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ABSTRACT Short-term traffic flow forecasting is a fundamental and challenging task due to the stochastic

dynamics of the traffic flow, which is often imbalanced and noisy. This paper presents a sample-rebalanced

and outlier-rejected k-nearest neighbor regression model for short-term traffic flow forecasting. In this

model, we adopt a new metric for the evolutionary traffic flow patterns, and reconstruct balanced training

sets by relative transformation to tackle the imbalance issue. Then, we design a hybrid model that considers

both local and global information to address the limited size of the training samples. We employ four real-

world benchmark datasets often used in such tasks to evaluate our model. Experimental results show that

our model outperforms state-of-the-art parametric and non-parametric models.

INDEX TERMS Intelligent transportation systems, road transportation, time series analysis, stochastic

processes.

I. INTRODUCTION

Timely and accurate short-term traffic flow forecasting is

of crucial importance for proactive traffic management and

control systems [1], which can not only subsequently allevi-

ate traffic congestion and reduce carbon emissions, but also

ensures the efficiency of traffic operation [2]. It also gains

more and more attention to many traffic-related applications,

such as vehicle navigation [3], route planning [4], and traffic

control [5], etc.

Over the last few decades, a variety of approaches have

been proposed [2]. The existing theories and approaches

can be roughly divided into two categories, parametric and

non-parametric ones. Parametric approaches explicitly and

quantitatively formulate the relationship between the input

and the output via a function (model), whose parameters

need to be estimated, whereas the later ones explore the
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implicit relationship between the prediction and input data

without providing any well-defined functions [6]. The tradi-

tional parametric methods include seasonal mean models [7],

smoothing techniques [8], [9], time-series models [10], [11],

Kalman filtering methods [12]–[14], etc. This type of meth-

ods are explicit and easy to understand, but they require

specific domain knowledge or expertise to be functioned

well [15]. However, improper assumptions or simplifications

may degrade the forecasting accuracy of such models in prac-

tical applications, especially for real-time operation in intel-

ligent transportation systems with complex and large-scale

calculations. Meanwhile, the emerging sensor and stor-

age technologies enable the successful deployment of non-

parametric methods. For recent studies, higher forecasting

accuracy achieved by non-parametric models are reported,

such as k-nearest neighbors algorithm (kNN) [16], [17],

support vector machine (SVM) [18]–[20], extreme learn-

ing machine (ELM) [21], and artificial neural networks

(ANN) [22], [23], etc.
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In recent years, deep learning techniques have attracted

widely academic and industrial attentions [24], which are

able to discover the implicit non-linear relationships inside

the traffic flow data using a general purpose learning proce-

dure automatically. Deep learning techniques have also been

proven promising for traffic flow forecasting [2], [25], [26].

Lv et al. [2] applied a stacked autoencoder (SAE) network

for traffic flow forecasting. Zhou et al. [25] found that a

single SAE with fixed parameters can hardly handle various

traffic conditions. For further improving, they proposed a

δ-agree AdaBoost strategy to integrate a series of stacked

autoencoders for better forecasting. Then, Zhou et al. [26]

continuously improved the forecasting performance by a deep

learning framework that integrates heterogeneous forecasting

models. The empirical studies have proven that deep learning

models can achieve superior accuracy. However, the success

of deep learning approaches require huge amount of data,

tedious training time and large computing source, which

are not suitable for real-time traffic flow forecasting with

limited samples due to the incomplete traffic infrastructure

or the bandwidth of the sensor network [20]. Furthermore,

the duration of different traffic flow patterns, such as peak

hours and off-peak hours, are different within a day and

change dramatically from day to day. Such a phenomenon

leads to the imbalance of training samples, and subsequently

affects the performance of deep learning-based approaches.

Furthermore, traffic flow not only exhibits periodic variations

obscured by noises, but also reveals stochastic behaviors

affected by external factors, such as extreme weather or unex-

pected incident [27].

To address these issues, we rethink the potential improve-

ment of k-nearest neighbor (kNN) model. The kNN model

tackles the nonlinear problem in an intuitive, self-learning,

and effective routine [28], and has been widely applied in

various areas, such as traffic flow forecasting [29]–[31].

For example, Li et al. [29] proposed a k-nearest neighbor

locally weighted regression method for short-term traffic

flow forecasting. Hong et al. [30] proposed a hybrid multi-

metric based k-nearest neighbor method to resize the intrinsic

features of the traffic flow data for traffic flow forecasting.

