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A Saint-Venant Type Principle for Dirichlet Forms 

on Discontinuous Media (*). 

M. BIROLI - U. Mosco 

Abstract. - We consider certain families of Dirichlet forms of diffusion type that describe the 
variational behaviour of possibly highly nonhomogeneous and nonisotropic bodies and we 
prove a structural Harnack inequality and Saint Venant type energy decays for their local 
solution. Estimates for the Green functions are also considered. 

Sunto. - S i  considerano certe famiglie di forme di Dirichlet di tipo diffusione the descrivono iI 
comportamento di corpi fortemente non omogenei e non isotropi e si provano per le relative 
soluzione locali una diseguaglianza di Harnack strutturale e stime tipo Saint Venant della 
decrescita dell'energia. Si studiano inoltre stime per la funzione di Green. 

1. - I n t r o d u c t i o n  a n d  r e s u l t s .  

We consider a body X with a very irregular internal structure, highly nonhomoge- 

neous and possibly nonisotropic. We suppose that u: X--- .R describes a physical state 

of X, whose equilibrium is subjected to a variational principle of a suitable 

nature. 

In order to formulate such a principle with very few requirements about the inter- 

nal structure of X, we shall assume that the energy functional to be minimized can be 

written as the quadratic functional associated with a Dirichlet form a(u, v) in the 

Hilbert space 

H =  L2(X,  m), 

for a suitable choice of a locally compact Hausdorff topology on X and of a positive 

(*) Entrata in Redazione il 27 gennaio 1994. 
Indirizzo degli AA.: M. BIROLI: Dipartimento di Matematica, Politecnico di Milano, P. Leo- 

nardo da Vinci 32, 1-20133 Mitano; U. Mosco: Dipartimento di Matematica, Universit~ di Roma 
~,La Sapienza-, P.le A. Moro 2, 1-00185 Roma. 



126 M. BIROLI - U. M0SCO: A Saint-Venant type principle, etc. 

Radon measure m on X, with supp m = X. The inner product of H will be denoted by 
( . ,  .). 

We recall that a Dirichtet form on H is a closed, non-negative definite, symmetric 

bilinear form a(u, v) defined on a dense linear subspace D[a] of H, which has in addi- 

tion the following Markovianity property: if u e D[a], v: = 0 V u A 1, then v e D[a] 

and a(v, v) < a(u, u). 

We shall restrict our study to Dirichlet forms of diffusion type, that is to forms a 

that have the following strong local property: a(u, v) = 0 for every u, v e D[a] with v 

constant on supp u. 

Furthermore, we shall assume that the form a is regular in H, that is, there exists 

a subset C of D[a] • Co (X) which is both dense in Co (X) with the uniform norm and 

dense in D[a] for the intrinsic norm (a(u, u) + (u, u)) 1/z (Co (X) denotes the space of 

continuous functions with compact support in X). Such a set C, that without restric- 

tion can be assumed to be a subalgebra of D[a] (~ Co (X), is called a core of a in H. The 

functions that belong to C play the role of test functions in our variational 

theory. 

From the physical point of view the choice of the class of regular Dirichlet forms 

in order to state our variational principle for X is motivated by the fact that any such 

form can be given the following integral expression 

(1.1) a(u, v) = I ~(u, v)(dx) 
x 

for every u, v e D[a], where ,~ is a Radon-measure-valued nonnegative-definite bilin- 

ear form on D[a], uniquely associated with a, called the energy measure of a [18], 

p. 152, [24]. 

One of the most important properties of/z is its local character, which is a conse- 

quence of the analogous property of the form a: the restriction of the measure t~(u, v) 

to any open subset of A of X depends only on the restriction of u and v to A. This 

property entitles us to interpret ~ as a measure valued description of the physical 

characteristics of the body X. Moreover, it enables us to define in a natural way the 

space of functions u that belong locally to the domain of the form on a given open sub- 

set A of X (see Section 2). We shall denote this space by Dloc [a, A] and simply by 

Dlo~ [a] if A = X. We may suppress the explicit reference to the form a in our nota- 

tion, if we are dealing with forms whose common domain has been previously 

specified. 

By the local character of ~ we can define a function u to be a local minimizer  of the 

energy functional 

1 
E[u] = -~ a(u, u) 

in a given arbitrary open subset Xo of X, if u is a function on X that satisfies the mini- 
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reality condition 

(1.2) ueD~oc[a, Xo]: ~ ~ (u ,u ) (dx )~  ~ 

xo xo 

f.c(u + ~, u + ~)(dx) 

for every ~ ~ C with supp ~ r Xo. 

Clearly u is a solution of (1.2) if and only if u is a solution of the problem 

(1.3) u e Dlor Xo]: f ~(u,  v)(dx)  = O for every v e Do[a, Xo], 

xo 

where by Do [a, Xo] we denote the closure of D[a] A Co (Xo) in D[a] with its intrinsic 

norm. We will refer to any solution of (1.3) as to a local solution in Xo of the equation 

formally written as 

(1.4) L u  = O, 

where L is the self-adjoint operator in H associated with the form a according to the 

representation formula 

a(u, v) = ( V ~ u ,  V ~ v )  , u, v ~ D[a]. 

Before going on, let us point out that our present interpretation of t~ as measure 

valued characteristics of the body is further motivated by the special coordinate-in- 

variant expression that is taken by the form a, whenever we are ready to introduce in 

X, or in some open portion of it, the additional structure of a (orientable) differen- 

tiable manifold. In this case, in fact, if there exist coordinate functions xl, ..., x~ that 

belong locally to D[a] on there domain of def'mition, then any differentiable function u 

on X belongs locally to D[a] and the energy measure t~(u, v) for every u, v e C 1 (X) 

can be written in local coordinate as 

/.t(U, V) : "-~'~-(X 1 , 922 , ..., X n) (XlX2, ..., 
i , j = l ~  i 

where 

v~J = t~(xi, xj) , i , j  = l ,  ..., n 

I n ~U ) ( ~:j (Xl ' ) a(u, v) = ~, [=--(x i ,  x~, ..., xn) ~ x~, ..., xn) VJ(dx), 
x i , j=l \  c~xi 

where the integral at the right hand side has to be intended as reduced to coordinate 

domains by means of a partition of unit in C and the following (degenerate) ellipticity 

defines a non-negative definite symmetric tensor v on X (see the chain rule in Section 

2). The form a, for every u, v e C 1 (X), takes now the following more familiar invari- 

ant integral expression 
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condition is satisfied in the sense of measures on X: 

n 

0 ~  ~ ~-~.v ~j for e v e r y ~ e R  ~ 
i , j= l  

see e.g. [26]. 

Let us now come back to our general setting. Our aim is to describe the behaviour 

of an arbitrary local solution of (1.4) in X0 in a neighborhood of an arbitrary given 

point Xo of X0. Moreover, we want our theory and estimates have a structural charac- 

ter. By this we mean that the properties we will establish have to hold uniformly for a 

whole family of equivalent Dirichlet forms of diffusion type, in a sense that will be 

made precise below. 

We will suppose that we are given a whole family of regular Dirichlet forms of dif- 

fusion type defined on a common domain D c Le(X, m), which are mutually equiva- 
lent in the following sense: however we choose a form b in the family, there exist two 

constants 0 < 2 ~< A, depending on b but whose ratio ~/A is independent of b, such 

that any other form a of the family is related to b by the condition 

(1.5) ~b(u, u) <<. a(u, u) <<. Ab(u, u) 

for every u �9 D = D[a] = D[b]. We remark that by a well known comparison princi- 
ple (see for instance [26]) condition (1.5) is equivalent to the condition 

(1.6) 2~b(u, u) < ~ ( u ,  u) <A~b(u, u),  

where/za and ~b are the energy measures of a, b, respectively. 

We will develop our theory under the assumption that the set of all test functions 

e C, whose energy measures have a bounded density with respect to the measure 

m, is rich enough to separate the points of X. More precisely, we suppose that there is 

a form in the family, say b, that admits a m-separating core, that is, a core C that has 

the following separating property: 

(1.7) for every x, y e X ,  x;~y,  3 ~ C  with ttb(~0, ~) ~< m o n X ,  

such that ~(x) r ~(y). 

Clearly, if a set C is a core of b, then C is also a core for any other form a of the family; 

moreover, in view of (1.6), if in addition C has the separating property (1.7) with re- 

spect to a given form b, then C has the same property with respect to any other form 

ain the family. 

We are now in a position to introduce the basic notion that is a the heart of our 

theory, that is, a family of (equivalent) metrics induced on the space X by the forms of 

the family. For related metric notions we refer to the fundamental paper [29] and 

to[13,33]. Given a form a we define the distance function d = d~: X--*[0, + oo] 

by 

(1.8) d(x, y) = sup {~(x) - ~(y): ~ e C, t~(~, 9) ~< m on X}.  
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It is easy to verify that d(x, y) satisfies the following properties: d(x, y) = 0 if and 

only if x -- y, d(x, y) = d(y, x), d(x, y) <. d(x, z) + d(z, y), with the usual convention 

on infinity. By B = Ba we denote the metric balls given by the distance d = da associ- 

ated with the form a: 

(1.9) B(x, r) = {y e X, d(x, y) < r},  r > 0. 

It follows from (1.6) that the distance functions associated with two arbitrary forms of 

the family are mutually equivalent. 

We point out that, while the energy measures in (1.1) are intrinsically defined in 

terms of the form itself, their densities occurring in the definition (1.8) of the distance 

are affected by the initial choice of the measure m. In any case, the metric balls 

B~ (x, r) of a given form a in the family single out special regions of the space X, on 

which the form a, as well as its local solutions, should be expected to enjoy special 

properties that might not hold on other regions of X. 

When taken up to the metric equivalence pointed out before, the intrinsic balls 

B(x, r) play a basic role in two main regards. From one side, they allow us to formu- 

late a compatibility condition, relating the whole family (1.5) to the initial topology 

on X and to the measure m initially chosen on X. This compatibility condition is ex- 

pressed by Assumption I below. From the other side, the system of balls B(x, r) al- 

lows us to formulate special scaling and embedding properties of the forms and their 

domains, that also have a structural character for the family (1.5). These properties, 

in the form of suitably sealed Poincarg inequalities, are expressed by Assumption H 
below. 

A S S U M P T I O N  I .  - The forms in (1.5) admit a common m-separating core C in the 

space L 2 (X, m) and the following two properties hold: 

o 

(i) the memc topology induced by the distance (1.8) on X is equivalent to the 

initial topology of X; 

(ii) the measure m is doubling with respect to the balls (1.9), that is, there 

exists a constant co > 0 such that 0 < m(B(x, 2r)) -< com(B(x, r)) < + oo for every 

x e X a n d  0 < r ~ < r  o. 

We remark that under this assumption the space X with the distance d acquires 

the structure of a homogeneous space, according to [8], Ch. III, Sect. 1. We observe 

that ( i l)  implies that m(B(x, r)) <- 2m(B(x, s))(r/s) v, 0 < s < r -< vo/2. Where 

= lg(c0)/lg2. 

A S S U M P T I O N  I I .  - Given a relatively compact open subset X0 of X, there exist a 

constant cl > 0, and an integer K I> 1, such that for every x e X0 and every r > 0 with 
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B(x, r)r the following inequalities hold: 

B(~, rlK) B(x, r) 

for every u e Dloc[Xo], where d = 1/(m(B(x, v/g))) I um(dx). 
B(x, ~/~) 

REMARK. - We observe that if we suppose that Xo is connected and B(x, 2r) c Xo, 

Assumptions I and II imply that the following inequality holds 

( j ( s 1 \:/8 1 ~(u, u)(dx) , 
(k) m(B(x, r))~(~.r) lul~m(dx) <<- c2r m(B(x, r))B(~,r) 

with constants s = 2v/(v - 2) if v > 2, arbitrary s > 2 if v ~< 2 and c2 depending only on 

co, cl, see [3] and [32]. Moreover from (k) it follows that 

I lul2m(dx) <<. c2r 2 ~ ~(u, u)(dx) 

B(x, v) B(x, r) 

Vu e Dloc [Xo] with supp u r B(x, r); this implies that our bilinear form a is coercive on 

Do[a, B(x, r)] for the intrinsic norm. 

It is easily checked that if Assumption I and II are satisfied by a given form of the 

family (1.5) with some constants co, to, cl, ~, then they are also satisfied by any other 

form of the family, with possibly new constants co', to', c~', K' depending on the initial 

Co, to, Cl, K and on the ratio AlL This observation allows us to check Assumption I and 

Assumption II for an arbitrary form in the family (1.5). 

We can now state our main results. By Xo we denote below a connected relatively 

compact open subset of X and by u an arbitrary solution of (1.3), where a is any form 

of a given family (1.5) for which Assumption I and Assumption II hold. We can also 

suppose, without loss of generality, that X0 is contained in an intrinsic ball of radius 

less than R0. 
The structural constants c, possibly different ones, and the constants a, fl in the 

estimates below only depend on A/~ and on the constants Co, ro, cl, K occurring in As- 

sumptions I and II. 

THEOREM 1.1 (Harnack inequality). - I f  u is positive then 

sup u~<c inf u 
B(x, ~) B(x, ~) 

for B(x, r) r B(x, 7or) cr Xo, k/> 1 depending on •. 

A standard consequence of Theorem 1.1 is the following 
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COROLLARY 1.2. - There exists ~ > 0 such that 

08C U Q C 08C U 
B(x, r) B(x, R) 

for every 0 < r <<. R /4  < ~-1Ro, B(xo, Ro) cr Xo. 

Therefore, since u is bounded, u is HSlder continuous with respect to the intrinsic 

distance of X, hence u is continuous with respect to the initial topology of X. 

