordinate system (right)

∂ f

∂t∗
= ∂ f

∂t
+ ∂ f

∂σ

∂σ

∂t∗
∂ f

∂x∗ = ∂ f

∂x
+ ∂ f

∂σ

∂σ

∂x∗
∂ f

∂y∗ = ∂ f

∂y
+ ∂ f

∂σ

∂σ

∂y∗
∂ f

∂z∗ = ∂ f

∂σ

∂σ

∂z∗ (3)

where f = f (t∗, x∗, y∗, z∗) is some function in the physical domain. The differentiation
terms on the right hand side of Eq. (3) are expressed as

∂σ

∂t∗
= − σ

H

∂H

∂t
∂σ

∂x∗ = 1

H

∂h

∂x
− σ

H

∂H

∂x
∂σ

∂y∗ = 1

H

∂h

∂y
− σ

H

∂H

∂y
∂σ

∂z∗ = 1

H
(4)

Substituting Eqs. (3) and (4), the left hand side of Eq. (1) is transformed to

∂C

∂t
+ u

∂C

∂x
+ v

∂C

∂y
+ wσ

∂C

∂σ
(5)

where wσ is given by

wσ = − σ

H

∂H

∂t
+ u

H

∂h

∂x
− u

σ

H

∂H

∂x
+ v

H

∂h

∂y
− v

σ

H

∂H

∂y
+ w

H
(6)
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Similarly, by applying the chain rule to the diffusion terms, the diffusion terms in σ -coor-
dinates can be expressed as

∂

∂x∗

(

Dx
∂C

∂x∗

)

= ∂

∂x

(

Dx
∂C

∂x

)

+ ∂

∂x

{

Dx

H

(

∂h

∂x
− σ

∂H

∂x

)

∂C

∂σ

}

+ 1

H

(

∂h

∂x
− σ

∂H

∂x

)

∂

∂σ

(

Dx
∂C

∂x

)

+ 1

H

(

∂h

∂x
− σ

∂H

∂x

)

∂

∂σ

{

Dx

H

(

∂h

∂x
− σ

∂H

∂x

)

∂C

∂σ

}

(7)

∂

∂y∗

(

Dy
∂C

∂y∗

)

= ∂

∂y

(

Dy
∂C

∂y

)

+ ∂

∂y

{

Dy

H

(

∂h

∂y
− σ

∂H

∂y

)

∂C

∂σ

}

+ 1

H

(

∂h

∂y
− σ

∂H

∂y

)

∂

∂σ

(

Dy
∂C

∂y

)

+ 1

H

(

∂h

∂y
− σ

∂H

∂y

)

∂

∂σ

{

Dy

H

(

∂h

∂y
− σ

∂H

∂y

)

∂C

∂σ

}

(8)

∂

∂z∗

(

Dz
∂C

∂z∗

)

= 1

H2

∂

∂σ

(

Dz
∂C

∂σ

)

(9)

With substitution of the continuity equation and multiplication of the transformed advec-
tion and diffusion terms by H , a conservative form can be obtained:

∂HC

∂t
+ ∂u HC

∂x
+ ∂vHC

∂y
+ ∂wσ HC

∂σ

= H
∂

∂x

(

Dx
∂C

∂x

)

+ H
∂

∂x

{

Dx

H

(

∂h

∂x
− σ

∂H

∂x

)

∂C

∂σ

}

+
(

∂h

∂x
− σ

∂H

∂x

)

∂

∂σ

(

Dx
∂C

∂x

)

+
(

∂h

∂x
− σ

∂H

∂x

)

∂

∂σ

{

Dx

H

(

∂h

∂x
− σ

∂H

∂x

)

∂C

∂σ

}

+H
∂

∂y

(

Dy
∂C

∂y

)

+ H
∂

∂y

{

Dy

H

(

∂h

∂y
− σ

∂H

∂y

)

∂C

∂σ

}

+
(

∂h

∂y
− σ

∂H

∂y

)

∂

∂σ

(

Dy
∂C

∂y

)

+
(

∂h

∂y
− σ

∂H

∂y

)

∂

∂σ

{

Dy

H

(

∂h

∂y
− σ

∂H

∂y

)

∂C

∂σ

}

+ 1

H

∂

∂σ

(

Dz
∂C

∂σ

)

(10)

This conservative-form equation has similar numerical properties to the DIES with which
it will be coupled.
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2.2 Boundary conditions