However, the conventional kNN based short-term traffic flow

forecasting approaches are easily degraded in some real-

world situations. For example, the algorithmmay be executed

under limited training samples, imbalance size of training

samples of daily traffic flow, or noisy or outlier samples

caused by hardware failure, etc. Thus, the performance of

conventional kNN based traffic flow forecasting approaches

is highly depended on the quantity and quality of the training

samples. Furthermore, the seasonality and the trend of the

traffic flow evolves over time. Outlier detection and rejec-

tion are also an important research topic and many effective

methods have been proposed [32]–[34]. One of the important

branches is to use clustering techniques to detect outliers,

such as fuzzy clustering [35], [36], and gaussian measure

model [37]. The Euclidean distance metric frequently used

by conventional kNN can only describe the overall degree

of similarity for two sequences with equal length. The local

information is obscured and the similar traffic flow patterns

with unequal length are often ignored. Thus, a proper similar-

ity metric that considers the variation of different traffic flow

patterns requires further investigation.

Aiming at the three aforementioned issues, we propose

a sample-rebalanced outlier-rejection k-nearest neighbor

regression (SrOrkNNr ) model for short-term traffic flow

forecasting. Our SrOrkNNr not only inherits the advantages

of traditional kNN, but is also robust to noisy and imbalanced

traffic flow. Note that although the proposed model is applied

to traffic flow forecasting in this study, it is general, and can

be easily extended to other prediction tasks, such as the image

contour prediction [38], grid load demand forecasting [39], or

forecasting demand in a shared bicycle or taxi system [40].

We summarize the major contributions of this work below:

• First, we explore the regularities and potential pat-

tern of the traffic flow by adopting the dynamic time

warping (DTW) distance metric, which is designed to

align temporal sequences and more effective to mea-

sure similarities in high-dimension feature space. Then,

we reconstruct a new balance training set by relative

transformation to tackle the imbalance issue of the traffic

flow datasets.

• Second, we propose a sample-rebalanced outlier-

rejection k-nearest neighbor regression model that inte-

grates k-local hyperplane distance nearest neighbor and

fuzzy kNN to fuse the local and global information to

address the sparse problem caused by the small size of

training samples. Two information weights are designed

to balance two kinds of environments. Furthermore,

we embed a random subspace framework in the final

prediction model to further improve the prediction per-

formance by reducing the interference of noises.

• Third, we evaluate our model on four real-world bench-

mark datasets collected from the four highways of

Amsterdam by comparing it with several state-of-the-

art methods. The results demonstrate the superior per-

formances of our method.

The remaining of the paper is organized as follows.

The second part introduces the DTW metric algorithm and

the traditional kNN model. The third presents our sample-

rebalanced outlier-rejection k-nearest neighbor regression

(SrOrkNNr ) model. The fourth part is the empirical study of

the real-world data from Amsterdam, Netherlands. Finally,

the last part summarizes the main findings and discusses

future research.

II. PRELIMINARIES

A. DYNAMIC TIME WARPING

A lot of similarity metrics have been proposed in lit-

erature [41], [42]. The conventional k-nearest neighbors

models for short-term traffic flow forecasting are often

equipped with the Euclidean distance to measure the simi-

larity between the traffic flow patterns and the query pattern.

However, the Euclidean distance can only describe the
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roughly global similarity of two patterns, and the local infor-

mation is obscured [43]. Dynamic time warping (DTW) is

a metric for measuring the similarity between two temporal

sequences by aligning temporal sequences in time series [43].

DTW allows temporal sequences to be locally shifted, con-

tracted and stretched, and it could calculate a global optimal

alignment path between two given sequences under certain

restrictions.

DTW is a typical optimization problem solved by dynamic

programming. It uses a specific time warping function W

to describe the time corresponding relationship between the

query sample and the referenced sample. Then, we solve

the regular function corresponding to the minimum cumula-

tive distance when the two samples match. Given two time

series Q = (q1, q2, . . . , qn)
⊤ and C = (c1, c2, . . . , cm)

⊤,

whose lengths are n and m, respectively. We construct a

n-by-m matrix grid d(Q,C) ∈ R
n×m. The (i, j)th element

represents the distance d(qi, cj) between the point qi and the

point cj, which means the similarity between each point of

the sequence Q and each point of C . A series of potential

distance metrics are possible. One of most widely used one is

the squared Euclidean distance d(i, j) = ‖qi − cj‖
2
2.

