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Abstract

The problem of drawing samples from a discrete distribution can be converted into
a discrete optimization problem [1, 2, 3, 4]. In this work, we show how sampling
from a continuous distribution can be converted into an optimization problem over
continuous space. Central to the method is a stochastic process recently described
in mathematical statistics that we call the Gumbel process. We present a new
construction of the Gumbel process and A∗ Sampling, a practical generic sampling
algorithm that searches for the maximum of a Gumbel process using A∗ search.
We analyze the correctness and convergence time of A∗ Sampling and demonstrate
empirically that it makes more efficient use of bound and likelihood evaluations
than the most closely related adaptive rejection sampling-based algorithms.

1 Introduction

Drawing samples from arbitrary probability distributions is a core problem in statistics and ma-
chine learning. Sampling methods are used widely when training, evaluating, and predicting with
probabilistic models. In this work, we introduce a generic sampling algorithm that returns exact
independent samples from a distribution of interest. This line of work is important as we seek to
include probabilistic models as subcomponents in larger systems, and as we seek to build proba-
bilistic modelling tools that are usable by non-experts; in these cases, guaranteeing the quality of
inference is highly desirable. There are a range of existing approaches for exact sampling. Some
are specialized to specific distributions [5], but exact generic methods are based either on (adaptive)
rejection sampling [6, 7, 8] or Markov Chain Monte Carlo (MCMC) methods where convergence to
the stationary distribution can be guaranteed [9, 10, 11].

This work approaches the problem from a different perspective. Specifically, it is inspired by an
algorithm for sampling from a discrete distribution that is known as the Gumbel-Max trick. The
algorithm works by adding independent Gumbel perturbations to each configuration of a discrete
negative energy function and returning the argmax configuration of the perturbed negative energy
function. The result is an exact sample from the corresponding Gibbs distribution. Previous work
[1, 3] has used this property to motivate samplers based on optimizing random energy functions but
has been forced to resort to approximate sampling due to the fact that in structured output spaces,
exact sampling appears to require instantiating exponentially many Gumbel perturbations.

Our first key observation is that we can apply the Gumbel-Max trick without instantiating all of
the (possibly exponentially many) Gumbel perturbations. The same basic idea then allows us to
extend the Gumbel-Max trick to continuous spaces where there will be infinitely many independent
perturbations. Intuitively, for any given random energy function, there are many perturbation values
that are irrelevant to determining the argmax so long as we have an upper bound on their values. We
will show how to instantiate the relevant ones and bound the irrelevant ones, allowing us to find the
argmax — and thus an exact sample.

There are a number of challenges that must be overcome along the way, which are addressed in this
work. First, what does it mean to independently perturb space in a way analogous to perturbations
in the Gumbel-Max trick? We introduce the Gumbel process, a special case of a stochastic pro-
cess recently defined in mathematical statistics [12], which generalizes the notion of perturbation
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over space. Second, we need a method for working with a Gumbel process that does not require
instantiating infinitely many random variables. This leads to our novel construction of the Gumbel
process, which draws perturbations according to a top-down ordering of their values. Just as the
stick breaking construction of the Dirichlet process gives insight into algorithms for the Dirichlet
process, our construction gives insight into algorithms for the Gumbel process. We demonstrate
this by developing A∗ sampling, which leverages the construction to draw samples from arbitrary
continuous distributions. We study the relationship between A∗ sampling and adaptive rejection
sampling-based methods and identify a key difference that leads to more efficient use of bound and
likelihood computations. We investigate the behaviour of A∗ sampling on a variety of illustrative
and challenging problems.