By applying the chain rule to the boundary conditions, the following boundary conditions are
obtained. The Dirichlet boundary condition remains the same, but the Neumann boundary
condition is changed. At the bottom and at the water surface, the conditions are

∂C

∂z∗ = 1

H

∂C

∂σ
= 0 (11)

Along a vertical side wall, the boundary condition is

∂C

∂x∗ = ∂C

∂x
+

(

1

H

∂h

∂x
− σ

H

∂H

∂x

)

∂C

∂σ
= 0 (12)

3 Numerical methods for σ -coordinates transport model

3.1 Fourth-order accurate FVM for advection terms

By integrating the advection equation over a cell, the equation becomes

∂HC

∂t
+ 1

V
∑

F · A = 0 (13)

where V is the volume of a computational cell,F is a flux vector evaluated at the cell interface,
which is defined as F = C HU , U = (u, v, ωσ ), and A is the cell side vector defined as the
cell side area multiplied by the outward unit normal vector. In order to keep computational
consistency with the DIES model, the value of C at the interface was evaluated by using the
fourth-order compact MUSCL TVD scheme [29] as follows:

C L
i+1/2 = Ci + 1

6

{

�∗Ci−1/2 + 2�∗
˜Ci+1/2

}

(14)

C R
i+1/2 = Ci+1 − 1

6

{

2�∗Ci+1/2 + 2�∗
˜Ci+3/2

}

(15)

where the subscripts i + 1/2 and i − 1/2 refer to the interface locations and L and R refer
to the left and the right sides of a cell interface, respectively. The other terms are given by

�∗Ci−1/2 = minmod
(

�∗Ci−1/2, b�∗Ci+1/2
)

(16)

�∗
˜Ci+1/2 = minmod

(

�∗Ci+1/2, b�∗Ci−1/2
)

(17)

�∗Ci+1/2 = minmod
(

�∗Ci+1/2, b�∗Ci+3/2
)

(18)

�∗
˜Ci+3/2 = minmod

(

�∗Ci+3/2, b�∗Ci+1/2
)

(19)

�∗Ci+1/2 = �Ci+1/2 − 1

6
�3Ci+1/2 (20)

�3Ci+1/2 = �Ci−1/2 − 2�Ci+1/2 +�Ci+3/2 (21)

�Ci−1/2 = minmod
(

�Ci−1/2, b1�Ci+1/2, b1�Ci+3/2
)

(22)

�Ci+1/2 = minmod
(

�Ci+1/2, b1�Ci+3/2, b1�Ci−1/2
)

(23)

�Ci+3/2 = minmod
(

�Ci+3/2, b1�Ci−1/2, b1�Ci+1/2
)

(24)

minmod(i, j) = sign(i)max [0,min {|i |, sign(i)}] (25)

minmod(i, j, k) = sign(i)max [0,min {|i |, sign(i), sign(i)k}] (26)
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in which the coefficients b1 = 2 and 1 < b ≤ 4. Further details of this numerical scheme
are described in [29].

After constructing the interface values, the numerical fluxes were computed by the HLL
approximate Riemann solver [26]:

F i+1/2 =
⎧

⎨

⎩

F L , 0 ≤ SL

F ∗, SL ≤ 0 ≤ SR

F R, 0 ≥ SR

(27)

where

F ∗ = SRF L − SLF R + SR SL (U R − U L)

SR − SL
(28)

and SL and SR are the wave speeds. Further details of the HLL approximate Riemann solver
are clearly explained in [26].

3.2 Fourth-order accurate FVM for diffusion terms

A cell averaged value Ci is defined as

Ci = 1

�x

xi+1/2
∫

xi−1/2

C(x)dx (29)

and by substituting the cell averaged value into the Taylor series C = C1+1/2 + xC ′
1+1/2 +

x2/2C ′′
1+1/2 + x3/6C ′′′

1+1/2 + x4/24C ′′′′
1+1/2 + · · ·, the cell average can be expressed with

values defined at cell interfaces [13]. For example, Ci is given by

Ci = Ci+1/2 − �x

2
C ′

i+1/2 + �x2

6
C ′′

i+1/2 − �x3

24
C ′′′

1+1/2 + · · · (30)

where the subscript i refers to the index of a cell and �x is the grid size. From the combi-
nation of several Taylor series expansions, fourth-order accurate discretization equations for
the FVM can be obtained:

Ci+1/2 = 7
(

Ci+1 + Ci
) − (

Ci+2 + Ci−1
)