Then we find out a warping path W , which is a sequence

of distance points, to describe the alignment of the elements

of Q and C , where each wk corresponding to a point (i, j)k .

wk ∈ W . (1)

After we have defined the distance measure, the dynamic

time warping problem is defined as a global minimization

over potential warping paths based on the cumulative distance

of each path.

D(Q,C) = min
W

[

p
∑

k=1

d(wk )

]

. (2)

Then, we restricted the space of possible warping paths

to satisfy the boundary monotonicity and step-pattern condi-

tions in the dynamic programming formulation. In this way,

we find out two sequences of the same length l, indexed α

and β. The element of index α(i) in time seriesQmatches the

element of index β(i) in time series C .

α(1) = β(1), (3)

α(l) = n, (4)

β(l) = m. (5)

α(1) ≤ α(a) ≤ · · · ≤ α(l), (6)

β(1) ≤ β(2) ≤ · · · ≤ β(l). (7)

(α(i+1), β(i+1))−(α(i), β(i)) ∈ (1, 0), (1, 1), (0, 1) (8)

We search the optimal alignment path W∗, which satisfy

the above restriction, by the following recursive formula.

γ (i, j) = d(i, j)+min {γ (i−1, j), γ (i−1, j−1), γ (i, j−1)}

(9)

where γ (i, j) is the cumulative distance, e.g. the sum of the

distance between current elements and the minimum of the

cumulative distances of the neighbouring points. In this work,

we employ the squared Euclidean distance to compute d(i, j).

Then, we will improve the prediction of the DTW based kNN

regression in the following part.

B. CONVENTIONAL kNN REGRESSION

The target of short-term traffic flow forecasting task is to

predict the future traffic flow based on the historical traffic

flow and other extra information. Without loss of generality,

we define the short-time traffic flow state vector x at the

current moment t as following:

xt = [vt−h+1, . . . , vt ], (10)

where the traffic flow xt denotes the traffic flow state vector

of the road section at current time t , vt denote the traffic flow

of the road section at the moment t .

The conventional kNN regression for traffic flow forecast-

ing contains two stages. First, after constructing the traffic

flow state vector, we select k nearest neighbor traffic flow

state vector by a certain metric to measure the similarity

between the current traffic flow state and the historical traf-

fic flow state vector. Conventional kNN regression often

adopts Euclidean distance as the distance metric. However,

the Euclidean distance is not always the optimal distancemet-

ric for short-term traffic flow forecasting task, since traffic

flow is easily affected by noises and outliers.

Second, we can predict the traffic flow by fusing the

weighted results of the selected neighbor traffic flow state

vectors according to the similarity between the current traffic

flow state vector and the historical traffic flow state vectors.

Although the traditional kNN algorithm has been widely

used in short-term traffic flow forecasting and achieved good

performance, the imbalance and noise statistic characteristics

inside the traffic flow data still can not be address.

III. METHODOLOGY

In this section, we elaborate on our sample-rebalanced

outlier-rejected k-nearest neighbor regression model for

short-time traffic flow forecasting. The overview of our

SrOrkNNr model is shown in Fig. 1. In summary, our

SrOrkNNr model contains five stages. We firstly pad the

missing data of the original traffic flow sequences by aver-

aging the adjacent traffic flow rate, and then cluster the

padded data. Second, our model generates the balance train-

ing dataset by relative transformation strategy, which is

employed to tackle the imbalance and noisy of the dataset.

Third, our SrOrkNNr model constructs the local hyperplane

of the traffic flow data for each cluster, and then calculates

the distances of the local hyperplanes. Fourth, we design two

kinds of probabilities corresponding to the distance of the

hyperplane of kth local nearest neighbor (HKNN) and the

kth fuzzy nearest neighbor, respectively. These two kinds

of probabilities represent the local and global information

of the training samples. Lastly, we develop a random sub-

space ensemble framework that generates multiple random
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FIGURE 1. The overview of our Sr Or kNNr model.

subspaces to improve the performance of the final forecasting

accuracy.

