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Abstract

In this paper we consider a multicontroller problem in which each 

control agent has a different objective function. The actions of the controllers 

are coordinated by the influence of one controller who plays according to a 

Stackelberg strategy relative to the remaining players. We investigate this 

formulation when the information flow is restricted by constraining it to be 

in the form of sampled data acquisition.

The computational advantage of the sampled data formulation is quite 

significant. Of equal importance is the relationship among the sampled data, 

closed loop and open loop solutions. The existence of and solution for the 

closed loop Stackelberg solution for the continuous time game are, at present, 

unresolved problems. The primary motivation for considering the sampled data 

formulation is to obtain a solution which maintains the computational simplicity 

of the tractable open loop solution while gaining the responsiveness of a 

state feedback solution, avoiding the complications of the purely closed loop 

formulation.

The linear quadratic problem is considered in detail and an efficient 

solution algorithm is derived which takes advantage of certain characteristics 

of the sampled data solution.
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1. Introduction

In this paper, we consider the problem of formulating a hierarchical 

control structure for a multicontroller problem using the differential game 

concept of a Stackelberg strategy. It is assumed that in general each agent 

has a different objective function and that one agent, the coordinator and 

Stackelberg leader, has an overall objective function.

There have been numerous investigations recently into the usefulness 

and characteristics of the Stackelberg strategy applied to dynamic systems 

[1-11]. In particular, the use of the Stackelberg strategy for the coordination 

of many agents has been considered in [4] and [11].

A form of periodic coordination has been considered by Chong and 

Athans [12] in which the vertical communication in the hierarchy is constrained 

to be periodic. Their basic assumptions are different from those of this 

paper and subsequently the nature of the solutions are quite dissimilar.

With a Stackelberg strategy, we assume it is known that one player, 

the coordinator and Stackelberg leader, will determine his controls before any 

of the other players (followers or lower level decisionmakers). The lower 

level decisionmakers then perform their optimizations subject to their knowledge 

of the coordinator's decision, that is, they are reacting to his decisions.

The followers act simultaneously and we consider the case when they play a Nash 

strategy among themselves. The leader performs his optimization subject to 

the expected reactions of the followers. The leader's ability to make decisions 

first, taking into account the reactions of the lower level decisionmakers, 

enables him, to a degree, to impose his criterion onto the other controllers.
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Further discussion of the Nash and Stackelberg strategies for dynamic games 

can be found in the references.

In order to see the motivation and significance of the sampled data 

formulation it is necessary to appreciate two particular aspects of the 

continuous time Stackelberg problem.

First, unlike the classic single agent, linear quadratic control 

problem, or even certain multicontroller problems, the necessary conditions 

derived by the variational technique for the linear quadratic, continuous time, 

closed loop Stackelberg problem result in a non-linear control, the existence 

of which is not assured [8]. This problem has yet to be fully resolved.

A second anomaly of the Stackelberg solution for general dynamic 

games is that the principle of optimality does not, in general, hold. The 

imposition of the principle of optimality for discrete time games has been 

considered in [8] while the procedure for doing this for continuous time games 

has yet to be resolved.

With these aspects of the continuous time Stackelberg problem in 

mind, the significance of the sampled data formulation is apparent. That is, 

the resultant control laws are piecewise continuous linear time varying 

functions of the measurements for the linear quadratic case and, as we have 

formulated it, the principle of optimality holds at the sampling times.

Recent work on the Stackelberg strategy for continuous time dynamic 

systems has concentrated primarily on the open loop solution [4] and on the 

linearly constrained closed loop solution [6]. For the linear quadratic case, 

the open loop solution is a linear function of the initial condition and the 

solution in [6] is linear by construction but the principle of optimality does



3

not, in general, hold. The linear form of the sampled data solution is a 

direct result of this information constraint and is not due to any structural 

(linear) constraint being imposed on the form of the solution.

By considering the sampled data formulation we have been able to 

obtain a responsive state feedback solution, which is tractable, has a very 

simple form for implementation, and for which the principle of optimality holds 

at the sampling times. Of equal importance is the existence of an efficient 

algorithm for the calculation of this solution. Thus an important contribution 

of this paper is the derivation of a computationally efficient technique for 

the solution of the linear quadratic case.