By taking into account the following L ~-estimate: 

(1.10) sup lul <~ cR2m(B(x, R))-I/PIIflILP(B(~,R),m ), 
B(x, R) 

that holds in B ( x , R ) c R o  with p > m a x { v / 2 , 2 }  for every solution u of the 

equation 

(1.11) uEDo[a ,B(x ,R) ] :  a ( u , v ) =  f f vm(dx) ,  V v ~ D o [ a , B ( x , R ) ] ,  
B(x, R) 

Corollary 1.2 (see also Theorem 5.13) enables us to define the Green function G~t~, R), 

for Xo ~ B(x, R), as the unique function G ~ L p' (B(x, R), m) N C(B(x, R ) \  {Xo}), 

l i p  + l i p '  = 1, such that 

u (x~  I Gfin(dx) 
B(x, R) 

for every f ~  LP(B(x, R), m) and u = uf solution of (1.11). 

THEOREM 1.3 (Size of the Green function). - For every B(xo, R) r cr Xo 

and every 0 < r <. R/16, the following estimate holds for all x ~ aB(xo, r): 

R R 

I f as 1 s 2 ds ~ G~xo, R)(X) ~ e m(B(xo, s)) s 
c m(B(xo, s)) s 

r r 

The structural estimates in Theorem 1.4 and in Corollary 1.5 below are the aria- 

logue in our present setting of the Saint-Venant principle for the energy decay in lin- 

ear elasticity. 

THEOREM 1.4 (Saint-Venant principle). - Let u be as in Theorem 1.1; there exists 

> 0 such that 

f G~xo, q-l~)/z(u, u)(dx) 
B(xo, r) 

I G~xo ,q-lR)t~(u, u)(dx) 
B(xo, R) 

for every 0 < r <~ q2R <<. q~Ro, B(xo, 20Ro) r162 Xo and for every q e (0, qo], for some 
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fixed qo < 1 depending on K and some structural constant c depending also on q. 
Furthermore 

G~o ' q-~)~(u, u)(dx) <~ c m(B(xo, R0)) ~2 
B(Xo, R) 

From Theorem 1.3 we obtain the more explicit special estimate: 

COROLLARY 1.5. - For r, R, Ro as in Theorem 1.4, we have 

r2 i ~(u, u)(dx) 
m(B(xo, r)) B(xo ' ~.) 

e2 f ~(u, u)(dx) 
m(B(xo, R)) 8(x0, R) 

From the point of view of partial differential equations the theory discussed so far 

finds its main motivation in the study of the structural properties of second order de- 

generate elliptic operators. Existence, uniqueness and regularity in Sobolev spaces 

for such a type of PDE are studied in [14], [15], [22], [30], moreover in [5] regularity 

properties and maximum principles are studied in connection with the type of degen- 

eration and the different axiomatic potential theoretic setting. We bound ourselves to 

illustrate our results by referring below to two important classes of operators on R ~ : 

(a) Weighted uniformly elliptic operators in divergence form with measurable coeffi- 

cients, (b) Uniformly subelliptic (selfadjoint) second order operators with bounded 

measurable coefficients. 

(a) We consider the form 

a ( u , v ) = I  ~ ~u  ~xj ~ , j = l  _. .  ( x )  (x)a~J(x)dx 

R n 

o n  C 1 (Rn), where the (Lebesgue) measurable coefficients a ij = a ji , i, j = 1, ..., n, sat- 

isfy the condition 

2l~12w(x) <. ~ ~i$jaiJ(x) <.A]Xl2w(x) a.e. in R ~ 
i , j = l  

for every ~. e R n . Here w is a weight in the Muckenhoupt class A2, or a weight w(x) = 
= I detF' l  1-2/~ associated with a quasi-conformal transformation F in R n . The domain 
D[a] of this form is obtained by completion of C 1 (R n) with respect to the norm 

(a(u, u) + (u, u)) 1/~, where (., �9 ) is taken to be the inner product of the Hilbert space 

H = L 2 (R ~, w(x)dx).  This class of operators, that generalizes previous examples 

studied in [28], has been considered in [10], [11], where Theorem 1.1 and Theorem 1.2 

were first obtained. Here X = R ~ , the ball B(x, r) are the usual euclidean balls and 

m(dx) = w(x) dx. The doubling property of our Assumption I is a well known proper- 
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ty of the weights considered above and the scaled Poincar~ inequalities are given 

in [11]. 

(b) In the space H = L2 (R  ~, dx) we consider a family (1.5) of forms, where b is 

a given selfadjoint subelliptic form with smooth coefficients in R ~, that is, b is given 

on C~ (R ~) by 

b(u, v) = 
R n 

~u av ij 
i, j =  l -~x~ (X)-~xj (x) b (x)dx 

where b ij = b ji ,  i, j = 1, ..., n, are smooth functions that satisfy the degenerate ellip- 

ticity condition 

n 

0 <~ ~ ~i~jb~J(x) in R ~, Y~ .eR  ~ 
i , j = l  

and b satisfies the following subellipticity estimate for some ~ e (0, 1): 

cllull   < u) + II ilb for every u e C~ ( R ~ ) ,  

where H ~ denotes the usual fractional Sobolev space of order ~ E (0, 1). The form a is 

any form of the following type 

v )=  r/ av u, v ~ C l ( R  n)  
~, j = 1 axi axj . ]  

R n 

with measurable coefficients a ~j = a ~ that satisfy the uniform subeUipticity condi- 

tion 

)~ ~ ~jbiJ(x) << - ~ ~i$jaiJ(x)<<-A ~ ~i~jbiJ(x) 
i , j = l  i , j = l  i , j = l  

a.e. in R ~ V ~ R  ~ 

for some given constants 0 < 2 ~< A. 

The distance d on R ~ induced by the form b according to our definition (1.8) turns 

out to be equal to the distance d* associated with the form b according to [12], [13] 

(see [21]). The distance d* is known to satisfy the condition 

(1.12) 1--ix _ Yl <~ d*(x ,  y) <~ clx - yl ~ 
C 

By noting that m(dx) = dx, it is shown in [29] that Assumption I (i) holds. The scaled 

Poincar~ inequalities on the intrinsic balls for the form b have been proved in [20] 

and [21]. These authors also provide examples that show that Poincar~ inequality 

may not hold on regions that do not coincide with an intrinsic ball, what may serve as 

illustration of a remark we made before. 

The main example of uniform subelliptic operators to which the results above 
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apply is that of an operator of uniform HSrmander type 

L =X~(:c~k(x)X~), x e R  ~, 

where Xh, h = 1, ..., m are m smooth vector fields in R ~ that satisfy the HSrmander 

condition and a = (ahk) is any symmetlric m • m matrix of measurable functions on 

R ~, such that ~1~12 ~< ~(x)~'~ ~< AI~21 for every ~ ~ R  ~, a.e. on R ~. 

Theorems 1.1 and 1.3 above seem to be new in this uniform subelliptic setting 

even for HSrmander's square operators. Moreover the estimate on the energy decay 

of Theorem 1.4 is new also in the case of classical HSrmander's square operators with 

smooth coefficients, a hk= ~hk. 

For related results see [23] and [16] and for a particular case of this setting, with 

dx replaced by w(x)dx, w as in (a), see [17]. 

(c) We now give an example of a form a in R e whose local solutions are HSlder 

continuous with respect to the intrinsic distance of a, and only continuous with re- 

spect to the euclidean metric of R e. In the space L2(B, m(dxdy)), where B = 

= {(x, y)~R2;1/(loglxl)  e + lyl 2 < 1/4}andm(dxdy) = (1/(Ixl(loglxl)2))dxdy,we 
consider the form 

a(u, v) = IIx2(log ,x,)4 - - - -  

B " 

where u, v are in the set 

au av + au av}  1 
ax ax ay ay i xl(log ix I )2dxdy '  

1 aw aw W 1, 1 } 
C= weCo(R2): Ixl( loglxl)  2 ax eC~ -~y eC~ w e  (B) . 

We still denote by a(u, v) the closure of this form in L 2 (B, m). Assumptions I and II 

can be easily checked, by suitably rescaling the form on a euclidean ball of R 2 . The in- 

trinsic balls shrinks to {0} as e x p ( - l / r )  in the x-direction as r - - .0 .  

We finally mention that any family of forms satisfying a condition like (1.5) enjoys 

special variational compactness properties, that can be expressed in terms of F-con- 

vergence of the functionals a(u, u), now defined on the whole H by extending them to 

+ ~ outside their domain. In case the domains D[a] are uniformly compactly injected 

in H, as for instance in example (a) as well as in the subelliptic case (b), these conver- 

gence properties can be expressed in terms of the resolvent operators associated with 

the forms and are thus related to convergence of spectra and semigroups. These com- 

pactness properties play an important role in homogenization theory and, more gen- 

erally, in the asymptotic variational approach to composite media, see [26]. The struc- 

tural estimates presented before describe some properties of local solutions that are 

kept in the variational limit. This is of particular relevance in the asymptotic theory, 

due to the fact that the explicit expression of the limit energy form in terms of the ef- 
fective characteristics of the composite body may not always be easily deter- 

mined. 
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Finally we will remark that the results in this paper have been announced 

in [2]. 

We now give the plan of the paper. In Section 2 we recall some properties of 

Dirichlet forms which are used in the following. In Section 3 we construct a funda- 

mental tool for our proofs, namely, cut-off functions between intrinsic balls or anuli. 

In Section 4 we obtain an L ~ global estimate for solutions of a Dirichlet problem with 

homogeneous boundary condition. In Section 5 we prove Theorem 1.1. The proof, 

which uses an L ~ local estimate, is obtained by De Giorgi-Stampacchia's truncation 

method [36], adapted to the metric structure of the homogeneous space X and by a 

simplified version of Moser's technique [27], which relies on an extension of John- 

Nirenberg's lemma to homogeneous spaces [6]. We notice that Corollary 1.2 can be 

obtained from Theorem 1.1 by standard methods, see for ex. [19]. In Section 6 we 

first estimate the relative size of Green functions, on homotetic balls, then we derive 

Theorem 1.3 as in [10]. Section 7 is devoted to the proof of Theorem 1.4. The Saint- 

Venant principle is proved by applying a modified version of the ,,hole filling argu- 

ment,,  as in [4], which allows us to use the Poincar6 inequality only on balls (and not 

on anuli). 
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2. - P r e l i m i n a r i e s  o n  D i r i c h l e t  f o r m s .  

We shall denote by X a locally compact separable Hausdorff topological space and 

by m a positive Radon measure on X with supp m = X. 

Let us collect below a few relevant definitions and properties. 

(a) Dirichlet forms of diffusion type. A Dirichlet form a, with domain D[a] in 
the space L2(X, m), is a real valued nonnegative defmite, symmetric, bilinear form 

a(u, v), defined on a dense linear subspace D[a] of L2(X, m), which has in addition 

the following properties: (i) a is closed in L 2 (X, m), i.e., D[a] is complete under the 

inner product (intrinsic metric) (u, V)a = a(u, v) + (u, v), where (u, v) denotes the 

usual inner product of the space L2(X, m); (ii) a is Markovian, i.e., Tou ~ D[a] and 

a(Tou, Tou)<~a(u,u) whenever ueD[a] and T : R - - ~ R ,  T(O)=O, ]Tx -Ty]  <<. 
<~ I x - Y l  for every x, y e R .  

If a is a Dirichlet form in L ~ (X, m) with domain D[a], then D[a] A L ~ (X, m) is an 
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algebra and we have: 

a(uv, uv) ~ 2(llut[~ ~(x,,~)a(v, v) + t]Vt]L ~(i,,~)a(u, u) ) 

for every u, v e D[a] N L ~ (X, m) (see [18], Theorem 1.4.2). 

A Dirichlet form a with domain D[a] cL2(X,  m) is said of diffusion type of the fol- 

lowing property holds 

a(u, v) = O, if u, v e D[a], v = constant m-a.e, on a neighborhood of supp u .  

By supp u we mean (compact) support of the measure u.  m in X. We note that the dif- 

fusion property as stated above is a stronger property than the locality of the form a, 

where a is said to be local if a(u, v) = 0 whenever u, v e D[a] have disjoint supports 

inX.  

A Diricblet form is said regular in L2(X, m) if it possesses a core in L2(X, m), a 

core of a in L2(X, m) being any subalgebra C of D[a] N Co(X) which is dense both in 

Co(X) for the uniform norm and in D[a] for the intrinsic norm Ilulla = (a(u, u ) +  

+ Hull2L2(X, ~))1/2. By Co (X) we denote the space of all continuous functions with compact 

support in X. Note that a form a is regular in L2(X, m) if and only if C =  

= D[a] N Co(X) is a core in L2(X, m). 

(b) The intrinsic capacity. Associated with a regular Dirichlet form of diffusion 

type in L2(X, m), a capacity set-function can be defined, in the Choquet sense, [18] 

Theorem 3.1.1. Related to this (intrinsic) capacity notion are the notions of null sets, 

i.e., subsets of X of capacity zero, quasi-continuous functions and sets, for which we 

refer to [18], Ch. 3. Every function u E D[a] admits a quasi-continuous modification 

~7, i.e., there exists a quasi-continuous function ~7 on X, unique up to q.e. equality, 

such that u = ~ m-a.e, on X[18], Theorem 3.1.4. Two quasi continuous function 

which are equal ( ~< ) m-q.e, on an open subset of X are equal ( ~< ) q.e. on that set, [18] 

Lemma 3.1.4. 