2 The Gumbel Process

The Gumbel-Max trick is an algorithm for sampling from a categorical distribution over classes
i ∈ {1, . . . , n} with probability proportional to exp(φ(i)). The algorithm proceeds by adding
independent Gumbel-distributed noise to the log-unnormalized mass φ(i) and returns the optimal
class of the perturbed distribution. In more detail, G ∼ Gumbel(m) is a Gumbel with location
m if P(G ≤ g) = exp(− exp(−g + m)). The Gumbel-Max trick follows from the structure of
Gumbel distributions and basic properties of order statistics; if G(i) are i.i.d. Gumbel(0), then
argmaxi {G(i) + φ(i)} ∼ exp(φ(i))/

P

i exp(φ(i)). Further, for any B ⊆ {1, . . . , n}

max
i∈B

{G(i) + φ(i)} ∼ Gumbel

 

log
X

i∈B

exp(φ(i))

!

(1)

argmax
i∈B

{G(i) + φ(i)} ∼
exp(φ(i))

P

i∈B exp(φ(i))
(2)

Eq. 1 is known as max-stability—the highest order statistic of a sample of independent Gumbels
also has a Gumbel distribution with a location that is the log partition function [13]. Eq. 2 is a
consequence of the fact that Gumbels satisfy Luce’s choice axiom [14]. Moreover, the max and
argmax are independent random variables, see Appendix for proofs.

We would like to generalize the interpretation to continuous distributions as maximizing over the
perturbation of a density p(x) ∝ exp(φ(x)) on R

d. The perturbed density should have prop-
erties analogous to the discrete case, namely that the max in B ⊆ R

d should be distributed
as Gumbel(log

R

x∈B
exp(φ(x))) and the distribution of the argmax in B should be distributed

∝ 1(x ∈ B) exp(φ(x)). The Gumbel process is a generalization satisfying these properties.

Definition 1. Adapted from [12]. Let µ(B) be a sigma-finite measure on sample space Ω, B ⊆ Ω

measurable, and Gµ(B) a random variable. Gµ = {Gµ(B) |B ⊆ Ω} is a Gumbel process, if

1. (marginal distributions) Gµ(B) ∼ Gumbel (logµ(B)) .

2. (independence of disjoint sets) Gµ(B) ⊥ Gµ(B
c).

3. (consistency constraints) for measurable A,B ⊆ Ω, then

Gµ(A ∪B) = max(Gµ(A), Gµ(B)).

The marginal distributions condition ensures that the Gumbel process satisfies the requirement on
the max. The consistency requirement ensures that a realization of a Gumbel process is consistent
across space. Together with the independence these ensure the argmax requirement. In particular, if
Gµ(B) is the optimal value of some perturbed density restricted to B, then the event that the optima
over Ω is contained in B is equivalent to the event that Gµ(B) ≥ Gµ(B

c). The conditions ensure
that P(Gµ(B) ≥ Gµ(B

c)) is a probability measure proportional to µ(B) [12]. Thus, we can use

the Gumbel process for a continuous measure µ(B) =
R

x∈B
exp(φ(x)) on R

d to model a perturbed

density function where the optimum is distributed ∝ exp(φ(x)). Notice that this definition is a
generalization of the finite case; if Ω is finite, then the collection Gµ corresponds exactly to maxes
over subsets of independent Gumbels.

3 Top-Down Construction for the Gumbel Process

While [12] defines and constructs a general class of stochastic processes that include the Gumbel
process, the construction that proves their existence gives little insight into how to execute a con-
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tinuous version of the Gumbel-Max trick. Here we give an alternative algorithmic construction that
will form the foundation of our practical sampling algorithm. In this section we assume logµ(Ω)
can be computed tractably; this assumption will be lifted in Section 4. To explain the construction,
we consider the discrete case as an introductory example.