Our objectives in deriving the solution algorithm have been to 

(i) minimize the on-line computations and (ii) to take advantage of the nature 

of the sampled data solution to greatly reduce the horizon over which integra

tions must be performed, thereby reducing off-line computations as well.

These objectives are obtained as a result of employing a form of invariant 

imbedding [13].

In Section 2 we formulate the problem and present necessary conditions 

for the solution. The linear quadratic case will be considered in Section 3 

and techniques for the solution of the linear quadratic case will be discussed 

in Section 4. Section 5 summarizes the results.

2. Sampled Data Formulation

Consider the system

x — f (x ,u^ji — 0,1, . . . , m) , x(tQ) — X Q , ( 1 )
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r.
u. c R , x f  R , where r. is the dimension of the ith control vector. Each 
ic 1

lower level control, vu, for i=l,...,m, is chosen to reduce as much as possible 

the scalar index

tf

Ji = Kif^x ^ f ^  + J* Li(x >ujij = 0,l,...,m)dt. (2)

t
o

The coordinator's control, u , is chosen to reduce as much as possible the
o

scalar index

JQ - KQf(x(tf)) + J Lo(x,ui;i= 0,1,...,m)dt. (3)

fco

The terminal time, t^, is fixed.

The information is assumed to be in the form of sampled data 

acquisition, that is, measurements are taken at r discrete instances in time

[t^t^), i = 0,1,... ,r-l]. The controls will be functions of time and the

latest state measurement, i.e., u^ = u^(t,Xj) for t^ < t < t^+ ,̂ for a

A , x
where x^ - x(t^).

At each sample time, t^, the leader will calculate and announce 

uQ (t,Xj) for t£ [t^,t^). This control is chosen to minimize the leader's 

performance index under the assumption that the followers will in turn be 

minimizing their respective performance indices subject to the announced leader's 

control. The controllers are not simply solving repeated open loop solutions, 

but rather, at each time, t^, the controls are calculated based on the assump

tion that future measurements will be available at t̂ ., k = j+1,...,r-1.

The necessary conditions needed to find the u^(x^,t) for t£ [t^,t^+ )̂ 

are found by the variational method. Contrary to the single controller case
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or even certain multicontroller strategies, the Stackelberg controls found by 

the variational method do not in general satisfy the principle of optimality 

[8]. For this sampled data formulation, the principle of optimality does hold 

at the sampling times t^, j = 0,1,...,r-1. The controls u^(x^,t) Vi and for 

t € are calculated taking into account that similar optimizations are

to be performed at future sample times to find u^Cx^jt), t £ [t^,t^+ ^), 

j < k ^ r-1. The dependence of the u^(x^,t), t € [t ,t + )̂ on the future con

trols will be imbedded in the boundary conditions at t^+ .̂

In order to establish appropriate boundary conditions we will need 

expressions for the costs to go at the sampling times. Let the optimum costs

to go at time t^ be denoted by (x(t^ ) , t^ ) , i=0,l,...,m. Then for the

interval [t.,t..,) 
J J+l

j+1
Vi(x^,t^) = min{Viv(Xj+1,t̂ +1) + J Li(x,uk;k = 0,1,... ,m)dt] (4)

u.
l

where

Vi(x(tf),tf) - Kif(x(tf)), i = 0,1,...,m (5)

and where the minimization with respect to u^ in (4) is subject to the system

constraint and to the minimizations being performed by the other controllers

according to the strategy outlined in the preceding paragraphs. Note that the

k
optimizations of the future periods are imbedded in the term (x^+ ^ , t • 

Also notice that at sample time t^, all controls from t^ through t^ will, in 

principle, be calculated and that they are independent of any control action

prior to tj. So, by construction, the principle of optimality does hold at 

the sample times.
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The necessary conditions are an extension of those derived in [11]. 

The necessary conditions for the followers on [t^,t^+1) for i=l,...,m are

x - f(x,ui; i = 0,1,...,m), x(t^) = x

ôhî av?(

Pi = ~ iV j+1'

0 =
ÔH,

3u.

