
1

A Sampling-Based Tree Planner for Systems with

Complex Dynamics
Ioan A. Şucan and Lydia E. Kavraki

Abstract—This paper presents a kinodynamic motion plan-
ner, Kinodynamic Motion Planning by Interior-Exterior Cell
Exploration (KPIECE), specifically designed for systems with
complex dynamics, where integration backward in time is not
possible and speed of computation is important. A grid-based
discretization is used to estimate the coverage of the state space.
The coverage estimates help the planner detect the less explored
areas of the state space. An important characteristic of this
discretization is that it keeps track of the boundary of the
explored region of the state space and focuses exploration on
the less covered parts of this boundary. Extensive experiments
show that KPIECE provides significant computational gain over
existing state-of-the-art methods and allows solving some harder,
previously unsolvable problems. For some problems KPIECE

is shown to be up to two orders of magnitude faster than
existing methods and use up to forty times less memory. A
shared memory parallel implementation is presented as well. This
implementation provides better speedup than an embarrassingly
parallel implementation by taking advantage of the evolving
multi-core technology.

Index Terms—sampling-based motion planning, kinodynamic
planning, planning with differential constraints, physics simula-
tion

I. INTRODUCTION

G
IVEN A ROBOTIC SYSTEM that can be controlled

in a specific way, motion planning is the problem of

taking that system from a given starting state to a goal region

while respecting a set of constraints [1]–[3]. Over the last

two decades, this field has grown from one that considered

basic geometric problems, such as the piano movers’ problem

[4], to a field that addresses planning for complex robots with

kinematic and dynamic constraints (e.g., [5]). Although the

motion planning problem stemmed from artificial intelligence

and robotics, its applications have expanded to other domains

such as graphics, computational biology and verification [6]–

[9]. Exploration robots, tour guides, surgical robots, digital

actors and folding proteins are only a few examples of cases

where motion planning is used.

An important class of algorithms that can solve the motion

planning problem is that of sampling-based tree planners [2],

[3], [10]–[12]. These are algorithms that explore the state

space of the robotic system by growing a tree of valid motions

from the start state of the system towards a goal region, using

a model of motion.

This work focuses on the problem of motion planning under

differential constraints for complex, physical systems. Our

I.A. Şucan and L.E. Kavraki are with the Department of Computer
Science, Rice University, Houston, TX, 77005, USA. E-mail: {isucan,
kavraki}@rice.edu.

interest is in general algorithms applicable to a variety of

systems, without relying on particular properties of systems.

Tree planners that address this problem have been previously

introduced (e.g., [13]–[18]). However, better planners are

needed as systems become more complex and there is a

need to account for friction, mass, inertia, etc. Many complex

systems of practical interest can be modeled by simulation

of rigid body dynamics [19]. This renders tree planners that

make use of bi-directional search or lazy collision checking

[12] inapplicable (for reasons later explained in Section II-C).

To quickly compute motion plans for systems with complex

dynamics, two approaches can be followed: (1) ignore the

complexities of the system and only compute geometric paths

(sequences of states), in the hope that a controller can follow

the paths by keeping velocities sufficiently low (e.g., [20]); (2)

improve the exploration capabilities of the tree planner through

means that only depend on forward propagating the model

of motion – numerically evaluating motions only forward in

time. While the first approach allows for the implementation of

algorithms that can make use of many techniques for speeding

up the planning process [12], including bi-directional search

and lazy collision checking, the execution of rapid motions or

of motions that must account for payload, friction, etc., cannot

be correctly planned. In consequence, the latter approach is

followed here.

This paper proposes KPIECE (Kinodynamic Planning by

Interior-Exterior Cell Exploration), a new tree sampling-based

motion planning algorithm, specifically designed for systems

with complex dynamics. KPIECE achieves significant com-

putational advantages over existing algorithms by combining

novel ideas with ones that have been shown to perform well

in previous work [12]. KPIECE is innovative in the sense

that while it is able to handle high dimensional systems

with complex dynamics, it reduces both runtime and memory

requirements by making better use of information collected

during the planning process. Intuitively, this information is

used to decrease the amount of forward propagation the

algorithm needs. Our experience has shown that it is typical

for sampling-based planners to spend more than 90% of

their computation performing forward propagation. For this

reason, significant computational improvement over previous

methods is obtained. Furthermore, with decreased amount

of forward propagation, fewer states are generated in the

tree of motions, which leads to memory savings. Conducted

experiments show that up to two orders of magnitude speedup

can be obtained when comparing to previous work. This

speedup is accompanied by significantly reduced memory

consumption: up to a factor of 40 reduction. Furthermore,

2

tackling more complex problems, ones that could not be

previously addressed, becomes possible.

Contributions. The main contribution of this work is the

exploration strategy of KPIECE. The core components of this

strategy are: (1) using projections from the state space to a

lower dimensional Euclidean space that can be discretized

to help in guiding the exploration, (2) keeping track of the

boundary of the explored space efficiently, so exploration

can be further biased towards unexplored regions, (3) com-

bining collected exploration information so that regions to

be explored further can be deterministically selected and (4)

evaluating progress of exploration. As discussed in Section II,

the exploration strategy of tree planners is an issue that has

attracted a lot of attention (e.g., [13]–[18], [21]–[32]). The

presented strategy is particularly beneficial for problems with

complex dynamics. The performance of KPIECE was tested

on three different robots: a car moving in plane, a blimp mov-

ing in space and a chain modular robot. Propagation forward in

time for the models of these three robots was computed using

physics-based simulation of rigid body dynamics [19]. To the

authors’ knowledge, simulation of rigid body dynamics is a

viable alternative at this time, in terms of accuracy of modeling

(e.g., [33]). As mentioned above, the results of computing

motion plans for these robots lead to significant computational

improvements.

Since motion planning is usually part of a more complex

task, it is generally desirable to have fast methods for the

computation of motion plans. Although with core compo-

nents alone KPIECE produces excellent results, a number

of extensions that further improve performance are possible.

These include using multiple resolutions of discretization

when projecting to the lower dimensional Euclidean space,

goal biasing, and using shared-memory parallelism (taking

advantage of multiple processing cores). The combination

of speedup that can be achieved and use of physics-based

simulation could make KPIECE fast and accurate enough to be

applicable in real-time motion planning for complex reactive

robotic systems.

An initial version of this work appeared in [34]. This

paper presents a more developed version of the algorithm,

and significantly more experiments. In particular, the updated

algorithm incorporates use of random projections [35] as a

fall-back mechanism in case a projection from the state space

to a Euclidean space is not specified in the input. Goal biasing

is introduced in a manner that makes use of the algorithm’s

underlying data representations. New experiments have been

conducted. Comparisons to more existing algorithms are in-

cluded. In addition, a bi-directional version of the algorithm is

also developed and the performance of KPIECE is evaluated

when planning solely with geometric constraints as well.

Organization of the paper. Section II describes background

and related work, Section III describes the core of the proposed

algorithm and Section IV presents corresponding experiments.

Section V extends the algorithm to its general form and

includes additional experiments. Conclusions and future work

are in Section VI.

II. BACKGROUND AND PREVIOUS WORK

Two decades ago, the focus in motion planning was on plan-

ning under geometric constraints. This problem is sometimes

referred to as the piano movers’ problem, or in 2D, the sofa

movers’ problem, and it was the subject of extensive research

[4]. A number of complete algorithms were developed for

various forms of the problem and it was eventually shown

to be PSPACE-complete [36], [37]. The developed algorithms

are computationally prohibitive and difficult to implement.

Techniques such as cell decomposition methods and potential

fields [1]–[3] were studied as well, but few were successful

at solving problems where the state space is high dimen-

sional [38].

In addition to geometric constraints, planning for real

robotic systems requires accounting for dynamic constraints

(e.g., friction, gravity, limits in forces). In general it is not

known if this version of the problem, planning under dif-

ferential constraints, is even decidable [39]. However, for

the simplified case of a point mass robot, a polynomial

algorithm exists [40]; the reconfiguration of modular robots

under kinodynamic constraints is possible in Θ(
√
n) time

under certain assumptions [41].

The proven difficulty of planning under geometric con-

straints and the need to consider even more complex versions

of the problem, such as planning under differential constraints,

pushed the research in motion planning towards techniques

with weak completeness guarantees. There are multiple direc-

tions of research that investigate such techniques. This work

continues in one of these directions, namely sampling-based

motion planning, a direction in which promising results have

been shown for planning under differential constraints [2], [3].

A. Problem Definition

An instance of the motion planning problem addressed here

can be formally defined by the tuple S = (Q,U, I,G, f) where

Q is a differentiable manifold representing the state space,

Qfree ⊆ Q is the valid part of the state space, U is the control

space, I ⊂ Qfree is the set of initial states, and G ⊂ Q,

G ∩ Qfree 6= ∅ is the set of goal states. The dynamics are

described by a forward propagation routine f : Q×U → TgQ,

where TgQ is the tangent bundle of Q (f does not need to be

explicitly defined). A solution to a motion planning problem

instance consists of a sequence of controls u1, . . . , un ∈ U
and times t1, . . . , tn ∈ R≥0 such that q0 ∈ I , qn ∈ G and

qk ∈ Qfree, k = 1, . . . , n, can be obtained sequentially by

integration of f .

For the purposes of this work, the function f is computed

using the Open Dynamics Engine (ODE) [42] physics-based

simulator. Instead of providing a set of equations of motion

to be integrated, a model of a robot and its environment need

to be specified.

B. Sampling-based Motion Planning

Much of the recent progress in motion planning is attributed

to the development of sampling-based algorithms [2], [3].

3

Several of these sampling-based planning algorithms are prob-

abilistically complete [2], which means that if a solution exists,

it will be eventually found.

One of the earliest and most influential algorithms

in sampling-based motion planning was the Probabilistic

RoadMap (PRM) [43]. This method provided a coherent frame-

work for many earlier works that used sampling and opened

new directions for research. Among these new directions, a

notable development is that of tree-based planners [15], [16],

[21], [23], and later efforts, such as [17], [18], [22], [24]–

[32]. As the name suggests, tree-based planners grow a tree

of motions in the state space of the robotic system. The initial

tree consists of the robot’s starting state. Newly sampled states

are connected to some already existing state in the tree. This

category of motion planners is appropriate for planning under

differential constraints because implementations that only use

forward propagation are possible. If backward propagation is

available, more efficient bi-directional tree planners can also

be used, but in this case the steering problem [44], [45] needs

to be solved as well. There are two fundamental issues tree

planners must consider in their expansion:

– In which parts of the tree expansion should continue:

There are various ways to guide the tree expansion (e.g., [15]–

[18], [21]–[23], [32], [46]). Rapidly-exploring Random Trees

(RRT) expand from states closest to randomly produced states

[16], [21], Expansive Space Trees (EST) and Single-query Bi-

directional probabilistic roadmap planner with Lazy collision

checking (SBL) attempt to detect less explored regions and

expand from them [15], [23], [24]. A more recent development

is the idea of a Path-Directed Subdivision Tree (PDST) [47].

