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Antibodies serve as the primary correlate of protection following most clinically approved

vaccines and are thought to confer protection in part through their ability to block

(neutralize) infection. Increasingly, studies have shown that beyond their blocking

activities, the ability of antibodies to leverage the innate immune response may serve

a vital role in protection from infection. Specifically, antibodies can drive phagocytosis,

complement activation, and cellular cytotoxicity by interacting with Fc-receptors found

on all innate immune cells. Measuring the capacity of antibodies to induce these

functions has become critical for the identification of correlates of protection in large-scale

vaccine trials. Therefore, there is a growing need to develop robust, high throughput

assays able to interrogate the functional capacity of innate immune recruiting antibodies.

However, in many instances, only small sample volumes are available. Nevertheless,

profiling antibody functions across many pathogen-associated antigens or across global

intra-pathogen variants is in high demand, making sample sparing approaches to

perform this antibody evaluation critical. Here we describe the development of an

approach to interrogate the functional activity of antibodies in serum against up to

5 antigen targets simultaneously. A single bead-based cellular assay was adapted

to accommodate 5 different fluorescently colored beads, allowing for the concurrent

investigation of antibody responses directed against multiple antigens in a single well.

The multiplexed assay was as sensitive, specific, and accurate as the single antigen

assay and robustly able to assess functional differences mediated by antibodies across

different samples. These findings showmultiplexing allows for accurate andmore efficient

analysis of antibody-mediated effector profiles.

Keywords: phagocytosis, multiplex, monocyte, antibody-mediated effector profiles, dependent effector function

INTRODUCTION

Antibodies represent the primary correlate of protection following most clinically approved
vaccines (1, 2), particularly for their ability to neutralize pathogens. In addition to their ability to
block pathogen entry, recent research into mechanisms of antibody-mediated protection against
disease has highlighted the importance of non-neutralizing functions of antibodies as critical
components of immunity (3–9). Specifically, several correlates of protection studies in both human
and non-human primate HIV vaccine trials have shown the significant relationship between innate
immune effector functions and protection (10–15). Similarly, Fc-mediated antibody functions, such
as phagocytosis and NK cell activation, have been implicated in protection against Ebola virus
(16). Moreover, antibody-dependent cellular cytotoxicity (ADCC) is known to contribute to viral
control in influenza infection (17), and protection is largely dependent on Fcγ receptor interactions
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(18, 19). Non-neutralizing innate immune cell functions are
also important for non-viral antigens, as protection against
bacterial toxins has been shown to require FcγR engagement (20).
These data underscore the emerging importance of functional
antibodies in protection across many pathogens and types of
infections. They also highlight the need for assays able to
interrogate these functions to guide next generation rational
vaccine design aimed at harnessing Fc-mediated innate immune
cell functions.

Toward this end, techniques to assess functional antibody
responses have been critical in the evaluation of vaccine
candidates and defining correlates of protection against HIV
and other diseases (21–23). Several techniques have been
developed to measure ADCC (24–29), antibody-dependent
cellular phagocytosis (ADCP) (3, 30, 31), and antibody-
dependent complement deposition (ADCD) (32, 33). However,
with the growing need to assess antibody functionality across
pathogen-variants or different viral and bacterial antigens
in large cohorts with limited sample volumes, the need to
maximize data output while minimizing reagent input is urgently
needed. Techniques allowing for simultaneous interrogation of
functional activity of antibodies against multiple antigens could
significantly limit the total amount of sample needed to accelerate
the identification of functional, antibody-mediated correlates
of protection.

Here we optimized a multiplexed approach to assess
phagocytic activity across 5 antigens simultaneously. With this
new technique, five times the amount of data can be captured
using a fraction of the original sample cost with accelerated speed.
This assay maintains the specificity, sensitivity, accuracy, and
robustness of the non-multiplexed technique, while allowing for
faster and more resource-efficient investigation of the potential
for vaccine candidates to elicit phagocytic activity in many
different disease states. The new approach presented here offers
a step forward for improving the study of systems immunology
on limited samples and will further propel our understanding of
antigen-specific functional humoral correlates of protection from
infection across diseases.

MATERIALS AND METHODS

Patient Sample Cohort
A set of 73 HIV-infected serum samples was profiled, including
13 elite controllers [viral loads (VL) ≤ 40 copies of RNA/mL)],
27 viremic controllers (VL 40-2000 copies of RNA/mL), 21
HIV-positive patients on combination antiretroviral therapy
(cART, VL ≤ 40 copies of RNA/mL), 12 HIV-positive untreated
progressors (VL> 2000 copies of RNA/mL), with 20 seronegative
controls. Samples were a subset of a larger cohort (24). All
subjects provided informed consent, and the study was approved
by the Partners Internal Review Board and by the Partners
Human Research Committee.