. ) - X .
J J

(6)

i+l),ti+l)

■tj+l)
(7)

OO s-
/

where

(x,Pi > j k 0,1,...,m) Lu (x, j k 0,1,...,m)

+ P]_f (x»\; k = 0,1,. .. ,m).
(9)

The necessary conditions for the leader on [t.st.,,) are
J J+l

X= -
ÔH1
— — \  (f- \ * —  2.
ÔX » ôx(t . , , )

dV„ (x(t.+1) ,t.+1) m

j+1 " k=iYl"(tj+l)

a2v*(x (t,+ i),tm )

ôX (t.+1)2
(10)

Y, = "
ôh;

i ô p . * ^i^j) °» 1 m ( 11)

where Y . (t ) - lim Y,(t) for y defined on the (j-l)st interval [t. ,,t.) and 
J t-»t‘ 1 J“1 3

+ 3
Y.(t.) - Y.(t.) defined on the jth interval [t.,t.,,).
1 J 1 J J J+i

ÔH 
_c
du

= 0 ( 12)

ÔH 
_o
du.

l
-0, i=l,...,m (13)

where
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(x , X » , Y ̂ » |3̂ j i 1 j 2 j • • • j m, Uj j j 0,1,...,m) L̂ (x,u_̂ j i 0,1,...,m)

m ôH. òli
+ X'f(x,ui; i-0,1,...,«) + 2 { ^ ( - ^ > , + P k O ' } -

(14)

Equation (13) and the constraints appended under the summation sign 

in (14) are due to the leader taking into account the reactions of the lower 

level decisionmakers.

3. The Linear Quadratic Case

Assume the system is linear

m
x - Ax + S B.u.

i=0 1 1
(15)

x(t ) = x 
o o (16)

and the criteria quadratic

1 i f m
J. = “ x'K.^xl + — f* (x'Q.x + £ u'R. .u.)dt 
1 2 if 2 J 1 j i,i Jt=t t j-0 J ,J J

(17)

The necessary conditions for the lower level controllers for 

tÇ [tj,tj+1) and i = l,...,m are

3V*(x(t ),t )

p . = -Q.x - a  pi, P :<tj+1) ------âV(t. I T  —
j+i'

u. - -R.^.BÎp..
l i,i l l

(18)

(19)

The necessary conditions for the leader are
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m
A'X + S QiYi

X '(tJ+l> =

5v;(x(tm ),t,+1)

3x(t.+1)

m

1=1

5 ^ ( x ^ ^ )  »11 j+1)

òx(tj+1)2

(20)

So,iPi + Si"’ V ^ ) " 0 ( 21)

where

u
o

-r "1 B'X
0 ,0 o (22)

b .r T . b !
1 1 , 1 1

b .rT ^ r .
1 1,1 J

.rT ^ b ' . 
1 1,1

During each interval, the state will evolve according to

m
x = Ax - S S.p. - S X 

. , 1 1  o 
i=l

(23)

for t€ [tj,t^+ )̂ where x (tj) is determined in the previous interval.

If the state measurements are made at r discrete instances in time, 

we are faced with an (r+l)-point boundary value problem. At this stage, there 

are two alternate approaches we can take to the problem. The first and 

standard approach starts by assuming an explicit functional dependence of the 

costates on the state. This results in a set of coupled matrix Riccati 

equations which must be solved repeatedly at each sample time. A general 

algorithm for the efficient solution of these equations for each new set of 

boundary conditions will be outlined in the next section. We will also 

consider an even more efficient approach utilizing invariant imbedding [13,14].
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It is based on an assumption of the functional dependence of the state and 

costates on one another and of their explicit dependence on their respective 

boundary conditions. This result will be shown in detail.

4. Solution of the Linear Quadratic Problem

The first approach to dealing with the r+1 point boundary value 

problem starts by assuming that the costates depend on the states by affine 

functions. The affine dependence, rather than simply linear, is necessary so 

that the lower level decisionmakers will be able to calculate their controls 

as functions of the leader's announced control, i.e., their computations will 

be coupled to the leader's sequentially, not simultaneously.

Differential equations can be found for the coefficients of these 

functions and for the associated costs to go. If m is the number of controllers, 

the problem can be reduced to that of solving m coupled matrix Riccati equations 

and m matrix Lyapunov equations at each sample time, all with boundary conditions 

at a common time. The same set of equations are resolved at each sample time with 

only a change in the boundary conditions. A sampled data Nash formulation has been 

considered by Simaan and Cruz [9] and a computational technique for the solution 

of the resultant Riccati equations has also been obtained [10]. We have 

obtained a generalization of [10] in which the solutions of the Riccati equations 

are expressed in terms of a preliminary solution due to a specific set of 

boundary conditions and a correction term dependent on the actual boundary 

conditions. An algorithm is found for finding these correction terms requiring 

the solution of m uncoupled matrix Riccati equations, thus providing substantial 

improvement over a brute force solution of the coupled equations. We will not
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present the details of this technique but rather will describe an alternate 

approach which is even more attractive.

