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Abstract

In this paper we consider numerical approximations of a constraint minimization problem,
where the object function is a quadratic Dirichlet functional for vector fields and where the
interior constraint is given by a convex function. The solutions of this problem are usually re-
ferred to as harmonic maps. Minimization problems of the form studied here arise for example
in liquid crystal and superconductor simulations. The solution is characterized by a nonlinear
saddle point problem, and we show that the corresponding linearized problem is well–posed
near the exact solution. The main result of this paper is to establish a corresponding result
for a proper finite element discretization of the harmonic map problem. Iterative schemes
for the discrete nonlinear saddle point problems are investigated. Some mesh independent
preconditioners for the iterative methods are also proposed.
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1 Introduction

For a bounded Lipschitz domain Ω ⊂ Rd we shall consider the problem of finding local minima of
a constrained minimization problem of the form:

min
v∈H1

g(Ω;M)
E(v) =

1
2

∫

Ω

|∇v|2dx. (1.1)

Here H1
g(Ω;M) is the set of vector fields with values in a smooth, compact manifold M in Rd,

with function values and first derivatives in L2(Ω), and such that the elements v of H1
g(Ω;M)

satisfies v|∂Ω = g for fixed vector field g defined on the boundary ∂Ω. We will further assume
that M is implicitly given on the form

M = {v ∈ Rd |F (v) = 0 },

where the function F : Rd → Rk is a smooth function, and it will be assumed that the compatibility
condition F (g) = 0 holds. More specific assumptions on F and the boundary data g will be
given below. Problems of the form (1.1) arise for example in liquid crystal and superconductor
simulations. The solutions of the problem (1.1) are frequently referred as harmonic maps, [3]. In
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the present paper we will restrict our study to the case d = 2 and k = 1. We will focus on a
nonlinear saddle point approach to compute the solutions of the problem (1.1).

For a review of results on the continuous harmonic map problem we refer to [3, 17]. The
purpose of the present paper is to discuss a finite element method for approximating the constraint
minimization problem (1.1). For the simplest case of (1.1), with interior constraint given by
|v| = 1, several numerical approaches have been discussed, cf. for example [1], [2], [9], [10], [12],
[13] and [19]. Variants of the projection method are proposed and analyzed in [1], [2] and [9].
However, the standard projection method applies only to the simplest model. Moreover, it was
illustrated in [2] that the projection method converges only for very special regular and quasi-
uniform triangulations for the discretized harmonic map problem. The relaxation method of [12]
is using point relaxation with the constraint required at each grid point. Both convergence analysis
and numerical experiments are supplied in [12]. A common approach for constrained minimzation
problems, adopted for example in [10], is the penalty method. However, in general it may be hard
to design an efficient iterative method for solving the discrete variational problem in this case,
since it is difficult to resolve the penalty term accurately.

The main contribution of the present paper is to use a saddle point approach for the construc-
tion of numerical methods for the constraint minimization problem (1.1). We shall prove that the
corresponding saddle point problem is stable near the exact solution. This is achieved by verifying
standard stability conditions for linear saddle point problems. This verification has the extra diffi-
culty that the coercivity condition will not hold in general, but only on the kernel of the linearized
constraint. Using the standard stability conditions for the corresponding discrete saddle point
problem we will construct finite element methods such that the corresponding discrete solutions
admit an optimal error estimate in the energy norm. We will also study Newton’s method for the
discrete nonlinear saddle point problem, and propose a simple and efficient preconditioner for the
linear systems arising during the iterations. Numerical tests will be given to show the efficiency
of the proposed method.

The outline of the paper is as follows. In Section 2, the notations and assumption will be
specified. In Section 3, the continuous problem is studied. The problem (1.1) is formally trans-
formed to a saddle point problem, and stability results will be proved for the continuous model. In
Section 4 we first describe a finite element discretization for (1.1), and then the discrete stability
conditions are established. Using these stability conditions, the existence, local uniqueness and
the error estimates are derived in Section 5. Iterative methods are analyzed in Section 6, while
numerical experiments are presented in Section 7.

2 Notation and preliminaries

Throughout this paper we will use c and C to denote generic positive constants, not necessarily
the same at different occurrences. It is assumed that the constants are independent of the mesh
size h which will be introduced later. For vectors v,w ∈ Rd we use v ·w to denote the Euclidian
inner product, while the notation A : B is used to denote the Frobenius inner product of two
matrices A,B ∈ Rd×d. The corresponding norms are given by |v| and |A|, respectively. For a
vector v = (v1, v2) ∈ R2, v⊥ = (−v2, v1) is the vector obtained by a rotation of 90 degrees. For a
vector or matrix A, At is the transpose of A.

For m ≥ 0 we will use Hm = Hm(K) to denote the real valued L2– based Sobolev spaces on
domain K ⊂ Rd, the corresponding norm by ‖ · ‖m,K , and | · |m,K is the semi norm involving only
the mth order derivatives. The subspace Hm

0 is the closure in Hm of C∞0 (K), while H−m is the
dual of Hm

0 with respect to an extension of the L2 inner product 〈·, ·〉. The corresponding L∞–
based Sobolev spaces are denoted Wm,∞(K), with associated norm ‖·‖m,∞,K . For all the Sobolev
norms, we will omit K in case K = Ω. In general we will use boldface symbols for vector or matrix
valued functions. The gradient operator with respect to the spatial variable x = (x1, x2) is denoted
∇ = (∂/∂x1, ∂/∂x2)t. Furthermore, the gradient of a vector valued function v = (v1, v2)t, ∇v, is
the matrix valued function obtained by taking the gradient row–wise, i.e. (∇v)ij = ∂vi/∂xj .

In order to specify the properties of the constraint functional F : R2 → R, defining the con-
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straint manifold M, we will use DF to denote the gradient of F , i.e. DF (v) = (∂F/∂v1, ∂F/∂v2)t

and the corresponding Hessian by D2F (v) = (∂2F/∂vi∂vj)2i,j=1. Throughout this paper we will
assume that the constraint functional F satisfies:

(i) F is convex and smooth. Furthermore, there exist constants c0 and c1 such that

c0|v|2 ≤ D2F (ξ)v · v ≤ c1|v|2, ξ,v ∈ R2. (2.1)

(ii) F (0) < 0 and DF (0) = 0;

(iii) There exists an ` > 0 such that the matrix function D2F satisfies

|D2F (ξ1)−D2F (ξ2)| ≤ `|ξ1 − ξ2|, ξ1, ξ2 ∈ R2. (2.2)

The analysis below will still hold if the assumptions (2.1) and (2.2) are only valid for all ξ, ξ1, ξ2

in a neighborhood of a continuous solution.
For the boundary function g of (1.1) we assume that it has been extended into the interior of

Ω such that g ∈ H1(Ω). Corresponding to g, we let

H1
g(Ω) = {v ∈ H1(Ω) : v = g on ∂Ω}.

If v : Ω → R2 is a smooth vector field then it follows from the chain rule that

∇F (v) = (∇v)tDF (v), (2.3)

where the product on the right hand side is the ordinary matrix–vector product. Furthermore, we
have

∇DF (v) = D2F (v)∇v. (2.4)

From assumption (i)-(ii) and the Taylor expansion we obtain the following estimate:

2c−1
1 |F (0) ≤ |v(x)|2 ≤ 2c−1

0 |F (0)|, x ∈ Ω,

for any v satisfying F (v) ≡ 0 on Ω. Similarly, we derive

|DF (v)| ≥ c0|v|
for any v, and hence |DF (v(x))| > 0 if v(x) ∈M.

Let us note that the interior constraint in (1.1), given by v(x) ∈ M, implies that a local
minimum of (1.1) satisfies u ∈ H1

g(Ω) ∩ L∞(Ω). In fact, if the boundary ∂Ω and the boundary
data g are sufficiently regular, and M is the unit circle S1, then there is a unique smooth solution
of (1.1), cf. [3, Theorem 12].

