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A multifacet sampling model, based on
generalizability theory, is developed for the mea-
surement of dispositional attributes. Dispositions
are defined in terms of universes of observations,
and the value of the disposition is given by the uni-
verse score, the mean over the universe defining the
disposition. Observed scores provide estimates of
universe scores, and errors of measurement are in-
troduced in order to maintain consistency in these
estimates. The sampling model provides a straight-
forward interpretation of validity in terms of the ac-
curacy of estimates of the universe scores, and of

reliability in terms of the consistency among these
estimates. A third property of measurements, im-
port, is defined in terms of all of the implications
of a measurement. The model provides the basis for
a detailed analysis of standardization and of the
systematic errors that standardization creates; for
example, the hypothesis that increases in reliability
may cause decreases in validity is easily derived
from the model. The model also suggests an expli-
cit mechanism for relating the refinement of mea-
surement procedures to the development of laws
and theories.

1. Introduction

The technical quality of behavioral measurements is evaluated in terms of two properties-relia-
bility and validity. Validity involves the interpretation of the observed score as representative of some
external property, and reliability deals with the consistency among observed scores. In general terms,
reliability is concerned with precision and validity is concerned with accuracy (Stallings & Gillmore,
1971). Since a very precise estimate of the wrong attribute is less useful than a relatively imprecise es-
timate of the intended attribute, validity is generally considered to be more important than reliability.
However, the evidence for the validity of most behavioral measurements is less adequate than the evi-
dence for their reliability. Ebel (196~) has aptly described this dilemma:

Validity has long been one of the major deities in the pantheon of the psychometrician. It is uni-
versally praised, but the good works done in its name are remarkably few. Test validation, in
fact, is widely regarded as the least satisfactory aspect of test development. (p. 640)

This situation has not improved markedly since 1961. The statement often found in introductory text-
books equating validity with the extent to which scores measure &dquo;what they are intended to measure&dquo;
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provides an extreme example of the conceptual problems that surround validity, since it suggests the
existence of a &dquo;true&dquo; value for an attribute, without specifying what this 66true99 value represents.

Ebel (1961) has also pointed out that physics does not seem to encounter problems of validation.
Indeed, in the classic analysis of physical measurement, Campbell (1957) did not employ a separate
concept of validity defined in terms of the relationship between observed values and &dquo;true&dquo; values. In

developing and evaluating measurement procedures for physical properties, such as length and mass,
the interpretation of the properties is closely tied to the observations that are used in their measure-
ment, and therefore validity is built into the measurements. Because the connection between the in-
terpretation of physical attributes and their measurement is often particularly straightforward, sev-
eral of the examples used in this paper will involve physical measurement.

The multifacet sampling model developed in this paper is based on generalizability theory (Cron-
bach, Gleser, Nan da, & Rajaratnam, 1972). Although most of the results are stated in terms of vari-
ance components, the development of the model emphasizes conceptual rather than technical issues.
The most useful results of the sampling model deal with the questions that should be asked and the
general form of the answers that should be sought in analyzing measurements.

Measurements are analyzed by examining how observations are related to their intended inter-
pretation. The model provides an analysis of reliability, validity, errors of measurement, the distinc-
tion between random errors and systematic errors, standardization, and the role of theory in inter-
preting measurement. Within the sampling model the issues of reliability, validity, and errors of mea-
surement arise naturally as requirements for the intended interpretations to be meaningful. Since the
development of the model’s implications is quite long, and, in some ways relatively convoluted, an
overview of the main points in the development may provide a useful road map.

Section 11 examines the interpretation of attributes as dispositions defined in terms of universes of
possible observations. The value assigned to an attribute is defined as the expected value over this
universe, and measurements are interpreted as estimates of this expected value. Because the esti-
mates are based on samples from the universe defining the attribute, the model is a sampling model.
Estimates of the attribute’s value based on different samples will not generally be equal, and in order
to maintain consistency, an explicit theory of errors is introduced.

Section III provides a brief outline of generalizability theory and introduces a sampling model for
validity. The validity of measurements of a dispositional attribute is defined in terms of the accuracy
with which the observed scores estimate the expected value for the appropriate universe.

Section f’~ examines the effects of standardization on measurement procedures. Standardized
measurements involve two kinds of errors: random errors, which vary from one observation to an-

other, and systematic errors, which are constant for a series of observations. Reliability is associated
with random errors, and validity is associated with systematic errors.

Section V explores the relationship between theory and measurement. A third property of mea-
surement is introduced by defining the concept of import in terms of all of the inferences that can be
drawn from an observed score. Import is associated with the connotation of attribute labels, while
validity is associated with denotation of attribute labels. This section reviews some powerful tech-
niques for controlling errors of measurement.

Finally, Section VI examines the assumptions underlying the sampling model and presents some
concluding comments. In particular, the problems associated with the sampling assumptions are dis-
cussed within the broader context of the problem of inductive inference.

EL The Interpretation of Measurable Attributes

Lord and Novick (1968, p. 17) define measurement as &dquo;a procedure for the assignment of num-
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bers ... to specified properties of experimental units in such a way as to characterize and preserve
specified relationships in the behavioral domain.&dquo; According to Nunnally (1967, p. 2), 661~easurement
consists of rules for assigning numbers to objects to represent quantities of ~ttrib~teso’9 Campbell
(1957, p~ 267) defines physical measurement as &dquo;the process of assigning numbers to represent
qualities.&dquo;

According to each of these definitions, measurement involves a functional relationship between
real numbers and the members of some class of objects. Depending on the attribute being considered,
the objects may take a variety of forms, including physical objects, persons, and various complex sys-
tems. The rules used to assign the numbers may also vary considerably. The process of measurement,
however, always involves a mapping of object o into a real number, P., representing the value of the
attribute for o. The fact that the number is assigned to the object of measurement involves a funda-
mental theoretical commitment, in that it implies that the attribute depends only on the object of
measurement and does not depend on any other conditions that may prevail when the observations
are made. For example, the statement that the length of a metal bar is 1.5 meters treats length as a
property of the bar and implies that length does not depend, for example, on the location, orientation,
or temperature of the bar, or on the identity of the observer.