Cells, Viral Antigens, Fluorescent Beads,
and Monoclonal Antibodies
THP-1 cells were purchased from ATCC and maintained in
RPMI 1640 media (ATCC) containing 2mM L-Glutamine

(Corning), 10% Fetal Bovine Serum (Sigma), 10mM HEPES
(Corning), 55µM beta-mercaptoethanol (Gibco), and 1X
Penicillin/Streptomycin (Corning). Cell culture densities
were kept below 0.5 × 106 cells/ml to maintain consistent
assay performance.

The following purified protein antigens were purchased from
Immune Technology Corp.: HIV gp120 (SF162, IT-001-0028p),
HIV gp41 (HXBc2, IT-001-005p), HIV p24 (HXBc2, IT-001-
017p), influenza hemagglutinin (HA, A/New Caledonia/20/99,
IT-003-001p), herpes simplex virus 1 (HSV-1) gD (IT-005-055),
and HSV-2 gC (IT-005-011). Recombinant Ebola glycoprotein
was purchased from IBT Bioservices (0501-15) and used as a
negative control antigen.

Fluorescent, carboxylate-modified 1µm beads of the
following colors were purchased from Thermo Fisher: blue
(365/415 nm, F8814), yellow-green (505/515 nm, F8823),
crimson (625/645 nm, F8816), red (580/605 nm, F8821), and nile
red (535/575 nm, F8819).

Monoclonal antibodies (mAbs) specific for HIV gp120
(2G12), HIV gp41 (2F5), and influenza HA (CH65) were
acquired from the NIH AIDS Reagent Program. A monoclonal
antibody (c13C6 FR1) recognizing the Ebola virus glycoprotein
(GP) was purchased from IBT Bioservices (0201-023).

Protein Antigen Coupling to Fluorescent
Beads
Protein antigens were covalently coupled to fluorescent beads
via a two-step carbodiimide reaction. The beads were activated
with 80 µL of activation buffer (0.1M NaH2PO4, pH 6.2),
10 µL of 50 mg/ml Sulfo-NHS (N-hydroxysulfosuccinimide,
Pierce, A39269), 10 µL of 50 mg/mL ethyl dimethylaminopropyl
carbodiimide hydrochloride (EDC) and incubated for 30min
at room temperature. The beads were washed three times in
coupling buffer (0.05M morpholinoethanesulfonic acid (MES),
pH 5.0), then incubated with protein antigen in coupling buffer
for 2 h at room temperature. The beads were subsequently
washed and blocked with PBS-TBN (PBS, 0.1% BSA, pH 7.4),
then washed with PBS-Tween Buffer (PBS, 0.1% BSA, 0.02%
Tween 20, 0.05%Azide, pH 7.4). Beads were resuspended in 1mL
of 5% BSA/PBS, incubated overnight at 4◦C, and washed and
resuspended in 1 mL PBS.

The Multiplexed Antibody-Dependent
Cellular Phagocytosis Assay
A single antigen/single fluorescent bead-based assay to measure
ADCP has been described previously (3). For multiplexing
experiments, each antigen of interest was coupled separately to
fluorescent beads of a distinct color. The antigen-coupled beads
were then combined, diluted in 1mL PBS per assay plate, and
added to round bottom 96-well plates so that each well contained
1.8× 106 beads of each color in a 10 µL volume. A volume of 10
µL diluted human monoclonal antibody or plasma sample was
added to each well, and immune complexes were formed over
a 2 h incubation at 37◦C. After washing to remove non-specific
unbound antibody, THP-1 cells were added (200 µL/well) at
a concentration of 1.25 × 105 cells/mL (2.5 × 104 cells/well)
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FIGURE 1 | Multiplexed assay setup and antigen-specificity. (A) HIV gp120, HIV gp41, and influenza HA proteins were carboxyl-coupled to 1µm crimson,

yellow-green, and blue beads, respectively. These antigen-coupled bead sets were then combined, incubated with 0.0016-25µg/ml gp120-, gp41-, HA-, or Ebola