We will consider the more general problem of approximating any critical point of the functional
E over H1

g(Ω;M). A vector field u ∈ H1
g(Ω;M) is such a critical point if it satisfies

〈∇u,∇v〉 = 0 (2.5)

for any v in the tangent space of H1
g(Ω;M) at u, i.e. for any v ∈ H1

0(Ω) such that DF (u) ·v ≡ 0.
In the saddle point approach which we shall consider here we will view the critical points u as
elements of the larger space H1

g(Ω). Assume that u has the extra regularity property that

u ∈ H1
g(Ω) ∩W1,∞(Ω). (2.6)

Then any such u is a critical point if and only if there is a λ ∈ L2(Ω) such that the pair (u, λ)
satisfies the first order conditions

〈∇u,∇v〉+ 〈DF (u) · v, λ〉 = 0, v ∈ H1
0(Ω),

〈F (u), µ〉 = 0, µ ∈ L2(Ω).
(2.7)
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To see this assume that u is a critical point satisfying (2.6), and let z = DF (u)/|DF (u)|. For any
v ∈ H1

0(Ω) let vτ = v − (v · z)z. As a consequence DF (u) · vτ = 0, and by (2.5),

0 = 〈∇u,∇vτ 〉 = 〈∇u,∇v〉 − 〈∇u,∇(v · z)z〉.

However, by using (2.3) the constraint implies that (∇u)tz = 0 and therefore the final inner
product above can be rewritten as

〈∇u,∇(v · z)z〉 = 〈∇u : ∇z,v · z〉.

Hence the system (2.7) is satisfied with

λ = −∇u : ∇z/|DF (u)| = −∇u : ∇DF (u)/|DF (u)|2, (2.8)

where the last identity again is a consequence of the constraint. Note that it follows from (2.6)
that the multiplier λ is actually in L∞(Ω).

The variational problem (2.7) is the Euler-Lagrangian equation for the constrained minimiza-
tion problem (1.1), and the system is a weak formulation of the problem

−∆u + λDF (u) = 0, in Ω,

F (u) = 0, in Ω.
(2.9)

In the simplest case when M = S1, we have λ = −|∇u|2 and

−∆u− |∇u|2u = 0, in Ω, u = g on ∂Ω.

This equation is frequently referred as the harmonic map equation [3].
We would like to point out a relationship between the saddle point approach and the penalty

method. In the commonly used penalty approach, c.f. [10], one is seeking a minimizer of the
following regularized problem:

min
v∈H1

g(Ω)
E(v) +

1
2ε

∫

Ω

|F (v)|2dx,

where the penalty parameter ε > 0 is small. Formally, the necessary equilibrium condition for this
problem is that

∫

Ω

∇uε · ∇vdx +
1
ε

∫

Ω

F (uε)DF (uε) · vdx = 0, v ∈ H1
0(Ω).

A difficulty with this approach is that the penalty parameter ε needs to be chosen sufficiently
small in order to resolve the constraint, and usually it also needs to be related to the discretization
parameter. However, for small penalty parameters, numerical instabilities may occur.

In order to see the relation between the penalty method and the saddle point system (2.7) we
introduce λε = 1

ε F (uε). The above system then reduces to

〈∇uε,∇v〉+ 〈DF (uε) · v, λε〉 = 0, v ∈ H1
0(Ω),

〈F (uε), µ〉 − ε〈λε, µ〉 = 0, µ ∈ L2(Ω).

If ε → 0, we see that the above system formally converges to the saddle point system (2.7), i.e.
the saddle point approach can be regarded as the limit case of the penalty system. The advantage
of the saddle point approach is that the standard mixed finite element theory, cf. [5], tells us how
to choose the finite element spaces properly to avoid possible instabilities. Furthermore, there is
no need to choose a penalty parameter.
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3 Stability of the linearized problem

Throughout this paper we will assume that the pair (u, λ) is a solution of (2.7) with the additional
regularity property that

u ∈ H1
g(Ω) ∩W1,∞(Ω), λ ∈ L∞(Ω). (3.1)

In particular, u and λ are related by (2.8). For the analysis below it will be useful to consider
linearization of the saddle point system (2.7). More precisely, we consider systems of the form:

Find (v, µ) ∈ H1
0(Ω)×H−1(Ω) such that

a(u, λ;v, v̂) + 〈DF (u) · v̂, µ〉 = 〈f ,v〉, v̂ ∈ H1
0(Ω),

〈DF (u) · v, µ̂〉 = 〈σ, µ〉, µ̂ ∈ H−1(Ω),
(3.2)

where (u, λ) is the exact solution of (2.9) satisfying (3.1), and the bilinear form a(u, λ; ·, ·) is given
by

a(u, λ;v, v̂) = 〈∇v,∇v̂〉+ 〈D2F (u)v · v̂, λ〉.
Here f ∈ H−1(Ω) and σ ∈ H1

0 (Ω) represents data. Our goal is to show that this linear system
is well–posed by verifying the standard stability conditions for saddle points systems, cf. [4] or
[5]. It should be noted that the bilinear form a(u, λ; ·, ·) is in general not coercive on H1

0(Ω). For
example, in the simplest case, when M = S1, we have

a(u, λ;v,v) =
∫

Ω

(|∇v|2 − |∇u|2|v|2) dx.

However, as we shall show below, the bilinear form a(u, λ; ·, ·) is coercive on the proper subspace
of H1

0(Ω).
Associated with the solution (u, λ) satisfying (3.1), we define

Zu = {v ∈ H1
0(Ω) : (DF (u) · v, µ̂) = 0, µ̂ ∈ L2(Ω)}.

We shall also frequently use the following estimate often

a(u, λ;v, v̂) ≤ C(u, λ)|v|1|v̂|1 v, v̂ ∈ H1
0(Ω) (3.3)

where the constant C(u, λ) depends on the norms of u and λ indicated by (3.1).
A key property for the analysis below is that the bilinear form a(u, λ; ·, ·) is coercive on the

linearized constraint space Zu. This is stated in the following theorem.

Theorem 3.1 Let (u, λ) satisfy (3.1) and be related by (2.8). Then there is a positive constant
β1, depending on u, such that

a(u, λ;v,v) = 〈∇v,∇v〉+ 〈D2F (u)v · v, λ〉 ≥ β1‖v‖21, v ∈ Zu. (3.4)

Before we give the proof of the theorem we will establish an auxiliary result.

Lemma 3.1 Let (u, λ) be as in Theorem 3.1 and define w = (w1, w2)t = DF (u). Then,

λD2F (u)w⊥ ·w⊥ = −w2
1|∇w2|2 + w2

2|∇w1|2 − 2w1w2∇w1 · ∇w2

|w|2 .

Proof. It follows from (2.4) and (2.8) that the multiplier λ can be expressed as λ = −∇u :
∇w/|w|2. Hence,

λD2F (u)w⊥ ·w⊥ =
∇u : ∇w
|w|2 (F11w

2
2 + F22w

2
1 − 2F12w1w2), (3.5)
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where Fij = ∂2F/∂ui∂uj . Furthermore, since ∇F (u) ≡ 0 we have from (2.3) that

w1∇u1 + w2∇u2 = 0,

while (2.4) implies that
∇wi = Fi1∇u1 + Fi2∇u2.

By combining these identities we obtain

(F11w
2
2 + F22w

2
1 − 2F12w1w2)∇u1 · ∇w1

= w2
2(F11∇u1 + F12∇u2) · ∇w1 − w1w2(F22∇u2 + F12∇u1) · ∇w1

= w2
2|∇w1|2 − w1w2∇w1 · ∇w2.