PDST uses an adaptive subdivision of the state space and a

deterministic priority scheme to guarantee coverage, avoiding

the use of a metric.

– How this expansion should continue: RRT [16], [21]

suggests a Voronoi bias, by expanding toward random states.

However, this can become problematic when planning with

differential constraints and controls that achieve specific states

cannot be easily computed. Methods that discretize the control

set in order to achieve better coverage and reduced planning

time have been introduced as well [13], [48]. Existence of

narrow passages that need to be crossed by valid solutions can

significantly reduce the performance of planners. Techniques

that improve sampling in narrow passages [49] or identify the

direction of narrow passages [50] have also been developed.

Recently, the idea of combining two layers of planning has

been introduced (SyCLoP, presented as DSLX in earlier work)

[46]. SyCLoP is a meta-planner that uses discrete paths

(top layer) in a discretization of the workspace to guide the

continuous tree exploration (bottom layer). The planner at the

bottom layer can be chosen among many tree-based planners,

including the one presented in this paper.

In this work, we focus on the first aspect of the tree

expansion: deciding which parts of the tree merit further

expansion. Developments addressing the second aspect of tree

expansion carry over to the work presented here. KPIECE

tries to push the current limits of planning under differential

constraints. A new strategy for guiding the tree expansion,

based on a discretization of the state space, is presented. More

details about this follow in Section III.

C. Physics-Based Simulation

Physics-based simulation (of rigid body dynamics) can be

performed with libraries known as physics-based simulators.

These libraries approximate the dynamics of robots in their

environments usually assuming all bodies are rigid, Coulomb

models of friction and instantaneous impacts [19], [51].

Figure 1 shows the operation of a typical physics-based

simulator. As in the case of numerical integration of motion

models, time is discretized and the function describing the

state of the robotic system is evaluated at these discrete points

in time only. In the case of physics-based simulation, this

discretization interval typically does not vary and is referred

to as the simulation step. When the system is at a particular

state qt, applying the control ut takes the system to state

qt+1, within one simulation step. Simulating a system for

some duration T requires taking a number of simulation steps.

Large values for the simulation step will produce less accurate

results while small values for the simulation step will require

more computation time. Thus, the value of the simulation step

affects both the quality of solution paths and the runtime of

the motion planner. In this work we only use default values

for the simulation step, as indicated by the developers of the

physics simulator.

Fig. 1. The operation of a physics-based simulator: one simulation step.

One essential difference between integration of motion mod-

els and physics-based simulation is that simulation backward

in time is not always possible. For example, if an object

is dropped from a certain height, forward simulation can

correctly account for gravity and compute that the object will

fall and eventually hit the ground. Attempting to simulate

backward in time once the object is at rest is not well defined:

an infinite number of possible previous states exist. This

prevents planning with bi-directional tree planners, which are

often computationally very efficient.

An additional difference is that physics-based simulation is

significantly more computationally expensive than integration

of motion models, as contacts need to be computed for every

simulation step. The necessity of contact computation also

makes lazy collision checking unwarranted. Even so, the

benefits of simulation outweigh the costs: increased accuracy

is available since physics-based simulators take into account

more dynamic properties of the robot and constructing mod-

els of systems is easier and less error prone than deriving

equations of motion. Nevertheless, limited numerical precision

remains a problem for all known approaches.

This work uses physics-based simulation as a black box

only and does not attempt to improve simulation algorithms.

4

Currently, many options exist when it comes to physics-

based simulation libraries, both commercial and free. Among

the better-known ones are NVIDIA PhysX, ODE, Vortex,

bullet, etc. For the purposes of this work, the ODE (Open

Dynamics Engine) library was used [42]. KPIECE is not tied

to ODE, and other physics simulators could have been used

instead. ODE was chosen because it is a piece of software

widely used for simulating robotic systems (e.g., [52]).

III. ALGORITHM

KPIECE is a sampling-based algorithm that explores the

state space of the robotic system by growing a tree of motions.

Each motion in the tree is defined as ν = (s, u, t), where

s ∈ Q is the starting state of the motion and u ∈ U is the

control applied at that state, for a duration t ∈ R≥0.

From a high-level perspective, KPIECE proceeds iteratively,

as described in Algorithm 1: at each iteration, an existing

motion from the tree is selected [line 3]; a new motion starting

at a state along the selected motion is produced and added to

the tree [line 4]; information gathered in the expansion process

is incorporated for future selections of motions [line 7]; this

process continues until some termination criterion is met.

The above description is intended to be solely an overview

of KPIECE. The steps Algorithm 1 are common to many

other sampling-based algorithms that use trees. What makes

such algorithms different is how these steps are carried out.

In the case of KPIECE, this accounts for up to two orders of

magnitude speedup with respect to previous work.

Various aspects of KPIECE are discussed in the following

sections. For clarity, we approach the description in an incre-

mental fashion. A more detailed description of the core of the

algorithm is given in Section III-E. Extensions to the algorithm

are presented in Section V.

Algorithm 1. KPIECE (qstart, Niterations)

1: T = INITIALIZETREE(qstart)
2: for i← 1...Niterations do
3: ν = SELECTMOTION(T)
4: EXPANDTREE(T, ν)
5: if solution is found then
6: return solution
7: EVALUATEPROGRESS()
8: return no solution

A. The Tree of Motions

The tree is initialized with a motion ν0 = (s, null, 0) that

consists of the robot’s starting state and a control that has no

effect, applied for 0 duration. Although motions are in fact

continuous segments, they are computed by a forward propa-

gation function (as in Section II-A), with fixed step size. This

means that intermediate states along each motion are generated

at a fixed resolution. We call this resolution the propagation

step size. The choice of fixing the propagation step size is

made to avoid inconsistencies that may otherwise arise when

using physics simulation. In that case, the propagation step

size is the same as the simulation step defined in Section II-C.

As a result, for every motion, the duration of the control is

t = m · r, where r ∈ R+ is the propagation step size and

m ∈ N is the number of steps.

The controls applied from s are selected uniformly at

random from U . The duration of the control is obtained by

sampling a value for m. The random selection of controls is

what is typically done if other means of control selection are

not available. This choice is not part of the proposed algorithm,

and can be replaced by other methods, if available. Different

methods of control selection are desirable for systems that

are not stable for instance, as in this case random selection

of controls will likely not lead to valid states. Using some

generic forms of control such as LQR is also possible [53].

For a motion ν, let States(ν) be the set of states along the

motion ν, at the propagation step size, as they are generated

by forward propagation. States(ν) is not stored by KPIECE,

but it is generated as needed. See Figure 2 for an example.

New motions expanded from an existing motion ν can start

at any state in States(ν). Let AS =
⋃

ν States(ν) be the set

of all states that the tree of motions consists of, with respect

to the used propagation step size. AS is not computed by

KPIECE, but it is a notion we use to explain the execution of

the algorithm.

Fig. 2. Tree of motions as grown by KPIECE. The states at the start of
motions are depicted as larger vertices. The motion is computed by forward
integration at fixed step size. Intermediate states are depicted as smaller
vertices. The intermediate states are not stored by KPIECE.

Not unlike other sampling-based planners that employ trees,

KPIECE tries to reach the goal as quickly as possible, but also

eventually explore entirely the reachable regions of the valid

state space Qfree, so that a solution is found if one exists. In

order to achieve this, KPIECE carefully selects motions for

further expansion [line 3 in Algorithm 1]. An important part

of the selection strategy is estimating the coverage of the state

space that the tree of motions achieves.

B. Estimating State Space Coverage

As Q can be high dimensional and its topology is not known

to the algorithm, we define the following continuous mapping,

to help with the estimation of coverage:

Proj : Q → Rk.

5

We call Proj a projection from Q to a Euclidean space.

This is an input to the algorithm. Rk is the projection space

and k is the dimension of the projection. We will first discuss

how to use a projection, and later how to generate it.

Define Coord : Rk → Zk, where Z is the set of integers:

Coord(p) = Coord((p1, . . . , pk))

=

(⌊

p1 − o1
d1

⌋

, . . . ,

⌊

pk − ok
dk

⌋)

= z,

where ⌊·⌋ denotes truncation to nearest smaller integer, p =
(p1, . . . , pk) ∈ Rk, o = (o1, . . . , ok) ∈ Rk is an arbitrary

point designated as the origin, di ∈ R+, i ∈ {1, . . . , k} and

z ∈ Zk. Coord discretizes Rk into k-dimensional cubes of

uniform size, each with sides of lengths d1, . . . , dk.

For every z ∈ Zk, define the corresponding cell in Q to be:

Cell(z) = {q ∈ Q | Coord(Proj(q)) = z}.

Motions added to the tree of motions are said to be part of a

cell if all their states are included in the cell:

Motions(z) = {ν | q ∈ States(ν) implies q ∈ Cell(z)}.

The invariant that every motion is part of a single cell

is maintained. This is achieved by splitting motions before

adding them to the tree of motions, such that they are not part

of multiple cells. When a motion ν is to be added, States(ν)
is generated. For every q ∈ States(ν), Coord(Proj(q)) is

computed. With this information, it can be decided which

parts of the motion go to which cells. Since States(ν) is an

approximation of the motion ν, this computation is not exact,

but it is sufficient for our purposes.

It is now possible to define the coverage achieved by a

tree of motions in Q. For every cell coordinate z ∈ Zk, the

coverage of Cell(z) is

Coverage(z) =
∑

ν=(s,u,t)∈Motions(z)

(

1 +
t

r

)

,

where r is the propagation step size. Since t is an integer

multiple of r, the value of the coverage represents the number

of states in Cell(z) that are also in AS: Coverage(z) =
|AS ∩ Cell(z)|, where | · | denotes the cardinality of a set.

At this point we make the assumption that coverage esti-

mates for cells are relevant for the coverage of Q. We do not

prove this is the case from a mathematical point of view, but

experimental results shown later support this hypothesis.