The Second Approach: Invariant Imbedding

The ultimate goal when deriving the solution technique is to minimize 

the amount of computations required by taking advantage of the fact that the 

equations to be solved are the same in each sample interval and only the 

boundary conditions change.

The derivations performed in the remainder of this section will 

proceed as outlined below. First we define more compact notation, grouping 

the state and costates according to their boundary conditions. We then assume 

an explicit functional dependence of the costates on the state and on the 

costates' boundary conditions. Due to this assumption, the solutions of the 

resultant equations are independent of the changing costates1 boundary condi

tions and it is because of this independence that we are able to obtain the 

computational savings. The cost to go equations are derived since they are 

needed to generate the appropriate boundary conditions to plug into the 

solution functions. A functional dependence of the costs to go on their 

boundary conditions is also assumed and finally the boundary conditions for 

each interval are established in terms of those in the adjacent interval.

The details of the derivation follow.

Rather than making the standard assumption of a functional dependence 

of the costates on the state alone as in the first approach, we will make a 

different assumption. Notice that on the interval [tj,tj+ -̂ ), the costates 

p^, Vi, equations (18) and X, equation (20), have boundary conditions at 

t.+ -̂. The costates Y^, Vi, equations (21) and the state x, equation (23),
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have boundary conditions at t . For convenience of notation, let us group 

the state and costate vectors according to boundary conditions as follows

A

yi = x

y2 = <y i •: : ••• : y;>'

y3 = ( x ' ; pi  ; p2 ; ••• ;

Now equations (18), (20), (21) and (23) can be expressed as

_d
dt

"11

0 A

0
13

22 A23

A31 A32 A33

(27)

where the of (27) are appropriate concatenations of the Q, A and S matrices 

of (18), (20), (21) and (23). In each interval [t_.,t̂ + ^), the vectors y^ and 

y2 have boundary conditions at t^ and the vector y^ has boundary conditions at

V r

y2(t.) = o (28)

y 3 <-t i +l ) =

1 
>>

- 
. 
-
1.
.
J

ÒV'
_o

ôyl "

—

m fcV

•-1 " 7 2  * Yii-i By1

I aVl
pmm ÔYi

3V'm

_ ôyl

(29)

j+1
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a _
where y2(t^) = y2(tj) defined on the interval [t^,t^+1) and C t ) =

lim y~(t) for y (t) defined on the interval [t.,t.,,). 
t-»t" d j J j 1

j+1
It is in the next step where we deviate from the standard approach.

We will make assumptions of the functional dependence of the costates on the

state and on the costates' boundary conditions. In so doing we will be able

to solve for these functions independent of the costates' boundary conditions

For t(E [t.,t.,,) assume'*'
J J+1

y2 (t) = F1(t )y 1 (t) + F2 (t )y 2 ( t j )  + F3 (O y3 ( t j+1) (30)

and

y3 (t) = G1 (t )y 1 (t) + G2 (t)y 2 (t) + G3 (t)y 3 ( t j+1) . (31)

2
By differentiation of (30) and (31) and by substitution of (27), we find

= A31 + A33G1 G1A11 "  G1A13G1 ‘  'G2A23G1’ G1 = 0
(32)

"  A32 + A33G2 G1A13G2 ‘  G2A22 G2A23G2 j G2 (V l ) = °
(33)

(A33 “ G1A13 " G2A23)G3 ’ S ^ j + l ^
= I (34)

= (a 22 + a 23g 2) f 1 "  F1^A11 +A 13G1̂ - F1A13G2Fi + A23Gr  Fi ( t j )
0 (35)

” A22F2
+ a 23g 2

F2 “ F1A13G2F2’ F2 ( t j )  = I (36)

(a22 + A23G2 " F1A13G2')F3 + A23G3 F1A13G3 ’
w = ° -

(37)

'The dependence of y3(t) on y (t) instead of y2(t.) results in simplified 
computations.