Algorithm 1 Top-Down Construction

input sample space Ω, measure µ(B) =
R
B
exp(φ)dm

(B1, Q) (Ω,Queue)
G1 ⇠ Gumbel(logµ(Ω))
X1 ⇠ exp(φ(x))/µ(Ω)
Q.push(1)
k  1
while !Q.empty() do

p Q.pop()
L,R partition(Bp � {Xp})
for C 2 {L,R} do

if C 6= ; then
k  k + 1
Bk  C
Gk ⇠ TruncGumbel(log µ(Bk), Gp)
Xk ⇠ 1(x 2 Bk) exp(φ(x))/µ(Bk)
Q.push(k)
yield (Gk, Xk)

Suppose Gµ(i) ∼ Gumbel(φ(i)) is a set
of independent Gumbel random variables
for i ∈ {1, . . . , n}. It would be straight-
forward to sample the variables then build
a heap of the Gµ(i) values and also have
heap nodes store the index i associated
with their value. Let Bi be the set of
indices that appear in the subtree rooted
at the node with index i. A property of
the heap is that the root (Gµ(i), i) pair is
the max and argmax of the set of Gum-
bels with index in Bi. The key idea of
our construction is to sample the indepen-
dent set of random variables by instantiat-
ing this heap from root to leaves. That is,
we will first sample the root node, which is
the global max and argmax, then we will
recurse, sampling the root’s two children
conditional upon the root. At the end, we
will have sampled a heap full of values and indices; reading off the value associated with each index
will yield a draw of independent Gumbels from the target distribution.

We sketch an inductive argument. For the base case, sample the max and its index i∗ using their
distributions that we know from Eq. 1 and Eq. 2. Note the max and argmax are independent. Also
let Bi∗ = {0, . . . , n− 1} be the set of all indices. Now, inductively, suppose have sampled a partial
heap and would like to recurse downward starting at (Gµ(p), p). Partition the remaining indices to
be sampled Bp − {p} into two subsets L and R and let l ∈ L be the left argmax and r ∈ R be the
right argmax. Let [≥p] be the indices that have been sampled already. Then

p
�

Gµ(l) = gl, Gµ(r) = gr, {Gµ(k) = gk}k∈[≥p] | [≥p]
�

(3)

∝p

✓

max
i∈L

Gµ(i)=gl

◆

p

✓

max
i∈R

Gµ(i)=gr

◆

Y

k∈[≥p]

pk(Gµ(k) = gk)1
�

gk ≥ gL(k) ∧ gk ≥ gR(k)

�

where L(k) and R(k) denote the left and right children of k and the constraints should only be
applied amongst nodes [≥p] ∪ {l, r}. This implies

p
�

Gµ(l) = gl, Gµ(r) = gr | {Gµ(k) = gk}k∈[≥p], [≥p]
�

∝ p

✓

max
i∈L

Gµ(i) = gl

◆

p

✓

max
i∈R

Gµ(i) = gr

◆

1(gp > gl)1(gp > gr) . (4)

Eq. 4 is the joint density of two independent Gumbels truncated at Gµ(p). We could sample the
children maxes and argmaxes by sampling the independent Gumbels in L and R respectively and
computing their maxes, rejecting those that exceed the known value of Gµ(p). Better, the truncated

Gumbel distributions can be sampled efficiently via CDF inversion1, and the independent argmaxes
within L and R can be sampled using Eq. 2. Note that any choice of partitioning strategy for L and
R leads to the same distribution over the set of Gumbel values.

The basic structure of this top-down sampling procedure allows us to deal with infinite spaces; we
can still generate an infinite descending heap of Gumbels and locations as if we had made a heap
from an infinite list. The algorithm (which appears as Algorithm 1) begins by sampling the optimal
value G1 ∼ Gumbel(logµ(Ω)) over sample space Ω and its location X1 ∼ exp(φ(x))/µ(Ω). X1

is removed from the sample space and the remaining sample space is partitioned into L and R. The
optimal Gumbel values for L and R are sampled from a Gumbel with location log measure of their

1G ⇠ TruncGumbel(φ, b) if G has CDF exp(� exp(�min(g, b)+φ))/ exp(� exp(�b+φ)). To sample
efficiently, return G = � log(exp(�b� γ + φ)� log(U))� γ + φ where U ⇠ uniform[0, 1].
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respective sets, but truncated at G1. The locations are sampled independently from their sets, and
the procedure recurses. As in the discrete case, this yields a stream of (Gk, Xk) pairs, which we can
think of as being nodes in a heap of the Gk’s.