A similar argument shows that

(F11w
2
2 + F22w

2
1 − 2F12w1w2)∇u2 · ∇w2 = w2

1|∇w2|2 − w1w2∇w1 · ∇w2,

and hence the desired identity follows from (3.5). ¤
Proof of Theorem 3.1. As above we let w = DF (u). For any v ∈ Zu, there exists a α ∈ H1

0 (Ω)
such that v = αw⊥. The key identity we will use is the pointwise relation

|∇v|2 + λD2F (u)v · v = |∇(α|w|)|2. (3.6)

In order to verify this identity note that

∇(α|w|) = |w|∇α +
α

|w| (w1∇w1 + w2∇w2).

Hence,

|∇(α|w|)|2 = |w|2|∇α|2 +
|α|2
|w|2 |w1∇w1 + w2∇w2|2

+ 2α(w1∇α · ∇w1 + w2∇α · ∇w2).

On the other hand,

|∇v|2 = |w|2|∇α|2 + α2|∇w|2 + 2α(w1∇α · ∇w1 + w2∇α · ∇w2).

Therefore,

|∇v|2 − |∇(α|w|)|2 = α2
(|∇w|2 − |w1∇w1 + w2∇w2|2

|w|2
)

=
α2

|w|2 (w2
1|∇w2|2 + w2

2|∇w1|2 − 2w1w2∇w1∇w2)

= −λD2F (u)v · v,

where the last identity follows from Lemma 3.1. Hence, we have verified (3.6).
On the other hand, if µ = α|w| then v = µ(w⊥

|w| ) and hence

∇v =
1
|w|w

⊥ · ∇µ + µ∇(
w⊥

|w| ).

Therefore, since u satisfies (3.1), Poincaré’s inequality implies that

‖∇v‖0 ≤ c(‖∇µ‖0 + ‖µ‖0) ≤ c‖∇(α|w|)‖0,
where the constant c depends on u. Together with (3.6) this implies the desired inequality of the
theorem. ¤

Theorem 3.1 is one of the two required stability properties for a linear saddle point problem
of the form (3.2). The second property is the so–called inf–sup condition established in the next
theorem.
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Theorem 3.2 Let (u, λ) satisfy (3.1) and be related by (2.8). Then there is a positive constant
β2, depending on u, such that

inf
µ∈H−1(Ω)

sup
v∈H1

0(Ω)

〈DF (u) · v, µ〉
‖v‖1‖µ‖−1

≥ β2. (3.7)

Proof. For any µ ∈ H−1(Ω), there exists a ϕ ∈ H1
0 (Ω) such that

〈µ, ϕ〉
‖ϕ‖1 = ‖µ‖−1. (3.8)

Define v = ϕ w
|w|2 , where as above w = DF (u). Then, by Leibniz’ rule there exists a c > 0,

depending on u, such that
‖∇v‖0 ≤ c‖ϕ‖1.

Furthermore,
〈DF (u) · v, µ〉 = 〈ϕ, µ〉 = ‖ϕ‖1‖µ‖−1.

Hence, the desired inequality holds with β2 = 1/c. ¤

4 A stable discretization

In the rest of the paper we assume that Ω is a polygonal domain. Given a shape regular and
quasi–uniform family of triangulation {Th} of Ω with a mesh size h < 1, let Nh denote the set of
nodes associated with Th. We use Vh to denote the space of continuous piecewise linear functions
and Vh,0 = Vh ∩ H1

0 (Ω). The notation Vh and Vh,0 will be used for the vector version of the
corresponding spaces. We will use πh to denote the usual nodal interpolation operators onto the
spaces Vh and Vh. Standard approximation properties of spaces of piecewise linear functions will
be used below. In particular, we will use the estimates

‖(I − πh)v‖1 ≤ Ch|v|2, v ∈ H2(Ω), (4.1)

and
‖(I − Ph)v‖−1 ≤ Ch‖v‖0, v ∈ L2(Ω). (4.2)

Here, Ph : L2(Ω) → Vh,0 is the L2 projection. Due to the quasi-uniformity of the mesh, the
operator Ph can be extended to a uniformly bounded operator on H−1. Moreover, the following
inverse inequalities hold:

‖v‖∞ ≤ C log(h−1)‖v‖1, ‖v‖1 ≤ Ch−1‖v‖0, v ∈ Vh. (4.3)

Set gh = πhg (on ∂Ω). We define

Vh,g = {v ∈ Vh : v|∂Ω = gh}.

We will consider the following discretized minimization problem:

min
v∈Vh,g

E(v) subject to F (v) = 0 on Nh. (4.4)

The Lagrange functional L : Vh,g × Vh,0 7→ R is

L(v, µ) = E(v) +
∫

Ω

µπhF (v)dx (v, µ) ∈ Vh,g × Vh,0. (4.5)

The first order condition defining the critical points of L leads to the following discrete counter
part of the nonlinear saddle point problem (2.7):
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Find (uh, λh) ∈ Vh,g × Vh,0 such that

〈∇uh,∇v〉+ 〈πh[DF (uh) · v], λh〉 = 0, v ∈ Vh,0,

〈πhF (uh), µ〉 = 0, µ ∈ Vh,0.
(4.6)

However, we shall first analyse the discrete counter part of the linearized system (3.2). For a given
(û, λ̂) ∈ Vh,g × Vh,0, let us define the bilinear form ah(û, λ̂; ·, ·) to be

ah(û, λ̂;v, v̂) = 〈∇v,∇v̂〉+ 〈πh[D2F (û)v · v̂], λ̂〉.
Similarly as in (3.2) for the continuous problem, the linearized problem for (4.6) is to find (v, µ) ∈
Vh,0 × Vh,0 such that

ah(û, λ̂;v, v̂) + 〈πh[DF (û) · v̂], µ〉 = 〈f , v̂〉, v̂ ∈ Vh,0

〈πh[DF (û) · v], µ̂〉 = 〈σ, µ̂〉, µ̂ ∈ Vh,0.
(4.7)

For a given û ∈ Vh,g, define

Zh,û = {v ∈ Vh,0 : DF (û) · v = 0 on Nh}.
Lemma 4.1 Let Φ : R2 ×R2 × · · · ×R2 7→ R2 be a smooth function. Then we have the following
estimates for all v1,v2, · · · ,vk ∈ Vh:

|πhΦ(v1,v2, · · · ,vk)|1 ≤ C

k∑

i=1

‖DviΦ‖0,∞|vi|1; (4.8)

‖(πh − I)Φ(v1,v2, · · · ,vk)‖0 ≤ Ch

k∑

i=1

‖DviΦ‖0,∞|vi|1. (4.9)

Above, the constant C is independent of h, Φ and vi. The norm ‖DviΦ‖0,∞ stands for
‖DviΦ(v1,v2, · · · ,vk)‖0,∞.

Proof. For clarity, we shall only give the proof for k = 2. The extension of the proof for general
cases is straight forward.

For an element e ∈ Th, let pi, i = 1, 2, 3 be the vertexes of e. Under the condition that the
finite element mesh Th is regular and quasi-uniform, then we have the following equivalent H1

norms for v ∈ Vh

|v|1,e
∼=

3∑

i,j=1

|v(pi)− v(pj)|2, v ∈ Vh, e ∈ Th. (4.10)

In particular,

|πhΦ(v1,v2)|21,e ≤
3∑

i,j=1

|Φ(v1(pi),v2(pi))− Φ(v1(pj),v2(pj))|2.