(Continued)
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FIGURE 1 | GP-specific mAb, washed, incubated with human THP-1 monocytes, fixed, and analyzed by flow cytometry. Gates were drawn on singlet THP-1 cells,

and phagocytic scores were calculated from data on the APC, AF488, and BUV395 fluorescence channels to quantify gp120-, gp41-, and HA-specific ADCP,

respectively. Histograms indicate results with 25µg/ml positive (bead-coupled antigen-specific) and negative control (Ebola glycoprotein-specific; shown in gray)

mAbs. (B–D) Graphs show phagocytic scores for (B) HIV gp120-, (C) HIV gp41-, and (D) influenza HA-specific ADCP for the indicated mAb titrations. Points

represent the mean ± SD of triplicate wells.

and incubated with the immune complexed beads for 16 h at
37◦C. Cells were then fixed with 4% PFA and acquired on a BD
LSRFortessa flow cytometer. Phagocytosis results are analyzed
in FlowJo software and reported as a phagocytic score, whereby
the geometric mean fluorescence intensity (gMFI) of the bead-
positive cells is multiplied by the percentage of bead-positive
cells. This value is then divided by 10,000.

The Multiplexed Antibody-Dependent
Neutrophil Phagocytosis Assay
A single antigen/single fluorescent bead-based assay to measure
antibody-dependent neutrophil phagocytosis (ADNP) has
previously been described (34). For multiplexing experiments,
antigens of interest were coupled separately to fluorescent
beads of distinct colors. The antigen-coupled beads were then
combined, diluted in 1mL PBS per assay plate, and added to
round bottom 96-well plates so that each well contained 1.8
× 106 beads of each color in a 10 µL volume. Diluted human
plasma samples were added (10 µL/well) and incubated with the
beads for 2 h at 37◦C. Primary human leukocytes were isolated
from whole blood (collected in anticoagulant citrate dextrose
tubes) using ACK red blood cell lysis buffer (150mM NH4Cl,
10mM KHCO3, 0.1mM Na2EDTA), then washed twice in ice
cold PBS. The leukocytes were diluted in R10 media to 2.5 ×

105 cells/mL, then 200 µL/well was added and incubated with
the immune complexed beads for 1 h at 37◦C. To specifically
measure neutrophil phagocytosis, the cells were then surface-
stained with a PE-conjugated CD66b antibody (BioLegend,
305105), fixed with 4% PFA, and acquired on a BD LSRFortessa
flow cytometer. Gates were drawn on SSChighCD66b+ cells, and
phagocytic scores were calculated as (% bead-positive cells) x
(gMFI (bead-positive cells))/10,000.

Statistics
Pearson correlations were used to examine bivariate associations.
P values are two-sided. Comparisons between multiple groups
within a cohort were computed by one-way ANOVA adjusted for
multiple comparisons using Dunn’s test. Statistical analyses were
conducted using GraphPad Prism software.

RESULTS

The Multiplexed Phagocytosis Assay
In the multiplexed assay, different colored bead sets are coupled
to distinct antigens. The beads are then combined at equal ratios
and co-incubated with diluted serum or plasma samples to form
immune complexes. Excess antibodies are washed away, and
human THP-1 monocytes are added to the immune-complexed
beads. After overnight incubation, bead uptake by the THP-
1 cells is analyzed by flow cytometry, by gating on monocytes

and then identifying bead-positive cells (Figure 1A). Given that
different colored beads are included in this assay, antibody-
mediated bead uptake for each antigen can be quantified. Thus,
the multiplexed assay aims to improve the efficiency, while
simultaneously conserving clinical sample volumes, of capturing
functional differences across antigen specificities within a
single well.

Confirming Antigen-Specificity in
Multiplexed ADCP
Since the original ADCP assay (3) uses an optimized ratio of
beads to THP-1 monocytes, we initially sought to determine
whether the addition of extra non-specific beads would alter
antigen-specific bead uptake. To address this possibility, three
fluorescent bead sets were coated with distinct antigens (HIV
gp120, HIV gp41, influenza HA), and monoclonal antibodies
(mAb) specific to each antigen were added individually or in
combination. Combining gp120-, gp41-, and HA-coupled beads
in the presence of 2G12 (anti-gp120) mAb resulted in increased
uptake of only gp120-coated beads over a wide range of antibody
concentrations tested (Figure 1B). Gp41- and HA-coated beads
were similarly phagocytosed only in the presence of their
respective monoclonal antibodies (Figures 1C,D). Comparing
phagocytic scores obtained from titrating each monoclonal with
those from no-antibody control wells showed that phagocytosis
was both antibody-mediated and antigen-specific. No increase
in phagocytosis of gp120-, gp41-, and HA-coated beads was
observed in the presence of a negative control Ebola-specificmAb
as compared to no-antibody control wells. Thus, no phagocytosis
above background was mediated by monoclonal antibodies
for antigen-coated beads for which the antibodies were not
specific (Figures 1B,D), demonstrating that the combination of
additional beads does not alter the antigen-specific nature of the
phagocytic assay.