Attributes

There are at least three kinds of attributes in science (see Ellis, 1968): basic attributes, derived at-
tributes, and theoretical attributes. This paper is concerned mainly with the measurement of basic
and derived attributes, but theoretical attributes will also be discussed briefly under the heading of
construct validity,

A basic attribute represents an observed ordering on some property. It is noticed, for example,
that some objects are easier to move than others and that this ordering of the objects remains the
same regardless of their location, who attempts to move them, or when they are moved. It is conven-
ient, therefore, to think of &dquo;resistance to movement&dquo; as a property, or attribute, of the objects; and a
large class of solid objects can be characterized by this property. Where such an ordinal property
exists for a class of objects, a basic attribute can be developed by assigning numbers to the objects
corresponding to their ordering. Basic attributes are generally the first kind of attribute developed in
a science.

A basic attribute can always be viewed as a disposition, or a tendency, to produce a certain reac-
tion to some test conditions (Carnap, 1953, 1966). Dispositions may be qualitative or quantitative. For
a qualitative d~,~~&reg;~~t~&reg;~z9 the object is said to have the attribute if and only if a specific reaction occurs
in the presence of appropriate test conditions. For example, an object is said to be a magnet if, when
placed near a small piece of iron that is free to move (the test condition), it causes the iron to move
(the reaction). For a quantitative disposition, a number is assigned to the object on the basis of the
strength of the reaction to the test conditions. The magnitude of the attribute of being magnetic, or
the strength of a magnet, can be defined in terms of the force it exerts on a piece of iron.

The basic attribute, mass, is derived from the qualitative ordering of objects in terms of their re-
sistance to movement; and the measurement of ~n~ss9 using balances and springs, reflects this origin.
In many cases, however, the procedures used to measure a basic attribute do not reflect the original
qualitative ordering so closely. The attribute temperature is based on the ordering of objects in terms
of perceived warmth or coolness. The ordinary operations for measuring temperature, however, in-
volve the expansion of liquids. Since it is known empirically that the volume of a liquid is closely re-
lated to perceptions of warmth, and since measurements based on liquid thermometers have much
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higher interobserver agreement than perceptions of warmth, thermometers have been substituted for
perceived warmth in measuring temperature.

Derived attributes are constants in empirical laws (see 1950). After measurements of some
basic attributes are available, empirical laws stating relationships among the basic attributes may be
developed, and these laws often involve constants that can also be treated as measurable attributes.
For example, the length of metal bars is found to depend on their temperature, and the empirical law
stating this relationship contains a constant, k, called the coefficient of thermal expansion of the bar.
The value of k varies from one bar to another but remains relatively constant from one observation to
another on a given bar. It is convenient, therefore, to interpret k as a property of the bar by assuming
that it depends on the bar but not on the conditions prevailing when the bar is observed. The constant
k is called a derived attribute because its interpretation depends on, or is derived from, the law relat-
ing the basic attributes length and temperature.

Theoretical attributes are not directly observable but can be assigned a number indirectly be-
cause of their connection, through a theory, to one or more observable attributes. It is sometimes pos-
sible to explain a number of laws in terms of a few postulates defining a theory, and these postulates
generally involve theoretical attributes. Through the network of relationships constituting the theory,
the theoretical attributes are connected to the basic and derived attributes that appear in the laws

that the theory is designed to explain. The existence of the theory makes it possible to interpret ob-
served scores on two levels. First, they may be interpreted as more-or-less direct estimates of a basic or
derived attribute. Second, the same observations may be interpreted as indirect indicators of an un-
observable theoretical construct.

Operational Definitions

The rules that are used to assign a value to basic and derived attributes are usually called oper-
atioiial definitions (Bridgman, 1927). The rules are operational in the sense that they are stated in
terms of the operations performed in measuring the attribute. The rules are said to be definitions be-
cause they provide an interpretation for the numbers assigned as values of the attribute (see Carnap,
1953; Ennis, 1973; Hempel, 1960).

Operational definitions generally include two kinds of rules-structural rules and selection rules.
The structural rules specify the kind of observations that are to be used and the way in which num-
bers are derived from these observations. The structural rules may be more or less elaborate, but they
always leave some issues open; for example, a particular observer would not be named. The selection,
rules specify the range of conditions that may be tolerated for the various characteristics of the obser-
vations. Some characteristics may be fixed, and some may be defined in terms of classes of conditions.
lt is assumed that the characteristics not mentioned in the structural rules need not be controlled at
all.

Operational definitions do not specify particular observations; they specify classes, or universes,
of observations. The definition of an attribute can always be made more precise and more complete
by specifying particular conditions of observation, but it would be impossible to specify all of the
characteristics that might influence an observation. Operational definitions are designed to achieve
some generality of application while providing a clear indication of the kind of observations allowed.
The universe of observations specified by the definition is generally somewhat fuzzy, in the sense that
there are marginal cases in which it is not clear whether the observation should be included in the uni-
verse. This ambiguity is tolerated because it facilitates the development of scientific laws (Toulmin,
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1953) and does not represent a serious problem in practice. It does, however, complicate the interpre-
tation of sampling models, and these complications will be examined in the last section of this paper.