(c) The energy measures. According to the fundamental theory of BEURLING- 

DENY[l], [9], and its extension due to SILVERSTEIN [34], [35], FUKUSHIMA[18], LE- 

JEAN [24], any regular Dirichlet form of diffusion type can be expressed on its domain 

D[a] by an integral representation formula 

a(u, v) = ~ t~(u, v)(dx), u, v e D[a] ,  

X 

where ~(u, v) is a Radon-measure-valued symmetric bilinear form on D[a], called the 

energy measure of a. For every u, v e D[a] A L ~ (X, m) the signed Radon measure 

t~(u, v) is obtained by polarization from the positive Radon measure t~(u, u), uniquely 

defined for every u ~ D[a] • L ~ (X, m) by the identity 

(2.1) I 1 2 ~(x)~(u, u)(dx) = a(u, ~u) - ~a (u  , ?) for every ~ e C, 

x 
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C being a core of a, ([34], [35], [18], p. 152). This identity is equivalent, in terms of the 

transition function Pt (X, dy) associated with the form a, [18] p. 27, to 

(2.2) f~(x) tz(u ,  u)(dx) = lim 1 f 
t ; 0 ~  

X X x X - d  

~o(x)(~(y) - ~(x))2pt (x, dy) m(dx), 

where d is the diagonal in X • X, ~7 the quasicontinuous modification of u and 

~o �9 Co (X). The definition of ~(u, u) is extended to arbitrary u �9 D[a] as the increasing 

limit of the measures ~(u~, u~), where u~ = m a x { - n ,  rain{u, n}} as n--~ + oo, [24] 

Prop. 1.14.1. The measure f~(u, v) is then defined by polarization: \ 

1 
(2.3) ~(u, v) = - ~ [ [ z ( u + v , u + v ) - t z ( u , u ) - ~ ( v , v ) ] ,  u, v eD[a] .  

The bilinear form ,u(u, v) is nonnegative definite, that is 

~(u, u)/> 0 for every u �9 D[a], 

in the sense of measures on X. Moreover from (2.2) we have: 

(2.4) I~(x)tz(u, v)(dx)=limt$0 ~1 I ?(x)(~(y)-5(x))(~(y)-~(x))pt(x, dy)m(dx) 
X X x X - d  

for every u, v �9 D[a] N L = (X, m), ~ �9 Co (X). 

From the characterization (2.4) and Lemma 5.4.3 in [18], we have the following 

Schwarz rule: 

For every u, v E D[a] N L = (X, m), f i f e  L ~(X, t~(u, u)) and g �9 L ~(X, ~(v, v)), 

then f . g  is integrable with respect to the absolute variation of ~(u, v) and 

moreover 

(2.5) 21fg ] I~(u, v) I <<.f2~(u, u) + g2~(v, v) 

in the sense of measures on X. By approximation we can extend (2.5) to every 

u, v �9 D[a]. 

The measures ~(u, v), u, v �9 D[a], do not charge sets of capacity zero in X and 

have a local character in X, that is, the restriction of the measure ~(u, v) to any open 

subset A of X depends only on the restrictions of u and v to A. More precisely if 

ul,  u2 �9 D[a] are such that ~71 = ~72 m-a.e, on A (then also q.e. on A), then 

l ~ ( u l ,  us) = 1A~(u2,u2) 

as measures on X, where 1A denote the characteristic function of A in X. Further- 
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more, we have 

1A~(u, v) = 0 

for every u ~ D[a] which is constant m-a.e, on A and for every v �9 D[a]. For these 

properties we refer to [24] Prop. 1.5.2 and [18] Lemma 5.4.6. 

By Do[a, A] we denote the closure of D[a] n Co(A) in D[a] for the intrinsic norm 

(a(u, u) + IlU]I2L~(X,,O) ~/2. By D~o~[a] we denote the space of m-measurable functions 

on X, such that for every relatively compact open subset A of X there exists a func- 

tion w e D[a] such that u = w m-a.e, on A. The measure ~(u, u) for u e Dloc [a] is de- 

fined on X by putting on every A 

1A~(u, u) = 1Ate(w, w). 

By Dloc [a, A], or simply by D~or [A], we denote the space of the functions u on A, such 

that there exists w e Dloc[a] with ~u = ~w for every ~ e C with supp~ cA. 

(d) The comparison principle. Let a and b be two regular Dirichlet forms of dif- 

fusion type with same domain D, such that 

;~b(u, u) <~ a(u, u) <~ Ab(u, u) ,  Vu �9 D 

for some constants 0 < ;~ ~ A. Then, an analogous inequality holds for the energy 

measures, that is, 

)~g.b(u ,u)<~Fa(u,u)>~A~b(u,u) ,  V u e D  

in the sense of measures on X, where t~  and Fb are the energy measures of the forms 

a and b, [24], [26]. 

(e) The Leibnitz rule. If  a is any regular Dirichlet form of diffusion type and F its 

energy measure, then 

~(uv, w) = ut~(v, w) + ,v~.(u, w) 

for every u, v e D[a] n L ~ (X, m), w ~ D[a], see [24] 1.5.2, [18] Lemma 5.4.2. 

( f )  The chain rule. For any regular Dirichlet form of diffusion type a the follow- 

ing property holds: 

For every v e D[a] n L ~ (X, m) and every Ul, ..., um�9  Dloc [a] n L ~ (X, m) and 

for energy V �9 C 1 (Rm), we have ~(ul, ..., urn) �9 Dloc[a] N L ~ (X, m) and 

,~('Q(Ul, . . . ,  Urn) , V) = (U 1 . Um)~t(Ui, V). 
i = 1  ~ ' "" 

The formula extends to arbitrary Ul, . . . ,  U m E Dlor [a], provided OV/Oxi are in addition 

uniformly bounded in R m and then ~(Ul . . . .  , u~) ~ Dloc[a], see [24] 2.1 (a), [18] Theo- 

rem 5.4.3. Note that, since the measure ~ does not charge sets of capacity zero in X, 
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the pointwise version of the functions occurring in the argument  of O~/axi can be tak- 

en equivalently in the m-a.e, sense or in the q.e. sense in X. 

(g) The truncation lemma. Let  a be a regular Dirichlet form of diffusion type 

and ~ its energy measure. Then, 

(2.6) tz(u +, v) = 1{~> o}~(u, v) 

for every u �9 D[a] and every v �9 D[a] V) L ~ (X, m), where ~ is the quasi continuous 

version of u, [26]. From (2.6) we have easily 

(2.7) ~(u + , u + ) = 1{~> 0b~(u, u) ,  Y u e D [ a ] .  

We recall that  k �9 Vk e R.  Therefore, for every u �9 and every 

v �9 Dlor [a] A L = (X, m), we have 

(2.8) /x((u - k) + , v) = 1{~ > k}tz(u, v), 

(2.9) ~((u - k) + , (u - k) + ) = 1{~ > ki~(u, u) .  

Moreover, if Ul, u2 �9 D[a] (or �9 D1o~ [a]) and v �9 D[a] A L ~ (X, m), then 

(2.10) tz(max (Ul, u2), v) = 1{~ > ~Sz(u l ,  v) + 1{~ > ~ }tz(u2, v). 

(h) The space Do [(9]. Let  a be a given regular form of diffusion type in X and let O 

be an open subset of X. By Do [(9] we denote the space Do [a, O], as defined in (c) 

above. By Theorem 4.4.2(i) of[18], 

Do[O] = { u e D [ a ] :  ~ = 0 q.e. on X - O } .  

We remark that, if O is relatively compact in X, if u �9 Dlo~ [a] and supp u c O, then 

u �9 Do[O]. In particular Do[O] coincides with the closure in D[a] of the set ff all 

v e D[a] with support in O. 

(i) M a x i m u m  principles. Let  a be a form that  satisfies Assumptions I and II. 

Let  O be an open subset of some intrinsic ball B r Xo. Let  u �9 Dloc [a] A C(~)) be such 

that  

f tz(u,v)(dx)<<.O, VveDo[(9],  v~>0 m-a.e, in O. 

O 

Then, 

u ~ max u in O. 
O0 

In fact, let M := m a x u  and ~ > 0. Then, (u - M - e) § vanishes on a neighborhood of 
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aO, hence, by (h), ( u -  M -  s)+ �9  Therefore,  

f~( u , ( u  - M -  ~)+ )(dx) ~< 0 ,  

thus, by the truncation lemma 

f bc((u - M -  ~)+,(u  - M -  ~)+)(dx) ~< 0.  

0 

By Poincar6's inequality, (u - M - ~)+ = 0, m-a.e, in (9. Therefore  u ~< M m-a.e, in (9, 

hence the conclusion. 

By a similar argument  we prove that  if u �9 Do [BR] A C(BR - B~), where B~ C~B R 

are two concentric intrinsic balls in Xo, and u satisfies: 

I ~(u,  v)(dx) ~< 0 ,  

BR 

Vv �9 D O [BR - -B~], v >i 0 m-a.e, o n  BR, 

then 

u ~ < m a x u  in B R - B ~ .  
aBr 

We also need a deeper  maximum principle, for local subsolutions which may not be 

continuous up to the boundary. Le t  u �9 Dloe[X], such that  

I /~(u, v)(dx) ~< 0,  Vv �9 Do [0] ,  

0 

v ~ 0 m-a.e, in O. 

Then, 

~(x) ~< sup ~ q.e. x �9  
X - O  

where g is a q.c. version of u and the supremum on the (closed) subset X - O is taken 

in the essential capacity sense. 

I t  suffices to prove that  u ~< M m-a.e, on O whenever  ~ < M q.e. on X - (9, for an 

arbi t rary  constant M �9 R.  Now, the function (~ - M) § vanishes q.e. on X - O, hence, 

by (h), (u - M) + �9 Do[O]. Therefore,  

I t~(u,(u - M )  + )(dx) ~< 0 

(9 

thus, by the truncation lemma and Poincar~ inequality in Do [O], u ~< M m-a.e, in O, 

hence also ~7 ~< M q.e. in O. 

Similar minimum principles hold for local supersolutions in (9. 
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3. - C u t - o f f  f u n c t i o n s .  

In this Section we consider a regular Dirichlet form of diffusion type a, with en- 

ergy measure F and separating core C, that  satisfies Assumption I of Section 1. We 

observe that, due to the truncation lemma, if d is the distance defined by (1.8) we 

have 

d(x, y) = sup {~(x) - ~(y): ~ �9 C*, t~(~, ~) ~< m on X} = 

= sup {~(x) - ~(y): ~ + c e C, c �9 R,  ~(~, ?) ~ m on X } ,  

where C* denotes the set of all bounded continuous functions ~ on X that  in a neighor- 

hood of their support coincide with the supremum or infimum of a finite number of 

functions belonging to C up to an additive constant. Clearly C*r162 and 

C* N Co (X) is a core. We recall that, due to Assumption I, X with the distance d is a 

space of homogeneous type, [8], in particular the following covering lemma holds 

(see [8] Ch. 3, Lemma 1.1). Below, we simply denote D[a] by D. 

LEMMA 3.1. - For every ~ �9 (0, 1), the ball B(x,  r), x �9 X, 0 < r < ~b, can be covered 

by the union of balls B(y i ,  zr) with yi �9 B(x,  r) , for  i = 1, 2 . . . .  ,1 such that I < c/s~ for  

suitable constants c > 0 and ~ > O. The constants c and ~ are independent of x, r and 

and depend only on Co. 

Our construction of cut-off functions will be based on the following lemma: 

LEMMA 3.2. - Given B(x, r)r162 X,  0 < r < ro and ~ > 1, there exists a f~nct ion 

~ e D[a] n Co(X), ~ e C*, such that ~(x) = 1, ~-=- 0 on X -  B(x,  r), 0 ~< ~ ~< 1 on X, 

moreover 

~(~, 9) ~< ~ on X.  r2 m 

PROOF. - Let  s > 0 be such that  (1 - 3s) -1 < ~1/2. Le t  B(y~, zr) with Yi �9 B(x,  2r), 

i = 1, ..., l be the family of balls of a covering of B(x,  2r) given by the Lemma 3.1. 

Let  B(yjP,~r), j = l ,  . . . , l ' ,  be the subfamily of all B(y i ,  ~r) such tha t  

B(y i ,  st) 0 B(x,  2r) ~ 0. Since d ( y j ,  x) >I r - st, there exists ~j, ~j + c �9 C for some 

c e R,  with t~(~0j, ~j) ~< m, such that  

~j (x) - ~j (yj') >1 (1 - ~)r - zr.  

As already remarked, any such ~j can be modified by an arbi trary constant, so it is no 

restriction to assume in addition ~3(x) = (1 - s)r ,  hence ~ j ( y j )  <<. ~r. Therefore, for 

every y e B( yj' , er) we have 

~j(y)  <~ d(y, yj' ) + ~j(yj' ) < 2~r. 
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We now define 

= min {r j = 1, ..., l '} .  

We have ~ e C*, ~(x) = (1 - z)r,  ~(y) < 2sr for every point y in 8B(x, r). Since ~ is 

continuous on X and B(x, r) is relatively compact in X, there exists a relatively com- 

pact neighborhood U of B(x, r), such that  } < 2st  on U - B(x, r). 

Let  a �9 D ~ Co (X), ~/> 0, be such that  e = 1 on B(x, r), a - 0 on X - U ([17] Lem- 

ma 1.4.2), and let 

= (~- -2~r)  a .  

We have ~ e D N C o ( X ) ,  ~ ( x ) = ( 1 - 3 ~ ) r ,  ~ < 0  in U - B ( x , r ) ,  ~ = 0  in X - U ,  

~(y) < 0 for every y e 8B(x, r). We now define 

= (1 - 3s)r 

We have p e D N Co(X), ~(x) = 1, p(y) = 0 for every y e X -  B(x, r). By the trunca- 

tion lemma, 

>(~' ~) ~< 1{~ >~ (1 - 3 ~ ) 2 r  2 f*(~' ~) ~< 1B(,,r) (1 --3e)2r at*(~' ~) < - -  r 2 (1 3~)ur2m = - -  

on X. Moreover, the support of p is contained in B(x, r) and p coincides on B(x, r) 

with {[(1 - 3~)r]-1(~ - 2st) V 0} A 1, therefore p e C*. 

PROPOSITION 3.3. - Given B(x, r) cB(x ,  2r) cc X, 0 < r < ro, q e (0, 1), there exists 

e C* with the properties: ~o - i on B(x, qr), ~ - 0 on X - B(x, r), 0 ~< p ~< 1 and 

ix(p, p) ~< (10/(1 - q)2r2)m on X. 

