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Abstract. This paper deals with the surveillance problem of computing the motions of one or more robot observers

in order to maintain visibility of one or several moving targets. The targets are assumed to move unpredictably, and

the distribution of obstacles in the workspace is assumed to be known in advance. Our algorithm computes a motion

strategy by maximizing the shortest distance to escape—the shortest distance the target must move to escape an

observer’s visibility region. Since this optimization problem is intractable, we use randomized methods to generate

candidate surveillance paths for the observers. We have implemented our algorithms, and we provide experimental

results using real mobile robots for the single target case, and simulation results for the case of two targets-two

observers.
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1. Introduction

In this paper, we consider the surveillance problem of

maintaining visibility of mobile evaders (the targets)

by sensor-equipped mobile robots (the observers) in a

workspace containing obstacles. We assume that the

observers are provided with a map of the environment,

but that the trajectories of the targets are not known a

priori. Thus, the planning problem is to find collision-

free trajectories for the observers such that each target

is always within the field of view of at least one ob-

server. A preliminary version of this work appeared in

Murrieta-Cid et al. (2002) and related works are pre-

sented in Murrieta-Cid et al. (2003, 2004).

Our surveillance problem incorporates aspects of

several difficult research problems, including path

planning, pursuit-evasion, target tracking, vision-based

control, and optimization. Even the problem of finding

a collision-free path between two robots configurations

has been shown to be intractable; the best known algo-

rithm requires time that is exponential in the robot’s de-

grees of freedom (Canny, 1988; Latombe, 1991). As a

consequence, in its general form, our surveillance prob-

lem is intractable. For this reason, we have adopted a

sampling method for planning optimal observer tra-

jectories. Randomized methods were introduced to

solve robot path planning problems in the late eighties

(Barraquand et al., 1989; Barraquand and Latombe,
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1991), and have seen increasing popularity in recent

years (see, e.g., Kavraki et al., 1996; Han and Amato,

2000; Geraerts and Overmars, 2002). Here, we adapt

the random sampling approach to the problem of find-

ing optimal surveillance paths.

A great deal of previous research exists in the area

of pursuit and evasion, particularly in the area of dy-

namics and control (Hájek, 1965; Isaccs, 1975; Başar

and Olsder, 1982). These works typically do not take

into account constraints imposed on observer motion

due to the existence of obstacles in the workspace, nor

visibility constraints that arise due to occlusion. In this

paper, we focus on these often neglected geometric

aspects of the problem, specifically those aspects of

the problem related to collision avoidance and those

that arise due to visibility constraints imposed by ob-

stacles in the workspace. In the present paper, we are

less concerned with aspects of the problem related to

dynamics, since many mobile robots have fairly sim-

ple dynamics (e.g., the two-wheeled differential drive

robots that we have used in our experiments), and we

confine our attention to the geometric aspects of the

problem.

In the traditional robot path planning problem, initial

and goal configurations are specified, and the problem

is to find a collision-free path to connect them. In our

problem, the planner must determine the goal configu-

ration before planning the path. This determination is

made by maximizing a utility function that measures

the shortest distance the target must move to escape an

observer’s visibility region.

As with all randomized methods, the quality of the

solutions obtained by our algorithm depends in some

measure on the method used to generate the random

samples. In our approach, sample generation is not uni-

form over the configuration space; visibility computa-

tions are used to bias the sampling, creating candidate

robot configurations that have a better chance of being

useful.

The execution time of our planning algorithms must

be small enough to allow the observers to maintain vis-

ibility of the moving targets. Therefore, we perform a

number of precomputations that are useful for on-line

planning. This represents a trade-off between compu-

tation time and memory requirements.

We have implemented the proposed algorithms. In

the case of a single observer, the algorithms were tested

on real robots. Several experimental results are in-

cluded in the paper. Algorithms for maintaining vis-

ibility of two evaders with two pursers have also been

implemented, and simulation results for this case are

included in the paper.

The remainder of the paper is organized as follows.

Related research is discussed in Section 2. The pro-

posed planner for maintaining visibility of a moving

target is described in Section 3. In Section 3.1 we

present an algorithmic description of this planner. We

describe the required preprocessing in Section 3.2.

A planner for two-pursuer/two-evaders is presented

in Section 3.3. The robot architecture is described in

Section 4. Experiments and results in real robots are

also presented in Section 4. Conclusions and future

work for the target tracking task are presented in

Section 5.

2. Previous Research

As mentioned above, our problem is related to the prob-

lems of pursuit-evasion and path planning (among oth-

ers), and in this section we review research in these

areas as it relates to our problem.

The pursuit-evasion problem is often framed as a

problem in non cooperative dynamic game theory

(Başar and Olsder, 1982). A pursuit-evasion game can

be defined in several manners. One of them consists

in finding an evasive target with one or more mobile

pursuers that sweep the environment so that the target

does not eventually sneak into an area that has already

been explored. Deterministic (Parsons, 1976; Suzuki

and Yamashita, 1992; Guibas et al., 1997; LaValle and

Hinrichsen, 1999; Shas et al., 2003) and probabilistic

algorithms (Vidal et al., 2002; Sastry, 2000) have been

proposed to solve this problem. The pursuers could also

be interested to actually “catch” the evaders, that is,

move to a contact configuration or closer than a given

distance (Isaccs, 1975).