It is sometimes claimed that measurements of operationally defined attributes are valid by defini-
tion. It is maintained that the operations used to measure the attribute define the attribute, and the
results of these operations are, by definition, the values of the attribute. According to this view, no in-
terpretation is to be given to measurements beyond the fact that they result from particular opera-
tions. In practice, however, the operational definitions of even the most narrowly defined attributes
involve classes of observations rather than particular observations. No operational definition in sci-
ence specifies a particular observer (John Jones), particular equipment (voltmeter No. 6), or a particu-
lar time and place. If the results of a particular observation could not be interpreted in terms of a uni-
verse of similar observations, these results would be of little interest. To assign a value to an attribute
is to make a claim about a universe of observations.

Although restrictions may be placed on the qualifications of observers and on the type of equip-
ment used, these restrictions define classes of observations rather than particular observations. A
complete description of a single observation would require exhaustive specification of all of the condi-
tions under which the observation is made. The definition of a dispositional attribute specifies only
some of the conditions of observation, thereby allowing the other conditions to vary, and describes a
class of observations rather than a single observation. Since few of these observations will actually be
made for any object of measurement, the value of the attribute is inferred rather than observed.

Therefore, each observation provides information about a. universe of observations that could have
been made. This generalization from particular observations to the universe defining an attribute is a
cardinal feature of measurement.

The Object of measurement

The object, or unit, to which a number is assigned by measurement is the object of iiieastiremeiit.
The operational definition of an attribute specifies a class of observations for each object of measure-
ment, and any of these observations could be used to estimate the value of the attribute for the object
of measurement. Also, each observation can provide information about different objects of measure-
ment ; and if the measurement is to be interpreted unambiguously, the object of measurement must
be clearly identified.

For example, in a study of anxiety, an observation might consist of the response of a person to
some stimulus in a particular context. For such observations, the person is usually considered to be
the object of measurement, and the level of anxiety is attributed to the person. In examining the de-
gree to which various stimuli or contexts provoke anxiety, however, the objects of measurement would
be stimuli or contexts, respectively. More complicated objects of measurement can also be con-
sidered. For example, the differential impact of stimuli on different persons could be described by
taking person-stimulus pairs as the objects of measurement; in this case, the attribute would indicate
how much anxiety the stimulus causes in the person. Cardinet, Tourneur, and Allal (1976) have dis-
cussed how the interpretation of an observation depends on the definition of the object of measure-
ment.

The specification of the object of measurement is a conceptual issue and is not uniquely deter-
mined by the nature of the observations that are made. As the above examples illustrate, a single ob-
servation can provide information about a variety of objects of measurement. Similarly, many differ-
ent observations may be used to measure a particular attribute for an object of measurement. The set
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of all possible objects of measurement for an attribute will be referred to as the population for the at-
tribute.

The distinction that is often drawn in psychology between a state and a trait depends on a distinc-
tion between different kinds of objects of measurement. If the object of measurement is considered to
be a person in a particular context, then the attribute being measured is a state variable, which is as-
sumed to be a function of both the person and the time. It is expected that the value associated with a
state variable will change as the context changes over time. For a trait, the object of measurement is
the person, and the value of the trait variable is assumed to be independent of time. It is recognized,
of course, that the behaviors associated with the trait may be exhibited to different degrees in differ-
ent contexts, but the value assigned to the trait is assumed not to change. For a trait variable, changes
in the observed variable over time are treated as errors of measurement; for a state variable such dif-
ferences are accounted for by differences in the value of the state variable.

In the physical sciences, distinctions among different kinds of objects of measurement are often
drawn very carefully. In their introductory treatment of mechanics, Corben and Stehl (1960) state the
following assumptions:

A particle is described when its position in space is given and when the values of certain param-
eters such as mass, electric charge, and magnetic moment are given. By our definition of a par-
ticle, these parameters must have constant values because they describe the internal constitution
of the particle. If these parameters do vary with time, we are not dealing with a simple particle.
The position of a particle may, of course, vary with time. (p. 6)

Therefore, the mass, charge, and magnetic moment are to be treated as trait variables, with particles
as their objects of measurement; position is to be treated as a state variable which varies over time
and therefore has particle-time combinations as its objects of measurement.

The Use of Invariance m Inferences Thickets

Attributes are &dquo;constructed&dquo; by specifying universes of observations. Measurements of attributes
are based on samples from these universes. In order to interpret a measurement as the value of an at-
tribute for the object of measurement, there must be generalization from a sample of observations to
a universe of observations. A central concern of a theory of measurement is therefore the justification
of such inferences.

The evidence for a scientific inference is generally provided by appeal to laws (Hempel, 1965); and
because the justification of inferences is their major function, Toulmin (1953) refers to scientific laws
as &dquo;inference tickets.&dquo; The type of law that is needed to justify the interpretation of observations as
measurements is an invariance property. An Invariance property, or invariance law, states that the re-
sults of a certain kind of observation do not depend on some of the conditions of observation. Invari-
ance laws are needed for the interpretation of measurement because measurement assigns a value to
an object of measurement and not to an observation.

The attribute is identified with a universe of observations and not with a particular observation.
Any observation from this universe could be used to assign a value for the attribute to the object of
measurement. The observed score, Xoi, for an observation is the real number to the observa-
tion by the structural rules for the attribute. A different but equally legitimate observed score, Xill
could be obtained by changing the conditions of observation in accordance with the selection rules.