Confirming the Sensitivity of Multiplexed
ADCP
Monoclonal antibody-mediated phagocytosis clearly illustrated
that the assay retains specificity upon multiplexing. However,
whether the assay could detect antigen-specific bead uptake
using polyclonal serum or plasma samples remained uncertain.
A potential concern was that samples having high antibody titers
specific for some antigens but low titers for others in a multi-
bead-set panel might affect the wide linear range of detection for
the antigens with low-titer antibodies. Such high-titer antibodies
might outcompete low-titer antibodies against another antigen
for Fc receptor binding and mask those low-titer antibody-
mediated phagocytic effects. To address this possibility, ADCP
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was assessed against 3 antigen-coupled bead sets using pooled
mAbs as a pseudo-polyclonal sample.

For multiplexed wells (3 antigen-coupled bead sets and 3
mAbs), one mAb was serially diluted while the other two mAbs
were kept at a concentration of 5µg/ml across the same wells.
With respect to assay sensitivity, all antigens demonstrated a step-
wise reduction in the percent of bead-positive monocytes as the
respective antibody was titrated (Figure 2A). Irrespective of the
antibody concentration, ADCP remained antigen-specific and
titratable across all 3 antigens (Figures 2B,D). Background was
defined here as the level of phagocytosis induced by the negative
control Ebola mAb.

While the magnitude of the phagocytic activity varied across
single and multiplexed assays, comparable trends within the
linear ranges of ADCP were observed for each antibody/antigen
pair (Figures 2B,D). However, while the linear range trends for
CH65 remained consistent even when gp120- and gp41- specific
antibodies were kept at a high concentration (Figure 2C), the
levels of phagocytosis for both 2G12 and 2F5 were affected in
the multiplexed format (Figures 2B,C), whereby the scores were
significantly lower across the different antibody concentrations.
Differences in the absolute magnitude of phagocytosis may
be related to immune complex mediated competition on
THP1 cells that are simultaneously exposed to three different
immune complexes in the multiplexed assay. Moreover, despite
the fact that all antibodies were produced in 293T cells,
each antibody may vary slightly in Fc-glycosylation, thereby
resulting in different immune complex affinities that may
compete for Fc-receptor binding when immune complexes are
mixed in the functional assay. Additionally, orientation of
antibody binding, stoichiometry (35), and shape and size of
immune complexes (36) may also qualitatively affect Fc-receptor
engagement and competition. Thus, future efforts aimed at
comparing phagocytic activity across monoclonal antibodies may
consider Fc-glycosylation and evaluate immune complex size and
quality to account for variation in the single and multiplexed
assays. However, immune complex mediated competition within
polyclonal sera likely reflects the functional activity within an
infected individual, possibly providing a more relevant measure
of functionality compared to what may be observed using single
bead/antigens alone.

Confirming Accuracy of 3-5 Bead set ADCP
Next, we aimed to determine whether including additional bead
sets could further expand the multiplexed assay. ADCP was
therefore tested with 1, 3, and 5 different antigen-coated bead
sets. Beads were coupled to HIV gp120, gp41, p24, influenza
HA, or a mixture of HSV-1 gD and HSV-2 gC proteins.
One HIV-positive plasma sample that also contained high
titer influenza and HSV antigen-specific antibodies was serially
diluted and used as the source of polyclonal antibodies. ADCP
was measured using one set of HIV antigen-coupled beads,
three sets of HIV antigen-coupled beads, or all five sets of
viral antigen-coupled beads. Across a ∼250-fold sample dilution
range, there was a strong linear relationship between phagocytic
scores in the multiplexed and single-bead assays for gp120
(Figures 3A,D), gp41 (Figures 3B,E), and p24 (Figures 3C,F).