12
+ O

(

�x4) (31)

C ′
i+1/2 = 15

(

Ci+1 − Ci
) − (

Ci+2 − Ci−1
)

12�x
+ O

(

�x4) (32)

3.3 Time integration

The third-order Adams–Bashforth predictor and the fourth-order Adams–Moulton corrector
scheme were used for the time integration. In the predictor step,

HCn+1 = HCn + �t

12

(

23An − 16An−1 + 5An−2) (33)

and in the corrector step,

HCn+1 = HCn + �t

24

(

9An+1 + 19An − 5An−1 + An−2) (34)
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where n is the index for the time marching and�t is the time step. A is given in the Appendix.
During the corrector step, the convergence error defined as

∑ |Cn+1 − Cn+1∗ |/∑ |Cn+1|
was required to be less than 10−4 for all the computations given in this paper.

4 Depth-integrated Eddy simulation model

4.1 DIES model

As mentioned above, for the numerical computation of shallow and wavy flows in a large
domain, use of the BE has become common. Typically, however, assuming potential flow
in the derivation can result in the BE yielding an inaccurate vertical velocity structure when
viscous effects are important [17], which can then result in poor prediction of near field
mixing. For example, with uniform flow in a prismatic channel, the BE based on a potential
flow assumption should predict a vertically uniform velocity field, which is not physically
sensible in the presence of any bottom stress.

By including 3D vorticity effects in the fully nonlinear BE, Kim et al. [13] showed that
a BE could reasonably model vertical flow structure in a weakly dispersive (here, frequency
dispersion) flow environment. In addition, Kim and Lynett[12] proposed a DIES model which
incorporated a stochastic backscatter model (BSM) [10] into the BE framework of Kim et
al. [13]. With the BSM, the DIES can simulate the subgrid-scale turbulent fluctuation effects
on turbulent mixing and scalar transport by long waves and currents. Hence, in this paper,
the DIES system is used as the governing equations for flow:

∂ζ

∂t∗
+ ∂HUαi

∂x∗
i

+ α + αν = 0 (35)

∂HUαi

∂t∗
+ ∂HUαi Uα j

∂x∗
j

+ gH
∂ζ

∂x∗
i

+ H
(

βi + γi + βνi + γ νi
) + Uαi

(

α + αν
)

− H
∂

∂x∗
j

(

2νh
t Si j

)

+ 2Hνvt
∂

∂x∗
i

(

∂Uα j

∂x∗
j

)

+ τ b
i

ρ
− HRi − HFi = 0 (36)

where the subscripts i, j = (1, 2) and Uαi = (Uα, Vα) is the horizontal velocity at arbitrary
level z∗ = zα . g is the gravitational acceleration, ρ is the water density, and Si j is a strain
rate tensor. νh

t is the horizontal eddy viscosity and is modeled using the Smagorinsky model
[21] with Cs = 0.2 as follows:

νh
t = C2

s�x�y

[

2

(

∂Uα
∂x∗

)2

+ 2

(

∂Vα
∂y∗

)2

+ 2S2 +
(

∂Vα
∂x∗ + ∂Uα

∂y∗

)2
]1/2

(37)

in which S = (∂Uα/∂x∗ + ∂Vα/∂y∗). The vertical eddy viscosity is modeled by νvt =
Ch Huτ where Ch = κ/6 is used following [7] with the von Karman constant κ = 0.4 and uτ
is the friction velocity. The bottom shear stress was modeled by a quadratic friction equation:

τ b
x = c f ρũ

√

ũ2 + ṽ2, τ b
y = c f ρṽ

√

ũ2 + ṽ2 (38)
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where (τ b
x , τ

b
y ) = τ b

i are the bottom shear stresses in the x and y directions, respectively. The
roughness coefficient is given by c f = f/4 [6] and f should be estimated using the Moody
diagram. In this paper, f was calculated by the formula proposed by Haaland [9], which is an
explicit approximation of the Moody diagram. ũ and ṽ refer to the depth-averaged velocities.
Ri is the breaking related dissipation term [11]. The Fi term represents dispersive stresses
approximated with the BSM proposed by Hinterberger et al. [10]:

Fi = CB

√
ũ2 + ṽ2

H

√

ν
√

c f

�t
ri (39)

where ν is the kinematic viscosity of water, CB is a model constant and ri is a random number
which has a mean of zero. Further details of the BSM are described in Hinterberger et al.
[10]. In Eq. (35), α and βi are higher-order terms related to frequency dispersion, and αν ,
βνi , γi and γ νi are the vorticity related higher-order terms. Full expression of these terms is
given in Appendix.