When an observed score is interpreted as a measurement, it is assumed that this observed score
represents the value of the attribute for the object of measurement. Since different observations will
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yield different observed scores for an object of measurement, the following relationship must hold, at
least approximately, in order to avoid inconsistency: 

F ....I I

where and i’ represent any two observations that satisfy the definition of the attribute. That is, the
observed scores must be approximately invariant over the universe of observations defining the attri-
bute. Since the two quantities in Equation 1 are observable, this assertion is testable for any pair of
observations, and Equation I is an empirical hypothesis.

Equation 1 is an invariance law stating that the observed scores are invariant over the universe de-
fining the attribute. For a given object of measurement, o, all observations included in the definition
of the attribute should assign the same value to the object of rne~sur~~r~~~t9 and if they do, this com-
mon value may be taken to be the value of the attribute for the object of measurement, o. Note that
the invariance properties required for the measurement depend on the definition of the attribute be-
ing measured. If the two quantities in Equation awere not taken as measurements of the same attri-
bute for the same object of measurement, there would be no reason to require that they should have
the same value.

Considering again the example discussed earlier, if anxiety is interpreted as a trait, the situations
in which observations are made are conditions of observation, and invariance over situations is as-
sumed. If anxiety is interpreted as a state, the objects of measurement are persons in situations, and
changes in the attribute value as a function of the situation are consistent with this interpretation.

Invariance laws are involved in measurement because they justify inferences from samples of ob-
servations to a universe of observations. If all of the observations in the universe give the same result
for any object of measurement, then any one of these observations would provide complete informa-
tion about the universe. If Equation 1 holds for all pairs of observations defining an attribute, it pro-
vides the necessary justification for inferences from observed scores to the attribute value. To the ex-
tent that observations fail to satisfy Equation 1, such inferences will be inconsistent (Suppes, 1974).
Therefore, the invariance law in Equation I is necessary for the interpretation of observations as mea-
surements of dispositional attributes.

Errors of Measurement

The inconsistency arising from violations of Equation 1 oan be eliminated by introducing the con-
cept of an error of measurement. The result of any observation on an object, o, is taken to be the sum

of the &dquo;true&dquo; value of the t09 plus an error of measurement, e,,i,

Since neither the &dquo;true&dquo; score nor the error is directly observable, Equation 2 is not a testable hypoth-
esis ; rather, it is a definition of the error, eai.

However, the values assigned to the errors are not arbitrary. Given the universe defining an attri-
bute and a value for the true score, the errors are determined empirically. If the observed scores have
approximately the same value, the values assigned to the errors can be small. If the observed scores on
a given object of measurement vary widely, the values assigned to the errors must be large. Small er-
rors of measurement are, of course, generally perferred over large errors of measurement, and there-
fore Equation 2 provides a relative criterion for evaluating measurement procedures.

Classical test theory defines the value of an attribute for an object of measurement as the ex-
pected value over all observations included in the definition of the attribute. This choice is convenient
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because it minimizes the mean-square error. With this definition of true score, it is easy to show that
the expected value of the errors is zero for each object of measurement and, therefore, that the error
variance for each object of measurement is equal to its observed score variance. Such object-specific
error variances are very useful because they indicate the accuracy of estimates of the true score for
each object of measurement,. However, the direct estimation of the object-specific error variance re-
quires repeated observations on each object of measurement, and this is often not practical.

A more easily estimated parameter is the average error variance, 02 (e), over all objects of measure-
ment. The average error variance is more widely used than the object-specific error variance because
it can be estimated with pairs of observations on each object of measurement. The covariance be-
tween true scores and errors of measurement can be shown to be zero, and therefore the observed
score variance can be partitioned as

where 62(t~ is the variance in the true scores over the population and o2(~~ is the average error vari-
ance.

Errors of Measurement as Constructs

In the absence of assumptions about attributes and objects, the concept of an error of measure-
meant is unnecessary. If attention is restricted to observations, there is no reason to reject the hypoth-
esis that every observation is perfectly accurate. Suppose, for example, that two observers put
thermometers into the same glass of water at the same time. Suppose further that one of the observers
records the temperature as 20° C and the other observer records the temperature as 22° C. These two
observations differ in several ways, for example, in terms of the observer, the thermometer, and the
position in the water. If the two numbers, 20 and 22, are assigned to the observations, there is no rea-
son to assume that either observation should be said to contain any error. The two observations oc-
curred as they occurred. The need for a concept of error arises only when attention is shifted from ob-
servation to measurement and assumptions about invariance are introduced.

The usual analysis of the example given above considers temperature to be the attribute and the
glass of water at a particular time to be the object of measurement. The temperature is assumed to be
a function of the water and the time and to be invariant over thermometers, locations in the glass, and
observers. This implies that the two observations described above should agree with each other, and
any discrepancy between them is explained by an error of measurement.

In general, any two observations on an object of measurement will produce different numerical
results. Since measurement is intended to map each object into one real number, theory must be ad-
justed in one of two ways. One approach is to redefine the objects of measurement so that the differ-
ent observations apply to different objects. In the example above, the objects of measurement could
be redefined to be the small volumes of water surrounding each thermometer, thus explaining the dif-
ferences between the two measurements by the fact that they apply to different objects. An alternative
approach leaves the definition of the object of measurement unchanged but introduces an explicit
theory of errors. It is thereby recognized that the observations used in measurement depend on the
conditions of observation and not just on the object of measurement.