FIGURE 2 | Combining different immune complexed beads does not induce

non-specific uptake or alter assay sensitivity. HIV gp120, HIV gp41, and

influenza HA proteins were coupled to 1µm crimson, yellow-green, and blue

beads, respectively. These antigen-coupled bead sets were then combined

and used in the multiplexed ADCP assay. Antibody samples consisted of

gp120-, gp41-, and HA-specific mAb pools in which one mAb was titrated

from 0.0016-25µg/ml and the other two were used at 5µg/ml. Wells

containing 5µg/ml anti-Ebola GP mAb served as a negative control. (A)

Histograms show uptake of each fluorescent bead set by THP-1 cells for 3

conditions: (left column) 2G12 mAb titrated with 2F5 and CH65 mAb constant;

(middle column) 2F5 titrated with 2G12 and CH65 constant; and (right column)

CH65 titrated with 2G12 and 2F5 constant. Red, green, and blue colored

histograms indicate that the titrated mAb used is specific for the antigen

coupled to that fluorescent bead set, and markers indicate cells that have

taken up beads. (B–D) Graphs depicting the phagocytic scores (PS) vs. mAb

concentration for (B) gp120-, (C) gp41-, (D) HA-specific ADCP for the

indicated antigen-coupled bead sets and mAbs. The dotted lines represent

background PS levels (wells containing 0µg/ml of titrated mAb, 5µg/ml each

of the two irrelevant mAbs). Points represent the mean ± SD of triplicate wells.

This result was consistent for assays run with three (3A-C) or
five antigen-coupled bead sets (3D-F). Importantly, variation in
correlation strength, ranging from 0.7 to nearly 1, fell within
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FIGURE 3 | ADCP is highly correlated between multiplexed and single-bead assays. Blue, yellow-green, crimson, red, and nile red 1µm fluorescent beads were

coupled to HIV p24, HIV gp41, HIV gp120, influenza HA, or a mixture of HSV-1 gD and HSV-2 gC antigens, respectively. One HIV-positive serum sample was serially

diluted and tested in the ADCP assay using one HIV antigen-coupled bead set alone, all three HIV antigen-coupled bead sets combined, or all five antigen-coupled

bead sets combined. Each serum sample dilution was tested in quadruplicate and phagocytic scores were averaged, then normalized by dividing by the PS for an

HIV-negative control serum sample. Each point represents the average, normalized PS for a single serum sample dilution (1:100, 1:250, 1:625, 1:1562, 1:3906,

1:9765, 1:24414, or no antibody control). (A–C) Normalized phagocytic scores are shown for (A) gp120-, (B) gp41-, and (C) p24-specific ADCP using 1 or 3 HIV

antigen-coupled bead sets in a single well. (D–F) Normalized phagocytic scores are shown for (D) gp120-, (E) gp41-, and (F) p24-specific ADCP using 1 or 5

antigen-coupled bead sets in a single well. R2 values were computed with linear regression Pearson correlation with a 95% confidence interval.

the expected and accepted 30% coefficient of variation range
for cell based assay variability. Overall, the multiplexed ADCP
assay was specific and accurate compared to the original single-
antigen/single-bead protocol.

Multiplexing With Clinical Samples From
HIV Controllers and Progressors
To further probe the accuracy of the phagocytic results captured
in the multiplexed ADCP assay compared to the single-
bead assay, serum samples from a cohort of 73 HIV-infected
patients comprising four HIV clinical phenotypes with 20 HIV
seronegative controls were used to test whether multiplexed
ADCP could be used to accurately detect differences in
antibody function between clinically distinct groups. This cohort
included a mix of elite controllers (spontaneous controllers
of HIV off antiretroviral therapy (ART) with undetectable
viral loads), viremic controllers (spontaneous controllers of
HIV off ART with detectable viral loads, >50-2000 copies of
RNA/ml), HIV-infected patients treated with ART (<50 copies of
RNA/ml), HIV-infected untreated patients (chronic progressors
with detectable viral loads, >50 copies of RNA/ml), and HIV-
seronegative controls. Because the variation in the degree of

viral control between these groups might indicate distinct
antibody response levels against HIV antigens, single-bead, and
multiplexed ADCP assays were conducted to measure gp120-,
gp41-, and p24-specific ADCP activity.

HIV gp120, HIV gp41, HIV p24, influenza HA, and Ebola

GP antigens were each coupled to a different 1µm fluorescent

bead set. Each serum sample was tested in the ADCP assay
using the gp120-coupled bead set alone, all three HIV antigen-

coupled bead sets combined, or all five antigen-coupled bead

sets combined. Consistent with findings from prior experiments,
the phagocytic scores did not differ significantly for individual

samples whether gp120, gp41, and p24-coated beads were assayed

together in a single well or separately. ADCP results from
single and multiplexed 3 bead set assays were significantly
correlated (Figure 4A), indicating that the multiplexed ADCP
assay improves efficiency without a loss in accuracy. The

observed variation in phagocytic scores for individual samples

between single and triple bead-set assays remained within the
assay variability normally observed between single-bead ADCP
assay runs or technical replicates. Additionally, phagocytic scores
from the 3 bead set ADCP assay were highly correlated with
results from the 5 bead set ADCP assay (Figure 4B) using
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FIGURE 4 | Phagocytosis induced by HIV antibodies in clinical samples is

antigen-specific and highly correlated between single and multiplexed bead

assays. Crimson, yellow-green, blue, red, and nile red 1µm fluorescent beads

were coupled to HIV gp120, HIV gp41, HIV p24, influenza HA, or Ebola GP

antigen, respectively. Each serum sample from a cohort of 73 HIV-positive

subjects with 20 HIV seronegative controls was diluted 1:100 and tested in the

ADCP assay using the gp120-coupled bead set alone, all three HIV

(Continued)