4.2 Numerical methods for flow model

To solve the DIES, the same numerical methods as used for the solution of the transport equa-
tion were employed. To solve the leading-order terms of the DIES, the fourth-order accurate
MUSCL FVM [29] with the HLL Riemann solver [26] was used. For the higher-order terms,
the same finite volume discretization equations (31) and (32) were used. The time integra-
tion used the third-order Adams–Bashforth predictor and the fourth-order Adams–Moulton
corrector scheme. Details of the numerical methods for flow are described in Kim et al. [13].

4.3 Velocity profiles by the DIES model

Based on the (ζ,Uα, Vα) computed by the DIES, the horizontal velocity at z∗ can be obtained
by

u(z∗) = Uα + 1

2

(

z2
α − z∗2) ∂

∂x∗

(

∂Uα
∂x∗ + ∂Vα

∂y∗

)

+ (

za − z∗) ∂

∂x∗

(

∂hUα
∂x∗ + ∂hVα

∂y∗

)

+ψx

{

1

2

(

z2
α − z∗2) + ζ

(

z∗ − zα
)

}

(40)

v(z∗) = Vα + 1

2

(

z2
α − z∗2) ∂

∂y∗

(

∂Uα
∂x∗ + ∂Vα

∂y∗

)

+ (

za − z∗) ∂

∂y∗

(

∂hUα
∂x∗ + ∂hVα

∂y∗

)

+ψy

{

1

2

(

z2
α − z2∗) + ζ

(

z∗ − zα
)

}

(41)

where
(

ψx , ψy
) = τ b

i /
(

ρνvt H
)

and the vertical velocity at z∗ is given by

w(z∗) = −z∗
(

∂u

∂x∗ + ∂v

∂y∗

)

−
(

∂hu

∂x∗ + ∂hv

∂y∗

)

(42)
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The coupling procedure is very simple: Transfer the H = (ζ + h) and the (u, v, wσ )
calculated by the DIES and Eqs. (6) and (40) through (41) to the scalar transport equation in
σ -coordinates, Eq. (10).

5 Numerical tests

5.1 Numerical test for transport model

In this section, the σ -coordinate transport model is tested. First, as a basic test, a simple
advection problem in a two-dimensional (vertical) non-rectangular physical domain was
investigated. This particular configuration was chosen due to the existence of an analytical
solution [28]. The computational grid has two vertical side boundaries and a flat top bound-
ary as shown in Fig. 2. However, the bottom boundary of the computational domain has a
sinusoidal shape given by the function

h
(

x∗) = 5000 − 250 × sin
(

0.002x∗) (m) (43)

Thus, the wave height of the bottom boundary is 10 % of the mean height of the com-
putational domain and the maximum bottom slope is 0.5. In this test, an analytical velocity
distribution was imposed without solving the DIES model. The flow was assumed to rotate
about the center of the domain with a constant angular velocity of 0.314 rad/h, thus it rotates
one circle per 20 h. This is the velocity field utilized for the analytical solution to this problem
by [28]. The initial concentration is given by

Co(x
∗, z∗) = exp

{

− (x
∗ − xc)

2 + (z∗ − zc)
2

2θ2

}

(44)
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Fig. 2 Non-rectangular domain for test problem
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Fig. 3 Pure advection test result after one circulation. a Concentration contours. b Vertical profile at x =
1,250 m

where xc = 1,250 m, zc = −2,500 m and θ = 220 m. Thus, the maximum initial concen-
tration is 1.0. The computational domain is composed of 250 × 250 grid points and a time
step �t = 40 second was used. Figure 3a shows the contours of the initial and the com-
puted concentrations at t = 20 h. Figure 3b shows the concentration profile at x∗ = 1,250 m
when t = 20 h, where the maximum value of the computed concentration is 0.985. As can
be seen from the figures, close agreement with the analytical solution is obtained in this
non-rectangular domain.

Next, an advection–diffusion problem is tested in the same flow field and with the same
computational grid. For diffusion, Dx = Dz = 0.1 m2/s is imposed. For the initial concen-
tration profile equation, θ = 200 m is used. Figure 4 shows the comparisons of the computed
results to the analytical solution [28] for t = 5, t = 10, t = 15, and t = 20 h. Good agreement
with the analytical solutions is also obtained in the advection–diffusion test, and therefore it
can be stated that the numerical solution technique utilized here is accurate for this case.