Relative Error

For many applications, the error variance is not a very good index for the accuracy of measure-
ment. The magnitude of the error variance could be changed simply by changing the scale (e.g.,
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inches to feet), and the evaluation of a measurement procedure should not depend on such an arbi-
trary choice. It is not the absolute magnitude of the error variance that is significant but the magni-
tude relative to the degree of precision needed for some purpose.

The precision required of measurement procedures varies widely. An astronomer can often toler-
ate errors of thousands of kilometers, while a crystallographer might consider an error of a thou-
sandth of a centimeter to be unacceptable. The magnitude of the errors that can be tolerated depends
on the magnitude of the quantities being measured, and therefore the degree of precision is often re-
ported relative to the magnitude of the quantities being measured. The practice of reporting the mag-
nitude of measurement errors in relative terms is general enough in the physical sciences to be in-
cluded in an introductory textbook (Physical Science Study Committee, 1968):

If a surveyor measures a distance with great care he might get 100.132 meters ±0.3 cm. His work
is a great deal more accurate than that done when the width of a book page is measured to the
nearest millimeter with a ruler, even though his error is something like three times as big as what
anyone would perhaps make on the page in ten seconds’ work. This sometimes finds expression
in another way when the estimated spread of measurements, the tolerance, is stated, using dec-
imal fractions, or percentage. Thus the surveyor would say his length was 100.132 meters
~-0.003°70, while the page is just 20.1 cm. ±0.5%. (p. 14)

The emphasis on stating the magnitude of the errors in relative terms has been even more pronounced
in the social sciences (Lord & Novick, 1968):

... the effectiveness of a test as a measuring instrument usually does not depend merely on the
standard error of measurement, but rather on the ratio of the standard error of measurement to
the standard deviation of observed scores in the group. (p. 252)
A suitable index for the relative magnitude of errors of measurement is suggested by the fact that

measurements are based on qualitative orderings of some kind, and the numbers assigned by the
measurement procedure should reflect this qualitative ordering. As a minimal requirement, the er-
rors should not be so large as to cause significant fluctuations in the ranks assigned to objects from
one set of observations to another (Cronbach & Gleser, 1964). The consistency of the ranking of ob-
jects of measurement from one set of observations to another can be estimated by the correlation be-
tween the two sets of observed scores. Correlations indicate the degree of linear relationship between
two variables; but in the absence of serious departures from linearity, they reflect the consistency of
rankings from one variable to the other. Therefore, correlation coefficients and indices that are
closely related to correlation coefficients (i.e., general izab il ity coefficients) have been widely used in
evaluating the precision of measurements. In particular, correlation coefficients constitute the basic
mathematical machinery in classical test theory.

The Role of Theory

The analysis of measurement errors depends on the assumption that attributes apply to specific
kinds of objects of measurement and that certain invariance properties hold. The introduction of an
explicit theory of errors represents a decision not to study some kinds of phenomena. In the example
discussed earlier, the decision to interpret the difference between the two thermometer readings, 20
and 22, in terms of errors of measurement is essentially a decision not to investigate temperature vari-
ations within the liquid; this decision, which is not dictated by empirical findings, reflects a choice
among several possible research strategies. By specifying the objects to be studied and the attributes
to be assigned to these objects, the interpretation given to measurements shapes and is shaped by
theory.
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In order to make its task more manageable, every science tends to restrict what it treats explicitly.
Errors of measurement provide a way of handling observed variations that are not to be given an ex-
plicit description or explanation. This makes it possible to minimize the number of objects of mea-
surement that need to be considered and therefore to simplify both descriptions of phenomena and
the theories designed to explain phenomena. As the science develops, it may be able to analyze phe-
nomena that had earlier been relegated to error, thus decreasing the error; but there is always some
variation which is intentionally left unexplained. Errors of measurement may be viewed as conces-
sions to the brute fact that the world of observations is not as simple as might be desired.

The specification of the attributes and the objects of measurement to be studied determines how
observations are described and organized, and this influences the kinds of questions addressed by the
science, i.e., the paradigm for the science. A change in the definitions of attributes and objects of
measurement (i.e., a change in the definition of error) represents a shift in the way that phenomena
are perceived and described, and the resulting changes may be significant enough to be called a scien-
tific revolution (Kuhn, 1970). For example, the changes introduced into physics by the special theory
of relativity are basically changes in the invariance properties associated with length and time (Frank,
1953). In classical mechanics, length and time are assumed to be invariant with respect to the ob-
server ; but in the theory of relativity, length and time depend on the observer’s frame of reference.
The special theory of relativity had a revolutionary impact because it modified the objects of measure-
ment, and therefore the assumed invariance laws, for the fundamental attributes of physics.

ML A Sampling for Validity

By definition, the value of an attribute for an object of measurement is the expected value over all
observations in the universe defining the attribute for the object. If this universe score were available,
it would be a perfectly accurate measure of the dispositional attribute. However, the universe score is
generally not available, and samples of observations must be used to estimate it. This suggests the fol-
lowing definition of validity for attributes which are interpreted as dispositions:

A measurement procedure is said to be valid for a dispositional attribute to the extent that it pro-
vides accurate estimates of the expected value over the universe of observations defining the at-
tribute.

Validity reflects the accuracy of inferences from an observed score to the value of the attribute-the
expected value over the universe-where accuracy is defined in terms of the expected squared error in
estimation. Validity is a matter of degree, rather than all or none, and depends on the design of the
measurement procedure and the interpretation of the attribute.