PROOF. - Let  r be the function associated, according to Lemma 3.2, with B(x, r) 

and let ~ > 1 to be chosen later. Let  

2 

~ -  1 _  q-r 

Then 

48 
t*@, ~) ~< m on X,  

( 1  - q)2r2 

hence 

(1 - q ) f  1 (1 -q)r ,  onX. 
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Moreover (((1 - q)r)/281/2)~ �9 C*. Therefore,  for every y � 9  qr) we have 

281~ 
~(y) ~ ~(x) (1 - q ' r  qr" 

Since ~ ( x ) =  2 / ( 1 -  q), this implies 

2 - 2q81/2 
~(y) i> /> 1 

1 - q  

provided we choose 81/2�9 (1,(1 + q)/2q), what is allowed because q e (0, 1). Since 

( 1 + q)/2q decreases from + ~ to 1 as q increase from 0 to 1, we can additionally chose 

8 =  8(q) in the above range such that, for example, 48 ~< 10 for every q �9 (0, 1). 

Thus 

10 
t~(~, ~) ~< m on X.  

(1 - q)2r2 

We now take a �9 D A Co (X) such that  a -= 1 on a neighborhood of B(x, r),  a I> 0, and 

we define 

~=~}A~. 

Since supp ~ r  r), we have ~ = ~ A 1 on a neighborhood of supp 9, hence ~ e C*. 

Since ~ I> 1 on B(x,  qr), we have ~ = 1 on B(x,  qr). Moreover, ? -- 0 on X - B(x, r) and 

0 ~< ~ ~< 1 on B(x,  r) hence on X. Finally, by the truncation lemma 

10 

(1 - q)2 r 2 
m on X .  

We will re fer  to the function ~ of Proposition 3.3 as to the cut-off function of the 

ball B(x,  qr) in the ball B(x,  r). 

COROLLARY 3.4. - Given B(x,  sr) r B(x,  2tr) cc X, 0 < 2tr < to, 0 < s < t, there 

exists a funct ion ~ �9 C*, such that ~ =-- 1 on B(x,  sr), ~ - 0 on X - B(x,  tr), 0 <~ ~ <<. 1 

on X, and moreover 

tt(~, 9) ~< 10 m on X .  
( t  - s)2r 2 

To prove the result  it is enough to apply Proposition 3.3, with r replaced by  tr and 

q = s/ t .  

COROLLARY 3.5. - Given B(x,  2 ( 2 t - s ) r ) r 1 6 2  and the anuli B(x,  t r ) -  

- B(x,  st) r B(x, (2t - s) r) - B(x,  (s 2/t)  r),  0 < 4tr < to. 0 < s < t, there exists a func- 

tion ~ e C * - C *  such that ~ =-1 on B(x,  tr), ~ =-0 on B ( x , ( s 2 / t ) r )  and on X -  
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- B ( x , ( 2 t  - s) r), 0~<9<~1 on X, and  

~'(~, 9) < - - 2 0 - - m  on X .  
( s / t )  2 (t - s) 2 r 2 

PROOF. - Let  ~ be the cut-off function of B(x ,  tr) with respect  to B ( x , ( 2 t  - s ) r )  

and let ~ be the cut-off function of B ( x , ( s 2 / t ) r )  with respect  to B(x ,  sr). We 

have 

10 
~ ( ~ , ~ ) <  m o n X ,  

(t - s) 2 r 2 

as well as 

10 
~(9, 9) ~< m on X .  

( s / t )  2 (t - s) 2 r 2 

We define 9 = ~ -  ~. We have ~ = 0 on B ( x , ( s 2 / t ) r )  and on X - B ( x , ( 2 t - s ) r ) ,  

moreover 

~(~, 9) = ~(~, ~) + ~(9, 9) 

because ~ = 1 on a neighborhood of supp ~. Therefore,  

2O 
t~(9, ~) ~< m on X .  

( s / t )  2 ( t  - s )  2 r 2 

As an application of a cut-off function argument  we give the following generaliza- 

tion of the Sobolev-Poincar6 inequality (k) of Section 1: 

PROPOSITION 3.6. - Le t  u be in  D~oc [Xo] and  B(x ,  2tr)  r162 Xo. Then, 

B(x, sr) B(~r tr) 

1 + m  
(t - s) 

f u 2 m ( d z  ) 

B(x, tr) 

0 < So < s < t < 1, where c is a constant  depending  only  on So, co and  c2. 

1/21 , 

Here  and in the following of the paper  we use the notation 

~ _ 1 f 
re(B) 

B B 

for every open subset B of X. 

PROOF. - I t  is not restrictive to assume u e L ~ (X, m). Moreover, we approximate 

u in the intrinsic norm with a sequence u e C, n = 1, 2, . . . .  Let  ~ be the cut-off func- 
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tion of B(x, st) with respect to B(x, tr). From the Sobolev-Poincar6 inequality (k) of 
Section 1, we obtain by the Leibnitz rule and by (2.5): 

1# 

lUnl~ gSm(dx) <<. C2 r 

B(x, tr) 

[ B(x, tr) 

[ B(x, tr) 

<~ 2c2r[ 

By letting n ~ ~,  we obtain: 

l /s  

lu]~ 9~m(dx) <. 2c2 

B(x, tr) 

B(x, tr) 

t l/2 

~(u~ 9, u~ 9) m(dx)| 
] 

(9~/z(u~, u~)(dx) + 2u~gtz(u~, 9)(dz) + u~/z(9, 9)(dx))tl/2 

92t~(u,~, u,~)(dx) +B(~, ~tr) U~t~(9' 9)(dx)] ~/~ 

1/2 

B(x, t~) ( t - s) 2 r2B(x, tr) 

r 2 92/z(u, u)(dx) + 10 u2m(dx) 
[ B(x, tr) ( t  -- S)2r2B(x, tr) 

from which the result follows. 

4. - G l o b a l  L ~ - e s t i m a t e s .  

In this section we will prove a global L m-estimate for the solution of the 
problem 

a(u, v) = [fvm(dx) (4.1) 
BR 

VV �9 Do[BR], u �9 Do[BR] with Do[BR] = Do[a, BR], where BR is an intrinsic ball of 
radius R and the closure of the concentric ball B2R is contained in X0. 

THEOREM 4.1. - Let u be a solution to (4.1) with f e  L p (BR, m), p > max(v/2, 2), 
where v is the constant occurring in (k). Then, 

(4.2) sup lui <~ cR2m(BR)-~/PIIfIILp(BR,,~), 
BR 

where c depends only on the constants co and cl of Section 1. 
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PROOF. - The proof uses Stampacchia's method for the usual elliptic case [36]. 

Let 

v - k  

fi(z) = (signv)max(Iv I - k ,  0) = 0 

z + k  

where k > 0. We observe that 

if v > k ,  

if z<  - k ,  

Z(~) = (~ - k) + - (~ + k)- .  

For every n e N, let ~ := ~(u~), where 

I u if l u l l < n ,  

~,n = ?b ~_f y, > n ,  

- n  ifu < - n .  

We have us, ~ e Do[BR] and by repeatedly applying the truncation lemma we 
find 

g 

a(u~, ~ )  = | ~(u~, ~)(dx)  = ] ~(~n, ~n)(dz) = a(~n, ~ ) .  

BR BR 

For k fixed, as n --. + ~ ,  Un converges strongly to u is the intrinsic metric and ~ con- 

verges weakly in the same metric to ~:= fi(u), [18] theorem 1.4.2(iii) and (v), and 

~ Do[BR]. Therefore, we find 

a(~, ~) ~< lim~_~+=inf a ( ~ ,  ~ )  = a(u, ~) = I f /m(dx).  
BR 

For every k > 0, let A(k):= {x eBR, [ul > k}. Again by the truncation lemma and 

by Sobolev-Poincar~ inequality, we have 

= I~l~m(dx) ~< 

BR A( 

c2Rm(BR)I/,- 1/2 (A(! \l/s' [ r <~ 

c~ ~ m ( B R )  2/~- 

R 2 << c 2 ---~m(BR)2/s- 

s + ~ tz(~, ~)(dx) ~< 

A( B R 

if lllfll2L~(BR,,~)m(A(k))r + -2 ~(~, ~)(dx), 

BR 
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where s' = s / ( s  - 1) and p > s',  therefore 

(4.3) a(~, ~) = I lz(~, r <~ c~R~m(Ba)2#-~}lfll2Lp(SR,~)m(A(k)) (2/~'-2/p~ 
BR 

From the Sobolev-Poincar~ inequality, if we put M = 2s/ (s  - 2) (then s = 2 M / ( M  - 

- 2 ) ) ,  we have 

(4.4) i~l~m(dx) = [( lu I _ k)+ ]2M/(M -e)m(dx) ~< 

B \B~ 

~. ~ m(A(k)) (21 , ,  - 2/p) c 2 R  z ,~(~, ~) ~ c ~ R 4 m ( B a )  2/(~-~) J L~(B~,,~) ~ 

BR 

therefore 

If h >  k > 0 we have 

thisr~ 

(4.6) 

with 

k)+ ]2M](M 2)I(M- 2)]M 4 4 -4[M 2 - 2/p) 
<<. c~R m(BR) IlfllLp(,R.,~)m(A(k))(2/~' 

] 

C4R4m B -4]M 2 v m))M/(M-2). 1 
m(A(h))  <~ ( 2 ( R )  ilfllL (,R. (h - k) eM/~M-2~:m(A(k))~ 

f l= s '  P M Z 2  M P - 2 '  

which is greater than 1 since p > M / 2  = s / (s  - 2). From Lemma 4.1, p. 93 of [36], this 

implies 

(4.7) m(A(d)) = 0 

for 

2 2 d = (c~ Ram(B~)  -'/M IlfllZ (, , l/p) = cz R IlfllL,(8 . 

From (4.7) we have the result. 

We now define the regularized Green func t ion  for the form a, relative to a ball 
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B(x, r) cXo and to ball B(y, p) r B(x, R), both being intrinsic balls for a, as the sol- 

ution of the problem 

(4.8) a(G~, B(,, R), V) = ~ um(dx) Vv �9 Do [a, B(x, R)], G~ B(~, R) �9 Do [a, B(x, R)]. 
. J  

B(y, ~) 

We recall that, due to the Poincar6 inequality, problem (4.8) has a unique solution. 

Moreover, G~8(~,R) is nonnegative, as it can be seen by a simple truncation 

argument. 

y LEMMA 4.2. - We have Gp, B(~, R) e L (B(x, R), m) and 

(4.9) ( 1 f 
m(B(x, R)) B(~, R) 

, \ l / p ,  

(G~ B(~, R))P m(dx) |  

] 
R 2 

<.c 
m(B(x, R)) 

Vy �9 B(x, R -  p), where c is a structural constant. Then 

(4.10) GyB(z,R)m(dx ) <. cR 2. 
B(~, R) 

p' = p / ( p -  1), p as in Theorem 4.1. 

PROOF. - The first part of the result in an easy consequence of the L ~ global esti- 

mate of Theorem 4.1. 

Again from Theorem 4.1 we have 

I G~ B(~, R)fm(dx) IIflIL~(B(~, R), ,~)m(B(x, R)) <. cR 2 lip 

B(x, R) 

uniformly in p. Then 

(4.11) ( B(~,R)I (G~B(~ R))P'm(dx) ~I/p' ' I <" cR2m(B(x' R))-I/P 

and (4.9) easily follows from (4.11). 

Finally (4.10) is an easy consequence of (4.9). 
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5. - Local estimates and Harnack inequality. 

We first prove a Caccioppoli type inequality: 

PROPOSITION 5.1. - Let u be a local solution (positive subsolution) in a open 
bounded set r c Xo of the problem: 

a(u, v) = 0, u �9 Dlo~ [O], Vv �9 Do [0] 

( a ( u , v ) < 0 ,  u�9 u1>0,  Vv�9 v>lO). 

Let B, c Bt c Bzt cr O be concentric balls, 0 < s < t <. 1. Then 

z(u, u)(dx) < 4 0  f u2m(dx).  

PROOF. - We choose as test function uk ~e, where ~ is the cut-off function of B~ rel- 

ative to Bt and 

u fl lul  

uk = k f l u > k ,  

- k  if u < - k  

for every k E N. We have, by the Leibnitz rule and the chain rule and by (2.5): 

0 >I a(u, u ~  2) = f ~ ( u ,  uk~Z)(dx) = 
0 

= f ~2~(U, Uk)(dx) + I UktZ(U, ~Z)(dx) = 

o o 

= f ~2tL(U, Uk)(dx) + 2 f uk~t~(u, ~)(dx) ~ 
o �9 

1 f ~z/z(u, u ) ( d x ) -  2 f?~lz(?, ~)(dx) I> f ~2~(u, u~)(dx) - ~ 
0 r 0 

Then 

1 f u~/~(~, ~)(dx) < f~Z~(u,  uk) (dx) -  ~ f ~2~(u, u ) ( d x ) < 2  

Bt - Bs Bt - Bs 
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As k--* + ~ ,  by the truncation lemma 

I ~2~(u, uk)(dx) --~ I ~2t~(u' u)(dx). 
o o 

Therefore, from the preceding inequality 

Ii.~(u,u)(dx)< " I~2~(u,u)(dx)<. 4.__._0_0 ! u2m(dx). 

We recall now a Real Analysis lemma, whose proof we give for sake of 

completeness. 

LEMMA 5.2. - L e t  u e L | ( B ( x ,  r) ,  m )  and assume there exists positive constants 
C, L such that for every s, t with 1/2 ~< s < t ~< 1 we have 

(5.1) sup l ul <~ C 
8(~, ~r) ( t  - s)  L 

)l/2d, 
l ul2~m(dx) 

B(x, tr) 
d > 0 .  