‘All matrices are evaluated at time t unless indicated otherwise.
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Since y2(t ) = 0 and by substituting (30) into (31) we have

y2(t) = F1(t)y1(t) + F3 (t)y3 (tj+1)

y3(t) = G1(t)y1(t) + G3(t)y3(tj+1)

(38)

(39)

where + G2Fi and G3 = G3 + G2F3*

For t ç [t.,t.,,) assume 
J J+l

yi(t) = H1(t)y1(tj) + h3(fc)y3(fcj+1) (40)

by differentiation of (40) and substitution of (27) and (39) we find

Hl = (An + A13g 1)H1> H ^ t  ) = I (41)

H3 " (An  + a i3g i)H3 + Ai3G3» " °*

If the system (15) and the criteria functions (17) are time invariant and if 

the sampling rate is constant, that is if (t^+  ̂- t^) = T = constant for all j, 

the equations (32) through (37), (41) and (42) will be the same for each 

interval. Then, since their boundary conditions are invariant, these equations 

will have to be solved only once and the same solution will be valid for 

every interval [t3,t^+1), j = 0,1,...,r-1.

[t

Boundary Conditions and Cost To Go Equations

The boundary conditions for the costate equations on the jth interval 

j»tj+1) are known in terms of the costs to go at the end of the interval,
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(7) and (10). Therefore, for the purpose of obtaining the costates1 boundary 

conditions, we must first derive the cost to go equations. First, substituting

(19) and (22) for the controls and with the form of the solution for y as in

A
(39), recalling that y = (X1 ! p| T ... ! p^) ', 

criterion functions can be written

L.
l

1 m 1
-{x ,QiX+ ^ ou,jRiju} - 7 { y { V i  + y

the integrands of the

3V 3}

and for t £ [t., t .... ) 
J J+l

Li = 7£yiSilyl + y3 (tj+l)'Si2y3(tj+l)  ̂+ ylSi3y3(tj+l)
(43)

where all variables are evaluated at time t unless indicated otherwise, and 

where

S., = Q. + GjS.G, 
ll n. I l l

S.0 = G'S.G 
i2 3 1 3

and

S . 0 G, S . G~
i3 1 1 3

. A
S. = 

1

Sio

sil

im

Due to the assumed explicit dependence of the costates, on

their boundary conditions in each interval, we must make a similar assumption 

for the form of the cost to go equations so that they will also be independent
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of the changing boundary conditions, 

we define the function

That is, for the interval tÇ [t

A i
V.(yi(t),t) = j{y1(t)'Cil(t)y1(t) + y3 (tj+1),Ci2(t)y3(tj+1)}

(44)
+ y1(t)'c13(t)y3(t.+1).

When evaluated at t̂ , with the controls in the interval [tj,t^) being the 

optimal controls defined according to (4), this function is then the optimum 

cost to go, denoted (y-̂  (t̂ .), t^). By (44) we see that on the interval [t^,tj+ ^), 

the cost to go is not only quadratic in y^, but also has a quadratic term in 

y3(tj+ l) and a cross term in y^(t) and y3 (tj+1).

From the relationship between the costs to go (44) and the integrands 

of the criteria functions (43), the differential equations of the coefficient 

matrices in (44) are found to be

cil = “sil “ cilAll “ Allcil (45)

Ci2 “ "Si2 " 2A13Gi3
(46)

Gi3 ” ~^i3 " CilA13 “ AllCi3
(47)

where A-^ = (A^ + A-^G^ and A13 = Ai3G3 *

Boundary Conditions

The boundary conditions for the last interval, that is, at the 

terminal time, t^, are

Cii(tf) = K.f

C12(t£) = 0 

Ci3(V  = °-

(48)
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We must also establish appropriate boundary conditions for the remaining 

intervals. The costs to go must be continuous and therefore

Vi(yl(V ’V  = V.(yi(tj),t^). (49)

Since the cost to go equations are integrated backwards, we are trying to 

establish the Cik(t^) in terms of the cik(t*) at each j, for each i, and for 

all k, k = 1,2,3.