The previous problems are related but not the same

as ours. In this paper, the problem consists of determin-

ing a motion pursuer strategy to always maintain the

visibility between the evader and the pursuer. We call

such a task target tracking. We assume that initially the

pursuer can establish visibility with the evader.

The target tracking problem has often been attacked

with a combination of vision and control techniques

(see, e.g., Papanikolopous et al., 1993; Espiau et al.,

1992; Hutchinson et al., 1996). Purely control ap-

proaches, however, do not take into account the ex-

istence of obstacles in the the environment, or the

problem of coordinating different robots to track
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several targets. The basic question that must be an-

swered is where should the robot observer move in

order to maintain visibility of a target moving in a

cluttered workspace? Both visibility and motion ob-

structions must be taken into account, and thus, a pure

visual servoing technique can fail because it ignores

the global geometry of the workspace.

A number of researchers have studied the problem

of path planning in the context of target tracking. Game

theory (Başar and Olsder, 1982) is proposed in Lavalle

et al. (1997) as a framework to formulate the tracking

problem. The case for predictable targets is also pre-

sented in Lavalle et al. (1997), which describes an algo-

rithm that computes numerical and optimal solutions

for problems of low dimensional configuration spaces.

However, the assumption that the motion of the target

is known in advance is a very limiting constraint.

In Becker et al. (1995), a tracking algorithm is pre-

sented that operates by maximizing the probability of

future visibility of the target. This algorithm is also

studied with more formalism in Lavalle et al. (1997).

The approach uses a disk centered at the current tar-

get location to approximate the set of possible future

target locations. The planner computes the area of the

disk that remains visible when the observer position

is randomly perturbed around its current location, and

it selects the position that maximizes the area of the

disk that remains visible from the new observer loca-

tion. It is assumed that the disk has uniform probability

density, and geometric constraints are incorporated by

setting zero probability mass in the regions within the

disk that correspond to obstacles. This technique was

tested with a Nomad 200 mobile robot and gave rela-

tively good results. However, the probabilistic model

assumed by the planner is often too simplistic, and more

accurate models are difficult to obtain in practice.

The work in Fabiani and Latombe (1999) presents an

approach that takes into account the positioning uncer-

tainty of the robot observer. One contribution of this

work is a technique that periodically commands the

observer to move into a region that has no localization

uncertainty (a landmark region) in order to relocalize

and better track the target afterward.

In Spletzer and Taylor (2003), an approach is pre-

sented for the problem of actively controlling the con-

figuration of a team of mobile agents equipped with

cameras so as to optimize the quality of the estimates

derived from their measurements. This approach has

been applied to a target tracking task, and demonstrated

both in simulation and with actual robot platforms.

In González-Baños et al. (2002), a technique is pro-

posed to track a target without the need of a prior map.

Instead, a range sensor is used to construct a local map

of the environment, and a combinatorial algorithm is

then used to compute a differential motion for the ob-

server at each iteration. The advantage of this tech-

nique is that no explicit self-localization mechanism

is required. Thus, the implementation of the tracking

system becomes simpler.

Recently, some works have considered the problem

of maintaining visibility of several targets with multi-

ple robots. In Parker (2002) a method is proposed to

accomplish this task in uncluttered environments. The

objective is to minimize the total time in which tar-

gets escape observation by some robot team member.

In Jung and Sukhatme (2002) an approach is proposed

to maintain visibility of several targets using mobile

and static sensors. A metric for measuring the degree

of occlusion, based on the average mean free path of a

random line segment is used.

Other approaches have been proposed that are re-

lated to our research, even though they are not directly

intended for maintaining visibility of a moving target.

In Hsu et al. (2000), a randomized motion planner is

presented for robots that must avoid collision with mov-

ing obstacles under kinematic and dynamic constraints.

This planner samples the robot state×time space by

picking control inputs at random and integrating the

equation of motions. This planner has been tested in

both simulated and real environment.

In Kim et al. (1998), an approach is presented that

efficiently detects collision among multiple ballistic

spheres moving in a 3D space. The approach subdivides

the space in a hierarchical uniform scheme. Based on

this subdivision three types of events are defined. The

first is due to actual collision and the other two types

occur when spheres move from subspace to subspace

(entering and leaving).

In Leven and Hutchinson (2003) a framework for real

time planning in changing environments is presented.

This approach is closely related to probabilistic road

map approaches, but in contrast with other probabilistic

road map methods, the preprocessing step creates a

representation of the configuration space that can be

easily modified in real time to account for changes in

the environment.

As in Kim et al. (1998) and Hsu et al. (2000), in

our approach, we also deal with at least one moving

obstacle—the target. It is possible to consider that a

manner for the target to escape is by colliding with
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the robot pursuer. Our approach is also able to deal

with this additional problem (see Section 3). Our ap-

proach is closer to the approach presented in Leven and

Hutchinson (2003), where an intensive preprocessing

step is used.