Then for every p > 0 there exists a constant cp, which depends on p, C, L, d and on the 
constant co in Assumption I (ii) buty does not depend on u, such that 

sup lul ~ cp lulPm(dx) . 
B(x, ~r) B(x, r) 

PROOF. - If p i> 2d the result follows from (5.1). Assume p < 2d and denote I(s) = 
/ \1/2d 

=1 ~ lul2dm(dx)} . I t i snotres t r ic t ivetoassume ~ ]ulPm(dx)= l . I f l / 2  <<. 
\ B(x, sr ] B(x, r 

~< s < 1 we have, b y  taking the duplication property of Assumption I into ac- 

count: 

I ( s )  = lulPlul2~-Pm(dx) < ( sup lul) 1 -p /2d  lulPm(dx) 
B(x, sr) B(x, st) B(x, st) 

I ~ I 1/2d 
<~ c( sup lul) 1-p/2d lulPm(dx) = c( sup lUl) 1 -p/2d 

B(x, s) B(z, st) B(x, r) 



M. BIROLI - U. MOSCO: A Saint-Venant type principle, etc. 151 

From (5.1) we have for 1/2 ~< s < t < 1: 

(5.2) I(s) <~ c-C~ I(t) ~, 0 = I P 
(t - s) L~ 2 d '  

therefore, 

(5.3) logI(s) ~< logc + 01ogC - LOlog(t - s) + OlogI(t). 

We choose s = t b, b > 1, and we obtain 

(5.4) logI(t b) ~< logc + 01ogC - LOlog(t - t b) + OlogI(t). 

We divide (5.4) by t and we integrate from (2/3) 1/b to 1: 

1 1 1 

f f log,(t) flogi(t) logI(tb) dt ~< C(O, L) + 0 ~ d t  < C(O, L) + 0 
(5.5) ~ t t 

(2/3)1/b (2/3)1/b 2/3 

~ d t .  

If there exists t e  (2/3, 1) with I(t) ~< 1, the result follows from (5.1). Thus, we sup- 

pose I(t) > 1 in (2/3, 1). 

Choosing ~ = t b, we have 

- - d r .  

1 1 

f l~ -~i f l~165 

(213)11b ~t3 

Then, from (5.5), 

1 1 

I flog, t  1_ ~l~ dt ~< c( O , L )  + 0 
b t t 

213 2/a 

~ d t .  

Choosing b such that l i b -  0 > 0, 

1 

f logI(t) 
t 

2/3 

Then there exists [ e (2/3, 1) with 

1 )-i 
~ d t  <~ c(O, L) -~ - 0 . 

I(~) ~< c 

and the result follows. 
By the same methods of Lemma 5.2 we obtain the following result 

PROPOSITION 5.3. - Let u be a local solution or a positive local subsolution, as in 
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Proposition 5.1. Then, for every r > 0 with B(x, 2r) cc O, we have 

1/2 f 
lul2m(dx) <. c [ulm(dx),  

B(x, r/2) B(x, r) 

where c is a structural constant. 

f 
PROOF. - Without loss of generality we can suppose 3L ]u I m(dx)=  1. De- 

note B(~, J~) 

I(s) = 

i /2  

1 ~ < s < l .  ]ul2m(dx) , -~ 

B(x, sv) 

By HSlder's inequality, we have for 0 < 0 < 1: 

I(s) <~ lul(2-~176 [ulm(dx) 

B(x, st) B(x, st) 

B(x, ~r) 

]u](2 - o)/(1 - o)m(dx)) (1 
- 0)/2 

We now choose 0 e (0, 1) such that (2 - 0)/(1 - 0) = s, where here s > 2 is the expo- 
nent in the Sobolev-Poincar6 inequality. We have, by Proposition 3.6, 

]u 1(2 - o)/(1 - 0)m(dx)) (1 

B(x, st) 

- o ) / ( 2  - o) 

~< 

~ < c  

[( )1/2( )ij] 
and by Caccioppoli's inequality 

B(z, s~) 

(1  - 0 ) / ( 2  - o) c 

[ u l ( 2 - ~ 1 7 6  <" ( t  - s )  

i/2 

[ul2m(dx ) . 

B(x, tr) 
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Then 

I(t)  ( 1 - ~  8 < t < 1 1 
0)/2 

1 
I ( s )  -< c ~ j , ~ . 

The proof can be completed by proceeding as in the proof of Lemma 5.2. 

Now we prove a boundedness result for local solutions or positive subsolutions 

relative to a(u, v), which may be interesting in itself. 

THEOREM 5.4. - Let u be a local solution (positive subsolution) in B(x, 4r) r162 Xo, 

i.e., 

a(u, v) = 0(<. O) Vv �9 Do [B(x, 4r)](v i> 0), u �9 Dloc [B(x, 4r)](u i> 0). 

Then, for every p > 0 we have 

where cp 

sup lul <~ Cp lulPm(dz) 
B(x, r/2) B(x, r) 

is a structural constant depending on p. 

PROOF. - By Lemma 5.2 it is enough to prove that  for a suitable fl > 0 and for 

every s, t with 1/2 ~< s < t ~< 1, we have 

(5.6) sup l ul  ~< c 
~(~, ~) (t - s) ~ I 

i12 

lu[2m(dz ) . 

B(x, tr) 

Let  ~ be the cut-off function of B(x, (s + ~) r) with respect to B(x, (t - ~) r) where s = 

= ( t -  s)/4. By Corollary 3.4, we have 

10 ~(~, ~) < m .  
(t - s)2r z 

We consider the regularized Green function GYp = G~ B(~, 4r), Y �9 B(x, st). 

We have 

• (  uk ~m(dx) a(G], uk ~) ~ ~, G] 
f 

~(uk )(dx), 
B(y, •) B(x, 4r) 

where 

k u > k ,  

uk = u Jul <- k ,  

- k  u <  - k .  
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We recall that G~ ~ Do[B(x, 4r)] gl L | (B(x, 4r), m). By  the Leibnitz rule and by  

Proposition 5.4.3 in [18], we obtain 

~ uk~m(dx) = ] [ ~ ( u k ,  G])(dx)  + uk/z(~, G])(dx)]  = 

B(y ,  ~) B(x ,  4r) 

B(x ,  4r) B(x ,  4r) 

+ - -  ( I ) 1 1 2 (  s )1/ c (G~) m(dx) ~(uk, uk)(dx) 
(t - s) r 

B ( x , ( t  - Dr) - B ( x , ( s  + Dr)  B ( x , ( t  - Dr)  - B ( x , ( s  + ~)r) 

+ 

tr) B ( x , ( t  - ~)r) - B(~,  (s + e)v) 

Passing to the limit as k---> + oo, we find 

S 
B(y ,  p) 

u~m(dx) <~ s 
B(x ,  (t - r - B(x ,  (s + e)r) 

)1/2 
�9 f ~(u, u)(dx) 

B ( x , ( t  - Dr)  - B ( x , ( s  + ~)r) 

+ 

+ - -  (s ;( i ; c ful2m(dx) ~(G~ G~)(dx) 
(t - s) r ' " 

B(~, tr) B ( x , ( t  - ~)r) - B ( x , ( s  + ~)r) 

I f  u i s  a local solution the same relation holds also for - u ,  then in general we can 

write 

c ( ~1/2 
I ~ u~m(dx) l<<" ( t - s ) r l  f (G~)2m(dx)} " 
B(y ,  ~) B(x ,  (t - c)r) - B ( z ,  (s + ~)r) 

( ; )ij~ 
�9 ~(u, u)(dx) 

B ( x , ( t  - Dr)  - B ( x , ( s  + Dr) 

+ 

+ - -  )( f (t - s)r [ul2m(dx) 1/2 
B(x ,  tr) B(x ,  (t - ~)r) - B ( x , ( s  + Dr)  

~(G y,  GY)(dx)) 1/2 . 
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From Caccioppoli's inequality we have 

I I 
(x ,  (t  - e)r) B ( x ,  tr) 

By the same methods used to obtain the Caccioppoli inequality and using the cut-off 

function of B(x ,  (t - ~) r) - B(x ,  (s + ~) r) with respect to B(x ,  (t - E/2) r) - B(x ,  (s + 

+ ~/2)r).  we find 

( I )1j2 tL(G], G])(dx) 

B(x ,  (t  - Dr) -B (x ,  (s + ~)r) 

B ( x ,  (t  - ~/2)r) -B (x ,  (s + ~/2)r) 

Therefore, we have 

(5.7) 

B ( y ,  ; )  

<< 

(t - s)2r 2 

( )1j2( )1 
B(x ,  (t  - ~/2)r) - B(x ,  (s + e/2)r) B(~,  tr)  

Taking into account the structure of homogeneous space of X, Lemma 3.1, we can 

cover B(x ,  (t - ~/2)r) by balls B(x i ,  ~/32r), i = 1, ..., l, where l <<. ~ / ~  <~ c / ( t  - s) ~, 

for some c > 0 and a > 0 depending only on Co, xi e B(x ,  (t - s/2) r). Moreover we ob- 

serve that,  due to the duplication property, 

[Suppose 2 -N < ~ < 2 -(N-l) , then 

coN + 2m(B(x i ,  ~ ) )  >- m(B(x i ,  4r)) I> m ( B ( x ,  tr)) . 

Now ( N -  1)1og2 ~< - l o g ~ N  ~< 1 - (logs)/(log2). Taking c = co s , v = 

= (log co)/(log2) we obtain (5.8).] We consider the bails B(x~, (~/32)r), i = ix, ..., i , ,  

whose union covers B ( x , ( t -  ~/2)r) - B ( x , ( s  + ~/2)r), with B ( x , ( t -  ~/2)r) - 

- B(x ,  (s + ~/2) r) A B(x i ,  (~/32) r) ~ 0 for every i = i l  . . . .  in. We have 

B(xi ,  s / 4 r ) c B ( x ,  t r ) - B ( x ,  sr) for every i = iz . . . .  , in. From Proposition 5.3 and 
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(5.8) we obtain 

f '/2 <~ c m(B(xi, (s/16) r)) 
B(xi, (~/32)r) B(xi, (~/16)r) 

G] m( dx) <<. 

c f G]m(dx) <~ 
m(S(xi, (s/16) r ) )  1/2 

B(xi, (~/16)r) 

c 

(t - s)~/2m(B(x, tr)) 1/2 
B(x, tr) 

G~m(dx). 

Summing up with respect  to i = il ,  ..., in we find 

~ \1/2 
(5.9) I (G~)Zm(dx)) ~ 

B(~, (t - ~/2)r) -B(x, (s + ~/2)r) 

where 7 = a + v/2. 
From (5.7), (5.9), we have 

C 
[ ~ u~m(dx)  [ <<. ( t _  s)r+2r2 f G m(dx)i 
B(y, ~) B(x, tr) 

hence, by Lemma 4.2 

(5.10) 
(t - s) r + 2 

B(y, ~) 

c m(B(x, tr)) 1/2 
(t - s)r 

B(:~, tr) 

Gym(dx) 

[ulZm(dx))l/U, 
B(x, tr) 

) 1/2, 

[ul2m(dx) 
B(x, tr) 

that holds uniformly with respect  to y e B(x, st) and ~ > O. In the limit as p -~ O, by  

Lebesgue theorem, [7], we find 

C sup ]u] 
~(~, 8r) ( t  - s )  r + 2 

what proves (5.6). 

1/2 
~ [ul2m(dx)) , 

B(x, tr) 

We recall that  a function u on X is said to be of bounded mean oscillation in an 

open subset  (9 of X, if u eLl ( (9 ,  m) and the following seminorm is finite 

[[U[IsMO, O:= sup m(B)-~f [u(x) - z~[~m(dx), 
B 

where g denotes the average 

(tB = m(B)-i I u(x) m(dx) 
B 
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and the supremum is taken over the family of all intrinsic balls B = B(x, r) contained 

inO. 
In [1] the classic John-Nirenberg's lemma in euclidean spaces has been extended 

to BM0 functions on homogeneous spaces, such as X. In the following we need, how- 

ever, a local version of this result, Proposition 5.5 below. We omit the proof, that can 

be given by relying on Theorem 1.2 of[8] and adapting the arguments of[6] to the 

present local setting. 

PROPOSITION 5.5. - Let B(xo, 12r) c X, 0 < 12r < ro and u e L ~ (B(xo, 12r), m). 

Then for every x �9 B(xo, r) and every z > 0 we have 

_ a )m(B(x, r)) m({y �9 B(x, r): l u(Y) - UB(~, r) l > ~} ~< A exp ]lull * 

where llull, = llulI,MO,8(~o, 12~)and A >I 1, ~ > 0 are suitable constants, depending only 

on the constant Co in Assumption L 

COROLLARY 5.6. - Let u be a function of bounded mean oscillation in 

B(xo, 12r) r X, 0 < 12r < to. Then, 

(5.11) ~ e x p {  ~---E-ulm(dx)~exp(-~Mu)m(dx)<<-A 
[ 2 M  ] 

B B 

for every B = B(x, r), x �9 B(xo, r) and arbitrary M > IlullBr~o, 8(~o, 12~), where a > 0 and 
A >I 1 are the constants occurring in Proposition 5.5. 

P R O O F .  - For every a > 0 we have 

I e x p ( a ] u ( x ) - ~ B I ) m ( d x ) =  I m(L~)aexp(az)d~,  
B 0 

where L: := {x �9 B: tu(x) - u~l > z}, z > 0. Therefore, by Proposition 5.5, 

A-o~ 

] e x p ( a ' u - ~ ' ) m ( d x )  <~ I A e x p ( - ~ . z ) m ( B ) a e x p ( a z )  d~ 

B 0 

<~ 

o 

for arbitrary M > llu]l,. 
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By choosing a:= (1/2)(a/M), we obtain 

(5.12) 

B 

- - ~ - A .  

From (5.12), both inequalities below follow: 

f exP( 
B 

I exp (-~M (u(x)-~B))m(dx)<<.Am(B). 
B 

Therefore 

~exp(~Mu)m(dx)<<-Aexp(~M~S ) , 
B 

~ e x p ( -  2 ~ u ) m ( d x )  <<-Aexp(-- 2-~U--B ) , 
B 

hence the conclusion (5.11). 

The proposition below affirms that a suitable power of any non-negative superso- 

lution is locally a weight in the class A2 of Mukenhoupt (see [11] for the defini- 

tion). 

We consider an open subset (9 of Xo and a function v that satisfies: 

v e Dloe [r A L = (O, m),  
(5.13) 

a ( v , w ) ~ O  VweDo[(2], 

v >I 0 m-a.e, in O, 

w >I 0 m-a.e, in (?. 