FIGURE 4 | antigen-coupled bead sets combined, or all five antigen-coupled

bead sets combined. Each serum sample was tested in duplicate and

phagocytic scores were averaged. (A) Phagocytic scores are shown for

gp120-specific ADCP using 1 vs. 3 HIV antigen-coupled bead sets in a single

well. Each point represents one serum sample. (B) Phagocytic scores are

shown for gp120-specific ADCP using 3 HIV antigen-coupled bead sets vs. all

5 viral antigen-coupled bead sets in a single well. Each point represents one

serum sample. R2 values were computed with linear regression Pearson

correlation with a 95% confidence interval. (C–G) Phagocytic scores (PS) are

shown for (C) gp120-, (D) gp41-, (E) p24-, (F) influenza HA-, and (G) Ebola

GP-specific ADCP using all 5 antigen-coupled bead sets in a single well. HIV

seronegative cohort samples are grouped at the right end of each graph. Each

bar represents the mean ± SD of duplicate wells for one serum test sample.

The dashed line indicates phagocytic score for a Massachusetts General

Hospital (MGH) HIV-seronegative sample (C–E) or no-antibody control (F,G).

(H) The histograms show the fluorescent bead uptake for each bead set in the

assay panel for a representative HIV-positive sample.

the same serum samples, further depicting the robustness and
accuracy of the multiplexed assay.

Next, the full 5-bead capacity of the assay was used to
compare phagocytic activity across additional positive and
negative control antigens. HIV antigens gp120, gp41, and p24
were included as antigens for which antibody titer and function
was already known to vary across individuals. In addition,
influenza HA was used as a positive control against which almost
all samples in the cohort should elicit responses. An Ebola
glycoprotein (GP) antigen was used as a negative control for
which no samples in the cohort should contain cross-reactive
antibodies. Phagocytic activity for HIV antigens fluctuated
across samples, as expected, and were not detected above assay
background levels in the HIV seronegative and no antibody
controls (Figures 4C–E). Influenza HA-specific Fc-mediated
phagocytic activity was high across most samples (Figure 4F),
with a few exceptions, as expected based on variability in
immunity in the general population. As expected, no samples
elicited responses above the assay background levels against the
Ebola antigen (Figure 4G). Bead uptake for a representative
HIV-positive serum sample across all five antigens is shown in
Figure 4H.

Finally, samples from this experiment were organized
into their respective groupings (elite controllers, viremic
controllers, cART treated, viremic progressors, and healthy
controls), and results from the multiplexed ADCP assay
were analyzed for differences in Fc-mediated immune effector
function. Antibody function differed significantly between HIV-
positive groups and HIV-negative controls across all antigens
(Figures 5A–C). Overall, antibody function between most HIV-
positive subgroups was similar for all 3 HIV antigens tested,
although ART-treated patients showed reduced gp120-specific
ADCP (Figure 5A) and increased p24-specific ADCP activity
(Figure 5C) compared to viremic controllers. Although the
differences between most subgroups were not statistically
significant, some variation was found, and these trends were
consistent with previously published gp120-specific antibody
functionality data using a larger HIV cohort from which the
clinical samples here were taken (24), highlighting the ability
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FIGURE 5 | The multiplexed ADCP assay reveals trends in HIV antigen-specific antibody responses in HIV controllers and progressors. Serum samples from a cohort

of HIV-infected elite controllers (EC), viremic controllers (VC), cART-treated HIV positive patients (cART), HIV-positive progessors (viremic), and HIV seronegative

controls were diluted 1:100 and tested in the ADCP assay using gp120-, gp41-, and p24-coupled fluorescent bead sets. Shown are phagocytic scores for (A)

gp120-, (B) gp41-, and (C) p24-specific ADCP for the samples in each clinical subgroup. Each point represents the average PS for one serum sample tested in

duplicate. Differences between groups were evaluated using a non-parametric one-way ANOVA adjusted for multiple comparisons using Dunn’s test; *p < 0.05; **p <