The motion planning algorithms proposed in this pa-

per use a random sampling approach. These techniques

were introduced into the robot path planning litera-

ture in Barraquand et al. (1989) and Barraquand and

Latombe (1991), and they have been shown to be very

efficient in solving motion planning problems even in

high dimensional configuration spaces (Kavraki et al.,

1996). These methods abandon the idea of constructing

an explicit representation of the configuration space,

by instead focus on exploring it. The main drawback

is that these algorithms are not deterministically com-

plete. However, it is possible to prove that the proba-

bility to find a collision free path (if it exists) will con-

verge to 1 as the number of samples tends to infinity

(Barraquand and Latombe, 1991). In general these

methods are simple to implement and to apply to real

robots.

3. Planner

A basic issue in target tracking is determining the time

horizon h of the plan. Tracking can be seen as a se-

quence of motion decision problems, and each decision

in this sequence represents the action executed by the

observer at each stage. If the target is totally predictable

(i.e., if the target trajectory is known) it is then possible

to make a global optimization for long time horizons.

For instance, a utility function that maximizes the time

that the observer sees the target and minimizes the ob-

server motion can be defined and globally optimized.

Planners that require knowledge of the target’s trajec-

tory produce off-line strategies.

For the case of partial or totally unpredictable tar-

gets, it makes more sense to compute short term plans.

Unanticipated changes in the target trajectory can be

taken into account by replanning. An on-line strat-

egy computes a motion plan for the next h future

stages, and replans in the next iteration for the fol-

lowing h future stages. Typically, h is a very small

number.

We have designed a reactive planner that anticipates

a worst case scenario for the target’s next move (i.e.,

h = 1). This worst case move is assumed to be in the

direction of the shortest path connecting the target po-

sition q t with a point in free space outside the visibility

region of the observer. The length of this path is the

shortest distance to escape (SDE).

The planner computes an observer position that lo-

cally maximizes the shortest distance to escape. This

maximization is done using a sampling based algo-

rithm. The algorithm samples a number of potential

configurations near the observer (its reachability re-

gion), and selects from among them the one that max-

imizes the SDE.

The quality and success of the generated plans de-

pend on the observer’s capabilities. One of these ca-

pabilities is the shape of its reachability region, which

is a parameter in our planner. Since the pursuer is a

nonholonomic robot we only generate samples at con-

figurations that can be easily reached from the previous

observer configuration.

Visibility is used to define the observer reachabil-

ity region (see 3.1). This visibility is computed over a

superset of the configuration space, namely a geomet-

ric expansion of the workspace that yields a similarly

shaped polygon (without curves).

3.1. Algorithmic Description

We represent each robot observer and each target by a

point, and we model their motion using discrete time

transition equations. Let each time step be of length δ.

The position of the observer at time kδ is denoted by qo
k ,

and that of the target by q t
k . The transition equation for

the observer is qo
k+1 = f (qo

k , φk), where φk is an action

chosen from a given action space �. Constraints such

as velocity bounds can be encoded in f or �. Similarly,

the equation for the target is q t
k+1 = g(q t

k, θk), where θk

is an action taken from some space �. When the target

is only partially predictable, the observer knows �, but

not the specific action θk to be executed by the target.

In our on-line planner, the action φk is computed at

each step in order to maximize the shortest distance

to escape (SDE) between the target location q t
k and the

boundary of the visibility region at the observer’s fu-

ture position qo
k+1. Let V (qo

k+1) be this visibilty region.

This is illstrated in Fig. 1, in which the observer is the

disk labeled with O, the target the disk labeled with

T. The observer visibility region is the cone like area,

the obstacles are in dark (gray), the dashed arrows in-

dicate the distance from the target to the free edges.

The dots are the sample candidates where the observer

could go in order to maximize SDE. The large arrow in-

dicates the closest point at which the target can escape

the observer’s field of view.
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Figure 1. Shortest distance to escape.

One basic operation in the calculation of the SDE is

the computation of region V (q) for different candidate

configurations q . For a polygonal model with n edges,

this computation can be done in O(n log n) time using

a ray-sweep technique (O’Rourke, 1997). In this tech-

nique, one point sees another one if the line segment

between them does not cross an obstacle at any point

other than the endpoints. However, limitations in vi-

sion sensing require the use of more realistic models,

such as the viewing frustum of the sensor (angular field

of view) and its maximum range. We have adapted the

ray-sweep technique to take into account these param-

eters, which the planner reads as inputs. For typical

cameras, the visibility region is shaped as a cone.

Each edge in V (q) borders either an obstacle or free

space. We denote the edges that border the obstacles

as solid edges E f s and the edges that border the free

space as free edges E f r . Also, let E∗
f r be the free edge

of V (q) closest to the target.

Note that one possible strategy for the target to es-

cape is to chase the observer and try to collide with it.

For this reason, the target itself is considered to define

a free edge by our algorithm. Thus, maximizing SDE

will also prevent a collision between the robot pursuer

and the moving target.