As the tree of motions increases, and the number of states

in AS increases, KPIECE keeps track of the minimal set of

cells that covers AS. We say C ⊂ Zk covers AS if AS ⊆
⋃

z∈C Cell(z). We say C is minimal if there is no subset D (

C such that D covers AS. When the algorithm starts, AS has

only one state. One cell is sufficient to cover AS – the cell that

contains the starting state. Let Mc ⊂ Zk denote the minimal

cover of AS. Throughout the execution of the algorithm, the

cardinality of Mc increases. Cells included in Mc are called

instantiated cells. Mc is called a discretization of the space

covered by the tree of motions. In Section V we discuss how

to extend this discretization to multiple levels.

Fig. 3. Representation of a tree of motions and its minimal cover. Interior
cells are differentiated from exterior cells.

C. Distinguishing Interior and Exterior Cells

For every z = (z1, . . . , zk) ∈ Zk, the neighbors of Cell(z)
are Neighbors(z) =

{ Cell(w) ∈ Mc | w = (z1, . . . , zi−1, y, zi+1, . . . zk),

for y = zi − 1 or y = zi + 1 }.

The maximum cardinality of Neighbors(z) is 2k. A distin-

guishing feature of KPIECE is the notion of interior and

exterior cells. A cell is considered exterior if it has less than

2k neighboring cells. Cells with 2k neighboring cells are

considered interior. The reason for making this distinction

is that focusing the exploration on exterior cells allows the

motion planner to cover the state space faster. As the algorithm

progresses and new cells are created, some exterior cells

become interior (see Figure 3). When larger parts of the state

space have been explored, most cells have become interior.

However, for high dimensional spaces, to avoid having only

exterior cells, the definition of interior cells can be relaxed and

cells can be considered interior before the cardinality of the

set of neighbors reaches 2k. For the purposes of this work,

this relaxation was not needed.

D. Importance of Cells

In Section III-E we show that KPIECE needs to first select

a cell in order to find motions from which to continue the

expansion of the exploration tree. This section describes the

notion of importance associated to cells, a notion used in the

selection of cells. The following pieces of information are

considered when selecting a cell Cell(z):

• The coverage Coverage(z) (work in the same spirit

suggested in e.g., [46]),

• The number of times Cell(z) was previously selected

(suggested in e.g., [23]),

• The cardinality of Neighbors(z),
• The iteration at which Cell(z) was added to Mc (sug-

gested in e.g., [47]),

6

• A measure of the progress in exploration achieved when

expanding from Cell(z) (work in the same spirit sug-

gested in e.g., [32]).

KPIECE prefers expanding from cells that are less covered

rather than from cells that are well covered. Cells that have

been selected for expansion fewer times are preferred over

cells that have been selected many times. Cells that have

fewer neighbors and cells that have been instantiated more

recently are preferred, as these are more likely to be closer

to unexplored areas of the space. Cells that have led to good

progress in exploration are preferred over cells that have led

to slower progress (e.g., if a cell contains many motions that

place the robot in front of a wall, it is possible expanded

motions will often hit the wall).

The considerations mentioned above for selecting cells are

heuristics that have been shown to work well in practice.

KPIECE combines their use in the notion of importance, since

no one heuristic can be identified as better than the others. The

importance of a cell Cell(z) is defined as:

Importance(z) =
log(I) · score

S · (1 + |Neighbors(z)|) · Coverage(z)
,

where I is the number of the iteration at which Cell(z)
was added to Mc, S is the number of times Cell(z) was

selected for expansion (initialized to 1) and score reflects the

exploration progress achieved when expanding from Cell(z)
(initialized to 1). The definition we propose for importance

represents what worked well in our experiments. However, it

is possible that other definitions can lead to better performance

for certain applications. KPIECE prefers expanding from

cells with higher importance. With careful bookkeeping, the

importance of a cell can be computed in constant time, since

all the values it depends on can be made readily available.

To make the definition of importance complete, the use of

score needs to be explained. Adding a motion to the tree of

motions may increase the coverage of the space. The update

to score proceeds as follows:

• Assume a motion was selected for expansion from

Motions(z) (Algorithm 1, line 3).

• Let total coverage Cbefore =
∑

z∈Mc

Coverage(z), and

Tbefore = current time.

• Algorithm 1 proceeds with lines 4 through 6.

• Let total coverage Cafter =
∑

z∈Mc

Coverage(z), and

Tafter = current time.

• Line 7 of Algorithm 1 consists of the following steps:

P = α+ β ·
(

Cafter − Cbefore

Tafter − Tbefore

)

score = score · min(P, 1),

for score corresponding to Cell(z).

The purpose of score is to reflect how much progress

has been made when expanding from Cell(z). Based on the

increase in total coverage and the time spent achieving this

increase in coverage, a penalization value P is computed. P is

used as a multiplicative factor for score. To avoid entering an

infinite loop where the cell with highest importance is always

the same, score must never be multiplied by a value larger

than 1, hence the use of min(P, 1). α and β are implementation

specific constants that help defining P . P is intended to be

smaller than 1 for expansions that did not provide significant

increase in coverage. If P ≥ 1, the score is not be changed.

If the coverage increase is 0, P = α, so α must always be

larger than 0 so that the score does not become 0. β ∈ R+

is chosen such that P ends up being larger than 1 only for

expansions that have led to significant progress. More details

on the selection of parameters introduced in this section follow

in Section III-G.

E. KPIECE Algorithm

A more detailed description of KPIECE is given in Al-

gorithm 2. The algorithm begins by initializing the tree of

motions with a motion of 0 duration that consists solely of the

robot’s starting state [lines 1–3]. This motion is added to a spe-

cial data structure called Grid. Grid associates Motions(z)
to every z ∈ Mc and takes care of the bookkeeping necessary

to update the importance of cells as the algorithm is running.

In order to expand the tree of motions, KPIECE needs to

select an existing motion from that tree. Grid is used to iden-

tify areas of the state space that are considered more important

– using the notion of importance defined in Section III-D

[line 5].

KPIECE randomly decides whether to expand from an

interior or exterior cell from Mc. A strong bias towards

exterior cells is usually employed (75% of the time, in this

paper). This decision effectively separates Mc in two disjoint

sets: Mc,int and Mc,ext (the set of interior cells and the

set of exterior cells, respectively). Subsequently, KPIECE

deterministically selects the cell Cell(c) with maximum im-

portance from either Mc,int or Mc,ext. This operation can be

performed quickly by maintaining Mc,int and Mc,ext as heaps.

A motion ν from Motions(c) is then picked according to a

half-normal distribution. The half-normal distribution h(σ2)
is used because motions that have been added more recently

are preferred for expansion [line 6]. h(σ2) corresponds to the

normal distribution (mean = 0 and variance = σ2) folded about

the y-axis at 0; it returns a value larger than 0, with a high

probability of being close to 0. For a set Motions(c) with m
motions, numbered from 0 to m− 1, where the 0th motion is

the most recently added one, a randomly selected motion ν is

the ⌊h((m/3)2)⌋th motion. A state s along ν is then chosen

uniformly at random from States(ν) [line 7]. Expanding the

tree of motions continues from s [line 9]. Because States(ν)
is not stored it may be necessary to recompute s, but the

memory savings outweigh the computational costs.

If the tree expansion was successful, the newly obtained

motion is added to the tree of motions and the discretization is

updated [lines 11,13]. Information gained during the expansion

step is incorporated in the score of the selected cell c, as

described in Section III-D [lines 14,15].

F. Selection of Projections

So far we have described how projections are used by

KPIECE. How this projection is defined is left to the user.

Our experience has shown that projections are easy to specify,

7

Algorithm 2. KPIECE(qstart, Niterations)

1: Let ν0 be the motion of duration 0 containing solely qstart
2: Create an empty Grid data-structure G
3: G.ADDMOTION(ν0)
4: for i← 1...Niterations do
5: c = G.SELECT(0.75)
6: Select ν ∈Motions(c) using a half-normal distribution
7: Select s along ν
8: Sample random control u ∈ U and simulation time t ∈ R+

9: Check if any motion (s, u, t◦), t◦ ∈ (0, t] is valid (forward
propagation)

10: if a motion is found then
11: Construct the valid motion ν◦ = (s, u, t◦) with t◦ maximal
12: If ν◦ reaches the goal region, return path to ν◦
13: G.ADDMOTION(ν◦)
14: P = α + β · (ratio of increase in coverage to time spent in

simulation)
15: Multiply the score of Cell(c) by min(P ,1)
16: return no solution

as KPIECE is robust to multiple projections for each of

the problems considered. In Section IV-A we show some

example projections used in our experiments. The purpose of

the projection is to provide a space in which coverage is to be

estimated, such that the space is representative for the problem

being solved. For example, if we are planning for a car moving

in plane, a representative space for estimating coverage is the

plane in which the car is moving (2-dimensional projection).

For a manipulator arm, the position in space of the tip

of the arm is representative (3-dimensional projection). For

systems where velocity is important, for example an inverted

pendulum, a representative space is that of the velocity of

the pendulum and its angle (2-dimensional projection). If the

pendulum has multiple links, the projection can consist of the

norm of angular velocities and the position of the tip of the

pendulum in the plane of motion (3-dimensional projection).

Most of the time, finding an input projection can be very

intuitive. As already mentioned, multiple different projections

work well. For example, for a manipulator arm, the projection

that only considers the first two angles of the arm (closest

to base) also leads to good results. In some cases however,

for example in the case of reconfigurable robots, defining a

projection can be hard. In such cases, or when the user is

simply unwilling to set a projection, random projections can be

used as a fall-back. The inspiration to use random projections

comes from a theorem by Johnson and Lindenstrauss [54]

which states:

For any ε > 0, any n points from a l2 metric can be

embedded in a l2 metric of dimension O(log n/ε2), with (1+ε)
distortion.

This means that distances between states in the state space

with the l2 norm are approximately preserved in the projection

space with the l2 norm. Since l2 norm is usually not an

appropriate metric for the state space Q, we do not rely on the

mathematical foundation provided by this theorem. Random

projections have been empirically shown to work well in the

context of estimating state space coverage: it was shown that

finding a random projection that leads to good performance is

easy for systems with state spaces of moderate dimension (up

to 10 dimensions) [35].

In this paper, a random projection is sampled every time

planning needs to be performed and a user-defined projection

is not available. To generate a random projection from an

n-dimensional state space Q to Rk, k vectors in Rn are

randomly sampled element by element according to a normal

distribution (with mean 0 and variance 1). The vectors are

made orthonormal, as suggested in [35]. For a state x ∈ Q
and a random linear projection V,

V = (v1, ...,vk), vi ∈ Rn,

the projection of x is p ∈ Rk, with

p = V
Tx,

assuming all vectors are column vectors.