A. DATA PREPROCESSING AND RELATIVE

TRANSFORMATION

The conventional kNN for short-term traffic flow prediction

have their drawbacks. The potential patterns of the traffic

flow data tend to be diverse, since the stochastic dynamic

and nonlinearity of the traffic flow. Thus, the performances

of the kNN based forecasting algorithms are highly depended

on the representative and extensive training data selected.

Furthermore, Euclidean distance embedded in the conven-

tional kNN forecasting algorithms is sensitive to noisy out-

liers. To address this problem, we try to cluster traffic flow

data to find different categories of traffic flow data with

the same pattern in data pre-processing using DTW as the

similarity measure algorithm.

To facilitate the following discussion, we introduce some

additional notations below. The group of traffic flow data S

of m points {x1, x2, . . . , xm}, xi ∈ R
n, where xi is the

traffic flow state vector. Specifically, xi can be denoted as
{

xi1 , xi2 , . . . , xij
}

, and the traffic flow value of next interval

moment is given as the true traffic flowvalue yi corresponding

to xi. After clustering, H = {h1, h2, . . . , hm} is the corre-

sponding set of the labels to traffic flow dataset S, where

hi ∈ C , C =
{

C1,C2, . . . ,Cj
}

is the set of classes. Each

class is denoted as Cj, where j is the index of the class.

Assuming that the query traffic flow state vector q is the

current traffic flow state vector that does not belong to the

training dataset. Our task is to give the prediction ŷ corre-

sponding to the query state vector q. k nearest neighbors are

selected by kNN algorithm in a local hyperplane. To construct

the local hyperplane, we first construct a local environment

for the query vector q, termed new balanced training set S ′.

We define the new balanced training set as:

S ′ = ∪jSj(ǫ, q),

Sj(ǫ, v) =
{

xi ∈ Cj|d(xi, q) ≤ dǫ
j

}

. (11)

In Eq. 11, ǫ is the neighbourhood size of the query vector

q for each class Cj based on the DTW distance, where ǫ is an

integer All xi close to the query vector q compose the local

environment of q, which avoid the imbalance of the training

set by selecting the feature vectors from each class with equal

probability.

In the second step, SrOrkNNr reduces the effects of noisy

data by adopting relative transformation [28] to construct

a new relative feature space. The new training set S ′′ be

generated as follows:

S ′′ = S ′ ∪ q. (12)

In Eq. 12, the query vector q is also included in the balanced

training set constructed in the previous step. Then, we denote

x as the feature vector in the new training set S ′′. The distances

between x and each feature xi in S
′′ are calculated to make up

a set of distance values, which is denoted as follows:
{

d(x1, x), . . . , d(xn′−1, x), d(q, x)
}

(13)

After such relative transformation, the feature vectors close

to each other vector will be closer in the new relative feature

space, whereas the feature vectors far from each other will be

farther in the relative space.

B. k-LOCAL HYPERPLANE DISTANCE NEAREST

NEIGHBOUR ALGORITHM

k-local hyperplane distance nearest neighbor algorithm

(HKNN) is an effective model widely used various applica-

tions, which solves the imbalance issue and the sparse issue

of the dataset at the same time. The intuition of HKNN to

handle the case of limited samples is treating the missing

samples as holes and introducing artefacts in the decision

surface produced by the training samples [44]. The missing

points are fantasized based on a local linear approximation

of the manifold of each class [44]. We use the HKNN to

calculate the k-local hyperplane distances of the query vector

q for all classes. k is the neighborhood size in each class.

We define a local hyperplane for each class Cj with k feature

vectors, which are k nearest neighbors selected for the tested

vector q from each class Cj:

H k
j (q) =

{

p|p = x̄ +

k
∑

t=1

αt (xt − x̄)

}

, (14)

s.t.α1..k ∈ R
n,

x̄ =
1

k

k
∑

t=1

xi. (15)
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The k neighborhood X kj (q) of a query point q is the set of

the k points of S ′ whose distance to q is smallest, is defined

X kj (q) = {x1, x2, . . . , xk}. Then, the hyperplane distance

d(q,H k
j (q)) between the query vector q and the jth local

hyperplane H k
j (q) be computed as following:

d(q,H k
j (q)) = min

p∈H k
j (q)

‖q− p‖ ,

= min
αt

∥

∥

∥

∥

∥

q− x̄ −

k
∑

t=1

αt (xt − x̄)

∥

∥

∥

∥

∥

. (16)

where αi can be solved through solving a linear system as

follows:

(V ′ · V ) · A = V ′ · (q− x̄), (17)

where A = (α1, α2, . . . , αk )
′, and V is an n× k matrix whose

columns are the vectors Vt = xt − x̄.