To maximize the distance between the target and

the boundary of the visibility region of the observer

we need to compute the distance between q t
k and E∗

f r ,

where E∗
f r ∈ V (q) and q is candidate for qo

k+1. Here-

after we call this distance Dq t
k |E∗

f r
. In order to compute

Dq t
k |E∗

f r
, we need to determine the distance between the

target position q t
k and every free edge belonging to V (q)

for all candidates q .

Figure 2. Shortest distance to escape: cases 1 and 2.

We can identify two main cases for computing the

distance between q t
k and a given free edge E f r . The first

one happens when the target can see a given free edge

E f r . The computation of this distance is easily done

using the Euclidean metric. The second case happens

when the E f r is not directly visible from the current

location of the target. In this case, we use a geodesic

metric to determine the distance between a given free

edge E f r and the target location q t
k . This is illustrated

in Fig. 2. The evader is the disk labeled T, the observer

is the disk labeled O, the observer visibility region is

in light gray. The obstacles are in dark gray. The first

case (the target can see the free edge) is indicated with

the number 1, and the second case (the target cannot

see the free edge) with number 2.

The computation of the geodesic distance is done by

determining the shortest path between q t
k and all the

free edges in V (q) that are not visible from q t
k by using

the visibility graph of the polygonal map. To save time

during the execution of the on-line planner, some of

this computation is done in a preprocessing stage.

Visibility is also used to define the observer reach-

ability region The original workspace is expanded by

the robot radius. This expansion can be done offline

with a Minkowsky sum. Curves are approximated by

a set of straight lines. Let us call this new polygonal

workspace Pr and R the robot reachability region. A

visibility polygon V (q) from the current robot position

is computed over Pr . This visibility computation as-

sumes unbounded range and omnidirectional sensing.

The visibility region computation is done online only

over line segments that are near the current robot posi-

tion. More precisely, visibility is computed only taking

into account the line segments associated to the bin of



290 Murrieta-Cid, Tovar and Hutchinson

the index array (see below) where the robot currently

lies.

Let us call Rfree the intersection of the visibility poly-

gon V (q) and the robot reachability region R. Only the

samples lying inside Rfree are considered as candidates

when computing the target shortest distance to escape.

Note that, in this manner, it is certain that straight line

robot paths lying totally inside Rfree are collision free.

3.2. Preprocessing

Several precomputations are performed by our sys-

tem. As with other approaches to motion planning

(Barraquand and Latombe, 1991; Kavraki et al., 1996;

Leven and Hutchinson, 2003), our method uses a two-

stage approach. First, a preprocessing stage, and sec-

ond an on-line stage. In the second stage planning is

reduced to query processing. The main idea here is that

the cost of planning in the fist step will be amortized

over may episodes. Further, it allows us to do planning

in real time during the second stage. Of course, such an

approach requires significant memory to store the re-

sults of the preprocessing stage, but in our experiments

(using a typical PC), memory limitations have not been

a problem, even in maps with several thousands of ver-

tices.

We assume that a polygonal map of the environment

is provided, such as described in (Tovar et al., 2002).

The algorithm PREPROCESSING is shown below, and its

steps are as follows.

1. Compute the the visibility region from every vertex

in the polygonal map (line 2 of algorithm PREPRO-

CESSING) — see Fig. 3(B).

2. The space is discretized into a very thin grid. For

every cell center of this grid (called the visibility

grid), we compute a visibility region (line 5 of al-

gorithm PREPROCESSING). These regions are stored

in an indexed array. Retrieval time is thus linear in

the size of the visibility region retrieved from the

array.

3. The time to compute the visibility grid may be very

large if we consider environments with thousands of

vertices. To reduce the time required by the visibility

computations we use another grid called the index

array. We associate to every bin of this grid a list of

the segments in the environment that lie inside the

bin (see Fig. 3(A)). For every visibility computation

in the visibility grid, we use the segment list from the

corresponding bin in the index array to calculate the

Figure 3. Representations that are created during preproccesing.

visibility region. The index array is computed at a

much lower resolution than the visibility grid (line 1

of algorithm PREPROCESSING).

4. An approximate visibility graph is computed (line

8 of algorithm PREPROCESSING). Two vertices in

the map are considered to be visible from each

other only if the Euclidean distance is less than

2ρ and the line-of-sight between them is in free
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space—see Fig. 3(C). The constant ρ is the range

of the observer’s sensor.

5. The shortest path between every pair of vertices in

the visibility graph is computed using Dijkstra’s al-

gorithm (line 9 of algorithm PREPROCESSING).

We now describe how the precomputations are used

to reduce the computational cost during run time.

First, the visibility computation takes constant time

using the lookup table instead of O(n log n). When a

free edge of V (q) is not visible from a given target

location, the shortest path between the target and such

an edge must pass through a vertex of the environment.

As a consequence, the geodesic distance between a free

edge and the target in the general case can be computed

as follows:

1. Determine the vertices of V (q) that are visible to the

target by testing which vertices are contained in the

target’s visibility region. Store these vertices in the

list Lv (line 2 of algorithm TARGET TRACKING ).