0.01; ***p < 0.001; ****p < 0.0001. (D) The heat maps depict the median phagocytic scores for each clinical group (ECs, VCs, ART, viremic) across the gp120, gp41,

and p24 HIV antigens. Correlation coefficients (r) are represented by color gradients; *p < 0.05; **p < 0.01.

to capture similar findings in the multiplexed and single bead
assays. Moreover, variation was found in the coordination
between functional antibody responses among the three HIV
antigens, whereby gp41- and p24-specific ADCP responses were
significantly correlated for elite controllers and ART patients, as
were gp41- and gp120-specific responses (Figure 5D). However,
these strong correlations were not significant in viremic
controllers or viremic patients, suggesting a less-coordinated
overall HIV response in the setting of active viral replication.
Overall, the multiplexed ADCP technique expands not only the
amount of data collected but also the analyses possible within just
one assay.

Multiplexing Can Be Expanded to Primary
Neutrophils
To test whether themultiplexed assay could be applied to another
cell type, primary neutrophils from donor leukocytes were used
in the multiplexed format based on an optimized protocol for
testing ADNP (34). Here, HIV gp120, influenza HA, and Ebola
GP antigens were each coupled to a different 1µm fluorescent
bead set and incubated with HIV positive and/or negative
plasma either alone or with all bead sets combined. Leukocytes
were isolated from whole blood by lysing the erythrocytes, and
neutrophils were identified by staining with a CD66b-specific

fluorescent antibody. As with the monocyte multiplexed assay,
antibody-dependent phagocytosis by neutrophils was assessed
using a phagocytic score. From this, significant variation in
ADNP activity across the antigens was observed and the
results showed multiplexing can be expanded beyond the
monocyte cell line used to develop and optimize the technique
presented here. Phagocytosis scores for gp120- and HA-specific
antibodies were comparable between single- and three-bead
set ADNP and were strongly correlated (Figure 6). Thus,
the multiplexing technique to measure antibody-dependent
phagocytosis can be applied not only to a broad range of
sample types and antigens, but also to various phagocytic
cell types.

DISCUSSION

There is an emerging appreciation for the critical role for
antibody Fc-mediated effector functions in protection across
a wide array of infections (37–39). Thus, assays able to
systematically capture the innate immune recruiting function
of pathogen-specific antibodies are urgently needed. High-
throughput, sensitive, and specific assays that can capture
information across multiple antigens simultaneously would
provide significant advantage with respect to cost and sample
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volume needs. Here we describe efforts to multiplex a
bead-based phagocytic assay aimed at measuring monocyte-
mediated, antibody-driven phagocytic activity across 5 antigens
simultaneously. Multiplexing did not alter the sensitivity or
specificity of the technique, providing an accelerated method
to capture 5 times more functional data in a single assay. This
sample-sparing approach offers a high throughput manner to
investigate monocyte phagocytosis. However, the bead-based
approach can be adapted to probe the additional role of
other innate phagocytic cells, including primary monocytes,
macrophages, dendritic cells, and neutrophils, and can even be
used to investigate complement deposition, offering a remarkably
broad platform to capture a large amount of data concurrently via
the adapted use of multiple fluorescent beads simultaneously.

For many clinical trials, only small amounts of sample
can be collected. For example, the collection of blood from
neonates (40), mucosal samples (41), cerebrospinal fluid (42), as
well as samples from small animal models (43) may limit the
number of analyses that may be performed within a given study.
Thus, sample-sparing approaches to capture a larger amount
of data may profoundly improve our ability to fully dissect the
humoral immune response following various types of infection
or vaccination. Importantly, while this assay does not reduce the
overall volume of serum or plasma required (∼1 µl), which is
already quite small, the technique provides a means to capture 5
timesmore data simultaneously from the same sample, providing
an opportunity to probe for functional profiles across different
antigens. Moreover, multiplexed methods can be used to probe
for epitope-specific responses using different epitope-scaffolds
(44), linear peptides (45), or even to look for breadth of function
across variants of a given antigen (46, 47).