To penalize the large values αt , a penalty term λ is intro-

duced to the formula. So the k-local hyperplane distance can

be redefined as:

d(q,H k
j (q)) = min

αt

{∥

∥

∥

∥

∥

q− x̄ −

k
∑

t=1

αt (xt − x̄)

∥

∥

∥

∥

∥

+ λ

k
∑

t=1

α2
t

}

.

(18)

C. SAMPLE-REBALANCED OUTLIER-REJECTED

k-NEAREST NEIGHBOUR REGRESSION

Our SrOrkNNr summarizes the local hyperplane distances

by adopting the fuzzy membership function to calculate the

fuzzy value mj as the following formula for each class Cj in

the fourth step. The fuzzy value mj contains the information

about the local information of the query vector q, whereas

the conventional kNN algorithm only considers the global

information of the query vector. According to the fuzzy mem-

bership value obtained by the local information of the query

vector in the previous step, we further generate a probability

value p1j of the query vector q for each class Cj. The detailed

calculation process is as follows:

mj =
1

∑k
h=1

(

d(q,H k
j (q))

d(q,H k
h (q))

)

2
f−1

, (19)

p1j =
mj

∑k
h=1mh

, (20)

where 2
f−1

is the fuzziness exponent, d(q,H k
j (q)) denotes the

Euclidean distance between the local hyperplane H k
j (q) and

the tested vector q when f be set to 2. The probability p1j
represents the confidence of the prediction.

In order to take the local information and the global infor-

mation into account, our SrOrkNNr obtains another fuzzy

membership by using the conventional fuzzy kNN. In gen-

eral, fuzzy kNN selects a neighbor set N that consists of κ

nearest neighbors of q in training dataset.

We assume that the neighbour set N = {x1, x2, . . . , fκ}.

Similar to the calculation method of the previous fuzzy

membership value mj, the fuzzy membership value

mi (i ∈ {1, . . . , κ}) is calculated as follows:

mi =
1

∑κ
h=1

(

d(q,xi)
d(q,xh)

)

2
f−1

, (21)

where d(q, xi) is the Euclidean distance between the neighbor

vector xi and the query vector q when f be set to 2.

Then, the probability p2j that represents the confidence of

the prediction of the query vector q provided by each class Cj
can be computed as follows:

p2j =
Mj

M

=

∑κ
i=1mi

∑

xi∈Nj
mi

, (22)

where Nj is the subset of the neighbor set N that belong to the

class Cj. The total fuzzy membership value M is the sum of

allmi.Mj is the sum of themi whose feature vector xi belongs

to class Cj.

We introduce two parameters ω1 and ω2 to summarize the

probability values p1j and p
2
j of each class Cj as follows:

λj = ω1 × p1j + ω2 × p2j (23)

Notice that if ω1 and ω2 are set to 0 and 1, respectively,

SrOrkNNr will be HKNN. If ω1 and ω2 are set to 1 and

0, respectively, SrOrkNNr will be conventional kNN. The

appropriate value of ω1 and ω2 can be balanced in two

different parts to achieve better performance. The final pre-

diction of the traffic flow value ŷ of the query vector q can

be computed by SrOrkNNr according to the value of λ as

follows:

ŷ =

C
∑

j=1

λj(
1

k

∑

t

kxt ) (24)

IV. EXPERIMENTS

In this section, four real world traffic datasets are used

to evaluate the proposed sample-rebalanced outlier-rejection

k-nearest neighbor regression model with competing meth-

ods. The traffic flow data collected from the four highways

A1, A2, A4, and A8 which end at Amsterdam Ring Road (the

A10 highway), as shown in Figure 2.

A. DATASET

The dataset used to evaluate the models for short term traffic

flow prediction was collected by Wang et al. [45], which

includes the traffic flow data of four motorways ending on

the ring road of Amsterdam, namely A1, A2, A4, and A8.