The sampling model based on this definition of validity is a multifacet model in the sense that the
universe defining an attribute may involve observations that vary along a number of dimensions or
facets. Previous discussions of sampling models for validity (e.g., see Kaiser & Michael, 1975; 34c-
Donald, 1978 ; Tryon, 1957) have generally been restricted to sampling from a single facet. By employ-
ing generalizability theory (Cronbach et a]., 1972), the multifacet sampling model discussed in this
paper provides a more comprehensive analysis of the sampling designs associated with measurement
procedures than the unifacet sampling models can provide.

Of the many approaches to validity that have been suggested (Cronbach, 1971), construct validity
is the most general and can be interpreted as including all of the others. It emphasizes the legitimacy
with which various inferences can be drawn on the basis of observed scores and allows for a wide

range of techniques, corresponding to the range of inferences to be drawn. In its emphasis on infer-
ences from observed scores to the expected value over a universe of observations, the sampling model
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can be interpreted as a type of construct validity. The sampling model also raises questions usually in-
cluded under content validity. The specification of the universe is, of course, a central concern for the
sampling model, and this involves the kind of issue that is treated by content validity. Criterion
validity is not included in this discussion of the sampling model because it does not come into play un-
til after a valid criterion is available; the sampling model provides a mechanism for developing such
criteria for dispositional attributes.

The remainder of this paper develops the implications of the sampling model. In this section, it is
assumed that measurements consist of random samples from the universe defining the attribute be-
ing measured; this assumption is relatively unrealistic for many measurements, but the analysis of
this simple case provides a convenient vehicle for elaborating the definition of validity and for devel-
oping some notation. This section also provides a brief introduction to generalizability theory.

Theory

Generalizability theory (see Brennan, in press; Cronbach et al., 1972) allows for the existence of
multiple sources of variation in measurements and uses ANOVA to estimate variance components for
different effects. An observation on an object of measurement is assumed to be sampled from a uni-
verse of observations. The observations in the universe are described by the conditions under which
they are made, and the set of all conditions of a particular type is called a/ace~. For example, in be-
havioral measurement, the universe often includes an item facet, an occasion facet, and a rater facet.

Cronbach et al. (1972, p. 20) have drawn a distinction between C8 studies, or generalizability
studies, which estimate the variability associated with various facets, and D studies, or decision

studies, which provide the data for substantive decisions. The purpose of the G study is to estimate
components of variance, which may then be used to evaluate the dependability of measurement. In
this paper, the term &dquo;measurement procedure&dquo; will often be used in place of the term &dquo;D study.&dquo; A
aaac~~za~°canea2~ procedure employs the same design over a number of separate studies. The term &dquo;D

study&dquo; suggests that the sampling design for measurements of an attribute is likely to change from
one study to another. Although the possibility of such changes in design is explicitly considered at sev-
eral places in this paper, much of the discussion will focus on standardized procedures which may be
used in several D studies.

Based on the distinction between G studies and D studies, Cronbach et al. (1972, p. 20) dis-

tinguish between two universes. In conducting a G study, certain facets are investigated and variance
components for these facets are estimated. The facets investigated in the G study define a uiiiverse of
adniissible observations. In interpreting the observations in a D study as measurements, inferences
are drawn to the universe of observations defining an attribute, and this universe is called the iiiiiverse
q/’.g’e~em~’z~f’OM.

The universe score is the expected value of the observed score over the universe of generalization.
Universe scores are not directly observable but can be estimated by the mean over a sample of obser-
vations ; that is, for each object of measurement, the observed score is used as an estimate of the uni-
verse score. Therefore, generalizations from observed scores to universe scores are of central concern,
and the dependability of such generalizations is described by a generalizability coefficient.

Cronbach et al. (1972, p. 97) define a generalizability coefficieiit as the ratio of the universe score
variance to the expected observed score variance for the D study design. The universe score variance
in a generalizability coefficient is analogous to the true score variance of classical test theory, and the
expected observed score variance is analogous to the observed score variance of classical test theory. A
generalizability coefficient can be interpreted in two ways (Kane & Brennan, 1977). First, it is approx-
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iniately egual to the correlation between observed scores for two independent random samples of ob-
servations from the universe of generalization. Second, it is approximately equal to the expected value
of the squared correlation between the observed score and the universe score.

A Linear Model

Generalizability theory allows for the use of a variety of linear models in designing and interpret-
ing both G studies and D studies. The universe of generalization typically involves a number of facets;
and, in principle, the model for observed scores could explicitly represent each of these facets. For the
sake of simplicity, however, a one-facet model with replications will be used as a basis for discussion
throughout this paper. In this simple model, only one facet is considered explicitly; all other facets are
assumed to be sampled randomly and independently and are subsumed under the replication facet.
The observed scores are represented by the linear model: e

where

p is the grand tmean9
a:, is the main effect for the object of

measurement, o; q

a, is the main effect for the i facet;

a&dquo;, is the oi interaction and

a, is the replication effect.
The linear model in Equation 4 represents the observed scores in the universe of ~er~ey°alizatio~a9 it

is not intended to represent the sampling design for any particular G study or D study. Because the
effects are defined in terms of differences among expected values of observed scores (e.g., a~ is defined
as the expected observed score for the object, 0, over i and r minus the grand mean, ~), each effect in
the model is uncorrelated with every other effect, and the expected value of each effect over any of its
subscripts is zero. Equation 4 is essentially a generalization of Equation 2. The main difference be-
tween the classical test theory model in Equation 2 and the linear model in Equation 4 is that the
classical model assumes the existence of only two sources of variance in the observed score, while the
model in Equation 4 explicitly considers four sources of variance and could easily be extended to in-
clude additional facets.