Thus, we get (4.8) from the following estimate:

|πhΦ(v1,v2)|21,e ≤ 2
3∑

i,j=1

(
|Φ(v1(pi),v2(pi))− Φ(v1(pj),v2(pi))|2

+ |Φ(v1(pj),v2(pi))− Φ(v1(pj),v2(pj))|2
)

≤ 2
3∑

i,j=1

(
‖Dv1Φ‖20,∞,e|v1(pi)− v1(pj)|2 + ‖Dv2Φ‖20,∞,e|v2(pi)− v2(pj)|2

)
.
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Next, we estimate (4.9). By the definition of the interpolation operator πh, we have:

(πh − I)Φ(v1,v2)(p) =
3∑

i=1

[Φ(v1(pi),v2(pi))− Φ(v1(p),v2(p))]χi(p) p ∈ e,

where {χi}3i=1 are the barycentric coordinates on e. From this, we see that

‖(πh − I)Φ(v1,v2)‖20,e ≤ C

3∑

i=1

∫

e

|(Φ(v1(pi),v2(pi))− Φ(v1,v2)
)
χi|2

≤ C

3∑

i,j=1

∫

e

(‖Dv1Φ‖20,∞,e|v1(pi)− v1|2 + ‖Dv2Φ‖20,∞,e|v2(pi)− v2|2
)

(4.11)

≤ Ch2
3∑

i,j=1

(|Dv1Φ|20,∞,e|v1|21,e + |Dv2Φ|20,∞,e|v2|21,e

)
.

Thus, estimate (4.9) is verified. ¤
For the lemma above, it is essential that the functions vi are finite element functions. If

v1 ∈ W1,∞(Ω) and v2 ∈ Vh, then we obtain:

‖(πh − I)Φ(v1,v2)‖0 ≤ Ch(‖Dv1Φ‖0,∞|v1|1,∞ + ‖Dv2Φ‖0,∞|v2|1). (4.12)

The next results, which is essential for our analysis, is a discrete version of Theorem 3.1. As
in the previous section (u, λ) is a solution of (2.7) satisfying (3.1).

Theorem 4.1 There exists positive constants γ0 and h0 such that, for (û, λ̂) ∈ Vh,g × Vh,0 satis-
fying

‖û− πhu‖1 + ‖λ̂− Phλ‖−1 ≤ γ/ log2(h−1) (4.13)

with h ≤ h0 and γ ≤ γ0, we have

ah(û, λ̂;v,v) ≥ β3‖v‖21, v ∈ Zh,û. (4.14)

Here the constants γ0, h0, β3 depend on u.

In order to prove the above theorem, we need to derive some auxiliary results. The main idea
is to relate (4.14) to the continuous problem, and then use Theorem 3.1 and some approximate
properties of the operators πh and Ph. As before, we shall use w = DF (u) with u being the true
solution, see (3.1). Given a (û, λ̂) satisfying (4.13), we define ŵ = DF (û). For any v ∈ Zh,û, let
us define

α(pi) =
v(pi) · ŵ⊥(pi)
|ŵ(pi)|2 , pi ∈ Nh. (4.15)

From the above definition, it is clear that

α = πh

(
v · ŵ⊥

|ŵ|2
)
∈ Vh,0 , v = πh(αŵ⊥).

We have used the relation ŵ · v = 0 on Nh in getting the last equality. Corresponding to the true
solution u and a given û ∈ Zh,û, let εh ∈ H1

0(Ω) be the function given by εh = αw⊥ − v. We see
clearly that

εh + v ∈ Zu. (4.16)

For a given û satisfying (4.13), one can verify by assumption (i), cf. (2.1), and the inverse
estimate (4.3) that

|w(p)− ŵ(p)| = |DF (û(p))−DF (πhu(p))| ≤ c1γ, p ∈ Nh.

Thus, by choosing γ small enough, one can guarantee that

0 < c|w(p)| ≤ |ŵ(p)| ≤ C|w(p)|, p ∈ Nh. (4.17)

9



Lemma 4.2 Let (û, λ̂) ∈ Vh,g × Vh,0 satisfy (4.13). Then we have the estimate
∣∣∣∣πh

(
ϕ

ŵ
|ŵ|2

)∣∣∣∣
1

≤ C|ϕ|1, ϕ ∈ Vh,0,

where the constant C depends on u.

Proof. Let ψ = πh

(
ϕ ŵ
|ŵ|2

)
. Using (4.10), we see that

|ψ|21,e ≤ C
∑
i,j

|ϕ(pi)
ŵ(pi)
|ŵ(pi)|2 − ϕ(pj)

ŵ(pj)
|ŵ(pj)|2 |2

≤ C
∑
i,j

[ |ϕ(pi)−ϕ(pj)|2
|ŵ(pi)|2 + |ϕ(pj)|2 · | ŵ(pi)

|ŵ(pi)|2 −
ŵ(pj)
|ŵ(pj)|2 |2].

(4.18)

It follows from (4.10) and (4.17) that

∑

i,j

|ϕh(pi)− ϕh(pj)|2
|ŵ(pi)|2 ≤ C|ϕ|21,e. (4.19)

On the other hand, we have by (4.17) and assumption (iii), c.f. (2.2),

| ŵ(pi)
|ŵ(pi)|2 −

ŵ(pj)
|ŵ(pj)|2 |2 ≤ C|ŵ(pi)− ŵ(pj)|2 ≤ C|û(pi)− û(pj)|2

≤ C|(û− πhu)(pi)− (û− πhu)(pj)|2 + |πhu(pi)− πhu(pj)|2.

Thus, we get by the inverse estimate (4.3) and (4.13) that

∑

i,j

[|ϕ(pj)|2 · | ŵ(pi)
|ŵ(pi)|2 −

ŵ(pj)
|ŵ(pj)|2 |

2]

≤ C‖ϕ‖20,∞,e · |û− πhu|21,e + ‖ϕ‖20,e · ‖πhu‖21,∞,e (4.20)

≤ C(γ2 + ‖u‖21,∞,e)‖ϕ‖21,e.

Substituting (4.19)-(4.20) into (4.18), we obtain the desired bound. ¤

Remark 4.1 If we apply Lemma 4.1 on the function ψ defined by ψ = πh

(
ϕ ŵ
|ŵ|2

)
, we will get

that
|ψ|1 ≤ C log(h−1)|ϕ|1.

The results we are getting here is better. We have removed the factor log(h−1).

Lemma 4.3 Let (û, λ̂) ∈ Vh,g × Vh,0 satisfy (4.13). Then, there exist a h0 and γ0 depending on
u such that the following estimate holds for h ≤ h0 and γ ≤ γ0

a(u, λ;v,v) ≥ β1

2
|v|21, v ∈ Zh,û.

Proof. For any v ∈ Zh,û, let α and εh be as defined in (4.15) and (4.16). From πh(απhw⊥) =
πh(αw⊥), we have

εh = (I − πh)(αw⊥) + πh[απh(w − ŵ)⊥]. (4.21)

From (4.12) and also using the inverse inequality (4.3), we get that

|(I − πh)(αw⊥)|21 ≤ Ch2
(‖w⊥‖20,∞|α|21 + ‖α‖20,∞‖w⊥‖21,∞

)

≤ Ch2 log2(h−1)‖u‖21,∞|α|21. (4.22)
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Note that there exists a ξ such that

πh[απh(w − ŵ)⊥] = πh

[
απh

(
πhD2F (ξ)(πhu− û)

)⊥]

A repeated application of (4.8) and (4.3) gives

|πh[απh(w − ŵ)⊥]|21 ≤ C log4(h−1)|α|21|πhu− û|21. (4.23)

From Lemma 4.2, we see that
|α|1 ≤ C|v|1. (4.24)

Combining (4.22)-(4.24) with (4.13), we see that

|εh|21 ≤ C(h2 log2(h−1)‖u‖21,∞ + γ2)|α|21 ≤ C(h2 log2(h−1)‖u‖21,∞ + γ2)|v|21. (4.25)

The following estimate follows from (3.3) and (3.4)

a(u, λ;v,v) = a(u, λ;v + εh,v + εh)− a(u, λ;v, εh) + a(u, λ; εh, εh)

≥ Cβ1|v + εh|21 − |v|1|εh|1 − |εh|21.
(4.26)

Choosing h and γ small enough, we obtain the desired result from (4.25) and (4.26). ¤
Proof of Theorem 4.1. In the proof, we always assume that h and γ are small. Note that

ah(û, λ̂;v,v)− a(u, λ;v,v) = 〈πh[D2F (û)v · v], λ̂〉 − 〈D2F (u)v · v, λ〉
= 〈πh[D2F (û)v · v], λ̂− λ〉+ 〈(πh − I)[D2F (û)v · v], λ〉 (4.27)

+ 〈(D2F (û)−D2F (u))v · v, λ〉 = I1 + I2 + I3.