5.2 Test for velocity profile of DIES in vertical direction

To apply the coupled model in shallow and wavy flows like surf zones or rivers, it is important
to have the ability to predict both the vertical and horizontal structure of the velocity field.
This is tested here; note, however, that this particular test is unrelated to the transport model
as only the hydrodynamics are examined. The outcome of this comparison will be used to
justify numerical simulations of surf zone transport presented later.

For verification of velocity profiles in the surf zone where strong undertow exists, two
comparisons are presented in this section. First, the laboratory experimental data measured
by [25] are compared with the velocity profile obtained by Eq. (40). In the experiment, a
wave train with a 0.089 m wave height and a 5.0 second period was generated with a depth,
h = 0.4 m, at the wavemaker. On the opposite side, a 1/35 sloped bottom was installed.
Further details of the laboratory experiments are described in the reference. Figure 5 shows
good agreement between the computed water surface elevation and the experimental data.
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Fig. 4 Advection–diffusion test
results. Solid line computational
results, dotted line analytical
solutions
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Fig. 5 Comparison of the crest level based on the phase averaged water surface elevation. Dots measured
data (by [25]), line numerical results

The velocities computed by Eq. (40) are shown with the measured data in Fig. 6. Acceptable
agreement with the measured data are obtained considering the simplicity of the breaking
model and, in particular, the lack of any vertical structure to the numerical eddy viscosity in
the surf zone.

For another comparison, the experimental data measured by Nadaoka and Kondoh [18]
are used. In their experiment, the wave height was 0.219 m and the wave period was 2.34 s.
The water depth was h = 0.7 m at the wavemaker and the slope of the beach was 1/20.
Figure 7 shows the measured data and the computed results by the DIES model. Although
some disagreement is apparent near the bottom where h = 0.107 m and h = 0.157 m, the
computed results and the measured data are generally in reasonable agreements from the
bottom to the water surface. Considering the two comparisons, it is expected that the DIES
can present a reasonable vertical structure of velocity in surf zone. This will provide some
confidence that wave-induced transport in the surf zone—at least that governed by the mean
flow—should be reasonably captured by the model presented here.
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Fig. 6 Vertical profiles of phase averaged horizontal velocity at a h = 0.169 m, b h = 0.156 m, c h = 0.142 m,
d h = 0.128 m, e h = 0.113 m, f h = 0.096 m, g h = 0.079 m. Dots experimental data (by [25]), solid line
numerical results
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Fig. 7 Vertical profiles of phase averaged horizontal velocity at a h = 0.347 m, b h = 0.302 m, c h = 0.257 m,
d h = 0.207 m, e h = 0.157 m, f h = 0.107 m, g h = 0.057 m. Dots experimental data (by [18]), solid line
numerical results

6 Mixing simulations in near and far field

6.1 Dispersion simulation in open channel

In this section, we test dispersion (here, turbulent dispersion) caused by nonuniform velocity
profiles and vertical diffusion. For the test, open channel flow tested by Nokes and Wood [19]
is simulated using the proposed model. The cross section of the open channel is rectangular
and the bottom slope is 0.00047. The water depth is 0.05 m and the streamwise direction
velocity is 0.236 m/s resulting in a Reynolds number Re = 10,700. The friction factor was
estimated as f = 0.0282 by [19]. For the numerical simulations, �x = �y = 0.0125 m are
used.

Figure 8 shows the time averaged velocity profiles, and here the computed velocity profile
shows reasonable agreement with the measured data. This is simply an indication that the
DIES model is properly predicting the mean vertical flow structure, given the input fric-
tion factor. Figure 9 shows the computed scalar transport results when a scalar column was
injected uniformly as an initial concentration. At some short distance downstream, the scalar
column becomes stretched and has a curved shape when the horizontal vorticity effects are
considered (Fig. 9a). Due to the curved shape and vertical turbulent diffusion, vertical dif-
fusive flux can be amplified, which leads to the ‘dispersion’ process. However, when the
horizontal vorticity effects are neglected, the vertical velocity profile is nearly constant and
only the horizontal turbulent diffusion can be observed in this problem as shown in Fig. 9b.
Thus, incorrect mixing results can be predicted in near field unless horizontal vorticity effects
are considered.
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Fig. 8 Time averaged velocity distribution. Circle experimental data (by [19]), line computational result

Fig. 9 Snapshot of computed scalar distributions. a With horizontal vorticity. b Without horizontal vorticity

For the purpose of quantitative verification, two laboratory experimental cases are simu-
lated in the same flow field. The experiments were performed by [19]. With respect to the
vertical direction in σ -coordinates, �σ = 1/21 was used. The turbulent diffusion coeffi-
cients are evaluated as Dx = Dy = νh

t /�t , Dz = νvt /�t where the turbulent Schmidt
number �t = 1.0, and CB = 50. At an upstream point of the channel, the source is released
continuously.