2. Temporarily add the current target location q t
k as a

new node in the visibility graph, and connect this

node to those ones corresponding to the vertices

stored in Lv . The shortest distance between q t and

any vertex visible to the target can be computed by

running Dijkstra’s algorithm on this new graph.

3. The distance between q t
k and each free edge in V (q)

is the solution to:

Dq t
k
|E∗

f r
= min(vo,v f )

{

Dq t
k
|vo

+ Dvo |v f
+ Dv f |E f r

}

, (1)

where vo is any vertex in Lv , and v f is any vertex

in V (q) that sees the free edge E f r .

Visibility regions for different robot configurations

are associated to every cell of the visibility grid (line

5 of algorithm PREPROCESSING). Note that since these

visibility regions have limited angle of view and range,

several have to be computed for every grid location (to

cover the full 360 degrees) Samples around the current

observer configuration are used to select a subset of

those visibility regions computed prior to execution

(line 6 of algorithm TARGET TRACKING ).

Samples are generated using three different integers,

each of which corresponds to one of the parameters

of the robot configuration (x, y, θ ). The integers are

used as indices to relate samples to the precomputed

visibility regions at each grid location.

The visibility graph is used to compute the distance

between every pair of vertices in V (q). Thus, the term

Dvo|v f
can be quickly evaluated using a precomputed

lookup table. The visibility region from every vertex of

the polygonal map is used to query which vertices in

V (q) can see a free edge in order to evaluate Dv f |E f r
,

these free edges are stored in list L E f r
(line 7 of algo-

rithm TARGET TRACKING ). Thus, the use of precompu-

tations allows us to accelerate the calculation of Dq t
k |E∗

f r

during run-time operation.

The smallest distance Dq t
k |E∗

f r
among all free edges

of V (q) is finally selected as the shortest distance to

escape (SDE) (line 8 of algorithm TARGET TRACKING ).

Even though calculations for the creation of the vis-

ibility grid for an entire map with n vertices would

require an algorithm with complexity O(n log n), the

use of an index array can reduce the order of the calcu-

lations to a minimum of O(km log m), where m is the

average number of vertices within each of the k bins in

our array, m ∼ n
k

and m ≪ n.

Besides, for the visibility graph (Welzl, 1985), only

vertices with a distance of 2ρ are considered to be vis-

ible by the observer. If a robot could see all of the

n vertices in the entire map, we would have n2 paths

between every pair of vertices. However, if there is a

uniform distribution of the vertices over the map, we

could expect an average of σ ( n
σ

)2 paths, where the σ

factor can be considered as ( α

4πρ2 ), having α as the to-

tal area of the map, α ≥ 4πρ2. The memory used by

our visibility graph preprocessing phase is bounded by

these two limits, but in general the amount of memory

is closer to the lower bound.

Algorithm PREPROCESSING describes the precom-

putation used in our approach and Algorithm

TARGET TRACKINGthe gives the entire procedure.

3.3. Planner for n Observers and m Targets

In our approach there is no predetermined assignment

of a given target to a given observer. At any instant in

time, the n observers locate themselves so as to maxi-

mize the distance to escape required by the m targets.

We denote V (q
oi

k+1) as the visibility region of observer i

at location q
oi

k+1. The shortest distance to escape for a

target tracked by n observers is defined as the shortest

distance between q
t j

k (target j at configuration q and it-

eration k) and the boundary of the union of the visibility

regions V (q
o1

k+1) ∪ V (q
o2

k+1) . . . ∪ V (q
on

k+1). We denote

d j = D
q

tk
k |E∗

f r
as the distance between the jth target

and the closest free edges belonging to the boundary

of V (q
o1

k+1) ∪ V (q
o2

k+1) . . . ∪ V (q
on

k+1).
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Thus, by reasoning over the union of the observer

visibility regions and given that there is no predeter-

mined assignment of a given target to a given observer,

it is theoretically possible to generalize our approach

for n observers m targets. However, it is understood

that there is a real-time issue.

An additional issue, in the case multiple and targets

multiple observers is to chose an appropriate metric

to select the future observers’ configurations q
oi

k+1. We

maximize the power mean also called Hölder mean U ,

defined in Bullen (2003) as

U =
[

1

m

(

d j

w j

)p]
1
p

, with d j = D
q

t j
k

|E∗
f r

(2)

in which the q
t j

k are the positions of target j at config-

uration k, and d j denotes the distance between target

j and the closest free edges belonging to the bound-

ary of V (q
o1

k+1) ∪ V (q
o2

k+1) . . . ∪ V (q
on

k+1). Here w j , and
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Figure 4. Observer tracking two targets.

p are positive constants. The constants w j weight the

relative importance of keeping track of each target. U

can take different forms according to the value of p:

1. U = min(d1, d2, . . . , dm) when p tends to ∞ (as-

suming wi = 1). The general idea of this metric is

that the performance of the system will depend on

the weakest component.

2. When p tends to 0 then U =
√

d1d2 . . . dm which

corresponds to the geometric mean.

We have tested in similation these two metrics for

the specific case of two observers and two targets. In

the first case, an oscillation in the observers appears

if the targets exchange positions. The second criterion

produced better results, and less oscillations occurred

when the targets exchanged positions.