The meaning of Ii is self explainable. Since λ ∈ L2(Ω), we get by (4.13)

‖λ̂h − λ‖−1 ≤ ‖λ̂h − Phλ‖−1 + ‖Phλ− λ‖−1

≤ γ/ log2(h−1) + Ch‖λ‖0.
Using Lemma 4.1, we see that

|πh[D2F (û)v · v]|1 ≤ C|D2F (û) · v|0,∞|v|1 + ‖v‖20,∞‖D3F (û)‖0,∞|û|1 ≤ C log2(h−1)|v|21.
For a small h, a combination of the above two inequalities leads to

|I1| = |(πh[D2F (û)v · v], λ̂h − λ)| ≤ C log2(h−1)‖v‖21(γ/ log2(h−1) + Ch‖λ‖0) ≤ Cγ‖v‖21.
Again, we use Lemma 4.1 to prove that

|I2| = |((πh − I)[D2F (û)v · v], λ)|
≤ ‖(πh − I)[D2F (û)v · v]‖0 · ‖λ‖0 ≤ Ch log2(h−1)‖v‖21,

and

|I3| = |((D2F (û)−D2F (u))v · v, λ)|
≤ ‖(D2F (û)−D2F (u))v · v‖0 · ‖λ‖0 ≤ Cγ‖v‖21.

Choosing h and γ small enough, we obtain the desired result from Lemma 4.3 and the estimates
above of the three terms appearing in (4.27). ¤

Theorem 4.2 Assume that (û, λ̂) ∈ Vh,g × Vh,0 satisfies the condition (4.13). There exists a
constant β4, which depends on u, such that

inf
µ∈Vh,0

sup
v∈Vh,0

〈πh[DF (û) · v], µ〉
‖µ‖−1‖v‖1 ≥ β4. (4.28)
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Proof. For the ϕ given in (3.8), let ϕh = Phϕ. Then, we see that

〈µh, ϕh〉
‖ϕh‖1 ≥ β2‖µh‖−1.

Define vh = πh

[
ϕh

DF (û)
|DF (û)|2

]
. Then,

〈πh[DF (û) · vh], µh〉 = 〈µh, ϕh〉.
From Lemma 4.2, one gets that |vh|1 ≤ C|ϕh|1. By collecting these estimates the theorem is
established. ¤

Recall from the saddle point theory given [4] or [5], the two theorems, i.e. Theorems 4.1 and
4.2, assure existence, stability and uniqueness of the solution of the linearized saddle point system
(4.7) when (û, λ̂) satisfies (4.13). In the next section, we shall use these properties to prove some
results for the corresponding nonlinear systems.

Remark 4.2 If replacing Vh,0 by Vh in (4.28), the inf-sup condition (4.28) may not be satisfied.
This is why we use the Vh,0, instead of Vh, as finite element space for the Lagrange multiplier.

5 The discrete nonlinear problem

The main purpose of this section is to establish existence and uniqueness of solutions of the
discretized nonlinear saddle point problem (4.6) in a neighborhood of a continuous solution (u, λ)
of the system (2.7) satisfying the regularity assumption (3.1). Furthermore, we will show that the
discrete solutions converge to the continuous solution with a linear rate with respect to the mesh
parameter h. However, we start by summarizing some properties for the linearized saddle point
systems.

For notational simplicity, we shall use X, Xh and Xh,g defined by X = H1
0(Ω) × H−1(Ω),

Xh = Vh,0 × Vh,0, and Xh,g = Vh,g × Vh,0. Let ‖ · ‖X denote the norm on the product space
H1

0(Ω)×H−1(Ω), and let ‖ · ‖X∗ denote the norm on the dual space X∗ = H−1(Ω)×H1
0 (Ω). The

norm ‖ · ‖L(X,X∗) will be used to denote the norm of a bounded linear operator from X to X∗.
The spaces Xh and Xh,g are equipped with the norm of X, while X∗

h is equal to Xh as a set, but
equipped with the dual norm of X with respect to the L2 inner products. Similarly, the norm
‖ · ‖L(Xh,X∗

h) is the associated oprator norm.
Let x = (u, λ) be a solution of (2.7). Corresponding to x, let G(x) ∈ X∗ to be given by

〈G(x), y〉 = 〈∇u,∇v〉+ 〈DF (u) · v, µ〉+ 〈F (u), µ〉, y = (v, µ) ∈ X,

As usual, 〈·, ·〉 is the duality pairing which extends the standard L2 inner product. Associated
with G, we define a mapping G′(x) : X → X∗ by

〈G′(x) · y, ŷ〉 = a(u, λ;v, v̂) + 〈DF (u) · v̂, µ〉+ 〈DF (u) · v, µ̂〉, (5.1)

for all y = (v, µ), ŷ = (v̂, µ̂) ∈ X = H1
0(Ω)×H−1(Ω). The operator G′(x) is formally the Fréchet

differential of G at x.
Recall from the saddle point theory given in [4, 5] that Theorems 3.1-3.2 implies that the

system (3.2) has a unique solution (v, µ) which depends continuously on (f , σ) ∈ X∗. Thus we
have the following result.

Theorem 5.1 If (u, λ) satisfies the regularity assumption (3.1) then the map G′(x) defined by
(5.1) is an isomorphism from X = H1

0(Ω)×H−1(Ω) to X∗ = H−1(Ω)×H1
0 (Ω).

For the discretized saddle point problem, we define Gh : Xh,g → X∗
h to be the map defined by

(4.6). For any x̂ = (û, λ̂) ∈ Xh,g, Gh(x̂) is the operator that satisfies

〈Gh(x̂), ŷ〉 = 〈∇û,∇v̂〉+ 〈πh[DF (û) · v̂], λ̂)〉+ 〈πhF (û), µ̂〉, ŷ = (v̂, µ̂) ∈ Xh.
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Thus, problem (4.6) is in fact to find xh = (uh, λh) ∈ Xh,g such that

〈Gh(xh), y〉 = 0, y = (v̂, µ̂) ∈ Xh. (5.2)

Let G′h(x̂) be the Fréchet derivative of Gh at x̂ = (û, λ̂) ∈ Xh,g. Then, G′h(x̂) : Xh → X∗
h is the

linear operator given by

〈G′h(x̂)y, ŷ〉 = ah(û, λ̂;v, v̂) + 〈πh[DF (û) · v̂], µ〉+ 〈πh[DF (û) · v], µ̂〉,
y = (v, µ) ∈ Xh, ŷ = (v̂, µ̂) ∈ Xh. (5.3)

By Theorem 4.1-4.2, the following result is a consequence of the theory of [4, 5]:

Theorem 5.2 Assume that x̂ = (û, λ̂) ∈ Xh,g satisfies the condition (4.13). For sufficiently small
h and γ, the map G′h(x̂) is an isomorphism from Xh to X∗

h. Moreover,

‖G′h(x̂)−1‖L(X∗
h,Xh) ≤ M, (5.4)

where M is a constant independent of h and x̂ = (û, λ̂).

Define x∗ = (πhu, Phλ), and set y∗ = Gh(x∗). We can use similar techniques as for Theorems 4.1
to prove the following lemma.

Lemma 5.1 For any x̂ = (û, λ̂) ∈ Xh,g satisfying(4.13), we have

‖G′h(x̂)−G′h(x∗)‖L(Xh,X∗
h) ≤ C log2(h−1)‖x̂− x∗‖X .