The instantaneous computed scalar distributions are shown in Fig. 10. Figure 10a, b shows
the result when the scalar was released at σ = 0.24 and σ = 0.57, respectively. Several qual-
itative interpretations are possible from the figures. First, the effect of the different injection
levels is captured well, which is beyond of the inherent limitation of DAT or DIT. Second,
we can see that parabolic structures are formed and then diffused into the vertical direction
while flowing downstream; that is, the dispersion process in an open channel was modeled.
Last, randomness due to the turbulence effects could be approximated by including the BSM.

For quantitative verification, time-averaged concentration data at various locations and
levels are compared. As shown in Fig. 11, the measured concentration data and the computed
concentration results show good agreement. On particular note is that even in the near field
(x/h <∼ 10), the computational results closely coincide with the measured data. If we
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Fig. 10 Instantaneous computed concentration distribution (black color means higher concentration). a Injec-
tion level σ = 0.24. b Injection level σ = 0.57

had used a horizontal 2D transport model then all the relative concentration should be 1.0.
Therefore, it can be concluded that the proposed σ -coordinate transport model coupled with
the DIES model, which includes the horizontal vorticity, has the capability of accurately
predicting both near and far field mixing in shallow flows. It needs to be mentioned that
the computational results including the dispersive stress modeled by the BSM may not be
regarded as convergent results at an instantaneous time. The BSM is a stochastic model,
which can affect the local conservation of momentum. However, as shown in Figs. 8 and 11,
the time-averaged values should converge as the random number (ri ) in the BSM has a zero
mean.

6.2 Transport simulations in surf zone

In this section, the applicability of the proposed model for surf zone transport is investigated
qualitatively. The computational domain depicted in Fig. 12 is composed of a beach with
a constant slope of 1/35 and a horizontal plane with h = 0.4 m, similar to the Ting and
Kirby case examined above. The wave source is located at x = 10 m and a sponge layer is
installed at the left boundary. In the proximity of the breaking point, two contaminants are
initially located at two different depths, one on the bed (Case A) and the other near the free
surface (Case B). The two cases are simulated separately. A regular series of waves with
an amplitude of 0.086 m, a period of 3.33 s, and a wavelength of 6.44 m are generated. For
the calculations of the bottom friction terms, a roughness height of ks = 0.0001 m was used
and the friction factor calculated dynamically based on the instantaneous Reynolds number.
The BSM is not included in this section. The entire computational domain is composed of
600 × 30 computational cells.

For the estimation of the diffusion coefficients, the breaking related dissipation term, Ri ,
was added to the turbulent eddy viscosity terms in these simulations as follows.

Dx = (νh
t + νb)/�t (45)

Dz = (νvt + νb)/�t (46)

where νb is the viscosity for the calculation of the dissipation by wave breaking [11]. As
in the previous section, the turbulent Schmidt number �t = 1.0. An instantaneous snapshot
of the water surface profile and the horizontal and the vertical velocities computed by the
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Fig. 11 Time averaged concentration distributions at various level at a σ = 0.9, b σ = 0.7, c σ = 0.5, d
σ = 0.3, e σ = 0.1. Circle measured data [19], solid line computational results, dotted line depth averaged
concentration. Source injection levels: left σ = 0.24, right σ = 0.57

Fig. 12 Schematic of transport test in surf zone
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Fig. 13 Snapshot of velocity distributions by DIES model. Upper horizontal velocity (m/s), lower vertical
velocity (m/s). Positive value represents shoreward direction

Fig. 14 Scalar concentration by the numerical simulation for case A. a t = 25.4 s, b t = 27.0 s, c t = 55.4 s,
d t = 57.3 s

DIES model is given in Fig. 13. Clearly, non-uniform horizontal and vertical velocities are
observed.