If Gµ(x) is the value of the perturbed negative energy at x, then Algorithm 1 instantiates this function
at countably many points by setting Gµ(Xk) = Gk. In the discrete case we eventually sample
the complete perturbed density, but in the continuous case we simply generate an infinite stream
of locations and values. The sense in which Algorithm 1 constructs a Gumbel process is that the
collection {max{Gk |Xk ∈ B} |B ⊆ Ω} satisfies Definition 1. The intuition should be provided by
the introductory argument; a full proof appears in the Appendix. An important note is that because
Gk’s are sampled in descending order along a path in the tree, when the first Xk lands in set B, the
value of max{Gk |Xk ∈ B} will not change as the algorithm continues.

4 A∗ Sampling

LB1

o(x)

x1

exact 
sample

x2

LB2

o(x)+G

Figure 1: Illustration of A∗ sampling.

Algorithm 2 A∗ Sampling

input log density i(x), difference o(x), bounding
function M(B), and partition
(LB, X∗, k) (�1, null, 1)
Q PriorityQueue
G1 ⇠ Gumbel(log ν(Rd))

X1 ⇠ exp(i(x))/ν(Rd))

M1  M(Rd)
Q.pushWithPriority(1, G1 +M1)
while !Q.empty() and LB < Q.topPriority() do

p Q.popHighest()
LBp  Gp + o(Xp)
if LB < LBp then
LB  LBp

X∗  Xp

L,R partition(Bp, Xp)
for C 2 {L,R} do

if C 6= ; then
k  k + 1
Bk  C
Gk ⇠ TruncGumbel(log ν(Bk), Gp)
Xk ⇠ 1(x 2 Bk) exp(i(x))/ν(Bk)
if LB < Gk +Mp then

Mk  M(Bk)
if LB < Gk +Mk then
Q.pushWithPriority(k,Gk +Mk)

output (LB,X∗)

The Top-Down construction is not executable
in general, because it assumes logµ(Ω) can be
computed efficiently. A∗ sampling is an algo-
rithm that executes the Gumbel-Max trick with-
out this assumption by exploiting properties
of the Gumbel process. Henceforth A∗ sam-
pling refers exclusively to the continuous ver-
sion.

A∗ sampling is possible because we can trans-
form one Gumbel process into another by
adding the difference in their log densities.
Suppose we have two continuous measures
µ(B) =

R
x∈B

exp(φ(x)) and ν(B) =R
x∈B

exp(i(x)). Let pairs (Gk, Xk) be draws
from the Top-Down construction for Gν . If
o(x) = φ(x) − i(x) is bounded, then we
can recover Gµ by adding the difference o(Xk)
to every Gk; i.e., {max{Gk + o(Xk) |Xk ∈

B} |B ⊆ R
d} is a Gumbel process with mea-

sure µ. As an example, if ν were a prior and
o(x) a bounded log-likelihood, then we could
simulate the Gumbel process corresponding to
the posterior by adding o(Xk) to every Gk from
a run of the construction for ν.

This “linearity” allows us to decompose a tar-
get log density function into a tractable i(x)
and boundable o(x). The tractable compo-
nent is analogous to the proposal distribution
in a rejection sampler. A∗ sampling searches
for argmax{Gk + o(Xk)} within the heap of
(Gk, Xk) pairs from the Top-Down construc-
tion of Gν . The search is an A∗ procedure:
nodes in the search tree correspond to increas-
ingly refined regions in space, and the search
is guided by upper and lower bounds that are
computed for each region. Lower bounds for
region B come from drawing the max Gk and argmax Xk of Gν within B and evaluating Gk+o(Xk).
Upper bounds come from the fact that