The model in Equation 4 includes two facets, labeled i and r; and for each of these facets, there is
a universe of conditions from which the conditions in a particular study may be drawn. The universe
for each facet may be either finite or infinite, but for the sake of simplicity, it is assumed in this paper
that the universe of conditions for each facet is infinite. From a G study in which the i facet is crossed
with objects of measurement, o, and replications are nested within oi combinations, four components
of variance can be independently estimated. The variance components for the four random effects in
Equation 4 are designated as 0~(0), o’(i), 02(oi), and o’(r).

In a D study, the observed scores are usually based on the sum or average taken over a sample of
observations, and capital letters are used to designate the average effect over a sample of observa-
tions. The variance components for the average values of the i main effect, the oi interaction, and rep-
locations, over a sample of iii conditions of the i facet and aa,. replications, are given by
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The relationships listed in Equations 5a to 5c can be used to estimate variance components for D
studies involving any values for’a; and ~a,. once the required random effects variance components are
estimated in G studies. The estimation of variance components is discussed in detail by Cornfield and
Tukey (1956), Cronbach et al. (1972), Lindquist (1953), Brennan (1977, in press), Smith (197~), and by
textbooks on experimental design (e.g., Winer, 1971). Some of the virtues and limitations of gener-
alizability theory are discussed by Rozeboom (1966), Ebel (1974), and Lumsden (1976).

Measurements Based on Random from the Universe of Generalization

Most measurement procedures do not involve independent random sampling from the universe of
generalization, but it is convenient to start with this assumption. For a D study with 1 nested within cm
(a separate sample of conditions of the 1 facet is drawn for each observation on each object of mea-
surement), the observed scores can be represented as 

r- --Ir -u

where o represents the object of measurement indicates a sample of 11, conditions of the i facet, and
R indicates a sample of ii,. replications for each condition of the i facet. Again, the replication index
represents the effect of all facets other than the i facet. Since the effects in Equation 6 are uncor-
related, the expected observed score variance over the population and over the universe of generaliza-
tion is

The universe score 11&dquo;, for the object of measurement, o, is given by

and the universe score variance is given by

Where observations are randomly sampled from the universe of generalization for each object of mesa-
surement, the expected value of the observed score over repeated applications of the measurement
procedure is equal to the universe score, and the observed score is an unbiased estimate of the uni-
verse score.

In analyzing errors of measurement, Cronbach et at. (1972, p. 76) distinguish between the error A
in point estimates of universe scores and the error 6 in estimates of the universe score expressed as de-
viations from the grand mean, p. The error of measurement for a point estimate of ~,>9 based on X()//{,
is

Since I and R are randomly sampled for each measurement, the expected value of A~ over repeated
measurements is zero, and the observed score is an unbiased estimate of the universe score for o. The

expected value of the squared error in point estimates, over I and ~, is given by

which represents the error variance for point estimates of universe scores.
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If conditions of the facet are sampled independently for each observation, the expected value of
XolR over the population is equal to the grand mean, ~a9 and the error in estimating universe deviation
scores is ~- -,

Since I and R are independently sampled for each observation ofo, the expected value of d~,&dquo;z over the
universe is also zero, and the observed deviation score is an unbiased estimate of the universe devia-
tion score. The variance in dom is equal to the variance in /J.,,[R, as given in Equation 11.

The covariance, taken over the population, of the errors A,,, on two administrations of the mea-
surement procedure is given by

Since the i and r facets are sampled independently for each observation, taking an expected value
over o automatically involves taking expected values over I, I’, R, and ~2’. Therefore, the expected
value over each of the crossproducts in Equation 13 is zero, and the errors ~,x are uncorrelated. Simi-
larly, the covariance of the errors ÓoIR for two administrations of the measurement procedure is also
equal to zero.

In classical test theory, errors of measurement have an expected value of zero and are uncor-
related across pairs of observations. Errors of measurement that satisfy these requirements will be
called random errors. It is clear from the discussion just presented that for a measurement procedure
based on independent random samples from the universe of generalization, all errors of measurement
are random errors.

Cronbach et al. (1972) defi~~e ~ generatizabitity coefficient as the ratio of universe score variance
to expected observed score variance. From Equations 7 and 9, the gencralizability coefficient is given
by

where the notation &dquo;(g2&dquo; emphasizes the interpretation of the coefficient as an index of the squared
correlation between observed scores and universe scores. The generalizability coefficient in Equation
14 incorporates tests of two separate invariance laws-one for the ’facet and the other for the replica-
tion facet. Since the replication facet represents the effects of all but one of the facets in the universe
of generalization, the second of the two invariance laws is very general. If the observed scores for each
object of measurement are approximately invariant over the a facet, the variance components for the i
effect and the &reg;i interaction will be small. Similarly, if observed scores are invariant over all other fac-
ets in the universe of generalization, the replication variance component will be small. In general,
each of the variance components in the error variance is associated with an invariance law.

The value of the generalizability coefficient depends on how thoroughly the measurement proce-
dure samples the universe of generalization, and this is determined by the design of the procedure
and by the definition of the attribute being measured. In particular, the more narrowly the universe of
generalization is conceived, the more dependable the measurements will be.