PROPOSITION 5.7. - Let v satisfy (5.13) and let B(xo, (4~ + 12)R) c r x e B(xo, R), 
0 < r <<. R, v -~ 0 m-a.e, in B(x, r). Then, 

vrm(dx) ~ v-Ym(dx)<.A, 
B(~, r) B(x, r) 

where y ~ (0, 1) is a suitable constant depending only on Co, Cl, K, and A >I 1 is a con- 
stant depending only on Co. 

As a consequence, as stated in Corollary 5.8 below, the v Y. m inherits the duplica- 

tion property of the measure m, with a duplication constant cg that depends only on 

the duplication constant Co of m. 
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COROLLARY 5.8. - Let v satisfy (5.13) and let B(xo, (4K + 12)R) r (?, x �9 B(xo, R), 
0 < r <<. R. Then, 

(5.14) I vYm(dx) <. cg I vrm(dx)' 
B(x, r) B(x, r/2) 

where cg = Ac~ and ~, and A are the constant occurring in Proposition 5.7. 

In order  to prove Proposition 5.7 we need some preliminary lemmas. 

LEMMA 5.9. - Let v satisfy (5.13) and let B(x, 4r) c (?. Then, 

I m(B(x, r)) 
~(log(v + ~), log(v + ~))(dx) ~< 20co r2 , 

B(x, r) 

for every ~ > O. 

PROOF. - For  every ~ > 0, v~ := v + ~ e Dloc [(?] A L ~ ((?, m) and, by (5.13), 

(5.15) ~ ~(v~, r ~> 0 
J 

B(x, 2r) 

for every ~ e Do[B(x, 2r)], r t> 0 m-a.e. Moreover, by the chain rule, 

logv~ e Dloc [(?] N L | ((?, m) ,  v~ -1 e D~oc [O] (~ L ~ ((?, m) 

and 

f 
B(x, 2r) 

/z(logv~, logv~) = v72~(v~, v~) = -/z(v~, v71) 

in(?. 

Now, let ~ be the cut-off function of B(x, r) in B(x, 2r). Then, 

p2~(logv~, logv~)(dx) = - I ~2~(v~' v~-l)(dx) = 

B(x, 2r) 

= -  ~ [z(v~' ~2v~-l )(dx) + I v[-l[z(v~' ~2)(dx) <~ 2 I 
B(x, 2r) B(x, 2r) B(x, 2r) 

where we have applied (5.15) with ~ := 72v~-1. 

~v~-l~,(v~, e)(dx) ,  
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By the Schwarz rule, we get 

~2~(logv~, logv~)(dx) ~< 2 ~2vjZ~(v~, v~)(dx)~ [ J ~(~, ~)(dx) 

B(x, 2r) B(x, ) ] \ B(~, 2r) 

~< 

I + z f 
B(x, 2r) B(x, 2r) 

Therefore, by Proposition 3.3 and the duplication property, 

m(B(x, r)) 
I ~/z(logv~, logv~)(dx) ~< 20c0 r2 

B(x, 2r) 

and since ~ -= 1 on B(x, r), the conclusion follows. 
The following lemma establishes a uniform bound for the local BMO seminorms of 

the functions log(v + r r > 0. 

LEMMA 5.10. - Let v satisfy (5.13) and let B(x, 4xr) r O. Then, 

+ ~) - + ~)IZm(dx) ~< ]log(v log(v C 

B(x, r) 

for every ~ > O, where c is a constant depending only on Co, cl and to. 

By log(v + ~) we are denoting the average of log(v + ~) in B(x, r). 

PROOF OF LEMMA 5.10. - By Poincar~'s inequality (j) of Assumption II, 

f [log(v + ~ ) -  log(v + z)[2m(dx)<~ clr z f ~(log(v + ~), log(v + z))(dx), 
d 

B(x, r) B(x, kr) 

hence the conclusion follows from Lemma 5.9 and the duplication property of  
m .  

We are now ready for the 

PROOF OF PROPOSITION 5.7. - Let B --- B(x, r) be an arbitrary ball in B(x0, 12r). 
Then, B(x, 4kr ) r  + 12)r)cO. By Lemma 5.10, 

uniformly in z > O, CBMO depending only on co, cl, k. 
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By Corollary 5.6, for every x ~ B(xo, r) we have 

~ e x p ( ~ M l O g ( v + s ) ) m ( d x ) f  exp(--~MlOg(v+~))m(dx)<A 
B(x, r) B(x, r) 

uniformly in ~ > 0, where we choose M = (CBM 0 + 1)V (a/2), with A I> 1 the con- 

stants, depending only on C, occurring in Lemma 5.10. Thus, 

~ (v+s)Tm(dx) + (v+~)-rm(dx)~<A f 

J 

B(x, r) B(x, r) 

uniformly in s > 0, where y = a/(2M) e (0, 1). Since v $ 0 in B(x, r), ]1 
~ (v + D-~m(dx) <~ A vYm(dx) 

B(x, r) B(x, r) 

and letting ~ ,  0, by 
v -~ e LI(B(x,  r), m) and 

the monotone convergence theorem we find that 

]1 
-Ym(dx) <~ A vYm(dx) V 

B(X, r) B(x, v) 

and this concludes the proof. 

For completeness, we give also the proof of Corollary 5.8, which is based on the 

same argument as in Lemma 4 of[7]. 

PROOF OF COROLLARY 5.8. - We can obviously assume that v ~ 0 in B(x, r), hence 

Proposition 5.7 applies. In particular, v Y/2 and v-r/e belong both to L 2 (B(x, r), m), 

moreover 

B(x, r/2) 

vY/ev-Y/~m(dx) <. 

B(x, r/2) 

\i/2 - i f  
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therefore 

B(x, r) 

vrm(dx) <~ A m(B(x, r/2)) (~, 2) 

hence the conclusion, by the duplication property of m. 

We are now in a position to prove Harnack's inequality, namely Theorem 1.1 of 

the Introduction. 

PROOF OF THEOREM 1.1. - We introduce the function z := (u + ~)q, where s > 0 and 

q<0. We first observe that, if B(c, 64r) cc(% then zeDlo~[B(x, 8r)]N 

NL ~ (B(x, 8r), m) and 

a(z, w) <<. O, Vw �9 Do[B(x, 8r)], w >I 0 m-a.e., 

i.e., z is a positive subsolution in B(x, 8r). In fact z~D1o~[B(x, 8r)]N 
(~L~(B(x, 8r),m). By the chain rule, if weDo[B(x, Sr)]NL~(B(x,  Sr),m) 

a(z,.): I I 
B(x, 8v) B(x, 8r) 

= q I ~(U'(U § $)q-lw)(dx~)-  q I w~(u § $ ' ( u §  $)q-1)(dx) ~ 
B(~, 8r) B(x, 8r) 

<<. - q ( q - 1 )  r w(u + s)q-2~(u + ~, u + e)(dx) ~< O. 

B(x, 8v) 

We can thus apply Theorem 5.4 again, this time to z, and we find 

(5.16) sup z <~ cp zPm(dx) 
B(x, ~) B(~, 2v) 

for arbitrary p > 0, where % is a constant depending only on co, c2, s and p. From 

(5.16), by taking q = - 1, we obtain 

B(x, v) 
B(x, 2r) 

letting ~ $ 0, by the monotone convergence theorem, u-P~LI(B(x ,  2r), m) and 
and 

)-l/p 

B(x, 2r) 
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We now choose p = ~,, where y > 0 is the constant in Proposition 5.7, and suppose 

B(x , (8k  + 24)2r) r O. Then, 

/ 
which together with the previous inequality yields 

B(x, r) 
B(x, 2r) 

We apply Theorem 5.4 to u, with p = ~,, and we finally obtain 

inf u t> cy2.~--- -1/~ sup u ,  
B(x, r) B(s, r) 

that  is, 

sup u~<c inf u ,  
B(x, r) B(x, r) 

where c = c~A 1/r depends only on Co, Cl, k, cz, s. 

I f  u is a non-negative local solution, 

u ~ Dlor [O], u t> 0 m-a.e, in O 
(5.17) 

a(u, w) = O, Vw e Do [O], 

O an open subset of Xo, then a refinement of Theorem 5.4 holds, that  follows from 

Theorem 5.4 by taking Corollary 5.8 into account. 

THEOREM 5.12. - Let u satisfy (5.17) and let B(x , (8k  + 24)2r) r r Then, for 

every p > 0 

B(x, r) \ B(x, r) 

where c~ is a constant depending only on p and on Co, cl, k, c2, s. 

PROOF. - By Theorem 5.4 

B(x, r) B(x, ) 

for every p > 0. We choose p = ~,, where ~- is the constant occurring in Corollary 5.8. 
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Then, by applying Corollary 5.8 twice, we get 

urm(dx) <~ (cd)1/~- m(B(x,  r)) 1/,[ 
~(~,2~) m(B(x, 2r)) B(,,~) urm(dx) 

<~ 

< (c~)2# urm(dx))l/~ 

B(x, r/2) 

~< (cg)2/r sup 
B(x, r/2) 

U ,  

hence, by applying Theorem 5.4 again with arbitrary p > 0: 

sup u <~ cy ( co ) " " sup u <<. cr ~ co )Z/r " 
B(x, r) B(x, r/2) 

B(ec!) 

uPm(dx)) lip" 

THEOREM 5.13. - Let u be a solution of the problem 

(5.18) 

a(u, v) = f fvm(dx) , 
�9 

Vv �9 Do [O], u e Dlo~ [O], 

where cocXo is an open set and f eLP(r m), p I> Po, Po > max{v/2, 2}. Then u is lo- 
cally H6lder continuous in (9 with respect to the intrinsic distance, with structural 
HSlder exponent and constant. 

PROOF. - By standard methods [19], from Theorem 1.1 and Theorem 4.1 we obtain 

that  if B(x, 8k + 24)8r  r162 (9 

osc (u, B(x, r)) <. z osc (u, B(x, 4r)) + cr 2 IIflILP(B~, 4~), m)mis (B(x, r)) -1/p , 

where a �9 (0, 1) and c > 0 are structural constants and p > v/2 V 2. We remark that  

r 2 mis(B(x, r)) -1/p <~ C where C in some constant depending on inf m(B(x, 1)) > 0 

(see (5.8)), we obtain ~Xo 

osc (u, B(x, r)) <~ aosc(u,  B(x, 4r)) + cCIIflILP(B(~,4r),,~)r ~, 

where ~ e (0, 1) depends on p; the H61der continuity with respect to the intrinsic dis- 

tance follows by standard iteration methods [19]. 

We now prove a Reverse-HSlder inequality for the Green function, which is not 

used in the following, but may be of some interest in itself. 

LEMMA 5.14. - Let G~ B(x, 5r) be the regularized Green function at y with respect to 
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B(x, 5r) r Xo. There exists a structural constant c > 0 such that for  every ~ < r 

inf (G~ ~(~, 5~) )~ m(dx) ~ cr 2 . 
y ~ B(x, 3r) 

B(x, r) 

PROOF. - Let ~ be the cut-off function of B(x, 7/2 r) with respect to B(x, 2r). By 

denoting G] = G~8(~, ~), we have 

B(x, 4r) B(x, 4r) - B(x, 7/2r)  

By the same methods used in the proof of the Caccioppoli's inequality we obtain for 

y e B(x, 3r), 

B(r, 9/2r) - B(x, 13/4r), m) 

~<c m ( B ( x ,  r ) )  IIV~ HL ~(B(x, 9/27r) - B(x, 13/4r), m) ~ C .... (G])r m(dx) . 
r 2 T 2 

) 

Here we apply Theorem 5.12 with p = y, y the exponent of Proposition 5.7 and Corol- 

lary 5.8. Moreover, we use the fact that the anulus B(x, 9/2r) - B ( x ,  13/4r) can be 

covered by a finite fixed number of balls of radius 1/((8k + 24)4r) by Lemma 3.1, to- 

gether with the duplication property of m. 
By the duplication property of (G]) r, Corollary 5.8, and by Theorem 5.12 with 

p = 1 we have from Lemma 5.14 

(! )l/y m(B(x, r)) (G~)~ m(dx) 
(5.19) 1 ~< c r2 

B(x ) 

c I GY~m(dz)" m(B(x, r)) G] m(dx) ~< ~-~ 
r 2 

B(x, r) B(x, r) 

By taking Lemma 4.2 into account we then fred 

PROPOSITION 5.15. - Let G~ ~(~, 5r) be the regularized Green function at y with re- 
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spect to the ball B(x, 5r) r162 Xo. Then for y e B(x, 3r) we have 

(G~ ~(~, 5~))P' m(dz) ~< c 

B(x, r) B(x, r) 

G~ B(~, 5~)m(dz), 

where c is a structural constant and p' = p/(p - 1), p as in Theorem 4.1. 

6. - Estimates of  the Green functions and capacities of  balls. 

We define the Green function G$ for the problem 

a(u, v)= I fvm(dx),  
(6.1) v 

u e Do [(9], Vv e Do [O], 

where O is a given ball B(xo, Ro) with B(xo, 2Ro) cc Xo and x e r 
We recall that, in Section 4, we have defined the regularized Green functions G~ o, 

p > 0, B(x, ~)c O, as the solution of the problem 

(6.2) { a(G~,v, v)=B(~, ~) vm(dx), 

F~ ~, o e Do [O], Vv e Do IV], 

which exists and is unique for each ~ > 0, due to the Poincar~ inequality (jj) of As- 
sumption II. 

By Lemma 4.2, the functions G~ = G~ ~, o are bounded in L p' (•, m) uniformly in t~, 

where p '=  p / ( p -  1), p > max{v/2, 2}, v being as in the inequality in Assump- 
tion II. 