Figure 14 shows the computed scalar distributions for Case A (scalar initially on the bed).
The scalar is partially advected from the bottom to the water surface by the vertical velocity
component and then carried toward the shore by the wave crests as can be seen at Fig. 14a,
b However, the scalar which was transported to the water surface by advection and diffusion
did not follow the progressive wave. Soon, as can be seen from Fig. 14c, d, the clouds of
the scalar become detached from the wave crests. Only a fraction of the scalar moves to the
shoreline near the water surface. Near the bottom, the clouds of scalar generally move in the
seaward direction. A similar phenomenon was observed in numerical simulations using a NS
model with k−ε turbulence closure [16]. For Case B, near the surface, the clouds of the scalar
are also transported to the shoreline as shown in Fig. 15a. As can be seen from Fig. 15b, after
the part of scalar is transported to the bottom, the scalar cloud moves in the seaward direction.
These overall movements of Case A and Case B can be regarded physically reasonable by
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Fig. 15 Scalar concentration by the numerical simulation for case B. a t = 25.4 s, b t = 55.4 s

reviewing the phase-averaged velocity distributions of Figs. 6 and 7, where the flux under
the wave crest is moving offshore (undertow) and the flux due to the wave crest shows the
opposite direction, towards the shoreline.

In regard to the extent to which these results should be trusted, it should be noted that Dx

and Dy are depth varying values in reality. In the surf zone, diffusion coefficients are much
larger at the surface than at the bottom due to wave breaking. However, in this simulation, Dx

and Dy are evaluated as vertically invariant constants as the viscosities in Eqs. (40) and (41)
are based on a depth-integrated model. This physical mismatch could lead to a numerical
prediction that underestimates above-trough mixing and vice-versa below-trough. To remove
this limitation, the hydrodynamic model would need to be coupled with a vertically resolv-
ing turbulence model, which is not attempted here. Currently, however, this issue cannot be
investigated quantitatively, as there is no existing dataset that includes both high, accurate
resolution velocity profiles and scalar transport under breaking waves.

7 Summary

For the efficient prediction of near and far field mixing in shallow and wavy flows, a σ -coor-
dinate transport model was coupled with the DIES model for weakly dispersive, turbulent
and rotational flows. A basic advection test and a basic advection–diffusion test using the
σ -coordinate transport model were each carried out in a nonuniform physical domain and
good agreement with analytical solutions were obtained. The velocity profile estimated by
the DIES model agreed reasonably well with experimental data in an open channel and a surf
zone, which is a prerequisite of accurate scalar transport prediction. From comparisons with
the turbulent dispersion experiments, quantitative verification of the proposed model for near
field and far field mixing was recognized. From the numerical simulations in a surf zone,
qualitatively reasonable results were obtained. However, there was a limitation in the eval-
uation of proper diffusion coefficients. Due to the use of depth-integrated hydrodynamics,
the diffusion coefficients become depth-invariant. In addition, though it is not investigated
intensively, the coupled model should be much more efficient than the combination using 3D
NS models. Thus, numerical simulations in a large domain can be achieved with affordable
computational costs by using the proposed model.

Ongoing developments of the proposed coupled model are examining how to consider
the turbulence effects generated by wave breaking in surf zone. For certain wave breaking
has significant impacts on vertical and horizontal transport in surf zone. If depth varying
diffusion coefficients considering wave breaking can be considered, then the accuracy of the
prediction will be improved greatly. In addition, proper consideration for the density can
make it possible to develop more sophisticate models for sediment transport.
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Appendix
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− ∂vHC

∂y
− ∂wσ HC

∂σ

+H
∂

∂x

(

Dx
∂C

∂x

)

+ H
∂

∂x

{

Dx

H

(

∂h

∂x
− σ

∂H

∂x

)

∂C

∂σ

}

+
(

∂h

∂x
− σ

∂H

∂x

)

∂

∂σ

(

Dx
∂C

∂x

)

+
(

∂h

∂x
− σ

∂H

∂x

)

∂

∂σ

{

Dx

H

(

∂h

∂x
− σ

∂H

∂x

)

∂C

∂σ

}

+H
∂

∂y

(

Dy
∂C

∂y

)

+ H
∂

∂y

{

Dy

H

(

∂h

∂y
− σ

∂H

∂y

)

∂C

∂σ

}

+
(

∂h

∂y
− σ

∂H

∂y

)

∂

∂σ

(

Dy
∂C

∂y

)

+
(

∂h

∂y
− σ

∂H

∂y

)

∂

∂σ

{

Dy

H

(

∂h

∂y
− σ

∂H

∂y

)