Let us choose

ci2(t.) = 0

w  ■ 0

(50)

(51)

for all j and for all i. So now we must simply find C.,(t.) in terms of the
il J

C.,(t.) for k = 1,2, and 3.
1K J

Due to their interrelatedness, we must simultaneously consider

solving for the boundary conditions y„(t.) from (18), (20) and (44) and solving
j J

for the C.,(t.) in terms of the C.. (t.), k = 1,2,3, from (49).
il J IK J

To minimize the required computations, it is advantageous if y^(t)

is broken up

—-  —

1 X

A y3 A
= P1

2 •

y3 •
Pm

—  —

(52)

The derivation of the boundary conditions for the jth interval 

[tj,tj+1) proceeds as follows. From (29), (44), (50) and (51)
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y3(V l >

r—*• —-,

0
1-' I—
*

C21

Cml

yl<tj+l)
(53)

V l

and

1. -

y3(V l >  = tC01yl - C(Flyl + F3y3)]l -

tj+l

= [C0lyl - ^ Flyl + F3y3 + F 3y3)]l -

(54)

J+l

— 1 2  

where C = [Cj^ t ’ ••• • C|^] and where is broken up into = [F^ ! F^]

1 2  1 2  

with F^ and F^ having dimensions which correspond to and y^. By substituting

(53) into (54), equation (54) becomes

y3(tj+l> = [C01yl-ÏÏ(Flyl + F3y3 + V ,yl)]| -
j+l

so

1, - - 1 - 1
Y3(tT+1) = [(I+CF3)'i(C0 1 -C(F1 + F3C'))y1]| . .

‘j+l

(55)

Combining (53) and (55) defines D..+ ^

y3^j+l^ Dj+lyl(tj+l)

where

V i

(1+ CFF)-1 (CQ1 - C ^  + F^C’))

C'

V l

(56)

(57)
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By breaking up as in (52) we need only invert a matrix of dimension n, 

the system dimension, to obtain Otherwise we would have had to invert

a matrix of dimension n* (m+1).

To find the C^^(t^+ )̂ we also need a relationship between y^(t + )̂ 

and y^(tj). That is, from (40) and (56) we can find

where

y3(tj+l) = Y l (V

Ej V l (I' H3 (tj+l)Dj+l)

(58)

(59)

So, from (44), (49), (50), (51) and (58)

C.,(t7) = C..(t+ ) + E'.C.0(t+ )E. + 2C.0(t+ )E.. 
ii y  i i v y  j i2 y  j i 3 v y  j

(60)

We now have all of the required boundary conditions. The cost to go boundary 

conditions are (48), (50), (51) and (60) and the costate boundary conditions 

are (56) or (58).

Solution of the Cost to Go Equations

In each interval, we do not need the cost to go for all t (E [t_.,t̂ + )̂

but rather we only need the value at the initial boundary, i.e., we only

need to solve for the C.. (t.) in terms of the C.,(t.,,).
lk j ll j+1

The cost to go equations, (45) through (47), are the same for each 

interval and only the boundary conditions change. In order to avoid resolving 

these equations in each interval, we will assume a functional dependence of 

the cost to go matrices on their boundary conditions, similar to the technique 

used on the costates. Since the cost to go equations are linear, we can find
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such a functional dependence. It will be independent of the changing boundary 

conditions and can therefore be presolved. The solution of the function will 

be valid for each interval.

For notational convenience, we will "stack" the columns of the cost 

to go matrices so that the matrix equations (45) through (47) can be written 

as vector equations. Let c ^  be the vector corresponding to the matrix 

Define c. as
l

A
c . = 
i

Then (45) through (47) can be rewritten as

Cil

i2

Ci3

(61)

c . - A. c . + b .
l l i  l (6 2)

where the matrix and the vector b_̂  are known from the coefficient matrices

of (45) through (47). We can now solve for the functional dependence of the

solution of (62) in the jth interval on the boundary condition c^(t + )̂.

Actually, since ^¿2^tj+l^ = ® and + )̂ = we nee<* only assume dependence

of the solution on c.,(t.,.,), i.e., for t Ç [t.jt.,,) assume
il j+1 j j+1

c . (t ) = M. (t) c ., (t. , , ) + d . (t ) 
l i l l  J+1 i (63)

From (62) and (63) it follows that

M. = A.M., M.(t.,,) =
l l i  l j+1

(64)
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d. - A.d. + b., d.(t.,,) = 0
1 l i  i* l J+l

(65)

where the dimension of the identity matrix in M^(t^+ )̂ is the same as the

dimension of c ., .
ll

If the system is time invariant and if the sampling rate is constant

then (64) and (65) need be solved only once over one sampling interval. In

fact, only the value of M^(t^) and d^(t^) need be stored since we only need

c.(t+ ) in terms of c.,(t.,,). That is 
i j ll j+l

c , (t+) = M. (t+ )c., (t. , 1 ) + d.(tT) (66)
i j  l y  il j+l l j x

where M. (t*) and d.(t^) are the same for all j. 
i J i J

Due to the relationship (63), we will not have to solve the cost to 

go equations (45) through (47) repeatedly for each sample interval but need 

only plug into (66).