Therefore, possibly after extraction of a subsequence, we have that  G~, v con- 
verges weakly in L f (O, m) to some function G z = G~ e L p' ((% m), as p --> 0. In partic- 
ular, we have 

I G;fin(dy)--~ I G~fm(dy) as p--~ 0, (6.3) 
o r 

for every f e  LP((?, m), p > max{v/2, 2}. 
By (6.1) and the dei'mition of G~, for every feLP(r  m) we have 

v B(x, ~) 

where u is the unique solution of (6.1). By Theorem 5.13, for every f e  LP(O, m) u is 
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HSlder continuous in O, therefore by letting p--, 0 in (6.4) we find 

(6.5) [ G ~ fm(dy) = u(x), 
O 

for every x e O. 

This implies, in particular, that (6.2) uniquely defines the function 

G$ e L p' (O, m), which is then the weak limit in L p' (O, m) of the whole family G~ o, as 

p -~ 0. We say that G$ is the Green function in (% with singularity at x, for the prob- 

lem (6.1). 

Clearly, G$ is the unique function G~e LP'(O, m) for which the identity (6.5) 

holds, for every f e  L p (O, m) and u = u I solution of (6.1). 
We now remark that G~ ~, ~ for each ~ > 0 is a solution of the problem 

(6.6) I a(V~, 0, v) = O, 

[ G~ ~, v �9 Do [O], Vv e Do [ O \  B(x, p)], 

Therefore, by Theorem 5.13, for every ~o > 0 the function G~, v is HSlder continuous in 

0 - B(x, ~o), uniformly in p e (0, Po). Thus 

(6.7) lira Vp~v = G~ in Cloc(O\{x}) 
p--*0 

for some a e (0, 1). Moreover, if Gp ~, v is extended by 0 on X0 - O, CG~ ~, v e Do [a, O] for 

every r e Do[a, O] A C ~ ( O \  {x}) and CG~v-o r in Do[a]. 
We now proceed to estimate the size of G$(~, dr) on aB(x, r), by estimating first the 

size of the approximate G~, B(~, dr) and then passing to the limit as p ~ 0. 

We define the capacity of the ball B(x, r) with respect to the ball B(x, dr), d > 1, 

relative to the form a, by setting 

(6.8) cap (B(x, r), B(x, dr)) = 

= min {a(v, v): veDo[B(x, dr)], v/> 1 m-a.e, on B(x, r)}, 

We observe that, by Sobolev-PoincarCs inequality (jj), the minimum is achieved and 

the unique minimizer u -=- UB(~. r) is called the equilibrium potential of B(x, r) with re- 

spect to B(x, dr), relative to the form a. We also notice that, again by Sobolev- 

Poincar6 inequality, the capacity (6.8) is equivalent to the analogue capacity defined 

according to Section 2(b) and to[18], where the form a(v, v) is replaced by 

a(v, v) + (v, v). 
Since the cut-off function ~ of B(x, r) in B(x, (1 + (d - 1)/2)r) is an admissible 

test function in (6.8), by Proposition 3.3 we have 

(6 .9)  cap(B(x, r), B(x, dr)) ~< ~ ~(~, ~)(dy) ~< 
10 m(B(x, r)) 

( d -  1) 2 r 2 
B(x, dr) 

We recall from [18] that there exists a positive Radon measure v - VB(~, r), calaled the 
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equilibrium measure of B(x, r) in B(x, dr) relative to a, such that  

(6.10) a(UB(~,r),V) = f v(y)vB(~,r)(dy) 
B(x, dr) 

for every v ~ Do [B(x, dr)], where ~ in the q.c. version of v, see [18] Lemma 3.3.1 and 

(3.2.2). 

Moreover, 

(6.11) supp vB(~, r) c aB(x, r) 

and 

(6.12) cap (B(x, r), B(x, dr)) = a(uB(~,r), uB(~,r)) = vB(~,~)(aB(x, r ) ) ,  

see [18] Lemma 3.1.1, (iv). 

Since UB(~, r) -- 1 m-a.e, on B(x, r), [17] Lemma 3.1.1 (ii), and for p < r/2 we have 

G~,8(~, dr)~ C(B(x, dr) - B(x, r /2))  n Do[B(x, dr)], then by (6.10), (6.11) 

1 = a(UB(x, r), G~, B(~, dr) ) = Go, B(~, dr) (Y) vB(~, r) (dy) ,  
aB(x, r) 

therefore, by (6.12) 

(6.13) inf G~, B(~. dr) ~< 1 
aB(~, ~) cap (B(x, r), B(x, dr)) ~< sup G~, B(~, dr). aB(x, r) 

We now observe that, by Sobolev-Poincar~ inequality, for d/> 2 we have 

c~ I uz r)m(dy) = c2 m(B(x, r)) 
cap (B(x, r), B(x, dr)) = a(UB(~, r), U~(~, ~)) >i d2 ~ B(~, de r 2 

B(x, r) 

which together with (6.9) shows that 

(d - 1) 2 r 2 1 d 2 r 2 
(6.14) ~< ~< 

10 m(B(x, r)) cap (B(x, r), B(x, dr)) c2 m(B(x, r)) " 

Suppose B(x, 4r) r162 Xo. Since 0B(x, r) can be covered by a finite number 1 of balls 

of radius r/2E, with 1 depending only on co, the following Harnack inequality on 

r(S ) 
(6.15) s u p  G~,B(x, dr) <~ C (G~B(~,~r))rm(dx) <~ inf Gp, B(x, dr) 

aB(~, r) m(B(x, r)) aB(~, r) 
B(x ) 

is a consequence of Harnack's inequality on balls of Theorem 1.1, c being a structural 

constant, depending on d. In fact the second inequality follows from Lemma 5.14 and 

from the first par t  of the proof of Theorem 1.1; the first inequality follows by applying 

(6.13) and Harnack inequality to each ball of the covering of aB(x, r). 

aB(x, r) 
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From (6.13), (6.14) and (6.15), by letting p ~ 0 and taking (6.7) into account, we 

obtain the 

THEOREM 6.1. - Let G~(~. dr) be the Green function of problem (6.1), O = B(x, dr), 

with singularity at x, d >I 2, B(x, 4r)r162 Xo. Then, there exist structural constants 

c > 0 such that the following estimates hold: 

(6.16) l [ c a p ( B ( x ,  r), B(x, dr))] -I ~ G~(~, dr)(Y) <<- c[cap(B(x, r), B(x, dr))] -1 

for every y �9 ~B(x, r) and 

(6.17) (d - 1) 2 r ~ r 2 
c m(B(x, r)) <" [cap (B(x, r), B(x, dr))] -1 ~< cd 2 m(B(x, r))" 

We now prove the global estimate of the size of the Green function as stated in 

Theorem 1.3 of the Introduction. 

PROOF OF THEOREM 1.3. - We adapt the argument  of Theorem 3.3 of [10]. Le t  

n E N  be such that  2~r < R < 2~+]r. For  every j = 0, 1, ..., n,  let G~ be the Green 

function in B(x, 2Jr), with singularity at x. By Theorem 6.1 we have 

(2J-ir)~ 
(6.18) F~(y) = m(B(x, 2 / - l r ) )  ' Y �9 aB(x, 2 j -  lr) ,  

where by = we mean that  the two quantities can be estimated one each other by some 

structural constant. We now introduce the function 

uj := G? - G;-1 

which is a solution of 

in B(x, 2 j -  l r ) ,  

a(uj, v) = O, 

uj e Dtoc [B(x, 2 j - 1 r)],  Vv e Do [B(x, 2 j - 1 r)].  

Therefore, by the corollary to Theorem 1.1, u 5 is HSlder continuous in B(x, 2J-It). 

Moreover, r uj - G~) = - CG~_ 1 �9 Do [B(x, 2 j-1 r)], for every r in D[ a ] A Co (0 \ {x}). 

Therefore by Section 2 (h), 

~ j ( y ) - G ~ ( y ) = - G ~ _ ~ ( y ) = O  q.e. y � 9  2J- lr) ,  

where ~7, denotes the quasi continuous version of uj, hence by (6.18) 

(2J  - 1 r ) 2  

(6.19) uJ ~- m(B(x, 2 j - I r)) q.e. on aB(x, 2J - i r), 

for every j = 1 . . . . .  n. 



170 M. BIROLI - U. MOSCO: A Saint-Venant type principle, etc. 

By the maximum principles of Section 2 (i), by (6.19) we have 

(6.20) uj(y) ~- 
- 1 r ) 2  

m(B(x, 2 j - 1 r)) 
m-a.e, in B(x, 2 j -  1 r) ,  

for j = 1, ..., n. 

By a similar argument, if 

u := G~(~,R) - G2 in B(x, 2nr), 

we find 

(2~r) 2 

(6.21) u(y) ~- m(B(x, 2nr) 
m-a.e, in B(x, 2nr). 

Again by Section 2 (h), G ~ -  G~(~, ~)= 0 q.e. on aB(x, r), therefore 

n 

G$(~, R)(Y) = u(y) + ~ uj (y), y �9 OB(x, r), 
j = l  

hence, by (6.20), (6.21) and the duplication property of m 

R 

G~(~, R)(Y) -- ~ (2Jr) 2 _ s 2 ds 

j = 1 m(B(x, 2Jr)) m(B(x, s)) s 

REMARK 6.1. - By similar arguments as the beginning of this section, we 
find 

cap (B(x, r), B(x, R)) ~- 

( j )1  
s 2 ds 

m(B , 8)) s 

for r <. R/16. Then the convergence of the integral at the right hand side as r ~ 0 is a 

necessary and sufficient condition for {x} to have positive capacity. 

7. - E n e r g y ' s  decay .  

We first prove a weighted Caccioppoli's inequality. 

PROPOSITION 7.1. - Let v be a local solution in B(xo, 4r), i.e. 

a(v, w) = O, Vw e Do [B(xo, 4r)], 

v e Dloc [B(xo, 4r)]. 
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We have 

I 1 v 2 <. 1 ~ v2m(dx) 
a~~ v)(dx) + ~ B(~o.SUpq~) C m(B(xo, r)) 

, J  

B(Xo, qr) B(xo, r) - B(xo, qr) 

for every q �9 (0, qo], for some qo < 1 and where G ~~ denotes the Green function with 
singularity at Xo with respect to B( xo, 2r) and c is a structural constant depending on 

qo. 

PROOF. - By Theorem 5.4, v is bounded in B(xo, r). Let now z e B(xo, r) with 

B(z, st)r  tr)r r), s < t < 1, and denote by ~ the cut-off function of B(z, sr) 
with respect to B(z, tr). We choose as test function ~ZvG~ where G~ denotes the regu- 

larized Green function relative to z and to the ball B(z, 2r). Since ~, v, 

G~ e Dloc [B(xo, 2r)] (~ L ~ (B(xo, 2r), m), we have 

0 = a(v, ~2vG~'pj = [ ?2G~(v, v)(dx) + 
J 

B(z, tr) 

B(z, tr) B(z, tr) 

We observe that, by the estimate on G~ and the maximum principle, we have G~, 

(G~)-I e L ~ (B(z, t r ) -  B(z, sr), m), at least for ~ small enough. Therefore, by the 

Schwarz rule for every ~ > 0 we have 

1 
(7.1) I ~2G:tz(v' v)(dx)+ ~ [ lz(v2? 2, G:)(dx)<<. 

B(z, tr) B(z, tr) 

1 I ~2G~(v ,v) (dx)+8 f veG2t~(~,~)m(dx)+ 
B(z, tr) B(z, tr) 

1 f + 4---~ 
B(z, tr) - B(z, st) 

v2G~(~, ~)(dx) + ~ f 
B(z, tr) - B(z, st) 

~v2(G~)-I~(G~, G~)(dx). 

Let us admit for the moment that the following result holds: 

LEMMA 7.2. - Let feDo[B(z,  2r), m] with f =  0 on B(z, p). Then, 

I f2tz(G~' G~)(dx) <<. 4 f (G~)2~(f,f)(dx). 
B(z, 2r) B(z, 2v) 

We will now estimate the last term at the right hand side of (7.1). Let z be the cut- 
off function of the annulus B(z, tr) - B(z, sr) with respect to the balls B(z, (s 2/t) r) 
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and B ( z , ( 2 t -  s)r), Corollary 3.5. We apply Lemma 7.2 with f =  z~v and we fred 

z2~2v2t~(G~, G~)(dx) <- 4 I (G~)2~(a~v' z~v)(dx). 
B(z, tv) B(z, tv) 

By the Schwarz rule and the property of ~, this inequality implies 

I V2v2t~(G~, G~)(dx) ~< 

B(z, tr) - B(z, st) 

40 I ve(G~)2m(dx) + 2 f 
(s2 /t~)(t - s)2r2 

B(z, tr) - B(z, s* ~) B(z, t v )  - B(z, s* z) 

~2 (G 7)~t~(v, v)(dx), 

where s* = s2/t. If we now denote r = (sup G~)/(inf G~), where the supremum and 

infimum are taken on B(z, tr) - B(z, s* r) and p < s* r, then r depends only on the ra- 
tio t/s, namely 

( t ) 2 m(B(z, tr)) 
0 < ~* <<- c m(B(z, s t ) ) '  

as it follows by the maximum principle satisfied by G~ in B(z, tr) - B(z, s ' r ) ,  by the 

estimates of Theorem 6.1 and the duplication property of m. Therefore from the pre- 

vious inequality we also get 

(7.2) f ~2v2(GT)-l~(G~, GT)(dx) 
B(z, tr) - B ( z ,  s ' r )  

40~* I v2G~m(dx) + 2~* I ~2G~t~(v' v)(dx). 
(s2 /t2)(t - s)2r2 

B(z, tr) - B(z, s ' v )  B(z, tr) 

By taking inequality (7.2) and the properties of ~ into account, and by choosing ~ such 

that 2e~* = 1/4, we obtain from (7.1) 

1 

B(z, tr) B(z, tr) 

.< c~ I v 2 G~ m(dx), 
(t - s)2r ~ 

B(z, tr) -B ( z ,  s ' r )  

where ~ is a constant which depends only on s/t. By the definition of G~ and since 
- 1 on B(z, st): 

I 1 v m(dx)<- I v2G' (dx) ?2G2~(v , v)(dx) + ~ (t - s)er ~ ~ " 
B(z, tr) B(z, p) B(z, tv) - B(z, s ' r )  
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Passing to the limit as ~---> 0 + and taking into account that G~ ~ G ~ uniformly in 

B(z, tr) - B(z, sr) for every fixed z > 0, by the Lebesgue theorem in [7] we obtain, for 

71s-a.e. z ,  

f G~l.%(v, v)(dx) + 2~(z) 2 <. c~ f v2G~m(dx) .  
B(Xo, sr) ( t --  8 )2 r2B(z,  tr) - B(z, s ' r )  

We take the supremum for z e B(x0, qr), by choosing q e (0, 1/3), s = [2q(1 - q)]l/2, 

t = 1 - q. Then, B(z, tr) - B(z, s ' r )  cB(xo, r) - B(Xo, qr) for every z eB(xo, qr). 