max{Gk + o(Xk) |Xk ∈ B} ≤ max{Gk |Xk ∈ B}+M(B),

where M(B) is a bounding function for a region, M(B) ≥ o(x) for all x ∈ B. M(B) is not random
and can be implemented using methods from e.g., convex duality or interval analysis. The first term
on the RHS is the Gk value used in the lower bound.
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The algorithm appears in Algorithm 2 and an execution is illustrated in Fig. 1. The algorithm begins
with a global upper bound (dark blue dashed). G1 and X1 are sampled, and the first lower bound
LB1 = G1 + o(X1) is computed. Space is split, upper bounds are computed for the new children
regions (medium blue dashed), and the new nodes are put on the queue. The region with highest
upper bound is chosen, the maximum Gumbel in the region, (G2, X2), is sampled, and LB2 is
computed. The current region is split at X2 (producing light blue dashed bounds), after which LB2

is greater than the upper bound for any region on the queue, so LB2 is guaranteed to be the max over
the infinite tree of Gk + o(Xk). Because max{Gk + o(Xk) |Xk ∈ B} is a Gumbel process with
measure µ, this means that X2 is an exact sample from p(x) ∝ exp(φ(x))) and LB2 is an exact
sample from Gumbel(logµ(Rd)). Proofs of termination and correctness are in the Appendix.

A∗ Sampling Variants. There are several variants of A∗ sampling. When more than one sample
is desired, bound information can be reused across runs of the sampler. In particular, suppose we
have a partition of Rd with bounds on o(x) for each region. A∗ sampling could use this by running a
search independently for each region and returning the max Gumbel. The maximization can be done
lazily by using A∗ search, only expanding nodes in regions that are needed to determine the global
maximum. The second variant trades bound computations for likelhood computations by drawing
more than one sample from the auxiliary Gumbel process at each node in the search tree. In this
way, more lower bounds are computed (costing more likelihood evaluations), but if this leads to
better lower bounds, then more regions of space can be pruned, leading to fewer bound evaluations.
Finally, an interesting special case of A∗ sampling can be implemented when o(x) is unimodal in
1D. In this case, at every split of a parent node, one child can immediately be pruned, so the “search”
can be executed without a queue. It simply maintains the currently active node and drills down until
it has provably found the optimum.

5 Comparison to Rejection Samplers

Our first result relating A∗ sampling to rejection sampling is that if the same global bound M =
M(Rd) is used at all nodes within A∗ sampling, then the runtime of A∗ sampling is equivalent to that
of standard rejection sampling. That is, the distribution over the number of iterations is distributed
as a Geometric distribution with rate parameter µ(Rd)/(exp(M)ν(Rd)). A proof is in the Appendix
as part of the proof of termination.

When bounds are refined, A∗ sampling bears similarity to adaptive rejection sampling-based algo-
rithms. In particular, while it appears only to have been applied in discrete domains, OS∗ [7] is a
general class of adaptive rejection sampling methods that maintain piecewise bounds on the target
distribution. If piecewise constant bounds are used (henceforth we assume OS∗ uses only constant
bounds) the procedure can be described as follows: at each step, (1) a region B with bound U(B) is
sampled with probability proportional to ν(B) exp(M(B)), (2) a point is drawn from the proposal
distribution restricted to the chosen region; (3) standard accept/rejection computations are performed
using the regional bound, and (4) if the point is rejected, a region is chosen to be split into two, and
new bounds are computed for the two regions that were created by the split. This process repeats
until a point is accepted.

Steps (2) and (4) are performed identically in A∗ when sampling argmax Gumbel locations and when
splitting a parent node. A key difference is how regions are chosen in step (1). In OS∗, a region
is drawn according to volume of the region under the proposal. Note that piece selection could be
implemented using the Gumbel-Max trick, in which case we would choose the piece with maximum
GB+M(B) where GB ∼ Gumbel(log ν(B)). In A∗ sampling the region with highest upper bound
is chosen, where the upper bound is GB +M(B). The difference is that GB values are reset after
each rejection in OS∗, while they persist in A∗ sampling until a sample is returned.