As shown in Fig. 2, four measurement sites located on the

motorways were indicated by yellow curve before the dis-

tance from the merge points to the ring road. The traffic flow

data were collected by MONICA sensors fromMay 20, 2010

until June 24, 2010, which are detected on real time and

uploaded in 1-min aggregation. The raw data over five weeks

22690 VOLUME 8, 2020
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FIGURE 2. Four highways, namely A1, A2, A4, and A8 end at A10 ring road
in Amsterdam.

and contains about 20,000 instances. The four highways are

described specifically as follows:

The special location of the A1 motorway, connecting the

city of Amsterdam with the German border, is a very impor-

tant route in Europe. There is the first high-occupancy vehicle

(HOV) 3+ barrier-separated lane in Europe on A1 motorway,

which causing the traffic flow in this HOV lane dramati-

cally changes over time and making the forecasting quite

challenging.

The A2 motorway is one of the busiest highways in the

Netherlands, which connects the city of Amsterdam and the

Belgian border. So the traffic flow data of A2 can be used

to examine the performance of proposed algorithm when

congestion.

The A4 motorway is part of the Rijksweg 4, which is

another high-priority highway in the Netherlands, starting

from Amsterdam to the Belgian border.

The A8 motorway starts from the A10 motorway at inter-

change Coenplein, ends at Zaandijk, less than 10 km.

There are some errors in the original data due to hardware

failure, such as missing data or negative traffic flow values.

The incorrect data was simply replaced or filled by averaging

measurements at the same period in other weeks.

B. EVALUATION CRITERION

To measure the prediction performances of the proposed

approach and other methods, two frequently used criteria,

namely mean absolute percentage error (MAPE) and root

mean square error (RMSE) are adopted. The RMSE mea-

sures the average differences between the predictions of an

approach and the true values while the MAPE expresses the

percentage of the differences. The smaller value of MAPE

and RMSE, the better performance of the model. Two evalu-

ation criteria are defined as followed:

RMSE =

√

√

√

√

1

n

n
∑

t=1

(ŷt − yt )2 (25)

MAPE =
1

n

n
∑

t=1

∣

∣

∣

∣

ŷt − yt

yt

∣

∣

∣

∣

× 100% (26)

which n is the number of the test samples, ŷt denotes the

predicted value and yt denotes the true value of the tth value

of data.

C. EXPERIMENT SETTING

All experiments are conducted at a workstation equipped

with Intel R© Core
TM

i7-4790U CPU@3.60GHz, 8G RAM.

Our sample-rebalanced outlier-rejected k-nearest neighbor

regression model was implemented with python 3.6 software

environment.

The raw data in 1-min aggregation are reconstructed by

10-min average, since the goal of short-term traffic flow fore-

casting is not to predict minute byminute fluctuations. All the

experiments use 60 minutes as the historical window, which

constructed by 6 observed data points. The data set contains

5 weeks traffic flow data of each highway, corresponding to

1008 samples per week of each highway.

The raw data is 1-min aggregation and the datasets we used

in our study are reconstructed by 10-min average traffic flow

data. Because the goal of the study of short-term traffic flow

forecasting should not be to predict minute by minute fluc-

tuations. Therefore, the datasets are reconstructed by 10-min

average traffic flow data. All the experiments use 60 minutes

as the historical window, which constructed by 6 observed

data points. The data set contains 5 weeks of traffic flow data

of each highway, corresponding to 1008 samples per week of

each highway.

The collected data are divided into two parts, while the data

of the first four weeks are used as training set, and the rest are

used as testing set. We use grid search technique to determine

the optimal parameters, so the training data are divided into

ten parts and nine of ten are used for training and the rest is

for validation. The parameter k ranges from 3 to 50, and the

candidate proportion of ω1 and ω2 is 1 : 1, 2 : 3, 1 : 2,

2 : 5, and 1 : 3. After the grid search, the optimal parameter

k , ω1 and ω2 are set to 15, 0.4 and 0.6, respectively.

The Euclidean distance is often used to measure the simi-

larity between two data in traditional kNN algorithm, while

DTW metric algorithm can automatically discover potential

pattern in time series sequences.We also explore the potential

to measure the similarity by DTW metric for traffic flow

sequences. We model the kNN algorithm with the DTW

metric, and evaluate it with the traffic flow data from A4.

The forecasting performance of two different criteria on the

A4 dataset is illustrated in Figure 3.