Proof. By the definition of G′h, we have for any y = (v, µ) ∈ Xh and ŷ = (v̂, µ̂) ∈ Xh

〈(G′h(x̂)−G′h(x∗))y, ŷ〉 = 〈πh[D2F (û)v · v̂], λ̂− Phλ〉
+〈πh[(D2F (û)−D2F (πhu))v · v̂], Phλ〉
+〈πh[(DF (û)−DF (πhu)) · v̂], µ〉
+〈πh[(DF (û)−DF (πhu)) · v], µ̂〉.

(5.5)

From Lemma 4.1, (4.13) and (4.3), we see that

〈πh[D2F (û)v · v̂], λ̂− Phλ〉 ≤ C‖πh[D2F (û)v · v̂]‖1 ‖λ̂− Phλ‖−1

≤ C log2(h−1)‖û‖1‖v‖1‖v̂‖1‖λ̂− Phλ‖−1 ≤ Cγ‖v‖1‖v̂‖1.

Similarly, we have

〈πh[(D2F (û)−D2F (πhu))v · v̂], Phλ〉
≤ C‖πh[(D2F (û)−D2F (πhu))v · v̂]‖1‖Phλ‖−1

≤ C‖πh[(D3F (ξ)(û− πhu))v · v̂]‖1‖λ‖−1

≤ C log4(h−1)‖ξ‖1‖û− πhu‖1‖v‖1‖v̂‖1‖λ‖−1

≤ Cγ log2(h−1)‖v‖1‖v̂‖1.

Estimating the last two terms in (5.5) similarly using Lemma 4.1, (4.3) and (4.13), we get the
result. The constants C in the estimates depend on (u, λ). ¤

At this point, we need to recall the implicit function theorem as for example given in Lemma
1 of [6]. From the implicit function theorem, we can conclude that if there is a δ > 0 such that

x̂ ∈ Xh, ‖x̂− x∗‖X ≤ δ implies ‖G′h(x̂)−G′h(x∗)‖L(Xh,X∗
h) ≤

1
2M

, (5.6)
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then the equation
Gh(x̂) = ŷ (5.7)

has a unique solution for all ŷ satisfying

‖ŷ − y∗‖X∗ ≤ δ

2M
.

Here M > 0 is the positive constant appearing in Theorem 5.2. From Lemma 5.1, we see that
the implication (5.6) is fulfilled if we choose δ = 1/(2MC log2(h−1)). Hence, we have that the
equation (5.7) has a unique solution x̂ satisfying

‖x̂− x∗‖X ≤ 1
2MC log2(h−1)

for all ŷ such that

‖ŷ − y∗‖X∗ ≤ 1
4M2C log2(h−1)

.

Furthermore, we can conclude from Lemma 1 of [6] that

‖x̂− x∗‖X ≤ 2M‖ŷ − y∗‖X∗ . (5.8)

Note that our desired equation is Gh(x) = 0. Thus, if we can verify that

‖Gh(x∗)‖X∗ = ‖y∗‖X∗ ≤ 1
4M2C log2(h−1)

, (5.9)

we can conclude existence and uniqueness of solution of this equation. If we assume more smooth-
ness on u, this is a consequence of the following lemma.

Lemma 5.2 Assume that u ∈ H2(Ω) ∩W1,∞(Ω). Then we have

‖Gh(x∗)‖X∗ ≤ Ch with x∗ = (πhu, Phλ).

Proof. It suffices to prove that

|〈Gh(x∗), x̂〉| ≤ Ch‖x̂‖X , x̂ = (v, µ) ∈ Xh. (5.10)

We have by (2.7) and the definition of Gh

〈Gh(x∗), x̂〉 = 〈∇(πhu− u),∇v〉+ 〈πhF (πhu), µ〉 − 〈F (u), µ〉
+〈πh[DF (πhu) · v], Phλ〉 − 〈DF (u) · v, λ〉.

(5.11)

It is clear that
|〈∇(πhu− u),∇v〉| ≤ |πhu− u|1 · |v|1 ≤ Ch‖u‖2 · |v|1. (5.12)

Note that since πhF (πhu) = πhF (u) we obtain from (4.1) that

|〈πhF (πhu), µ〉 − 〈F (u), µ〉| = |〈πh − I)F (u), µ〉|
≤ ‖(πh − I)F (u)‖1 · ‖µ‖−1 ≤ Ch‖F (u)‖2 · ‖µ‖−1.

(5.13)

Furthermore, by the assumptions on F and the estimates (4.1), (4.2) and (4.12) we get

|〈πh[DF (πhu) · v], Phλ〉 − 〈DF (u) · v, λ〉|
≤ |〈(πh − I)[DF (u) · v], Phλ〉|+ |〈DF (u) · v, Phλ− λ〉|
≤ ‖(πh − I)[DF (u) · v]‖0 · ‖Phλ‖0 + ‖DF (u) · v‖1 · ‖Phλ− λ‖−1

≤ Ch‖DF (u) · vh‖1 · ‖λ‖0 ≤ Ch‖DF (u)‖1,∞ · ‖λ‖0 · ‖v‖1.

(5.14)
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Substituting (5.12)-(5.14) into (5.11), gives (5.10). ¤
From this lemma, we see that y∗ satisfies (5.9) for small h. Thus, there exists a unique solution

for equation (4.6). Moreover, the solution satisfies the estimate (5.8). We state this conclusion
more clearly in the following theorem.

Theorem 5.3 Assume that u ∈ H2(Ω)∩W1,∞(Ω). Then, for sufficiently small h, there exists a
unique saddle point (uh, λh) ∈ Xh for (4.6) in a small neighborhood of (πhu, Phλ). Moreover, the
following error estimate holds:

‖uh − u‖1 + ‖λh − λ‖−1 ≤ Ch.

6 Preconditioned iterative methods

We shall propose two iterative methods to solve the nonlinear saddle point problem (4.6). The
first one is the classical Newton’s method, cf. for example [15, chapter 7]. Let x0 = (u0, λ0) ∈ Xh

be a suitable initial guess. The Newton iteration is given by

xn+1 = xn −G′h(xn)−1Gh(xn), n = 0, 1, · · · . (6.1)

Assume that the initial guess (u0, λ0) satisfies (4.13) with a small γ. Using Theorem 5.2, combined
with Lemma 5.1, and the standard properties of Newton’s method, it follows that all (un, λn)
satisfy (4.13) with the same γ, and all G′h(un, λn) are invertible. Moreover, the sequence {(un, λn)}
converges with almost order 2, i.e.

‖un+1 − uh‖1 + ‖λn+1 − λh‖−1 ≤ C log2(h−1)(‖uh − un‖1 + ‖λh − λn‖−1)2.

For the iteration (6.1), we need to invert G′h(xn), i.e. we need to solve the system

G′h(xn)(xn+1 − xn) = −G(xn). (6.2)

From Theorem 5.2, we obtain that G′h(xn) is an isomorphism from Xh to X∗
h. Moreover,

‖G′h(xn)‖L(Xh,X∗
h) is bounded and the bound is independent of h and n if the initial value is chosen

close enough to the true solution. This property can be utilized to construct good preconditioners
for system (6.2). Let ∆h and ∆h be the finite element discretizations for the vector and scalar
Laplacian operators ∆ and ∆ on Vh,0 and Vh,0 respectively. To be precise, ∆h : Vh,0 7→ Vh,0 is
the mapping defined by

(∆huh,v) = −(∇uh,∇v), v ∈ Vh,0.

Then the operator

Th =


 −∆−1

h 0

0 −∆h


 ,

is an isomorphism from X∗
h to Xh with associated operator norm bounded independently of h.