The effect of the difference is that A∗ sampling more tightly couples together where the accepted
sample will be and which regions are refined. Unlike OS∗, it can go so far as to prune a region
from the search, meaning there is zero probability that the returned sample will be from that region,
and that region will never be refined further. OS∗, on the other hand, is blind towards where the
sample that will eventually be accepted comes from and will on average waste more computation
refining regions that ultimately are not useful in drawing the sample. In experiments, we will see
that A∗ consistently dominates OS∗, refining the function less while also using fewer likelihood
evaluations. This is possible because the persistence inside A∗ sampling focuses the refinement on
the regions that are important for accepting the current sample.
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(a) vs. peakiness (b) vs. # pts (c) Problem-dependent scaling

Figure 2: (a) Drill down algorithm performance on p(x) = exp(−x)/(1+ x)a as function of a. (b) Effect of
different bounding strategies as a function of number of data points; number of likelihood and bound evaluations
are reported. (c) Results of varying observation noise in several nonlinear regression problems.

6 Experiments

There are three main aims in this section. First, understand the empirical behavior of A∗ sampling as
parameters of the inference problem and o(x) bounds vary. Second, demonstrate generality by
showing that A∗ sampling algorithms can be instantiated in just a few lines of model-specific code by
expressing o(x) symbolically, and then using a branch and bound library to automatically compute
bounds. Finally, compare to OS∗ and an MCMC method (slice sampling). In all experiments,
regions in the search trees are hyper rectangles (possibly with infinite extent); to split a region A,
choose the dimension with the largest side length and split the dimension at the sampled Xk point.

6.1 Scaling versus Peakiness and Dimension

In the first experiment, we sample from p(x) = exp(−x)/(1+x)a for x > 0, a > 0 using exp(−x)
as the proposal distribution. In this case, o(x) = −a log(1+x) which is unimodal, so the drill down
variant of A∗ sampling can be used. As a grows, the function becomes peakier; while this presents
significant difficulty for vanilla rejection sampling, the cost to A∗ is just the cost of locating the peak,
which is essentially binary search. Results averaged over 1000 runs appear in Fig. 2 (a).

In the second experiment, we run A∗ sampling on the clutter problem [15], which estimates the
mean of a fixed covariance isotropic Gaussian under the assumption that some points are outliers.
We put a Gaussian prior on the inlier mean and set i(x) to be equal to the prior, so o(x) contains
just the likelihood terms. To compute bounds on the total log likelihood, we compute upper bounds
on the log likelihood of each point independently then sum up these bounds. We will refer to these
as “constant” bounds. In D dimensions, we generated 20 data points with half within [−5,−3]D

and half within [2, 4]D, which ensures that the posterior is sharply bimodal, making vanilla MCMC
quickly inappropriate as D grows. The cost of drawing an exact sample as a function of D (averaged
over 100 runs) grows exponentially in D, but the problem remains reasonably tractable as D grows
(D = 3 requires 900 likelihood evaluations, D = 4 requires 4000). The analogous OS∗ algorithm
run on the same set of problems requires 16% to 40% more computation on average over the runs.

6.2 Bounding Strategies

Here we investigate alternative strategies for bounding o(x) in the case where o(x) is a sum of
per-instance log likelihoods. To allow easy implementation of a variety of bounding strategies, we
choose the simple problem of estimating the mean of a 1D Gaussian given N observations. We use
three types of bounds: constant bounds as in the clutter problem; linear bounds, where we compute
linear upper bounds on each term of the sum, then sum the linear functions and take the max over the
region; and quadratic bounds, which are the same as linear except quadratic bounds are computed
on each term. In this problem, quadratic bounds are tight. We evaluate A∗ sampling using each of
the bounding strategies, varying N . See Fig. 2 (b) for results.