The experiment adopts two different evaluation criteria,

e.g. RMSE and MAPE, to evaluate the forecasting perfor-

mance of two different metrics. We divide the testing set into

days and conduct the experiments. The upper figure shows

MAPE of the predicted results for each day, while the lower

figure shows RMSE. The results of the kNN algorithm based

on Euclidean distance metric (Eu-kNN) are drawn with a

green line, while the kNN algorithm based on DTW metric

(DTW-kNN) are done with red line. As shown in Figure 3,

DTW-kNN achieves high accuracy most of the time,
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FIGURE 3. Forecasting performance with different metric.

which indicates that DTW metric is more suitable for short-

term traffic flow forecasting than Euclidean distance metric.

In addition, we also conduct the following experience to

evaluate how the number of neighbors k affect the perfor-

mances of two different metrics. Evaluating the predictive

performance of two different metric algorithms when the

parameter k from 3 to 50. The forecasting performance of

Eu-kNN and DTW-kNN on A4 dataset corresponding to

Figure 4 and Figure 5. In Figure 4, The RMSE and MAPE

decrease sharply until the number of neighbors k increases

until 10 by Eu-kNN algorithm, after that the curves of RMSE

and MAPE continuously rise.

FIGURE 4. The performance of Eu-kNN with different number of
neighbors k .

However, the RMSE and MAPE of DTW-kNN also

decrease sharply before k is 20 in Figure 5 and stay steady

after that point. This phenomenon indicates the DTW metric

is more robust for traffic flow sequences. When the value of

k becomes larger, the neighbor vectors obtained by DTW are

more similar to the query vector than the nearest neighbor

vectors obtained by Euclidean. Consequently, the RMSE and

FIGURE 5. The performance of DTW-kNN with different number of
neighbors k .

MAPE of DTW-kNN can be kept in a stationary state. From

another perspective, it also reduces the number of noisy fea-

ture vectors.

D. EXPERIMENT RESULTS

To evaluate the performance of our SrOrkNNr model,

we compare the forecasting results of with the following

control models, which are the common models in intelligent

transportation systems and often used as the baseline for a

new method for short-term traffic flow forecasting, such as

hybrid particle swarm optimization support vector regres-

sion method [18], autoregressive integrated moving average

model [46]–[48], artificial neural network [22], Kalman Fil-

tering method [49], decision tree [50], k-Nearest neighbors

regression. Table 1 shows the forecasting result of eachmodel

on the each dataset of Amsterdam motorways.

TABLE 1. Forecasting performance comparison of different approaches
on the datasets of Amsterdam motorways.

1) SUPPORT VECTOR MACHINE REGRESSION (SVR)

In this study, we use SVR as a control experiment, and

several important parameters need to be set beforehand. All

parameters were set as suggested in Cai et al. [18] for the

same datasets. The regression horizon is set the same as

AR model and the radial basis function (RBF) is adopted

to as the kernel function. The cost parameter C is set to

the maximum difference between the traffic flow data. The

width parameter γ for the RBF kernel is 3 × 10−6, and the

ǫ-insensitive loss for the SVR is 1.

2) AUTOREGRESSIVE INTEGRATED MOVING AVERAGE

MODEL (ARIMA)

The ARIMA model is a frequently used method for time

series related task, and widely used in traffic flow fore-

casting [46]. A typical ARIMA (p,d ,q) model contains
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three parameters, which p is the number of time lags of

the autoregressive model, d is the number of times the data

have had past values subtracted, q is the order of the moving

average model. After examining the autocorrelation func-

tion (ACF) and the partial ACF, a set of alternative models

are identified with different model orders. To determine the

best model among the alternatives, diagnostics and Akaike

information criteria (AIC) are used. Finally, the model orders

(7, 0, 3) with good diagnostics and good AIC value was

chosen.

3) ARTIFICIAL NEURAL NETWORK (ANN)

The artificial neural network we used as control model was

introduced by Zhu et al. [22], which is based on radial

basis function neural network (RBFNN). The parameters of

such network contain the number of hidden layers, the mean

squared error goal, the spread of radial basis function,

the maximum number of neurons in the hidden layer, and the

number of neurons to add between displays. The parameters

of such network are set as described in Table 2, where most

of them are the same as [22] except MN for which we found

a more suitable value.

TABLE 2. The configuration of the RBFNN model.