G. Selection of Parameters

In the description of KPIECE a number of parameters have

been introduced:

• The α and β parameters for progress evaluation,

• The sizes of cells in the discretization.

Parameters for progress evaluation. The value for α repre-

sents the penalization of a cell’s score, as a multiplicative

factor, if no progress is made from that cell. This suggests

α should be lower than 1 but not close to 0. A value of

α = 0.7 worked well in our implementation and we believe

this can be considered constant for other implementations as

well. The value for β depends on how the coverage of the cell

is computed. β is used to scale the increase in coverage so that

it can be added to α. For our experiments β = 5 worked well.

Sizes of cells. The sizes of cells depend on the projection

used. We have identified a set of guidelines for determining

cell sizes. While KPIECE is running, it can keep track

of averages of how many motions per cell there are, how

many parts a motion is split into before it is added to the

discretization, and the ratio of interior to exterior cells. While

we do not know how to compute optimal values for these

statistics (if they even exist), there are ranges that work better

than others. In particular, it was observed that for good runtime

performance the following should hold:

• Less than 10% of the motions cover more than 2 cells in

one simulation time-step. This value should be in general

less than 1% as the event occurs only when the velocity

of the robotic system is very high.

• At least 50% of the motions need to be 3 simulation

time-steps or longer.

• The average number of parts in which a motion is split

should be relatively small. In this work values between 1

and 4 were observed for well performing projections.

• As the algorithm progresses, at least some interior cells

need to be created.

• The average number of samples per cell should be in the

range of tens to hundreds.

Based on collected statistics and these observations, it can

be automatically decided whether the cell sizes used are good,

too large or too small. This information is reported for each

dimension of the projection space. If the used cell size is

8

too small or too large in some dimension, the size in that

dimension is increased or decreased, respectively, by a factor

larger than 1 and the algorithm is restarted. This process

usually converges in 2 or 3 iterations. To start the iteration,

an initial guess is needed. A simple way to compute an initial

guess is to sample a number of states from the state space (e.g.,

1000) and compute the bounding box for the corresponding

projections. A simple initial guess would be to set the cell sizes

to be 10% of the size of the bounding box, in each dimension.

IV. EXPERIMENTS

In this section we present experimental results for dif-

ferent planning problem instances. We begin by describing

the employed robot models and the experimental setup (Sec-

tions IV-A and IV-B). We then compare the implementation

of KPIECE as presented thus far, using a discretization with

automatically computed parameters as shown in Section III-G,

against a number of existing algorithms (Section IV-C). Fur-

ther experiments show the influence of using random projec-

tions (Section IV-D). Various components of KPIECE are then

disabled to expose their importance in the overall algorithm

(Section IV-E). The results of running KPIECE in a kinematic

context are then presented (Section IV-F).

A. Robot Models

Three different robots were used in benchmarking KPIECE,

to show its generality: a modular robot, a car, and a blimp.

These robots have been chosen to be different in terms of the

difficulties they pose to a motion planner. Details on what these

difficulties are follow in the next paragraphs. ODE version 0.9

was used to model the robots. The used simulation step size

was 0.05s.

a) Modular Robot: The model1 characterizes the CKBot

modules [55]. Using these modules, different robots can be

constructed. Each CKBot module contains one motor. An ODE

model for serially linked CKBot modules has been created

[33]. The task is to compute the controls for lifting the robot

from a vertical down position to a vertical up position for

varying number of modules, as shown in Figure 4. Each

module adds one degree of freedom. The controls represent

torques that are applied by the motors inside the modules. The

difficulty of the problem lies in the high dimensionality of the

control and state spaces as the number of modules increases,

and in the fact that at maximum torque, the motors in the

modules are only able to statically lift approximately 5 mod-

ules. Consequently, the planner has to find swinging motions

to solve the problem. The state space for a chain modular robot

with m modules is Q = {x | x = ((x1, ẋ1), ..., (xm, ẋm))},

where xi is the angle position of module i, i ∈ {1, ..,m}. The

employed projection was Proj : Q → R3. In the evaluation

of Proj, the first two dimensions are the (x, z) coordinates

of the last module (x, z is the plane observed in Figure 4) and

the third dimension, the square root of the sum of squares of

the rotational velocities of all the modules. The environments

the system was tested in are shown in Figure 4.

1This model was created in collaboration with Mark Yim, GRASP Labora-
tory of Robotics Research and Education, yim@grasp.upenn.edu.

Fig. 4. Left: start and goal configurations. Right: environments used for the
chain robot (7 modules). Experiments were conducted for 2 to 10 modules.
In the case without obstacles, the environments are named chain1-x where x

stands for the number of modules used in the chain. In the case with obstacles,
the environments are named chain2-x.

b) Car Robot: A model of a car [2] was created. The

model is fairly simple and consists of five parts: the car body

and four wheels. Since ODE does not allow for direct control

of accelerations, desired velocities are given as controls for

the forward velocity and steering velocity (as recommended

by the developers of the library). The desired velocities

indicate what velocities the car is intended to achieve and

go together with a maximum allowed force. The end result is

that the car will not be able to achieve the desired velocities

instantly, due to the limited force. In effect, this makes the

system a second order one. The state space for this model

is Q = {x | x = (x, y, θ, v, θ̇)}, where (x, y) denote the

center of the car chassis, θ is the car’s orientation and v is the

velocity along the orientation. The employed projection was

Proj : Q → R2. Proj evaluates to the (x, y) coordinates of

the center of the car body. The environments the system was

tested in are shown in Figure 5.

Fig. 5. Environments used for the car robot (car-1, car-2, car-3). Start and
goal configurations are marked by “S” and “G”. The small cubes represent
obstacles.

c) Blimp Robot: The third robot that was tested was a

blimp robot [17]. The motion in this case is executed in a

3D environment. This robot is particularly constrained in its

motion: the blimp must always apply a positive force to move

forward (slowing down is caused by friction), it must always

apply an upward force to lift itself vertically (descending is

caused by gravity) and it can turn left or right with respect to

the direction of forward motion. Since ODE does not include

air friction, a Stokes model of drag was implemented for the

blimp (the drag force is Fdrag = −bv where v is the linear

velocity of the blimp and b is the drag coefficient). The state

space for this model is Q = {x | x = (x, y, z, θ, v, ż, θ̇)},

where (x, y, z) denote the center of the blimp, θ is the blimp’s

orientation and v is the forward velocity along the orientation.

The employed projection was Proj : Q → R3. Proj evaluates

to the (x, y, z) coordinates of the center of the blimp. The

9

environments the system was tested in are shown in Figure 6.

Fig. 6. Environments used for the blimp robot (blimp-1, blimp-2, blimp-
3). Start configurations are marked by “S”. The blimp has to pass between
the walls and through the hole(s), respectively. The small cubes represent
obstacles.

B. Experimental Setup and Compared Motion Planners

KPIECE was benchmarked against general well-known

efficient algorithms (RRT, EST, PDST) with three different

robotic systems, in different environments. All these algo-

rithms are implemented using uni-directional exploration –

single trees, since backward exploration is not possible with

physics engines. For the implementations of RRT [16], EST

[15] and PDST [47], the OOPSMP framework was used [56].

A plugin for linking OOPSMP with the ODE simulator was

developed. Every effort was made to tune the parameters of

both RRT and EST. For RRT, a number of different metrics

were tested for each robot and experiments are presented

with the metric that performed best. Random controls were

selected instead of attempting to find controls that take the

robotic system toward a desired state, as this strategy seemed

to provide better results. In addition, placing of intermediate

states along motions as they were added in the exploration

tree has also been attempted (this variant of the algorithm is

marked as RRTi). For EST, the nodes to expand from were

selected based on a grid subdivision of the state space, as this

strategy has been shown to work well [24].

KPIECE was implemented by the authors. A projection

was defined for each robot and the same projection was used

for EST, PDST and KPIECE. In addition to the projection,

KPIECE needs a discretization to be defined for each robot.

When comparing with other algorithms, discretizations with

cell sizes computed as shown in Section III-G were used.

All implementations are in C++ and were tested on the Rice

Cray XD1 Cluster, where each machine runs at 2.2 Ghz and

has 8 GB RAM. For each system and each of its environments,

each algorithm was executed 50 times. The best two and worst

two results in terms of runtime were discarded and the results

of the remaining 46 runs were averaged. The time limit was

set to one hour and the memory limit was set to 2 GB. We

only average results for successful runs and we also report the

success rate.

C. Comparative Analysis

Table I shows significant computational gains for KPIECE

in terms of runtime, when compared to other algorithms such

as RRT, EST, and PDST. The success rate of KPIECE is

also better than for the other algorithms – 100% for almost

all experiments, even when the other algorithms drop to 0%.

Figure 7 and Figure 10 show actual runtimes from the data

in Table I. As the dimensionality of the problem increases,

car-2

blim
p-2

chain1-7

chain2-7

Time (s)

0

200

400

600

800

1000

RRT

RRTi

EST

PDST

KPIECE

Fig. 7. Averaged runtimes (50 runs) of different algorithms on some of the
tested models. The achieved speedup is shown in Table I.

car-2

blim
p-2

chain1-7

chain2-7

Simulation steps (in 1 000 000’s)

0

5

10

15

20

25

RRT

RRTi

EST

PDST

KPIECE

Fig. 8. Averaged number of simulation steps (50 runs) for different
algorithms. Notice the similarity to Figure 7. This similarity serves to prove
that the runtime of sampling-based planning algorithms is dominated by
physics-based simulation, so minimizing the number of simulation steps leads
to speedup.

car-2

blim
p-2

chain1-7

chain2-7

Memory (MB) (in 1000’s)

0

0.2

0.4

0.6

0.8

1

1.2

1.4

RRT

RRTi

EST

PDST

KPIECE

Fig. 9. Average memory usage for different algorithms (50 runs). Notice
the similarity to Figure 8. Since for every simulation step it is likely a new
state is produced, and the number of motions in the built tree is directly
proportional to the number of states, the fewer simulation steps there are, the
fewer motions will need to be stored in memory.

10

TABLE I
COMPARISON OF ALGORITHMS FOR FOUR DIFFERENT PROBLEMS. spd DENOTES AVERAGE SPEEDUP OF KPIECE WITH RESPECT TO A PARTICULAR

ALGORITHM, mem DENOTES AVERAGE MEMORY USAGE IN MB AND suc DENOTES SUCCESS RATE.
N/A STANDS FOR UNAVAILABLE AVERAGES (0% SUCCESS RATE).