Beyond profiling responses across pathogens and antigens
of interest, the assay platform may be expanded to probe
epitope specificity and breadth of functional humoral immunity.
Specifically, in the context of HIV, influenza, dengue infections,
etc., there is great interest in defining the nature of protective
humoral immune responses able to recognize global variants
(48, 49). Often, conserved epitope specificities at the receptor
binding site (50) or in conserved regions of the viral envelopes
(51, 52) can be recognized by antibodies, providing protection
from infection in a neutralization independent manner (53,
54). In this case, the multiplexing technique could be useful
to test panels of envelope isolates from globally relevant and
distant strains, extending beyond current ELISA and Luminex
simple binding assays to determine the functional properties of
antibodies able to bind to multiple antigens. Given that multiple
bead colors can be interrogated simultaneously, the uptake of
mono- or poly-chromatic bead combinations may provide an
unprecedented depth of information on cross-reactive functional
responses. Additionally, modified antigens, lacking or mutated in
the receptor binding domain (55, 56) or only displaying minimal
target epitopes of interest (55, 57) can also be attached to beads
to specifically probe the functional properties across the surface
of target antigens of interest. Collectively these applications of
the multiplexed assay may be linked to inhibitory, enhancing, or
microscopic assays to dissect the consequences of bead up take
by type specific or cross-reactive antibodies across infections.

FIGURE 6 | The multiplexed assay can be expanded to primary neutrophils.

Crimson, blue, and yellow-green 1µm fluorescent beads were coupled to HIV

gp120, influenza HA, and Ebola glycoprotein antigen, respectively. Three

plasma samples from HIV seronegative and positive donors were titrated from

1:25 to 1:1,600 and tested in the phagocytosis assay using each

antigen-coupled bead set individually and in the 3-bead multiplexed format.

Instead of THP-1 cells, primary leukocytes were used as a source of

neutrophils to measure antibody-dependent phagocytosis. (A,C) Titration

curves show phagocytic scores for gp120- (A) and HA- (C) specific ADNP in

the multiplexed and single-bead formats for representative HIV-positive and

HIV-negative plasma samples. Each point represents the mean ± SD of

triplicate wells. The dashed line indicates the phagocytic score for a

no-antibody control. (B,D) Dot plots show phagocytic scores for gp120- (B)

and HA- (D) specific ADNP using 1 vs. 3 bead-sets in a single well. R2 values

were computed with linear regression Pearson correlation with a 95%

confidence interval.

The assay presented here exploits 5 bead colors, however
up to 7 colors are currently available that can be detected on
more sophisticated flow cytometers. Therefore, as additional
bead colors are in development, the number of antigens that
may be investigated simultaneously will likely increase, offering
even greater numbers of specificities that may be concurrently
probed. Additionally, instead of single-color fluorescent beads,
Luminex beads enable the generation of hundreds of bead sets
by exploiting two fluorochrome ratios, extending the number of
non-overlapping antigens that can be tested simultaneously on a
flow cytometer. Thus, for diseases where the functional antibody
antigen/epitope-specificity remains unknown, these additional
bead platforms offer an even broader opportunity to capture a
large amount of data.

Additionally, the multiplexed phagocytosis assay may be
used to investigate pathogen cross-reactivity. For example, it
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is known the antigenic overlap between different flaviviruses
leads to antibody-dependent enhancement of Dengue viral
infection through pre-existing non-neutralizing antibodies
induced by cross-reactive dengue responses (58). Therefore,
the unique nature of the multiplexed technique to expose
phagocytic cells to different antigens in a single well-
provides an opportunity to explore how dengue, and other
flavivirus-specific antibodies, either possibly facilitate, or
inhibit uptake of pathogen-specific immune complexes.
Moreover, whether immune complex uptake leads to pathogen
elimination or facilitation of infection can also be further
investigated in these assays, with follow-up analytics. For
example, changes in bead localization can be captured by
microscopy, antigen presentation may be measured by T
cell co-culture, cell maturation/activation may be assessed
by flow-cytometry through intracellular cytokine staining
(59), and secondary activating signals (cytokines/chemokines)
can be quantified by Luminex bead array or ELISA. Thus,
additional data may be collected from this multiplexed
bead-based approach.

Sample-sparing assays able to reproducibly, specifically,
and sensitively capture the functional capacity of antigen-
specific antibodies provide a path for the identification of
novel correlates of immunity for pathogens where correlates
remain to be defined (9, 60), an opportunity to define epitope-
specific functional targets of protective humoral immune
responses (48), and/or enable the dissection of cross-reactive
humoral immune responses (61–63). Together, these insights
may have a profound impact on next generation vaccine
or monoclonal therapeutic design, guiding the rational
design of both the Fab- and Fc-mediated activities of a
humoral immune response that may provide the highest

level of protective immunity. However, this approach may
be exploited to probe humoral immune activity across a
much broader array of diseases, and potentially also used to
profile and define novel functional humoral specificities in
autoimmune, allergic, and even oncological diseases, offering a
remarkably flexible platform tool for the dissection of humoral
immune responses.
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