Thus, Th can be used as a preconditioner to solve system (6.2). However, to simplify the com-
putation we replace ∆−1

h by another spectral equivalent operator, i.e. by a preconditioner for
the discrete Laplacian. The system (6.2) is then solved by the preconditioned minimum residual
method, with the modified Th operator as the preconditioner, cf. [16].

A disadvantage with Newton’s method is that the linear system (6.2) has to be solved for
each iteration. As an alternative approach for the nonlinear saddle point problem (4.6), we will
consider a preconditioned fixed–point iteration, which can be seen as another nonlinear version of
the minimum residual method. This method is described in a general setting in the Appendix.
For the problem (4.6) we will apply this method to the preconditioned equation

N(x) = ThGh(x) = 0,

15



but where the operator ∆−1
h in Th is replaced by a spectral equivalent operator. For the algorithm

given in (8.2) let us take H = X, N(x) = ThGh(x) and use the following inner product for H:

〈x, y〉H = 〈T−1
h x, y〉. (6.3)

Then N ′(x) = ThG′h(x) and N ′(x)∗ = ThG′h(x)∗. Here N ′(x)∗ is the adjoint of N ′(x) with respect
to the inner product (6.3), while G′h(x)∗ is the adjoint operator of G′h(x) with respect to the L2

inner product. The iteration (8.2) will then take the form

xn+1 = xn − θnThG′h(xn)∗ThGh(xn), n = 0, 1, · · · , (6.4)

where the relaxation factor θn is given by

θn =
‖ThG′h(xn)∗ThGh(xn)‖2H

‖ThG′h(xn)ThG′h(xn)∗ThGh(xn)‖2H
.

From Lemma 8.1 given in the Appendix, together with Theorem 5.2 and Lemma 5.1, we conclude
that there exists a positive number γ̃0 such that, when the initial guess x0 satisfies

‖ThGh(x0)‖H ≤ γ̃0/ log2(h−1), (6.5)

the iteration converges linearly with a rate independent of h for the error ‖ThGh(xn)‖H .

7 Numerical experiments

Numerical experiments for the harmonic map problem with M = S1, i.e. the unit circle, will be
done. The domain Ω is always a square. The sequence of grids is made as a refinements of a 2× 2
partition of Ω , which is further divided into triangles by the diagonal with a negative slope. When
refining the mesh, each triangle is divided into four equal smaller triangles. The finite element
problem (4.6) is to find (uh, λh) ∈ Vh,g × Vh,0 such that

〈∇uh,∇v̂h〉+ 〈πh(uh · v̂h), λh〉 = 0, v̂h ∈ Vh,0,

〈πh(|uh|2 − 1), µ̂h〉 = 0, µ̂h ∈ Vh,0.
(7.1)

For the finite element method, we need to integrate over each element e ∈ Th. If we use the
three vertices of e as the integration points, then the mass matrix reduces to a diagonal matrix.
Correspondingly, the system (7.1) is reduced to:

−Lhuh + λhuh = 0 on Nh,

|uh|2 − 1 = 0 on Nh.

Above Lh is the standard five-point finite difference discrete Laplacian approximation. For the
Newton iteration (6.1), we need to solve:


 −Lh + Λn diag(un)

diag(un)t 0





 un+1 − un

λn+1 − λn


 =


 Lhun − λnun

(1− |un|2)/2


 (7.2)

on Nh. Here, Λn and diag(un) are the matrix representations of the operators v 7→ πh(λnv) and
µ 7→ πh(µun) respectively. From Theorem 5.2, it is interesting to observe that the block-diagonal
matrix Th = diag(L−1

h , Lh) is a uniform preconditioner for the matrix of system (7.2).
For the preconditioned iterative solver (6.4) and the Newton iteration (6.2), the matrix L−1

h

in Th replaced by an spectrally equivalent operator again. In our simulations, L−1
h is replaced

by the domain decomposition or multigrid preconditioners for Lh based on the theory of [18, 20].
For the multigrid case, the preconditioner for Lh is composed of one multigrid sweep with one
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pre- and post smoothing sweeps with symmetric Gauss-Seidel. The matrix Lh is simply a discrete
Laplacian with homogeneous Dirichlet boundary conditions. Thus, the iteration (6.4) is rather
inexpensive to compute. By doing so, no matrix needs to be inverted during the iterations. The
cost per iteration is O(N), where N is the degree of freedom for the discretization.

In the following, we compare the behavior of three different nonlinear iterative solvers:

• The exact Newton solver: this refers to the scheme where we solve the linear system (6.2)
with a preconditioned Minimum Residual method which is terminated when the residual is
reduced by a factor of 1010.

• The inexact Newton solver: this refers to the scheme where the Newton iterations (6.2) are
terminated when the residual is reduced by a factor of 102.

• The iterative solver (6.4).

In the tables, we show the numerical errors en versus the iteration number n, where en is
defined as

en = ‖un
h − uh‖H1

h
+ ‖λn

h − λh‖H−1
h

, (7.3)

where ‖xh‖2H1
h

= (πhxh)t(I − Lh)πhxh and ‖yh‖2H−1
h

= (πhyh)t(I − Lh)−1πhyh.

7.1 A smooth harmonic map

In the first example we consider a smooth harmonic map

u = (sin(θ(x, y)), cos(θ(x, y)))

with θ = k log(
√

(x− a)2 + (y − b)2) and λ = −|∇u|2 on Ω = [0, 1] × [0, 1]. We have used
a = b = −0.1 and k = 3. The initial guess was u0 = 2(πhu + ε), where ε is a random noise vector
field with values between -0.3 and 0.3, and λ0 = 0.

When using the inexact Newton solver the stop criteria is obtained in less than 20 iterations,
with a few exceptions in the first nonlinear iterations where the maximum was 80. For the exact
Newton solver the stop criteria is obtained in less than 50 iterations with a few exceptions in the
first nonlinear iterations where as much as 300 iterations were required on the finest mesh. Hence,
except for the first iterations the required number of iterations seems to be bounded independent
of the mesh size. This is due to the property of the preconditioner.

In Table 1 we estimate the L2 and H1 error of u−uh in terms of h. We have linear convergence
in H1 and quadratic convergence in L2, respectively. This is in accordance with the error estimate
of Theorem 5.3. Also λ− λh seems to converge more than linearly in L2.

h 2−2 2−3 2−4 2−5 2−6

‖u− uh‖0 6.7e-1 3.6e-2 9.4e-3 2.4e-3 6.0e-4

‖u− uh‖1 4.6 1.1 5.7e-1 2.9e-1 1.4e-1

‖λ− λh‖0 4.2e-1 2.2e-2 1.6e-3 1.5e-4 1.2e-5

Table 1: The L2 and H1 error of u and the L2 of λ with respect to h.

A comparison of the exact Newton and inexact Newton solvers is shown in Table 2 for mesh
size h = 2−4. The convergence for other mesh sizes is similar. These tests indicate that the inexact
Newton solver is nearly as efficient as the exact Newton solver. In Table 3, the convergence of
the inexact Newton solver with different mesh sizes are shown. It shows the mesh independence
property of the iterative solver and the preconditioner.