RRT RRTi EST PDST KPIECE

Problem spd mem suc spd mem suc spd mem suc spd mem suc spd mem suc

car-1 3.91 255 1.00 5.38 232 1.00 17.75 1074 1.00 30.66 665 1.00 1.00 23 1.00
car-2 4.60 670 1.00 5.65 530 1.00 9.10 1301 0.63 16.27 834 0.76 1.00 35 1.00
car-3 5.95 1790 0.11 7.87 1513 0.30 N/A N/A 0.00 N/A N/A 0.00 1.00 64 1.00

blimp-1 3.07 171 1.00 4.01 179 1.00 5.34 309 1.00 19.13 535 1.00 1.00 46 1.00
blimp-2 7.21 502 1.00 14.46 729 0.91 12.32 864 0.89 24.21 779 0.72 1.00 76 1.00
blimp-3 1.43 1645 0.24 1.71 1458 0.15 1.38 1613 0.13 N/A N/A 0.00 1.00 347 1.00

chain1-2 0.54 0 1.00 0.57 0 1.00 0.62 0 1.00 1.32 0 1.00 1.00 3 1.00
chain1-3 0.49 0 1.00 0.54 0 1.00 0.59 0 1.00 1.25 0 1.00 1.00 3 1.00
chain1-4 0.88 0 1.00 0.89 0 1.00 1.45 0 1.00 2.00 0 1.00 1.00 4 1.00
chain1-5 4.00 21 1.00 3.62 21 1.00 4.00 22 1.00 6.05 32 1.00 1.00 4 1.00
chain1-6 10.29 173 1.00 6.47 107 1.00 10.60 211 1.00 6.76 91 1.00 1.00 11 1.00
chain1-7 10.28 1000 0.33 11.23 1073 0.52 5.14 610 0.26 13.27 903 0.89 1.00 46 1.00
chain1-8 N/A N/A 0.00 N/A N/A 0.00 N/A N/A 0.00 N/A N/A 0.00 1.00 150 1.00
chain1-9 N/A N/A 0.00 N/A N/A 0.00 N/A N/A 0.00 N/A N/A 0.00 1.00 726 0.96
chain1-10 N/A N/A 0.00 N/A N/A 0.00 N/A N/A 0.00 N/A N/A 0.00 1.00 1970 0.36

chain2-5 23.49 73 1.00 36.84 84 1.00 149.38 392 1.00 74.55 141 1.00 1.00 6 1.00
chain2-6 62.40 568 0.96 51.78 407 1.00 125.41 1555 0.15 152.74 927 0.67 1.00 13 1.00
chain2-7 12.45 1146 0.57 22.06 1148 0.48 3.01 560 0.04 25.65 1164 0.17 1.00 73 1.00
chain2-8 N/A N/A 0.00 N/A N/A 0.00 N/A N/A 0.00 3.24 1083 0.02 1.00 718 0.96
chain2-9 N/A N/A 0.00 N/A N/A 0.00 N/A N/A 0.00 N/A N/A 0.00 1.00 1621 0.14
chain2-10 N/A N/A 0.00 N/A N/A 0.00 N/A N/A 0.00 N/A N/A 0.00 N/A N/A 0.00

Chainrobot Environment

2 3 4 5 6 7 8 9 10

Natural log of time (s)

-3

-2

-1

0

1

2

3

4

5

6

7

8

9

RRT

RRTi

EST

PDST

KPIECE

Time Limit

Fig. 10. Averaged runtimes (50 runs) of different algorithms on the modular
robot model with no obstacles, using varying number of modules (chain1-x).
The achieved speedup is shown in Table I.

KPIECE does better and speedups of up to two orders

of magnitude are observed (e.g., for chain2-6). For simple

problems however, other algorithms can be faster (e.g., RRT

and RRTi for chain1-4). In fact, it is not recommended that

a more elaborate algorithm such as KPIECE is used when

simple algorithms such as RRT are sufficient.

As robots become more complex, the size of a state in-

creases and many sampling-based planners reach the memory

limit. Table I and Figure 9 show that the memory footprint of

KPIECE is reduced by as much as 10 to 40 times, compared

to that of the other algorithms.

The presented speedup values are consistent with the time

spent performing simulations, as shown in Figure 8, which

serves to prove that the computational improvements are

obtained by minimizing the usage of the physics-based sim-

ulator. Since physics-based simulation takes up around 90%

of the execution time, computational gain will be observed

in the case of purely geometric planning as well, where

simulation is replaced by collision detection. With less time

spent performing simulations, there are fewer samples to store

in the built tree. This leads to significant savings in memory

consumption, as indicated in Figure 9.

D. Using Random Projections

The experiments shown in the previous section employed

user-defined projections, as described above. In Section III-F it

was discussed that if a user-defined projection is not available,

random projections can be used as an alternative. To exhibit

the behaviour of KPIECE when using random projections, we

repeat some of our experiments, with random projections set

instead of user-defined projections.

We show the results of using 2-, 3- and 4-dimensional

projections in Table II. On one hand, the performance of the

algorithm degrades as the dimension of the projection becomes

larger. For instance, for the car model, a 4-D projection

performs worse than a 3-D projection. On the other hand,

for systems that are higher dimensional, the increased costs of

maintaining a projection with more dimensions are outweighed

by the better approximation of coverage, which leads to better-

informed exploration and thus lower runtimes, as shown by the

blimp model. For the CKBot model we only show experiments

for up to 8 modules as for 9 or more modules the failure rate

is more than 90% when using random projections.

The experimental results indicate that user-defined projec-

tions may lead to better performance. This is expected as some

user intuition and knowledge about the problem is inserted in

11

TABLE II
SLOW-DOWN (sld) AND SUCCESS RATE (suc) OF KPIECE WHEN USING

RANDOM PROJECTIONS, AS OPPOSED TO USING USER-DEFINED

PROJECTIONS. REGARDLESS OF THE PROJECTION, AUTOMATICALLY

COMPUTED DISCRETIZATIONS ARE USED, AS DESCRIBED IN

SECTION III-G. N/A STANDS FOR UNAVAILABLE AVERAGES

(0% SUCCESS RATE).

2D 3D 4D
Problem sld suc sld suc sld suc

car-1 1.14 1.00 1.22 1.00 1.27 1.00
car-2 1.30 1.00 1.21 1.00 1.72 1.00
car-3 7.80 0.76 2.28 1.00 3.83 1.00

blimp-1 1.87 1.00 0.89 1.00 0.99 1.00
blimp-2 13.17 0.96 1.12 1.00 0.98 1.00
blimp-3 4.35 0.39 2.14 0.87 1.46 1.00

chain1-5 1.09 1.00 1.10 1.00 1.18 1.00
chain1-6 5.78 0.98 3.34 1.00 7.00 1.00
chain1-7 29.61 0.28 15.87 0.85 15.70 0.76
chain1-8 N/A 0.00 17.55 0.33 22.24 0.28
chain1-9 N/A 0.00 5.33 0.02 5.63 0.02

chain2-5 4.52 0.72 4.84 1.00 3.39 1.00
chain2-6 16.12 0.72 9.94 0.98 7.78 1.00
chain2-7 15.75 0.09 7.36 0.63 17.51 0.83
chain2-8 16.45 0.02 4.04 0.41 4.89 0.33
chain2-9 N/A 0.00 N/A 0.00 2.50 0.07

the choice of the projection. For the cases when user-defined

projections are not specified, random projections can be used

without significant degradation of performance for systems of

moderate dimension (up to 10).

E. Discussion on Algorithm Components

In the previous sections, we have shown the computational

benefits of using KPIECE over other algorithms. Two features

of KPIECE that can be easily disabled are the grouping of

cells into interior and exterior, and the progress evaluation

based on increase in coverage (updates to score). Disabling

these components allows us to evaluate their contribution

individually.

Figure 11 shows that both progress evaluation and cell

distinction contribute to reducing the runtime of KPIECE.

While these components do not seem to help for easier

problems (blimp-1), their contribution is important for harder

problems (car-3, blimp-3). In particular, the cell distinction

seems to be the more important component as the problems get

harder. This is to be expected, since the distinction allows the

algorithm to focus exploration on the boundary of the explored

space, while ignoring the larger, already explored interior

volume. However, due to the randomized nature of sampling-

based algorithms it is difficult to make absolute statements

about the performance of such algorithms in general.

F. Planning in a Kinematic Context

KPIECE was designed to be used for motion planning

with differential constraints. However, this does not mean the

algorithm cannot be used for kinematic problems as well.

Furthermore, comparisons with certain types of algorithms,

such as ones that use lazy collision checking or bi-directional

search, cannot be performed for the problems with differ-

ential constraints presented above. To shed some light on

Car Environment

1 2 3

Natural log of time (s)

3

3.5

4

4.5

5

5.5

6

A
B
C
D

Blimp Environment

1 2 3

Natural log of time (s)

1

2

3

4

5

6

7

8

A
B
C
D

Fig. 11. Logarithmic runtime for KPIECE with various components disabled,
on 2-dimensional and 3-dimensional projections (car and blimp) with the
automatically computed one-level discretization. A = no components disabled,
B = no cell distinction, C = no progress evaluation, D = no cell distinction
and no progress evaluation.

the performance of KPIECE for kinematic problems, two

experiments with only kinematic constraints are included. The

first experiment is that of moving an arm with 7 degrees of

freedom (The PR2 arm from Willow Garage) from a position

above a table to a position under the table, as show in

Figure 12. The second experiment is that of moving a rigid

body from a start configuration to a goal configuration in a

complex environment, as shown in Figure 13. The sampling

of controls was replaced with sampling of random states and

connecting to the random states using a local planner. The

projection used in the first experiment was a two dimensional

one, consisting of the joint values at the first two joints of

the arm. For the second experiment, the projection was the

position of the rigid body in space (ignoring orientation).

TABLE III
RUNTIMES OF KINEMATIC VERSIONS OF THE ALGORITHMS.

Algorithm Arm Plan Time(ms) Rigid Body Plan Time (ms)

RRT 456 3248
EST 187 3907
KPIECE 166 698

RRTConnect 21 1508
SBL 29 3943
LBKPIECE 37 1146

12

Fig. 12. Move the right arm from above to below the table: start state (left)
and goal state (right). The representation of the table is as observed using a
laser scanner.

Fig. 13. Move the “L”-shaped rigid body from start to goal, indicated by
“S” and “G”, respectively.