Summary of Algorithm

We will now summarize the required calculations in the following 

flow chart. The major steps and reference to the related equations are given 

in the order in which they must be computed.

All integrations are performed over only one sample interval if the 

system is time invariant.

~\~ -j- *
Recall that M. (t.) and d.(t.) ,

i J i J '
are invariant with respect to 1

j for a time invariant system ,
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Going backwards from j = r-1 to j = 1, beginning with the known 

C.1(tf) from (48), the following calculations must be done for each j in order 

to obtain the boundary conditions for each interval.

i i
, The sequence is repeated ,

' until we have C.,(t,) »
il 1
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Implementation

The controls can now be implemented forward in time. They are found 

by (19), (22), the definitions of y , i.e., y^ = (k ' I pj ! ... ! p^)1, and 

y^ = x, and the evolution of y^(t) in each interval, t £ [t^,t^+ )̂ given by

y3(t) = P(t)y1(tj) (67)

whe re

P(t) = [61(t)(H1(t) + H3(t)E ) + 63 (t)Ej] (68)

which is derived from (39), (40) and (58).

If P(t) is broken up as

P(t) =

pQ (t)

px(t)

p (t)
m

where each block P^(t) is n by n, then the ith control during the jth interval 

is

u.(t) = -r71b !p .(t)x(t.).
l li i iv j

As outlined above, there are a number of equations to be integrated, 

some of which are of large dimension. These integrations, however, are done 

once only and are performed over a period equal to the length of only one 

sample interval. Thus, as the number of samples taken increases, the computa

tional burden is reduced. Computationally the only limiting factor which 

prohibits us from allowing the length of the sample intervals to become
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arbitrarily small is the corresponding increase in the number of matrix 

inversions which must be performed at the sampling times in order to generate 

the required boundary conditions for each interval. That is, as the period 

of integration becomes smaller, these matrix inversions will tend to become 

the dominant computational burden. The matrix inversions present another 

difficulty since, in general, we are unable to guarantee their existence.

Comparison of Techniques

The first technique discussed at the beginning of this section is 

a method for converting the problem of repeatedly solving m coupled matrix 

Riccati equations to that of solving m uncoupled matrix Riccati equations 

providing significant computational savings. These equations, however, must 

still be solved repeatedly for each sample interval with only a change in the 

boundary conditions.

The second approach, which we have derived in detail, requires a 

set of linear and Riccati equations to be solved once only over a horizon 

which is the length of only one sample interval. The computational advantage 

of this second technique is due to the fact that the integrations are performed 

over only one sample interval which is, in general, considerably shorter than 

the time horizon of the original problem.

5. Conclusions

In this paper a sampled data Stackelberg strategy has been considered. 

The advantages of the sampled data formulation can be seen by considering 

certain characteristics of the continuous time Stackelberg problem. The linear 

quadratic, continuous time, closed loop Stackelberg problem results in a 

solution, if it exists, in which the controls are non-linear functions of the
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state. Furthermore, the Stackelberg solution for general dynamic games does 

not, in general, satisfy the principle of optimality. The principle of 

optimality can be imposed for discrete time games but the procedure for 

doing this for continuous time games has not been established.

The sampled data solution results in linear control laws for the 

linear quadratic case and the solution is constructed so that the principle 

of optimality holds at the sample times. The advantage of linear control laws 

is that they are quite simple to implement. The principle of optimality is 

particularly advantageous in a game formulation in that we might not otherwise 

be able to insure against any player deviating from his predetermined controls.

In deriving the sampled data solution we have been able to obtain 

considerable computational savings. That is, rather than performing integra

tions over the entire time horizon of the original problem, we are able to 

imbed the subproblems of each sample interval into a more general formulation, 

the solution of which requires integrations over a period equal to the length 

of only one sample interval. The computational technique, an application of 

invariant imbedding developed for the particular case of a Stackelberg 

strategy and the type of boundary conditions peculiar to it, is quite useful 

for many problems, in particular for a variety of sampled data formulations.
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