We have developed, implemented and simulated a

planner for two observers and two targets. Given that

there is no predetermined assignment of a given target

to a given observer, the observers can switch targets

in order to maximize U . We have left for future work

a number of cases for which there is an undesirable

‘shadowing’ effect: if one observer sees both targets

and the other observer does not see any of the targets,

the last observer remains motionless rather than assist-

ing the first observer (see Fig. 4).

4. Implementation and Experiments

Our tracking system has been implemented on a

Super-Scout mobile robot from Nomadic Technolo-

gies. The Super-Scout is a differential-drive robot, and

is equipped with a Pentium 233 MHz computer. The

robot is fitted with an upward-pointing Sony XC-75

CCD camera for landmark detection, and a forward

Sony EVI-30 CCD moving camera for target tracking.

4.1. Architecture

Our target tracking software incorporates 5 main mod-

ules: (1) a frame server, (2) a visual target detector

and camera motion controller, (3) a localization mod-

ule based on artificial landmark detection, (4) a motion

planner and (5) a motion controller and system coor-

dinator. Our robot is equipped with two cameras. The

frame server grabs the RGB images from the hardware

and separates the RGB components of the image.

A Sony EVI camera with an integrated pan-tilt unit

is used to detect a target. The visual target detector

and the camera controller maintain a lock on the target.

The detector module recognizes a target and identifies

its pose with respect to the camera in real time. The vi-

sual target tracking and visual servoing problems have

received considerable attention in the robotic and com-

puter vision communities over the last years. Several

techniques have been reported in the literature, and a

variety of algorithms have been proposed (Espiau et al.,

1992; Papanikolopous et al., 1993; Jiansho and Tomasi,

1994; Hutchinson et al., 1996).

Our visual target detection uses a very simple and

fast vision algorithm. A cylindrical mobile robot (a

Nomad 200) acts as target, and unobtrusive rectangu-

lar patterns are placed on its hull. Each pattern has a

binary barcode identifier. The algorithm computes sub-

pixel image positions of the pattern’s corners to esti-

mates its 3D pose (Kanatani, 1993). With the pose and

barcode information of the detected patterns, the algo-

rithm then infers the location and bearing of the target

The detection algorithm we use is very simple, but we

could instead use more advanced tracking algorithms

such as those described in Huttenlocher et al. (1993),

Papanikolopous et al. (1993), and Murrieta-Cid et al.

(1998). We have not done so, since our main concern is

the motion planning problem, and not the vision prob-

lem of tracking moving objects. The range of the target

detection module is approximately 80 inches and runs

at a rate of 30 frames per second.

We use the pan-tilt unit to extend the maximal range

and angular field of view of the camera. This unit is

able to execute [−100, 100] deg. pan action, [−25, 25]

deg. tilt action and active zoom ( f = 5.4 mm to

64.8 mm). Our implementation presently only uses the

pan action. We are currently incorporating tilt and zoom

actions. The motion of the camera is computed by a

dedicated controller rather than by the planner. This

camera motion, however, is taken into account by the

planner, which considers the total field of view of the
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vision system as the sum of the field of view of the

camera (40 deg.) plus the motion of the pan-tilt unit

([−100 100] deg.).

As the observer moves around in its environment, it

must keep track of its current position. To localize the

robot we use artificial landmarks. Our landmarks are

placed on the ceiling at known positions throughout the

observer’s workspace. Several works have dealt with

the use of landmarks in robot navigation (Hutchinson,

1991; Kriegmen et al., 1991; Lazanas and Latombe,

1995; Murrieta-Cid et al., 2002). The landmark detec-

tion module onboard our observer is the result of the

work developed in Becker et al. (1995). The idea be-

hind this approach is to provide the positions of the

landmark as an input map to the observer. Since it is

not necessary to relocalize at a high frequency rate, the

landmark detector runs at 0.5–1 Hz.

The global planning algorithm is the one described

in Section 3. The output of this planner is sent to a

motion controller that drives the robot observer to the

goal provided by the planner.

It has been shown in Balkcom and Mason (2000)

that the time optimal trajectories for a differential drive

robot consist in turning on site and in straight line robot

motions. The paths generated by our planner have the

same structure. That is, the robot executes a plan in

three steps. First, the robot rotates aiming to the goal.

Second, it translate to this goal. Finally, the robot ro-

tates again to reach its final orientation. Additionally,

these resulting robot paths lying inside Rfree are not

needed to be tested for collision (as it is mentioned

above).

We avoid the use of a real-time kernel with a specific

controller design. The controller consists of a triple

layered strategy: A linear compensator, an adaptive

scheme that keeps the compensator tuned, and a time

pacer that regulates the control cycle to a specified rate

(González-Baños et al., 2002). The linear compensator

is designed using a pole placement scheme. The adap-

tive loop keeps the compensator poles in place by re-

computing the controller parameters as the control rate

and the duty cycle drift from their initial estimated val-

ues. The time pacer is particularly important as it gives

the kernel an appropriated time slack to attend other

processes. Without the time pacer, the control cycle

will be interrupted arbitrarily during the execution.