Table III shows the runtimes of various algorithms in this

context. KPIECE is still faster than RRT and EST, but the

speedup is not as significant as in the previous examples. For

comparison, runtimes of bi-directional search algorithms, SBL

[24] and RRTConnect [22], are included. LBKPIECE is a

lazy bi-directional implementation of KPIECE, with a con-

nection strategy similar to that of SBL. For the arm problem,

the bi-directional versions are an order of magnitude faster,

with RRTConnect outperforming the other algorithms. For

the rigid body problem, since the start and goal states are close

in the workspace, bi-directional algorithms no longer perform

as well. In fact KPIECE performs best due to its ability to

expand towards unexplored space. The implementations of

these algorithms are part of the Open Motion Planning Library

(OMPL) [57].

V. ALGORITHM EXTENSIONS

This section introduces the additional improvements of

KPIECE, with corresponding experimental results.

A. Multiple Levels of Discretization

The Proj and Coord functions introduced in Section III-B

allow discretizing Q in spaces Cell(z), for z ∈ Zk. While

this is useful for evaluating coverage, the number of cells

may increase significantly while KPIECE is running. This can

lead to increased computational requirements. Even though

KPIECE was shown to significantly outperform competing

algorithms, we propose a means to further speed up the

algorithm: addition of coarser levels of discretization.

We generalize the definition of Coord:

Coord(p, L) = Coord((p1, . . . , pk), L)

=

(⌊

p1 − o1
dL,1

⌋

, . . . ,

⌊

pk − ok
dL,k

⌋)

= z,

where p and o are the same as in the original definition

of Coord. L is a positive integer specifying the level of

discretization. d1,i, i ∈ {1, . . . , k} are the side lengths of

the k-dimensional cubes at the lowest level of discretization

(L = 1). For L > 1, dL,i, i ∈ {1, . . . , k} are defined such

that dL,i = dL−1,i · gL,i for gL,i a positive integer. In effect,

this definition specifies how to discretize a projection space

Rk into multiple levels of discretization. Each level has cells

of uniform volume. A cell at a higher level of discretization

consists of an integer number of cells at the next lower level

of discretization. Figure 14 shows this pictorially. The lowest

level of discretization corresponds to the discretization as

described in Section III-B. The higher levels of discretization

consist of coarser cells. The intuition behind using multiple

levels of discretization is that higher levels of discretization

allow the planner to quickly identify the general area that

needs to be further explored, and lower levels of discretization

allow the planner to focus on the most promising locations

within that general area.

The definitions for Cell(z), Motions(z), Neighbors(z)
and Importance(z) can clearly be generalized to Cell(z, L),
Motions(z, L), Neighbors(z, L) and Importance(z, L).

Let Mc(L) ⊂ Zk be the minimal cover of AS (as defined

in Section III-A) consisting of cells from level L: AS ⊆
⋃

z∈Mc(L) Cell(z, L).
For a cell Cell(z, L), define the contained cells to be:

IncCells(z, L) = ∅, if L = 1,

IncCells(z, L) = {y ∈ Zk | Cell(y, L− 1) ⊂ Cell(z, L)

and y ∈ Mc(L− 1)}, if L > 1.

For generalizing coverage, we use the following definition:

Coverage(z, 1) = previous Coverage(z),

Coverage(z, L) = |IncCells(z, L)|, for L > 1.

This means that the coverage at the first level of discretization

(L = 1) is the same as originally defined. For higher levels

of discretization (L > 1), the coverage of a cell is simply the

number of instantiated cells it contains from the next, lower

level of discretization.

We define an L-level discretization to be:

HL = { Mc(1), . . . ,Mc(L) }.
The coordinates of the cells that make up HL are stored in

a multi-level hash data structure called Grid. At the lowest

level, Grid contains a hash that associates Motions(z, 1) to

each cell coordinate z ∈ Mc(1). For higher levels L > 1,

Grid contains a hash that associates IncCells(z, L) to each

cell coordinate z ∈ Mc(L).
The selection of cells (Algorithm 2, line 5) becomes

selection of cell chains, as shown in Algorithm 3. In a

discretization with L levels, KPIECE selects a chain of

cells c = (Cell(z1, 1), Cell(z2, 2), . . . , Cell(zL,L)) such that

Cell(z1, 1) ⊂ Cell(z2, 2) ⊂ · · · ⊂ Cell(zL,L). L is fixed

during the execution of the algorithm. KPIECE identifies the

most important cell at the coarsest level of discretization,

Cell(zL,L), and then proceeds recursively within that cell,

and identifies the most important cell in IncCells(zL,L).

13

Fig. 14. An example discretization with three levels (H3). The line
intersecting the three levels defines a cell chain. Cell sizes at lower levels
of discretization are integer multiples of the cell sizes at the level above.

Algorithm 3. SELECT(bias)

1: c = ()
2: L = the number of levels in the discretization
3: type = uniform random number in (0, 1)
4: if type ≥ bias then
5: c[L] = exterior cell coordinate from Mc(L) with highest

importance
6: else
7: c[L] = interior cell coordinate from Mc(L) with highest

importance
8: for i← {L− 1...1} do
9: type = uniform random number in (0, 1)

10: if type ≥ bias then
11: c[i] = exterior cell coordinate from IntCells(c[i+1], i+1)

with highest importance
12: else
13: c[i] = interior cell coordinate from IntCells(c[i+1], i+1)

with highest importance
14: return c

This will be a cell Cell(zL−1,L − 1). Preference is given

to exterior cells. This process continues until a cell from the

finest level of discretization is selected: Cell(z1, 1). A motion

ν from Motions(z1, 1) is then picked according to a half-

normal distribution.

The update to score in Algorithm 2 [lines 14,15] does not

change, but it is now performed for every cell in a selected

chain.

TABLE IV
SPEEDUP (spd) ACHIEVED BY KPIECE WHEN USING A DISCRETIZATION

H2 RELATIVE TO THE AUTOMATICALLY COMPUTED DISCRETIZATION H1 .

Problem spd Problem spd Problem spd

chain1-2 1.0 chain1-7 1.9 chain2-7 1.5
chain1-3 1.1 chain1-8 1.9 chain2-8 0.7
chain1-4 0.7 chain1-9 5.0 chain2-9 1.2
chain1-5 0.8 chain2-5 0.8
chain1-6 2.2 chain2-6 0.9

car-1 1.3 car-3 0.9 blimp-2 1.4
car-2 1.0 blimp-1 2.1 blimp-3 1.4

While the results shown in Table I are computed with a

discretization H1 (one level of discretization), for some prob-

lems, better results can be obtained using multiple levels of

discretization. To show this, for each robot, twelve simple dis-

cretizations are defined. First, a H1 discretization (consisting

only of Mc(1)) is computed as discussed in Section III-G. Two

more H1 discretizations with half and double the cell volume

of the computed discretization’s cells are then constructed

(cell sides shortened and lengthened proportionally, in each

dimension). For each of these three H1 discretizations, three

more H2 discretizations (consisting of Mc(1), Mc(2)) are

defined: ones that have the same cell sizes for Mc(1), but

Mc(2) consists of cells with sizes increased by a factor of 10,

15, and 20 times, in each dimension, with respect to the cell

sizes of Mc(1).
Table IV shows the speedup obtained when employing the

best of the nine defined H2 discretizations, compared to the

automatically computed discretization H1, computed as in

Section III-G. As we can see, in most cases there are benefits

to using two discretization levels. Experiments with more

than two levels of discretization were conducted as well, but

the performance started to decrease and the results are not

presented here.

The defined discretizations can also be used to evaluate the

sensitivity of KPIECE to the defined cell sizes. As shown in

Figure 15, the runtimes of the algorithm for the twelve differ-

ent discretizations (both H1 and H2) are relatively close to one

another (mostly within a factor of 2). This suggests that the

algorithm is not overly sensitive to the defined discretization

and thus approximating good cell sizes and number of levels

of discretization is sufficient.

Chainrobot1 Environment

2 3 4 5 6 7 8 9 10

Natural log of time (s)

-3
-2
-1
0
1
2
3
4
5
6
7
8
9

Chainrobot2 Environment

5 6 7 8 9 10

Natural log of time (s)

-1
0
1
2
3
4
5
6
7
8
9

Car Environment

1 2 3

Natural log of time (s)

3

3.5

4

4.5

5

5.5

6

Blimp Environment

1 2 3

Natural log of time (s)

1.5
2

2.5
3

3.5
4

4.5
5

5.5
6

6.5
7

Fig. 15. Logarithmic runtimes with twelve different discretizations for the
chain1, chain2, car, and blimp.

The results from Table IV and Figure 15 suggest that

carefully choosing the number of levels of discretization

and the cell sizes at these levels, can lead to computational

benefits (e.g., blimp-1, blimp-2, blimp-3). However, KPIECE

is robust to these settings and very good results can be obtained

without spending significant effort on tuning parameters for

the employed discretization. For automatic computation of

these parameters, parameter sweeps can be conducted.

B. Goal Biasing

Goal biasing is a standard technique used by sampling-based

motion planners to reduce their runtime. The basic idea is that

14

if the planner knows where the goal is, it can greedily attempt

to reach it [12]. This section presents how goal biasing can be

used by KPIECE.

If a heuristic h : Q → R+ for estimating the distance to the

goal is available, the information provided by that heuristic

can be used in computing the cell importance: cells closer to

the goal get higher score and are thus selected for expansion

more often. In particular, when a cell is instantiated, its score

is set to h(s) instead of 1 in Algorithm 2, where s is the last

state of the motion ν that required the creation of the cell (we

say h∗(ν) = h(s)). While this technique usually contributes

to reducing the runtime of the algorithm, it may become a

problem and slow down the algorithm when obstacles block

the way and higher score is given to cells that cannot be

crossed. In such cases, the progress evaluation component

of the algorithm becomes essential, since the higher score

that was assigned by the heuristic is decreased as progress

stagnates.

In addition to influencing the score of cells, the biasing

component also maintains a set of so-called good motions, B.

For every motion ν, h∗(ν) is computed; B is a limited-size

set (at most 30, in our implementation) of motions with the

largest values of h∗(ν). With a low probability (usually 5%),

tree expansion is continued from a motion in B, rather than

from a motion selected based on the coverage estimates. An

additional constraint imposed on the motions in B is that they

have to be in different cells. This constraint prevents having

all motions in B be almost the same.

Adding biasing for KPIECE does often improve the run-

time, as shown in Table V. The fact that progress evaluation

is also present limits the negative effects biasing has in certain

cases (e.g., blimp-3).