Therefore 

f 
B(Xo, (q/2)r) 

G~o~(v, v)(dx) + sup v e ~< c_~ sup [ veG~m(dx)  <<- 
B(xo, qr) ( t  - -  8 ) 2 r  2 zeB(x~ B(z,r)-JB(z,  qr) 

<" ~.2 v2m(dx)  <~ Cq , 

(xo, r) - (x o, qr) B(xo, r) - B(xo, (qr)) 

where Cq is a structural constant depending also on q. We have applied again the max- 

imum principle satisfied by G z on B(xo, r) - B(xo, qr) c B(z, ( l + q/2) r) - 
- B ( z , ( q / 2 ) r ) ,  and the estimates of Theorem 6.1. 

To complete the proof of Proposition 7.1, we now prove Lemma 7.2. By the defini- 

tion of G~, since f -  0 on B(z,  ~), we have 

f t~(G~, G;f2)(dx)  = 0. 
B(z, 2r) 

Therefore, 

f f z f2~(G~,  G~)(dx) + 2 fG~ ~(G~, f)(dx) = 0, 

B(z, 2r) B(z, 2r) 

hence 

1 
J ~t ~, I ( G ; ) ~ ( f ' f ) ( d x ) "  

B(z, 2r) B(z, 2r) B(z, 2r) 

Thus 

I f2t~(G~' G;)(dx) ~< 4 I (G~)2~(fi f)(dx)" 
B(z, 2v) B(Z, 2r) 

REMARK 7.2. - We have also proved the second part of Theorem 1.4. 

Now we prove the potential estimate which is the main goal of our paper. 
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THEOREM 7.3. - Let u be a local solution in 35o and B(xo, 4Ro) c Xo. Let 

~(r) = I G~o, 2q-~)~(u, u ) ( d x )  + osc u 2. 
B(xo, r) 

B(xo, r) 

Then, we have 

r <~ C( R )Zr 

for every r <~ qR <. q2 R o and q ~ (0, qo], qo = min{ 1/6, K -1}, where fle (0, 1) and c are 
structural constants depending also on q. 

PROOF. - Let us consider the test function w = (u - k)G~ ~, where G~ is the regu- 
larized Green function relative to z and to the ball B(z, tr), ~ is the capacitary poten- 
tial of B(z, sr) with respect to B(z, tr) as defined in Section 6 and k is a constant that 
will be specified later. (~ < sr, z ~B(xo, qr), s < t < 1, q to be fLxed). We have 

( ( I "  

J J 
B(z, tr) B(z, tr) B(z, tr) 

+ f G;(u- k),u(u, ~) (dx)  = 

B(z, tr) 

I 1 I ~ ( ( u -  k) 29, GT)(dx) - = ~G~(u,  u)(dx) + 

B(z, tr) B(z, tr) 

- 1_2 f (u - k ) 2 / z ( ~ ,  G~)(dx) + f G~(u~ - k)~(u, ~)(dx). 
B(z, tT) B(z, tr) 

Then, for ~ < sr: 

1 
f ~ G ~ ( u , u ) ( d x ) + ~  ~ (u-k)Zm(dx)<~ 

B(z, tr) B(z, p) 

1 

B(z, tr) B(z, tr) 

<~ ~ tz(~, G~(u - k)2)(dx) - 2 G~(u - k)t~(u, ~)(dx) = 

B(z, tr) B(z, tr) 

= 1_2 I G;(~7- k)ZdvB(~,~r)- 2 I G;(u - k)~(u, ~)(dx)~< 

B(z, tr) B(z, tr) 
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-~1 sup(u-k )2  f G~dvB(~,~r)-2 f 
- -  B ( z ,  tr)  

B(z, tr) B(z, tr) 

G~ (u - k)tL(u, ~)(dx) = 

= 1 sup ( u -  k)2a(~, G~) - 2 I 
2 B(z, tr) 

B(z, tr) 

G2(u - k)~(u, ~)(dx) < 

1 s u p ( u - k )  2+  1 
J 

B(z, tr) - B(z, st) 

G~(u, u)(dx) + 

+~ I G~(u - k)2~(~, ~)(dx) ~< 

B(z, tr) - B(z, st)  

1 1 I sup (u - k) 2 + - G~tL(u, u)(dx) + 
B(z, tr) 

B(z, tr) - B(z, st) 

+ V sup (u - k) 2 sup G~.cap (B(z, sr), B(z, tr)), 
B(z, tr) B(z,  t r )  - B(z, sr) 

where YB(z, sr) is the equilibrium measure associated with the equilibrium potential 

and we have taken into account [18] Lemma 3.3.1, Theorem 3.2.2 and Theorem 3.1.5. 
t -  

In particular, a(~, G~) = ~ ~m(dx) = 1 because ? = 1 m-a.e, on B(x, sr) and 
J 

B(z, p) 

a(~, G;(u - k) 2) = f G~(~ - k) 2dvB(z,~r). 
B(z, tr) 

Then, by the maximum principle and Theorem 6.1, we have for arbi trary V > 0 

I 1 ~ ( u -  k)2m(dx) <~ (7.3) ~G~(u, u)(dx) + 

B(z, tr) B(z, •) 

~< (1/2 + cv) sup (u - k) ~ + 1 I G~(u, u)(dx) 
B(z, tr) ~ 

B(z, tr) - B(z, st) 

where c, is a structural constant. Passing to the limit as p --~ 0 we obtain by Lebesgue 

theorem in [7], for m-a.e, z 

B(z, tr) 

G~(x, tr)~Z(u, u)(dx) + l (u(z)  - k) 2 <~ (1/2 + cry) sup (u - k) 2 + 
B(z, tr) 

B(z, tr) - B(z, st)  

G~(z, tr)~(u, u)(dx).  
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We now choose t = 1 - q, s = 2q, with q e (0, qo], qo = min{1/6, K-l}, ~ being the 
constant occuring in Assusmption II (j). By taking the supremum for z e B(xo, qr), 
if ~, := := 2cv we find, by Theorem 6.1, 

sup ( u - k )  2~<(1+~,) s u p ( u - k )  2+ 
B(Xo, ~)  B(Xo, r) 

+ 2c sup ( r2 ) 
- ~  B(~o, q~)~ m(B(z, 2qr)) f 

B(Zo, r) - B(Xo, qr) 

t~(u, u)(dx) 

~<(1+7)  s u p ( u - k )  2+ c r 2 f 
e(~o, ~) ~" m(B(xo, qr)) 

B(xo, r) - B(Xo, qr) 

~(u, u)(dx) ~< 

~<(1+~,) s u p ( u - k )  2+ C f 
B(xo, r) 7' 

B(xo, r) - B(xo, qr) 

G~o, 2~)~(u, u)(dx), 

where 7 > 0 is arbitrary and C is a structural constant which depends also on q. 
By Proposition 7.1, we have 

f 
B(xo, qr) 

~o Gs(~o, e~)~(u, u)(dx) ~< c sup (u - k) 2 
B(xo, ~) 

for some structural constant c depending also on q. Then, by (7.3) 

S Xo GB(~o, 2~)~(u, u)(dx) + sup (u - k) 2 ~< 
B(Xo, qr) 

B(Xo, qr) 

~<(c+~,) s u p ( u - k )  2+--C f 
B(xo, r) "[ 

B(Xo, r) - B(Xo, qr) 

xo GB(~o, 2~)/~(u, u)(dx). 

By ,,hole filling, after multiplication by y, we obtain 

(7.4) (C+ ~,) I 
B(xo, qr) 

xo GB(~o,2~.)~(u, u)(dx) + ], sup (u - k) 2 ~< 
B(xO, qr) 

7( c + 7) sup (u - k )  2 + C ~ G~[xo,2~)t*(u, u)(dx). 
B(xo, r) B(xo, r) 
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We now study the last term at the right hand side of (7.4): 

G~0,2~)~(u, u)(dx) = [ G~,2q-~)~(u,  u)(dx) - 

B(xo, r) B(xo, r) 

I - GB(~o, ~))t~( u, u)(dx) ~< - (G~o,  2q-I~) ~~ 

B(xo, r) 

m(B(xo,r2 r)) f <<. G~o, 2q-~)~(u, u ) ( d x )  - c t , ( u ,  u ) ( d x ) ,  

B(~o, r) B(xO, r) 

where c is a structural constant depending also on q. Here we have taken into account 

that 

F = G ~o B(~o, Zq- lr) - G~xo. 2~) 

is a solution of the problem 

a(F, v) = O, Vv e Do [B(xo, 2r)], 

therefore, by the maximum principle and Theorem 6.1 

?,2 

inf F>I in/ F =  ( i n f ) G ~  o eq-~r)~> Cm(B(x , r ) ) .  
B(xo, r) r 2r) aB 

Therefore, by Poincar6 inequality (j), we also have for arbitrary ~ e (0, 1) 

f G~xo,2~)~(u, u)(dx) ~< ~ G~[r u)(dx) - 
B(xo, r) B(xo, r) 

1 ~ lu - ul2m(dx),  
- c m(B(xo, r)) . J  

B(xo, ~ - 1 ~r) 

where ~7 denotes the average of u on B(xo, x-l(tr). 
By choosing ~ such that K - 1 ~ = q and taking the doubling property of m into ac- 

count, we then find 

(7.5) I f sup 
B(~o, r) B(xo, r) B(xa, qr) 

with c' a structural constant depending also on q. Taking into account (7.5) and choos- 
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ing k = ~ in (7.4), we obtain 

f ~o (C+,[) GB(~o,2~)tL(u,u)(dx)+(c'+~') sup ] u - d [ 2 ~  < 
B(zo, r B(xo, qr) 

<~ ~'(c + "r) sup lu - ~1 ~ + C ~ G~o,2q-~)~(u, u ) ( d x )  
B(xo, r) B(xo, r) 

We observe that 

1 (  osc u)  ~ 
sup [ u - g [  ~ ~ B~o,q~) ' 

B(xo , r 

~up l u - ~l  ~ < �89  osc ~)~, 
B(xo, r) 4 B(xo,r) 

therefore 

(7.6) f 
B(xo, qv) 

G~o, 2~)~(u, u)(dx) + 1 c + r (  osc u ) ~  < 
4 C + 7  B(~o,q~) 

.< r c +  ~ ( osc u)~ 
C' + y B(zo, r) 

c I 
+ C +--'--~ 

B(~o, r) 

~0 GB(~o, 2q-'~)t~(u, u)(dx).  

We denote now 

f *o 1 c ' + 7  ~(r) = GB(n, 2~-~,)~(u, ul(dx) + 4 C -~ ~ (B(~o,~ u) ~ 
B(Zo, r) 

and we choose ], > 0 such that 47((c + y)/(c' + 7)) <~ C(C + ~.) = v < 1. 
From (7.6), we have 

~(qr) ~ v~(r) 

then, see [23], 

~(r) <- C( R )~ (R) ,  

where c and fl > 0 are structural constants depending also on q, hence the result 
follows. 

From Theorem 7.3 we prove easily the Saint-Venant principle in Theorem 1.4: 

PROOF OF THEOREM 1.4. - Let ~ e  (0, 1/6). From Proposition 7.1, by choosing 
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v = u - ~ where ~7 is the average of u oa B(xo, zT-1R), we have 

( osc u') e ~< c f [u - ~71em(dx). 
B(xo, R) m(B(xo, q - 1R)) J 

B(Xo, 5. -1R) 

Then, by the Poincar~ inequality, Theorem 6.1 and the maximum principle 

( osc u) 2<. cR~ I 
B(~o,R) m(B(xo, q - l  R)) 

B(xo, q-1 tzR) 

,~(u, u)(dx) ~< 

f 
c | G~o, ~-l~R)t~(u, <. u) (dx )  

B(xo, ~ -1 ~R) 

and the result foUows from Theorem 7.3, by choosing ~ such that  K - ~  = q, for a 

given q e (0, qo], q0 = m i d { l / 6 ,  K-i}. 

Concerning the nonhomogeneous case, we have the following result, that  can be 

obtained by repeating the preceding proofs. 

THEOREM 7.4. - Let u be a solution of the problem 

a(u, v) = I fvm(dx) ,  
B(xo, Ro) 

Vv e Do [B(xo, Ro )], u e Dloc [B(Xo, Ro )], 

where f e  L p (B(xo, Ro), m) and p is as in Section 3. Then 

for every q ~ (0, qo],for some qo < i depending on K, and where ~ is as in Theorem 7.3, 

r <~ qR <<. q2Ro, B(xo, Ro)r c and f ie  (0, 1) are structural constants depending 

also on qo e (0, 1/6K-i) ,  7 e (0, 1) depends on p and k depends on IlU]IL~(B(~o,Z/~Ro),m)" 

Moreover 

f Xo 
GB(xo ' 2q- l r )~(U,  u)(dx) ~< 

B(xo, r) 

<~c 

B(xo, R) 

~'o GB(,o. 2q -'R)~t(U, u)(dx) + k ']lflli'(B(zo. Ro). ,~)Rr 

where r <. 2q2R <~ 2q2Ro, c' is a structural constant which depends on q and k' is a 

structural constant which depends on q, IIUlIL~(B(~o,~/~Ro), m) and inf m(B(x, 1)). 
xEXo 
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