In order to improve the performance of the whole

system, we run the planner program on an off-board

computer. This allows us to increase the execution

speed of the system by splitting tasks among two pro-

cessors. The motion controller, the landmark module

and vision programs run onboard the robot. The planner

runs on a separate Celeron 600 MHz computer

4.2. Simulation and Experiments Using a Mobile

Robot

We have tested our planner in several simulated sce-

narios and in actual experiments with the SuperScout

robot. We will describe here the results of 3 simu-

lations: one-robot/one-target in an environment with

holes, one-robot/one-target in an environment com-

posed of over a thousand vertices, and a two-robot/two-

target example in a simple environment. We also pro-

vide snapshots of a test run with the SuperScout robot

using our planner.

Results

In general, the performance of the planner and its even-

tual ability to keep the target always in view depend on

a number of parameters: (1) the size of the viewing

frustum of the sensor (cone angle), (2) the maximum

range of the sensor, (3) the number of samples gener-

ated as candidates of q t
k+1, (4) and the shape and size

of the observer’s reachability region.

We have tested four reachability region shapes (see

Fig. 5): a circle centered at the observer position, two

circles that intersect at the observer position (Fig. 5(a)),

two ellipses that intersect at the observer position

(Fig. 5(b)), two triangles sharing a single vertex at

the observer position (Fig. 5(c)). The shape of the

reachability region that experimentally gave the best

results in tracking the moving evader has the shape

of two triangles that share a common vertex. The

two triangles gave better results because the differ-

ential drive robot used in the experiments can reach

more quickly the sample configurations lying inside the

triangles.

Figure 6 shows the result of a simulation for one-

robot/one-target in a typical environment. The disk in

dark gray represents the observer and the disk in light

gray represents the target. The cone like region repre-

sents the observer’s visibility region. Figure 7 shows

a more complicated example consisting of an environ-

ment composed of 48 edges and 8 holes. The target is

shown with as a small disk and the observer as a bigger

disk. For this example, plans can be computed with a

frequency of 19.44 Hz for a sampling set of size 9, at
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Figure 5. Reachability region shapes.

10.31 Hz for a set of size 18, and at 7.71 Hz for a set

of size 50

Figure 8 shows a very large polygonal map. The

maps corresponds to a section of the Louvre museum.

In this figure, the target is shown with a small light disk

and the observer with a bigger dark one. The map has

Figure 6. Simulation using the map of the Stanford’s Robotics Lab-

oratory.

Figure 7. An example of an environment with holes.

1407 vertices. The index array consists of 400 cells,

the running time to compute this index array was 37 s.

The visibility grid has 92,416 cells. The time required

to compute this grid was 9 min. and 30 s. The visibility

graph was computed in 144 s. The visibility regions

for all the vertices in the map required 5.9 s. The en-

tire precomputation process took about 13 minutes. At
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Figure 8. Large map.

each iteration during run time, the planner generated

75 samples in a neighborhood around qo
k in order to

compute the next observer position. By using precom-

putations, the planner can compute qo
k+1 with a freq. of

13 Hz. Without the precomputation the sole visibility

region computation with 1400 vertices takes about 3

seconds per sample.

The performance of the planner depends on the size

of the reachability region, independently of the number

of samples. In our experiments using real robots, we

have determined that in general samples lying further

than 70 inches or so from the current robot position

do not give good results. It takes too much time for

the robot to reach them. We have tested our planner

with a set of samples of size: 9, 18, 50 and 75. Results

were somewhat better for 50 samples, however they are

almost equivalent for all of these. A small set of samples

explores a smaller number of configurations, but it takes

a smaller amount of time to test smaller sample sets,

Figure 9. Observers switching targets.

thus the target does not have the opportunity to move

far. Sets containing more than 100 samples do not give

good results — the target escapes. The main reason

for this failure is that reachability regions having more

than 100 samples are very large, and consequently it

takes too much time to reach the most distant of these

samples.

Figure 9 shows a simulation experiment with two-

robots/two-targets. It is possible to see how the ob-

servers switch targets. At first, observer 1 (square in

dark gray) tracks target 1 (disk in dark gray) and ob-

server 2 (square in light gray) tracks target 2 (disk in

light gray). Once the targets cross each other the switch

is done, observer 1 tracks target 2 and observer 2 tracks

target 1.

Figure 10 presents as experiment with the mobile

robot. The tracking is done by pure visual servoing

without any planner. The controller tries to track the

target from a given distance (50 in.) and maintain the
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Figure 10. Experiment without planner.

Figure 11. Experiment with planner.

target in the center of the camera’s field of view. We

can see in the figures that this strategy fails when the

target turns around a corner, and the observer runs into

a wall.

Figure 11 shows snapshots of an experiment per-

formed on a real robot running our planner. The plan-

ner and global architecture presented in this paper were

used. It is possible to see how the robot observer is ca-

pable of tracking the target even when it turns around

a corner. The experiment shown in Fig. 11 was done

under the same conditions as that shown in Fig. 10. The

velocity and trajectory of the target were the same in

both cases. The difference between both experiments is

that one was done with planner and the other without it.