∂C

∂σ

}

+ 1

H

∂

∂σ

(

Dz
∂C

∂σ

)

(47)

α = −∇ ·
[

(ζ + h)

{(
(

ζ 2 − ζh + h2
)

6
− z2

α

2

)

∇S

+
(

(ζ − h)

2
− zα

)

∇T

}]

(48)

αν = ∇ ·
[

ψ (ζ + h)

{

z2
α

2
− zαζ +

(

2ζ 2 − 2ζh − h2
)

6

}]

(49)

βi = 1

2
∇ (

zα
2Uα · ∇S

) + ∇ (zαUα · ∇T )+ (T ∇T )

−1

2
∇

(

ζ 2 ∂S

∂t∗

)

− ∇
(

ζ
∂T

∂t∗

)

+
(

1

2
zα

2 ∂∇S

∂t∗
+ zα

∂∇T

∂t∗

)

−1

2
∇ (

ζ 2Uα · ∇S
) − ∇ (ζUα · ∇T )+ ∇

(

1

2
ζ 2S2

)

+ ∇ (ζT S) (50)

βνi = (ζ − h)

2

∂ψζ

∂t∗
−

(

ζ 2 − ζh + h2
)

6

∂ψ

∂t∗
+ ∂

∂t∗

{

ψ

(

z2
α

2
− ζ zα

)}

+ (ζ − h)

2
∇ {Uα · (ψζ )} −

(

ζ 2 − ζh + h2
)

6
∇ (Uα · ψ)

+∇
[

Uα ·
{

ψ

(

z2
α

2
− ζ zα

)}]

−ψ
{

(

ζ 2 + ζh − 2h2
)

S

6
+ (ζ + h) T

2

}

(51)

γx = −Vα

{

∂zα
∂x∗

(

zα
∂S

∂y∗ + ∂T

∂y∗

)

− ∂zα
∂y∗

(

zα
∂S

∂x∗ + ∂T

∂x∗

)}

−
(

∂Vα
∂x∗ − ∂Uα

∂y∗

)

[{

z2
α

2
−

(

ζ 2 − ζh + h2
)

6

}

∂S

∂y∗ +
{

zα − (ζ − h)

2

}

∂T

∂y∗

]

(52)

123



Environ Fluid Mech

γy = Uα

{

∂zα
∂x∗

(

zα
∂S

∂y∗ + ∂T

∂y∗

)

− ∂zα
∂y∗

(

zα
∂S

∂x∗ + ∂T

∂x∗

)}

+
(

∂Vα
∂x∗ − ∂Uα

∂y∗

)

[{

z2
α

2
−

(

ζ 2 − ζh + h2
)

6

}

∂S

∂x∗ +
{

zα − (ζ − h)

2

}

∂T

∂x∗

]

(53)

γ νy = −Vα

[

∂

∂x∗

{

ψy

(

1

2
z2
α − zαζ

)}

−
(

ζ 2 − ζh + h2
)

6

∂ψy

∂x∗ + (ζ − h)

2

∂ψyζ

∂x∗

− ∂

∂y∗

{

ψx

(

1

2
z2
α − zαζ

)}

+
(

ζ 2 − ζh + h2
)

6

∂ψx

∂y∗ − (ζ − h)

2

∂ψxζ

∂y∗

]

−
(

∂Vα
∂x∗ − ∂Uα

∂y∗

)

ψy

{

z2
α

2
− zαζ +

(

2ζ 2 − 2ζh − h2
)

6

}

(54)

γ νy = Uα

[

∂

∂x∗

{

ψy

(

1

2
z2
α − zαζ

)}

−
(

ζ 2 − ζh + h2
)

6

∂ψy

∂x∗ + (ζ − h)

2

∂ψyζ

∂x∗

− ∂

∂y∗

{

ψx

(

1

2
z2
α − zαζ

)}

+
(

ζ 2 − ζh + h2
)

6

∂ψx

∂y∗ − (ζ − h)

2

∂ψxζ

∂y∗

]

+
(

∂Vα
∂x∗ − ∂Uα

∂y∗

)

ψx

{

z2
α

2
− zαζ +

(

2ζ 2 − 2ζh − h2
)

6

}

(55)

in which ∇ = (∂/∂x∗, ∂/∂y∗), T = (∂hUα/∂x∗ + ∂hVα/∂y∗) and ψ = (
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)

. Uα =
(Uα, Vα), γi = (
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, and γ νi =
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.
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