TABLE V
SPEEDUP (spd) ACHIEVED BY KPIECE WITH BIASING RELATIVE TO

KPIECE, BOTH USING AN AUTOMATICALLY COMPUTED DISCRETIZATION.

Problem spd Problem spd Problem spd

chain1-2 1.1 chain1-7 0.9 chain2-7 0.9
chain1-3 1.0 chain1-8 1.0 chain2-8 1.5
chain1-4 0.8 chain1-9 3.9 chain2-9 1.0
chain1-5 1.1 chain2-5 0.9
chain1-6 0.9 chain2-6 0.9

car-1 1.3 car-3 1.3 blimp-2 1.2
car-2 1.1 blimp-1 1.5 blimp-3 0.8

C. Parallel Implementation

The presented algorithm was also implemented in a shared

memory parallel framework. While previous work has shown

significant improvements with embarrassingly parallel se-

tups [58], [59], this work attempts to take the emerging multi-

core technology into account and use it as an advantage.

Instead of running the algorithm multiple times and stopping

when one of the active instances found a solution as in [58],

[59], KPIECE uses multiple threads to build the same tree of

motions (threads can continue expanding from cells instanti-

ated by other threads). Synchronization points are employed to

ensure correct order of execution. Since there is only one copy

of the exploration tree, there is no communication necessary,

as would be the case with a distributed approach. Shared

memory parallelization takes advantage of the increase in

number of computing cores and memory bandwidth. Since

each computing thread starts from a different random seed, the

chances of all seeds being unfavourable decrease. If a single

thread finds a path through a narrow passage, the rest of the

threads will immediately use this information as well. This

setup also seems to reduce the variance in the average runtime

of the algorithm. This proposed parallelization scheme can be

applied to other sampling-based algorithms as well (e.g., [57]).

TABLE VI
SPEEDUP ACHIEVED BY KPIECE WITH MULTIPLE THREADS FOR

2-DIMENSIONAL AND 3-DIMENSIONAL PROJECTIONS (CAR AND BLIMP).
KPIECE WAS CONFIGURED WITH AN AUTOMATICALLY COMPUTED

ONE-LEVEL DISCRETIZATION, AS DESCRIBED IN SECTION III-G.

car-1 car-2 car-3 blimp-1 blimp-2 blimp-3

2 1.7 2.0 2.6 2.3 1.9 1.4
3 2.8 2.7 3.0 2.9 3.0 2.2
4 3.9 3.6 4.4 3.5 3.2 3.1

TABLE VII
SPEEDUP ACHIEVED BY KPIECE IN EMBARRASSINGLY PARALLEL MODE.

car-1 car-2 car-3 blimp-1 blimp-2 blimp-3

2 1.3 1.5 1.6 1.5 1.6 1.3
3 1.5 1.8 1.8 1.8 1.9 1.4
4 1.7 2.1 2.0 2.2 3.0 1.5

All experiments presented in previous sections were con-

ducted when using the planner in single-threaded mode. Ta-

ble VI shows the speedup achieved by the motion planner

when using one to four threads on a four-core machine. The

achieved speedup is super-linear in some cases, a known

characteristic of sampling-based motion planners [60]. When

comparing to the speedup obtained with an embarrassingly

parallel setup, shown in Table VII, we notice that lower

runtimes are obtained with the shared memory setup. In

addition, total memory requirements in the suggested setup

do not increase significantly as the number of processors is

increased.

Number of threads

1 2 3 4 5 6 7 8 9 10

Time (s)

0

50

100

150

200

250

300

World 1

World 2

World 3

Number of threads

1 2 3 4 5 6 7 8 9 10

Time (s) (in 1000’s)

0

0.2

0.4

0.6

0.8

1

1.2

World 1

World 2

World 3

Fig. 16. Runtime with different number of threads on a four-core machine,
for 2-dimensional and 3-dimensional projections (car and blimp).

Due to the fact that using multiple random seeds increases

the chances of the motion planner benefiting from at least one

favourable seed, using more threads than available processing

units may reduce runtime as well. To evaluate this possibility,

we run KPIECE with up to 10 threads on a four-core machine

15

(shown in Figure 16). Once we use more threads than number

of cores, speedup decreases drastically, but does not come to a

complete halt. Based on the conducted experiments, it seems

to be the case that using a number of threads up to double the

number of cores provides small benefits.

VI. DISCUSSION AND FUTURE WORK

We have presented KPIECE, a sampling-based motion

planning algorithm that can solve complex planning problems

within significantly reduced runtime (up to two orders of

magnitude speedup), and with substantial memory savings (up

to a factor of 40). Furthermore, KPIECE enables the solution

of problems that could not be tackled before.

KPIECE uses a projection of the state space to a lower

dimensional Euclidean space and a specification of a dis-

cretization. As shown in the experiments, even simple intuitive

projections work for complex problems. If a projection is not

defined by the user, the algorithm performs well with random

projections for systems of moderate dimension.

The performance of KPIECE is not drastically affected by

the choice of discretization and a method to automatically

compute H1 discretizations was presented. Parameter sweeps

can be used to decide when further levels of discretization are

beneficial. When using automatically computed H1 discretiza-

tions, KPIECE was compared to other popular algorithms,

and shown to provide significant computational speedup. In

addition, the provided shared memory parallel implementation

seems to give better results than the embarrassingly parallel

setup.

For future work, it would be interesting to prove the

probabilistic completeness of KPIECE, to develop a principled

approach for automatically computing discretizations with

more levels of discretization, and to explore the possibility

of using multiple projection spaces simultaneously. Another

possible direction is that of using PCA to identify vectors along

which to project, but extensive experiments have not yet been

conducted. This use of PCA has been shown to work locally

to help in the exploration of narrow passages [50].

ACKNOWLEDGEMENTS

An earlier version of this work appeared in [34]. The authors

would like to thank Mark Yim and Jonathan Kruse for their

help in defining the CKBot ODE model and the members

of the Kavraki Lab for providing valuable comments. Many

thanks go to Marius Şucan for designing most of the images

this document includes, and to Derek Ruths for naming the

algorithm (KPIECE).

This work was supported in part by NSF IIS 0713623, NSF

DUE 0920721 and Rice University funds. The experiments

were run on equipment obtained by NSF CNS 0454333 and

NSF CNS 0421109 in partnership with Rice University, AMD

and Cray.

REFERENCES

[1] J. C. Latombe, Robot Motion Planning. Boston, MA: Kluwer Academic
Publishers, 1991.

[2] H. Choset, K. M. Lynch, S. Hutchinson, G. A. Kantor, W. Burgard, L. E.
Kavraki, and S. Thrun, Principles of Robot Motion: Theory, Algorithms,

and Implementations. MIT Press, June 2005.

[3] S. M. LaValle, Planning Algorithms. Cambridge, U.K.: Cambridge
University Press, 2006, available at http://planning.cs.uiuc.edu/.

[4] J. T. Schwartz and M. Sharir, “On the piano movers’ problem: General
techniques for computing topological properties of real algebraic mani-
folds,” Communications on Pure and Applied Mathematics, vol. 36, pp.
345–398, 1983.

[5] L. Zhang, J. Pan, and D. Manocha, “Motion planning of human-
like robots using constrained coordination,” in IEEE-RAS International

Conference on Humanoid Robots, Paris, December 2009.

[6] J. C. Latombe, “Motion planning: A journey of robots, molecules, digital
actors, and other artifacts,” International Journal of Robotics Research,
vol. 18, no. 11, pp. 1119–1128, 1999.

[7] S. Thomas, X. Tang, L. Tapia, and N. M. Amato, “Simulating protein
motions with rigidity analysis.” Journal of Computational Biology,
vol. 14, no. 6, pp. 839–855, 2007.

[8] M. S. Apaydin, D. L. Brutlag, C. Guestrin, D. Hsu, J. C. Latombe, and
C. Varma, “Stochastic roadmap simulation: an efficient representation
and algorithm for analyzing molecular motion.” Journal of Computa-

tional Biology, vol. 10, no. 3-4, pp. 257–281, 2003.

[9] E. Plaku, L. E. Kavraki, and M. Y. Vardi, “Hybrid systems: from
verification to falsification by combining motion planning and discrete
search,” Formal Methods in System Design, vol. 34, pp. 157–182, 2009.

[10] S. Carpin, “Randomized motion planning - a tutorial,” International

Journal of Robotics and Automation, vol. 21, no. 3, pp. 184–196, 2006.

[11] S. Lindemann and S. M. LaValle, “Current issues in sampling-based
motion planning,” in Robotics Research: The Eleventh International

Symposium. Berlin: Springer-Verlag, 2005, pp. 36–54.

[12] I. A. Şucan and L. E. Kavraki, “On the implementation of single-query
sampling-based motion planners,” in IEEE International Conference on

Robotics and Automation, Anchorage, Alaska, May 2010, pp. 2005–
2011.

[13] P. Cheng and S. M. LaValle, “Reducing metric sensitivity in randomized
trajectory design,” in IEEE International Conference on Robotics and

Automation, Seoul, Korea, May 2001, pp. 43–48.

[14] J. Bruce and M. Veloso, “Real-time multi-robot motion planning with
safe dynamics,” Multi-Robot Systems: From Swarms to Intelligent Au-

tomata Volume III, pp. 159–170, 2005.

[15] D. Hsu, R. Kindel, J. C. Latombe, and S. Rock, “Randomized kinody-
namic motion planning with moving obstacles,” International Journal

of Robotics Research, vol. 21, no. 3, pp. 233–255, March 2002.

[16] S. M. LaValle and J. J. Kuffner, “Randomized kinodynamic planning,”
International Journal of Robotics Research, vol. 20, no. 5, pp. 378–400,
May 2001.

[17] A. M. Ladd and L. E. Kavraki, “Fast tree-based exploration of state space
for robots with dynamics,” in Algorithmic Foundations of Robotics VI.
Springer, STAR 17, 2005, pp. 297–312.

[18] A. Shkolnik, M. Walter, and R. Tedrake, “Reachability-guided sampling
for planning under differential constraints,” in IEEE International Con-

ference on Robotics and Automation, Kobe, Japan, May 2009, pp. 2859–
2865.

[19] D. E. Stewart, “Rigid-body dynamics with friction and impact,” SIAM

Review, vol. 42, no. 1, pp. 3–39, 2000.

[20] R. Diankov, N. Ratliff, D. Ferguson, S. Srinivasa, and J. J. Kuffner.,
“Bispace planning: Concurrent multi-space exploration,” in Robotics:

Science and Systems, Zurich, Switzerland, June 2008.