Failures

In some cases, the size of the observer’s reachability

region is too small and the planner fails to track the

target. On the other hand, a large reachability region

requires more samples, and thus a plan requires more

time to compute. This can also be a reason of failure.

A small sample set can also hurt performance, because

it affects the precision by which the SDE is calculated.

Another reason for failure is a small visibility region.

Usually, this is due to a very narrow viewing frustum

or a short sensor range. In simulation this can be easily

corrected, but not so in a real system. For a real system,

small visibility regions can only be improved through

better sensing hardware.

Finally, there are conditions related to the target

speed and target position relative to the obstacles,

where the target will always escape. In our current work

(Murrieta-Cid et al. 2003, 2004) , we are investigating

complete algorithms able to determine whether or not

the evader can escape.

5. Conclusions and Future Work

In this paper, we presented a motion planning approach

to maintain visibility of moving evaders with mobile

robots. One characteristic feature of this study is the

need to satisfy visibility constraints while planning mo-

tions. The motion planning algorithms proposed in this

paper are based on sampling.

In our work, the goal is to maintain visibility of the

target in the presence of obstacles. This is a signifi-

cant difference from other methods that have been pro-

posed for the target tracking problem. For example, in

Spletzer and Taylor (2003) an approach is presented to

the problem of actively controlling the configuration of

a team of mobile agents equipped with cameras so as

to optimize the quality of the estimates derived from

their measurements. This approach has been applied

to a target tracking task. However, this approach does

not deal specifically with the problem of maintaining

visibility of the targets; visibility obstructions are not

taken into account.

The originality of our work derives in part from

the fact the robot goal must be determined at each
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iteration of the algorithm. Another difference with clas-

sical motion planning is that we directly take into ac-

count sensor and actuator capabilities in order to gen-

erate the motion strategy.

The crux of the algorithms proposed here is a sam-

pling based motion planning method that selects where

to move the robot next. Our planner selects the next

robot configuration based on maximizing a utility that

is a function of the minimal distance required by target

to escape the pursuer visibility region. The proposed

planner selects a sample candidate that can be reached

by following a collision-free path and maximizes this

minimal distance to escape.

In this paper we have argued that visual servo-

ing approaches to target tracking (Papanikolopous

et al., 1993) have limited success because they do

not take into account the complexity of the environ-

ment. Geometry-based algorithms go beyond these

limitations.

Our strategy is an improvement over maximizing

the probability of future visibility (Becker et al., 1995;

Lavalle et al., 1997; Fabiani and Latombe, 1999) for

those cases when a probability model of the target is

hard to obtain. By maximizing the distance to escape,

we compute an observer motion that anticipates the

worst case action of the target in the immediate future.

The result is a short term reactive planner that can run

in real time.

In González-Baños et al. (2002), an approach is

given that build a local map online and, based on

this map, a plan is generated to move the observer to

a position that maintains visibility of the target. Our

method follows different approach. First a global map

is divided in several small maps. To save time dur-

ing the execution of the on-line planner, several com-

putations are done in a preprocessing stage. We split

the global map and perform the preprocessing step

in order to deal with maps having thousands of ver-

tices. However, if the map is small enough (e.g., if

it contains less than 100 vertices or so) our approach

does not need the preprocessing step. It is able to

make all the computation in real time. Another dif-

ference between our approach and the work presented

in González-Baños et al. (2002) is that we have ex-

tended our method to deal with multiple targets and

observers.

The proposed algorithms have been implemented

and experiments on real robots are included. The qual-

ity of the plans mainly depends on the number of gen-

erated samples and the robot observer capabilities.

For future work, we want to sample the control space

as opposed to the workspace in order to compute the

SDE. In this scheme, the maximization of SDE is carried

out in control space, but the evaluation of each sam-

ple is still done using the workspace geometry. With

this strategy we can avoid the use of heuristics for es-

timating the size and shape of the reachability region.

Instead, the observer’s angular and translational speeds

are computed directly by the planner. This scheme will

also improve the hand shaking between the planner and

the controller because the commands sent to the robot

observer will be generated more smoothly.

Our current strategy assumes that the target is unpre-

dictable. It is for this reason that our planner is reactive.

If a motion model of the target is available, it should

be possible to compute a longer term plan by maximiz-

ing SDE over the feasible target trajectories. Currently,

the shortest escape path computed by our algorithm

may not be feasible to the target at all. As a result,

our algorithm may act more conservatively than it is

required.

As mentioned above, in our current work, we are

investigating complete algorithms able to determine

whether or not the evader can escape observer visibility

given a map of the environment and observer capabil-

ities (i.e, maximal observer speed, maximal visibility

range, delay due to image processing or execution time

of motion planning algorithms) (Murrieta-Cid et al.,

2003, 2004).

For the case of multiple robots and multiple targets,

an interesting topic for future research is the study of

the occlusions caused by the observers on each other.

Another open problem is the coordination of multi-

ple observers with a decentralized planner. Our current

approach is centralized, and does not admit an easy

decomposition into distributed components. For a real

system consisting of many observers, such a decen-

tralized planner may be preferable over a centralized

approach.
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