For N = 1, all bound types are equivalent when each expands around the same point. For larger N ,
the looseness of each per-point bound becomes important. The figure shows that, for large N , using
linear bounds multiplies the number of evaluations by 3, compared to tight bounds. Using constant

bounds multiplies the number of evaluations by O(
√

N). The Appendix explains why this happens
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and shows that this behavior is expected for any estimation problem where the width of the posterior
shrinks with N .

6.3 Using Generic Interval Bounds

Here we study the use of bounds that are derived automatically by means of interval methods [16].
This suggests how A⇤ sampling (or OS⇤) could be used within a more general purpose probabilistic
programming setting. We chose a number of nonlinear regression models inspired by problems in
physics, computational ecology, and biology. For each, we use FuncDesigner [17] to symbolically
construct o(x) and automatically compute the bounds needed by the samplers.

Several expressions for y = f(x) appear in the legend of Fig. 2 (c), where letters a through f denote
parameters that we wish to sample. The model in all cases is yn = f(xn) + ✏n where n is the
data point index and ✏n is Gaussian noise. We set uniform priors from a reasonable range for all
parameters (see Appendix) and generated a small (N=3) set of training data from the model so that
posteriors are multimodal. The peakiness of the posterior can be controlled by the magnitude of the
observation noise; we varied this from large to small to produce problems over a range of difficulties.
We use A⇤ sampling to sample from the posterior five times for each model and noise setting and
report the average number of likelihood evaluations needed in Fig. 2 (c) (y-axis). To establish the
difficulty of the problems, we estimate the expected number of likelihood evaluations needed by a
rejection sampler to accept a sample. The savings over rejection sampling is often exponentially
large, but it varies per problem and is not necessarily tied to the dimension. In the example where
savings are minimal, there are many symmetries in the model, which leads to uninformative bounds.
We also compared to OS⇤ on the same class of problems. Here we generated 20 random instances
with a fixed intermediate observation noise value for each problem and drew 50 samples, resetting
the bounds after each sample. The average cost (heuristically set to # likelihood evaluations plus 2
× # bound evaluations) of OS⇤ for the five models in Fig. 2 (c) respectively was 21%, 30%, 11%,
21%, and 27% greater than for A⇤.

6.4 Robust Bayesian Regression

Here our aim is to do Bayesian inference in a robust linear regression model yn = w
T
xn+✏n where

noise ✏n is distributed as standard Cauchy and w has an isotropic Gaussian prior. Given a dataset
D = {xn, yn}

N

n=1
our goal is to draw samples from the posterior P(w | D). This is a challenging

problem because the heavy-tailed noise model can lead to multimodality in the posterior over w.
The log likelihood is L(w) =

P
n
log(1 + (wT

xn − yn)
2). We generated N data points with input

dimension D in such a way that the posterior is bimodal and symmetric by setting w
⇤ = [2, ..., 2]T,

generating X 0
∼ randn(N/2, D) and y0 ∼ X 0

w
⇤+.1×randn(N/2), then setting X = [X 0;X 0] and

y = [y0;−y0]. There are then equally-sized modes near w⇤ and −w
⇤. We decompose the posterior

into a uniform i(·) within the interval [−10, 10]D and put all of the prior and likelihood terms into
o(·). Bounds are computed per point; in some regions the per point bounds are linear, and in others
they are quadratic. Details appear in the Appendix.

We compare to OS⇤, using two refinement strategies that are discussed in [7]. The first is directly
analogous to A⇤ sampling and is the method we have used in the earlier OS⇤ comparisons. When a
point is rejected, refine the piece that was proposed from at the sampled point, and split the dimen-
sion with largest side length. The second method splits the region with largest probability under the
proposal. We ran experiments on several random draws of the data and report performance along
the two axes that are the dominant costs: how many bound computations were used, and how many
likelihood evaluations were used. To weigh the tradeoff between the two, we did a rough asymp-
totic calculation of the costs of bounds versus likelihood computations and set the cost of a bound
computation to be D + 1 times the cost of a likelihood computation.