[21] S. M. LaValle, “Rapidly-exploring random trees: A new tool for
path planning,” Computer Science Dept., Iowa State University, Tech.
Rep. 11, 1998.

[22] J. J. Kuffner and S. M. LaValle, “RRT-connect: An efficient approach
to single-query path planning,” in IEEE International Conference on

Robotics and Automation, San Francisco, California, April 2000, pp.
995–1001.

[23] D. Hsu, J. C. Latombe, and R. Motwani, “Path planning in expansive
configuration spaces,” in IEEE International Conference on Robotics

and Automation, vol. 3, Albuquerque, New Mexico, April 1997, pp.
2719–2726.

[24] G. Sánchez and J. C. Latombe, “A single-query bi-directional probabilis-
tic roadmap planner with lazy collision checking,” International Journal

of Robotics Research, vol. 6, pp. 403–417, 2003.

[25] R. Bohlin and L. Kavraki, “Path planning using Lazy PRM,” in IEEE

International Conference on Robotics and Automation, San Francisco,
California, April 2000, pp. 521–528.

16

[26] E. Ferre and J.-P. Laumond, “An iterative diffusion algorithm for
part disassembly,” in IEEE International Conference on Robotics and

Automation, New Orleans, Louisiana, April 2004, pp. 3149–3154.

[27] M. Morales, L. Tapia, R. Pearce, S. Rodriguez, and N. M. Amato, “A
machine learning approach for feature-sensitive motion planning,” Texas
A&M University, Tech. Rep., 2004.

[28] S. Rodriguez, S. Thomas, R. Pearce, and N. M. Amato, “RESAMPL:
A region-sensitive adaptive motion planner,” in Algorithmic Foundation

of Robotics VII. Springer, STAR 47, 2008, pp. 285–300.

[29] A. Yershova, L. Jaillet, T. Siméon, and S. M. LaValle, “Dynamic-domain
RRTs: Efficient exploration by controlling the sampling domain,” in
IEEE International Conference on Robotics and Automation, Barcelona,
Spain, April 2005, pp. 3856–3861.

[30] D. Ferguson, N. Kalra, and A. Stentz, “Replanning with RRTs,” in IEEE

International Conference on Robotics and Automation, Orlando, Florida,
May 2006, pp. 1243–1248.

[31] J. P. v. d. Berg and M. H. Overmars, “Path planning in repetitive
environments,” in Methods and Models in Automation and Robotics,
2006, pp. 657–662.

[32] B. Burns and O. Brock, “Single-query motion planning with utility-
guided random trees,” in IEEE International Conference on Robotics

and Automation, Rome, Italy, April 2007, pp. 3307–3312.

[33] I. A. Şucan, J. F. Kruse, M. Yim, and L. E. Kavraki, “Kinodynamic
motion planning with hardware demonstrations,” in International Con-

ference on Intelligent Robots and Systems, Nice, France, September
2008, pp. 1661–1666.

[34] I. A. Şucan and L. E. Kavraki, “Kinodynamic motion planning by
interior-exterior cell exploration,” in Algorithmic Foundation of Robotics

VIII. Springer, STAR 57, 2009, pp. 449–464.

[35] ——, “On the performance of random linear projections for sampling-
based motion planning,” in International Conference on Intelligent

Robots and Systems, St. Louis, Missouri, October 2009, pp. 2434–2439.

[36] J. H. Reif, “Complexity of the mover’s problem and generalizations,”
in IEEE Symposium on Foundations of Computer Science, 1979, pp.
421–427.

[37] J. Canny, “Some algebraic and geometric computations in PSPACE,” in
Annual ACM Symposium on Theory of Computing. Chicago, Illinois,
United States: ACM Press, 1988, pp. 460–469.

[38] J. Barraquand and J. C. Latombe, “Robot motion planning : A distributed
representation approach,” International Journal of Robotics Research,
vol. 10, no. 6, pp. 628–649, 1991.

[39] P. Cheng, G. Pappas, and V. Kumar, “Decidability of motion planning
with differential constraints,” in IEEE International Conference on

Robotics and Automation, Rome, Italy, April 2007, pp. 1826–1831.

[40] B. Donald, P. Xavier, J. Canny, and J. Reif, “Kinodynamic motion
planning,” Journal of the ACM, vol. 40, no. 5, pp. 1048–1066, 1993.

[41] J. H. Reif and S. Slee, “Optimal kinodynamic motion planning for self-
reconfigurable robots between arbitrary 2d configurations,” in Robotics:

Science and Systems, W. Burgard, O. Brock, and C. Stachniss, Eds.
Atlanta, Georgia: MIT Press, June 2007.

[42] http://sourceforge.net/projects/opende/, seen May 19th 2011.

[43] L. E. Kavraki, P. Švestka, J. C. Latombe, and M. H. Overmars, “Prob-
abilistic roadmaps for path planning in high dimensional configuration
spaces,” IEEE Transactions on Robotics and Automation, vol. 12, no. 4,
pp. 566–580, August 1996.

[44] F. Lamiraux, E. Ferr, and E. Vallee, “Kinodynamic motion planning:
Connecting exploration trees using trajectory optimization methods,” in
IEEE International Conference on Robotics and Automation, vol. 4, New
Orleans, Louisiana, April 2004, pp. 3987–3992.

[45] P. Cheng, E. Frazzoli, and S. M. LaValle, “Improving the performance of
sampling-based planners by using a symmetry-exploiting gap reduction
algorithm,” in IEEE International Conference on Robotics and Automa-

tion, vol. 5, New Orleans, Louisiana, April 2004, pp. 4362–4368.

[46] E. Plaku, L. E. Kavraki, and M. Y. Vardi, “Motion planning with
dynamics by a synergistic combination of layers of planning,” IEEE

Transactions on Robotics, vol. 26, pp. 469–482, June 2010.

[47] A. M. Ladd, “Direct motion planning over simulation of rigid body
dynamics with contact,” Ph.D. dissertation, Rice University, Houston,
Texas, December 2006.

[48] M. Kalisiak and M. v. d. Panne, “RRT-blossom: RRT with a local
flood-fill behavior,” in IEEE International Conference on Robotics and

Automation, Orlando, Florida, May 2006, pp. 1237–1242.

[49] H. Kurniawati and D. Hsu, “Workspace importance sampling for prob-
abilistic roadmap planning,” in International Conference on Intelligent

Robots and Systems, Sendai, Japan, September 2004, pp. 1618–1623.

[50] S. Dalibard and J.-P. Laumond, “Control of probabilistic diffusion
in motion planning,” in Algorithmic Foundations of Robotics VIII.
Springer, STAR 57, 2009, pp. 467–481.

[51] E. R. Johnson and T. D. Murphey, “Scalable variational integrators
for constrained mechanical systems in generalized coordinates,” IEEE

Transactions on Robotics and Automation, vol. 25, pp. 1249–1261, 2009.
[52] N. Koenig and A. Howard, “Design and use paradigms for Gazebo,

an open-source multi-robot simulator,” in International Conference on

Intelligent Robots and Systems, Sendai, Japan, September 2004, pp.
2149–2154.

[53] R. Tedrake, “LQR-trees: Feedback motion planning on sparse random-
ized trees,” in Robotics: Science and Systems, Seattle, USA, June 2009.

[54] W. B. Johnson and J. Lindenstrauss, “Extensions of Lipschitz mappings
into a Hilbert space,” Contemporary Mathematics, vol. 26, pp. 189–206,
1984.

[55] J. Sastra, S. Chitta, and M. Yim, “Dynamic rolling for a modular loop
robot,” International Journal of Robotics Research, vol. 39, pp. 421–430,
January 2008.

[56] http://kavrakilab.org/OOPSMP/.
[57] “The Open Motion Planning Library (OMPL),”

http://ompl.kavrakilab.org, 2010.
[58] N. M. Amato and L. K. Dale, “Probabilistic roadmap methods are

embarrassingly parallel,” in IEEE International Conference on Robotics

and Automation, Detroit, Michigan, May 1999, pp. 688–694.
[59] S. Caselli and M. Reggiani, “Randomized motion planning on parallel

and distributed architectures,” Proceedings of the Seventh Euromicro

Workshop on Parallel and Distributed Processing, pp. 297–304, Febru-
ary 1999.

[60] D. Challou, M. Gini, V. Kumar, and C. Olson, “Very fast motion plan-
ning for dexterous robots,” IEEE International Symposium on Assembly

and Task Planning, pp. 201–206, August 1995.

Ioan A. Şucan is a Ph.D. candidate in computer
science at Rice University, Houston, TX. He is
studying algorithmic robotics under Dr. Lydia E.
Kavraki. His research interests include motion plan-
ning under differential constraints, multi-threaded
search algorithms and task and motion planning
for manipulation. He received the B.S. degree in
electrical engineering and computer science from
Jacobs University, Bremen, Germany, in 2006 and
the M.S. degree in computer science from Rice
University, Houston, TX, in 2008.

Lydia E. Kavraki received the Ph.D. degree in com-
puter science from Stanford University, Stanford,
CA, in 1995. She is currently the Noah Harding
Professor of computer science and bioengineering
with Rice University, Houston, TX. She is the au-
thor/coauthor of more than 150 technical papers
and a robotics textbook: Principles of Robot Motion
(MIT Press, 2005). Her interests include motion
planning for continuous and hybrid systems, plan-
ning with temporal specifications, mobile manipula-
tion, networked multiagent systems, and applications

of robotics methods to biology. Prof. Kavraki is a Fellow of the Association
for the Advancement of Artificial Intelligence and the American Institute for
Medical and Biological Engineering. She is the recipient of the ACM Grace
Murray Hopper Award and the Early Academic Career Award from the IEEE
Robotics and Automation Society. Information about her work can be found
at http://www.kavrakilab.org.

http://www.kavrakilab.org

	Introduction
	Background and Previous Work
	Problem Definition
	Sampling-based Motion Planning
	Physics-Based Simulation

	Algorithm
	The Tree of Motions
	Estimating State Space Coverage
	Distinguishing Interior and Exterior Cells
	Importance of Cells
	KPIECE Algorithm
	Selection of Projections
	Selection of Parameters

	Experiments
	Robot Models
	Experimental Setup and Compared Motion Planners
	Comparative Analysis
	Using Random Projections
	Discussion on Algorithm Components
	Planning in a Kinematic Context

	Algorithm Extensions
	Multiple Levels of Discretization
	Goal Biasing
	Parallel Implementation

	Discussion and Future Work
	References
	Biographies
	Ioan A. Sucan
	Lydia E. Kavraki