The iteration (6.4) seems to be more unstable (i.e. the domain of attraction is smaller) than
for both Newton variants and the convergence is slower, see Table 4. The results with the other
mesh sizes shows that the convergence rate is bounded independent of the mesh size.
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e1 e2 e3 e4 e5 e6 e7 e8

Exact 3.2e+1 9.3 1.7 2.3e-1 4.0e-3 3.4e-6 2.6e-9 -

Inexact 3.2e+1 9.5 1.7 2.4e-1 3.5e-3 1.1e-5 1.0e-7 2.7e-9

Table 2: Convergence for the exact Newton solver with h = 2−4.

h\it. e1 e2 e3 e4 e5 e6 e7 e8

2−2 9.2 2.6 4.7e-1 2.8e-2 1.9e-4 9.9e-7 7.7e-9 7.6e-10

2−3 1.6e+1 4.7 9.1e-1 7.6e-2 8.8e-4 4.0e-6 7.9e-8 1.4e-9

2−4 3.2e+1 9.5 1.7 2.4e-1 3.5e-3 1.1e-5 1.0e-7 2.7e-9

2−5 6.4e+1 2.4e+1 3.6 9.6e-1 1.5e-2 4.7e-5 1.5e-6 6.6e-9

Table 3: Convergence for the the Inexact Newton solver

7.2 A harmonic map with singularity

Here, we test a non-smooth problem with a solution that has a singularity, i.e. u = (x/r, y/r)
with r = k

√
x2 + y2 and λ = −|∇u|2 on Ω = [−0.5, 0.5] × [0.5, 0.5]. For this example, we have

‖u‖1 = ∞. The Dirichlet boundary conditions are obtained from the analytical solution, while
the start value for λ is λ0 = 0 everywhere except in (0, 0) where λ = 1. The initial value for u is
shown in Figure 1.a. The numerical errors are shown in Table 5. The errors indicate that both
uh and λh converge linearly to the solution when measured in L2. The H1 norm of the u− uh is
fixed independent of h, but this is reasonable since ‖u‖1 = ∞. The computed solution is shown
in Figure 1.b.

For this example, the Newton solvers are unstable and do not always converge. Thus, we have
used the following iteration to produce the initial value for the Newton solvers:


 −Lh diag(un)

diag(un)t 0





 un+1 − un

λn+1 − λn


 =


 Lhun − λnun

(1− |un|2)/2


 , (7.4)

Compared with (7.2), the matrix Λn has been dropped. This iterative scheme is globally con-
vergent and is normally slower than the Newton solvers. Its convergence will be analyzed and
discussed elsewhere. We do ten iterations of (7.4) and the inexact Newton solver is then turned
on. The results are shown in Table 6 for h = 2−4, where it is clear that we have quadratic
convergence in the last iterations.

For the smooth problem tested in Section 7.1, it seems that the iterative solution always
converges to the same solution no matter what kind of initial solution we use. For the problem
here, we have noticed that the saddle point problem may have multiple solutions. With another
initial solution as shown in Figure 1.c, we get another solution which is shown in Figure 1.d.

8 Appendix

Consider a general nonlinear equation of the form

N(x) = 0, (8.1)

where N is a (locally) Fréchet differentiable map of a real Hilbert space H into itself. We let ‖ ·‖H

and 〈·, ·〉H be the corresponding norm and inner product, and L(H) the set of bounded linear
operators mapping H into itself.
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e0 e10 e20 e30 e40 e50 e60 e70 e80

5.3 2.2e-1 1.9e-2 5.3e-3 2.2e-3 1.1e-3 5.3e-4 2.7e-4 1.4e-4

Table 4: Convergence for iterative solver (6.4) with h = 2−4.

h 2−3 2−4 2−5 2−6

‖u− uh‖0 2.2e-1 1.3e-1 7.4e-2 4.0e-2

‖u− uh‖1 3.8 3.8 3.8 3.9

‖λ− λh‖0 8.3e-1 4.1e-1 2.1e-1 1.0e-1

Table 5: The L2 and H1 error of u and the L2 of λ with respect to h.

A disadvantage with Newton methods for such equations is that for each iteration the Fréchet
derivative, N ′(x) ∈ L(H), has to be recomputed, and a linear system has to be solved. There-
fore, sometimes a simple fixed–point iteration is more effective, even if the converenge is slower.
Throughout this appendix we will consider an iteration of the form

xn+1 = xn − θnN ′(xn)∗N(xn), (8.2)

where N ′(xn)∗ is the adjoint operator of N ′(xn) for the inner product 〈·, ·〉H and the real parameter
θn will be chosen as

θn =
‖N ′(xn)∗N(xn)‖2H

‖N ′(xn)N ′(xn)∗N(xn)‖2H
. (8.3)

This method can be seen as a variant of the steepest descent method, where the functional to be
minimized is the norm of the residual. We will make the following assumptions on the map N :

The equation (8.1) has a solution x ∈ H and there is a ball B around x, and positive constants
L and κ such that

‖N ′(y)−N ′(z)‖L(H) ≤ L‖y − z‖H y, z ∈ B (8.4)
Cond(N ′(y)∗N ′(y)) ≤ κ y ∈ B. (8.5)

Here Cond(N ′(y)∗N ′(y)) denotes the spectral condition number of the operator N ′(y)∗N ′(y).
Note that it follows from part (8.4) that if y and y + z both are in B then

N(y + z)−N(y)−N ′(y)z =
∫ 1

0

d

dt
N(y + zt) dt−N ′(y)z

=
∫ 1

0

(N ′(y + zt)−N ′(y))z dt,

and as a consequence

‖N(y + z)−N(y)−N ′(y)z‖H ≤ L

2
‖z‖2H . (8.6)

The main convergence result for iteration (8.2)–(8.3) can now be derived from the following
lemma.

Lemma 8.1 If xn+1 and xn both are in B then we have

‖N(xn+1)‖H ≤
(

κ− 1
κ + 1

+
L

2
‖N(xn)‖H

)
‖N(xn)‖H .
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e1 e5 e10 e11 e12 e13 e14

1.1e+1 6.4e-1 1.1e-1 8.1e-2 9.7e-4 2.4e-7 1.2e-8

Table 6: Convergence for the Inexact Newton solver for the singular problem.

Proof. By using (8.2) we have

N(xn+1) = N(xn)− θnN ′(xn)N ′(xn)∗N(xn) + Rn

where the error term Rn is given by

Rn = N(xn − θnN ′(xn)∗N(xn))−N(xn) + θnN ′(xn)N ′(xn)∗N(xn).

Hence, it follows from (8.3) and (8.6) that

‖Rn‖H ≤ L

2
θ2

n‖N ′(xn)N ′(xn)∗N(xn)‖2H

≤ L

2
‖N ′(xn)∗N(xn)‖4H

‖N ′(xn)N ′(xn)∗N(xn)‖2H
,

which gives

‖Rn‖H ≤ L

2
‖N(xn)‖2H . (8.7)

It remains to bound ‖N(xn) − θnN ′(xn)N ′(xn)∗N(xn)‖H . A direct computation, using (8.3),
shows that

‖(I−θnN ′(xn)N ′(xn)∗)N(xn)‖2H = ‖N(xn)‖2H
− 2θn‖N ′(xn)∗N(xn)‖2H + θ2

n‖N ′(xn)N ′(xn)∗N(xn)‖2H
=

(
1− ‖N ′(xn)∗N(xn)‖4H

‖N ′(xn)N ′(xn)∗N(xn)‖2H‖N(xn)‖2H

)
‖N(xn)‖2H .

However, for any positive definite self-adjoint operator A ∈ L(H) we have

4λmin(A)λmax(A)
(λmin(A) + λmax(A))2

≤ ‖x‖4H
〈Ax, x〉H〈A−1x, x〉H ≤ 1, x ∈ H.

The left inequality here is usually referred to as the Kantorovich inequality, cf. [21], while the
right inequality is just Cauchy–Schwarz inequality. Hence, we obtain that

‖(I − θnN ′(xn)N ′(xn)∗)N(xn)‖H ≤ κ− 1
κ + 1

‖N(xn)‖H .

However, together with (8.7) this implies the desired bound. ¤
Note that if the initial value x0 is chosen such that

κ− 1
κ + 1

+
L

2
‖N(x0)‖H < 1

then the sequence {‖N(xn)‖H} will converge at least linearly to 0.
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experiments for this work.

20



a) b)

−0.6 0 0.6
−0.6

0

0.6

Second Start Vector

c) d)

Figure 1: Plot of the initial solutions and the computed solutions. a) The first initial solution. b)
The solution for a). c) The second initial solution. d) The solution for c).
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