4) KALMAN FILTERING METHOD (KF)

Kalman filtering is an algorithm for optimal estimation of

system state by observation data of the system. The prediction

result of the Kalman filtering method are easily affected

by noisy data. A wavelet denoising procedure proposed by

Xie et al. [49] is employed to preprocess the traffic flow

data and improve the performance of Kalman filtering. We

use Daubechies 4 as the mother wavelet as suggesting in

Xie et al. [49].

5) DECISION TREES (DT)

The decision tree model we used in this study is based on the

classification and regression tree (CART) to forecast traffic

flows. The CART does not need any prior hypothesis and has

strong robustness. The CART is detailed in Xu et al. [50].

6) LONG SHORT-TERM MEMORY (LSTM)

LSTM network [51] is a special kind of recurrent neural

networks (RNN), which is developed to capture time depen-

dence in a long period. The LSTM network parameters con-

tain the number of hyperparameter units, the batch size,

the epochs and the validation split. The model parameters

are set as described in Table 3, which are optimized by grid

search.

TABLE 3. The parameters of the LSTM model.

7) k-NEAREST NEIGHBOR (kNN)

The algorithm predicts the properties of a query vector by

using the properties of several vectors closest to the query

vector.

Comparing with the prediction results of the control mod-

els mentioned above. As shown in Table 1, SrOrkNNr

achieves the best performance. For example, comparing with

the basic kNNa, which achieves the highest accuracy in all

control experiments, the RMSEs of SrOrkNNr decrease by

2.78%, 3.9%, 5.79%, and 3.43% at A1, A2, A4 and A8,

respectively.

Besides, we visualize the deviation between the forecasting

results of the SrOrkNNr and the groundtruth in Figure 6.

The red line represents the prediction, and the green line

represents the groundtruth. As shown in Figure 6, most of the

time, the prediction fit the groundtruth well. The related error,

e.g. the difference between the prediction and the groundtruth

divided by the groundtruth, drawn in the blue line. In some

cases, the predicting results have a large related error during

peak period or low flow period. This phenomenon is due to

the severe changes in traffic flow data on the one hand, and

it also caused by inherent defects, which often occurs in the

low flow period early in the morning or late at night. At these

moments, the traffic flow usually operate in free speed, so the

large related error is insignificant.

Figure 7 shows the detailed prediction results of vari-

ous methods for nine typical but challenge scenarios. The

SrOrkNNr model achieves more accurate results than other

models. Due to the outlier rejection and sample rebalancing

mechanism, the model achieve better performance of traffic

flow forecasting.

To evaluate the SrOrkNNr model more comprehen-

sively, we calculate the coefficient of determination of the

SrOrkNNr model on the dataset of A1, A2, A4 and A8. The

results are shown in Table 4. The coefficient of determination,

termed R2, is the proportion of the variance in the dependent

variable that is predictable from the independent variables.

The value of R2 ranges from 0 to 1. A higher coefficient

is an indicator ofbetter goodness of fit for the observations.

The R2 values of our SrOrkNNr on four datasets all exceed

0.95, which indicates all movements of dependent variable

are largely explained by the independent variables we are

interested in. The results show the superior performances of

our SrOrkNNr model.

TABLE 4. The coefficient of determination (R2) for the four datasets.
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FIGURE 6. The predictions of proposal and the true value in a week, and the prediction related error.

FIGURE 7. The detailed prediction results of various methods in nine typical scenarios.

The model is also applicable to time series forecasting

problems. We also plan to further improve our model by

considering the concept change n the traffic flow patterns,

and further evaluate our model on other forecasting prob-

lems. Furthermore, the proposed model can be easily

extended to other temporal related applications, such as
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multi-dimensional time series prediction [52], [53], predic-

tion of stable bitstream [54], [55], recommendation sys-

tems [56] or temporal human emotion computing [57], etc.

V. CONCLUSION

In this paper, we present a sample-rebalanced outlier-rejected

k-nearest neighbour regression model for short-term traffic

flow forecasting. Our model reconstructs balanced training

sets to address the imbalance issue of the traffic flow data,

and considers both local and global patterns of the traffic

flow data. Furthermore, we introduce a new similarity metric

for the evolutional traffic flow dynamic. The experiments

on four benchmark datasets comparing with state-of-the-art

models show the presented model can significantly improve

the accuracy of short-term traffic flow forecasting.
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