In the first experiment, we ask each algorithm to draw a single exact sample from the posterior.
Here, we also report results for the variants of A⇤ sampling and OS⇤ that trade off likelihood compu-
tations for bound computations as discussed in Section 4. A representative result appears in Fig. 3
(left). Across operating points, A⇤ consistently uses fewer bound evaluations and fewer likelihood
evaluations than both OS⇤ refinement strategies.

In the second experiment, we ask each algorithm to draw 200 samples from the posterior and exper-
iment with the variants that reuse bound information across samples. A representative result appears
in Fig. 3 (right). Here we see that the extra refinement done by OS⇤ early on allows it to use fewer
likelihood evaluations at the expense of more bound computations, but A⇤ sampling operates at a
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point that is not achievable by OS∗. For all of these problems, we ran a random direction slice
sampler [18] that was given 10 times the computational budget that A∗ sampling used to draw 200
samples. The slice sampler had trouble mixing when D > 1. Across the five runs for D = 2, the
sampler switched modes once, and it did not ever switch modes when D > 2.

7 Discussion

Figure 3: A∗ (circles) versus OS∗ (squares and dia-
monds) computational costs on Cauchy regression ex-
periments of varying dimension. Square is refinement
strategy that splits node where rejected point was sam-
pled; Diamond refines region with largest mass under
the proposal distribution. Red lines denote lines of
equi-total computational cost and are spaced on a log
scale by 10% increase increments. Color of markers de-
notes the rate of refinement, ranging from (darkest) re-
fining for every rejection (for OS∗) or one lower bound
evaluation per node expansion (for A∗) to (lightest) re-
fining on 10% of rejections (for OS∗) or performing
Poisson( 1

.1
− 1) + 1 lower bound evaluations per node

expansion (for A∗). (left) Cost of drawing a single sam-
ple, averaged over 20 random data sets. (right) Drawing
200 samples averaged over 5 random data sets. Results
are similar over a range of N ’s and D = 1, . . . , 4.

This work answers a natural question: is there
a Gumbel-Max trick for continuous spaces, and
can it be leveraged to develop tractable algo-
rithms for sampling from continuous distribu-
tions?

In the discrete case, recent work on “Perturb
and MAP” (P&M) methods [1, 19, 2] that draw
samples as the argmaxes of random energy
functions has shown value in developing ap-
proximate, correlated perturbations. It is nat-
ural to think about continuous analogs in which
exactness is abandoned in favor of more effi-
cient computation. A question is if the approx-
imations can be developed in a principled way,
like how [3] showed a particular form of corre-
lated discrete perturbation gives rise to bounds
on the log partition function. Can analogous
rigorous approximations be established in the
continuous case? We hope this work is a start-
ing point for exploring that question.

We do not solve the problem of high di-
mensions. There are simple examples where
bounds become uninformative in high dimen-
sions, such as when sampling a density that is
uniform over a hypersphere when using hyperrectangular search regions. In this case, little is gained
over vanilla rejection sampling. An open question is if the split between i(·) and o(·) can be adapted
to be node-specific during the search. An adaptive rejection sampler would be able to do this, which
would allow leveraging parameter-varying bounds in the proposal distributions. This might be an
important degree of freedom to exercise, particularly when scaling up to higher dimensions.

There are several possible follow-ons including the discrete version of A∗ sampling and evaluating
A∗ sampling as an estimator of the log partition function. In future work, we would like to explore
taking advantage of conditional independence structure to perform more intelligent search, hope-
fully helping the method scale to larger dimensions. Example starting points might be ideas from
AND/OR search [20] or branch and bound algorithms that only branch on a subset of dimensions
[21].
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