By using Equation 5 with Equation 14, the generalizability coefficient can be estimated for any
number of conditions of the facet and any number of replications. Increasing the sample sizes for
various facets provides a simple way of improving the dependability of measurements. However, there
are practical limits on sample sizes; and later in this paper, more sophisticated approaches to the con-
trol of measurement errors will be discussed.
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A Universe Sampling Model for Validity

Since the universe score for each object of measurement has been stipulated to be the value of the
attribute for the object, a measurement procedure is valid to the extent that it estimates the universe
scores accurately. For a measurement procedure consisting of random sampling from the universe of
generalization, the observed score is an unbiased estimate of the universe score, and the random er-
rors in Equation 10 are the only errors of measurement. Since the generalizability coefficient in Equa-
tion 14 indicates how accurately universe scores can be inferred from observed scores, it can be inter-
preted as a validity coefficient. Therefore, if a dispositional attribute were clearly specified in terms of
a universe of generalization and if random samples could be drawn from this universe, validation
would be relatively straightforward. Unfortunately, the universe of generalization is usually not so
clearly defined, and this complicates the analysis of validity.

Although a Generalizability coefficient can be an index of validity, most estimated generalizability
coefficients are not validity coefficients. The interpretation of Equation 14 as a validity coefficient de-
pends on the strong sampling assumption that the observed scores are based on random samples
from the intended universe of generalization. For most observed scores, inferences are made to a uni-
verse of generalization that is much broader than the universe from which the observations are

sampled. It is not unusual, for example, for inferences to be drawn about broadly defined universes of
behaviors on the basis of responses to a particular type of written test item. In such cases, it is unrea-
sonable to assume that the observations are a random sample from the universe of generalization for
the attribute. Cronbach et al. (1972, p. 352) have pointed out that &dquo;investigators often choose proce-
dures for evaluating the reliability that implicitly define a universe narrower than their substantive
theory calls for. When they do so, they underestimate the ’error’ of measurement, that is, the error of
generalization.&dquo;

For most attributes, standardization is used to control errors of measurement, which tend to be
unacceptably large when observations are randomly sampled from the universe of generalization, and
standardization involves an explicit decision not to use random sampling. A standardized measure-
ment procedure samples observations from a subuniverse of the universe of generalization and there-
fore requires a more elaborate model for validity than that presented in this section.

Also, it is typically the case that there are unintended violations of the sampling assumptions in
the G study. The effects of unintended departures from the random sampling assumption cannot be
evaluated accurately, and therefore the interpretation of G-study results must always be somewhat
tentative. The violation of sampling assumptions is, of course, a general problem in research, and the
cloudin~ of interpretations that results from such violations is not unique to the sampling model or to
generalizability theory. However, sampling problems tend to be especially acute in G studies because
the number of variance components to be estimated may be quite large. Establishing the validity of a
measurement procedure requires the empirical testing of a number of invariance laws, and this task is
not necessarily a simpler task than the testing of other empirical laws. The problem of induction that
arises in verifying scientific laws and some of the solutions that have been proposed will be discussed
more fully in the last section of this paper.

IV. Standardization and the Universe of Allowable Observations

As indicated earlier, the inclusion of an explicit theory of errors makes it possible for relatively
simple theories to provide a consistent account of a wide range of observations. The inconsistency that
would otherwise arise in the theories because of violations of invariance properties is accounted for by

Downloaded from the Digital Conservancy at the University of Minnesota, http://purl.umn.edu/93227.  

May be reproduced with no cost by students and faculty for academic use.  Non-academic reproduction  

requires payment of royalties through the Copyright Clearance Center, http://www.copyright.com/ 



140

the errors of measurement, and since the magnitude of these errors can be estimated, their effects can
be taken into account in interpreting the results of measurement. Although an explicit theory of er-
rors is always useful, its advantages are most pronounced when the errors involved are small. It is de-
sirable that the error variance be as small as possible because errors decrease the accuracy of the in-
ferences that can be drawn from measurements.

There are three ways to decrease the error variance and therefore to increase the precision of mea-
surement. The first way is to base each measurement on a larger sample of observations; this ap-
its widely used in both the physical and behavioral sciences and is discussed in detail by Cron-
bach et al. (1972). A second way to reduce errors is to change the definition of the attribute by restrict-
ing the universe of generalization; the more narrowly the universe of generalization is defined, the
smaller the errors will be. The third method for controlling errors of measurement is to standardize
some aspects of the measurement procedure. Standardization can be very effective in reducing errors
of measurement, but it can also be misleading and therefore requires careful examination. The re-
mainder of this section deals with standardization.

Standardization of ~~ ~ Procedures

Since errors of measurement result from variations in the conditions of observation, the errors

may be reduced by controlling the conditions of observation. If the observations on an object of mea-
surement vary as some facet varies, these observations may be made more consistent by having all ob-
servations involve the same condition of the facet.

If all applications of a measurement procedure employ a particular condition, or set of condi-
tions, of a facet, the procedure is said to be st~~~c~~aAcliz~d on the facet. Standardization of the l’ facet

changes the design of the measurement procedure so that all observations are associated with the
same 1*, of the f~eet9 but it does not alter the definition of the attribute. Standardization
is not intended to imply a change in the universe of generalization, and the universe score for object,
o, is still ~~9 as given by Equation 8.

The observed score for a measurement procedure with the i facet standardized to 1* can be repre-
sented by

The expected value of the observed score over repeated application of the standardized measurement
procedure is given by

For a standardized measurement procedure. the observed score is a biased estimate of the
universe score unless the last two terms in Equation 16 happen to be zero. The error for point esti-
mates of universe scores also reflects this bias:

. -- I --,

Equation 17 differs from the corresponding expression for the error of an unstandardized measure-
ment procedure, as given by Equation 10, in that its first term is a constant for all observations and its
second term is a constant for all observations on a particular object of measurement. The expected
value of the error A.~ over repeated observations on the object, o, is given by
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The two constants in Equation 18 represent bias in the standardized procedure’s estimates of uni-
verse scores. The expected squared error over replications for object, cJ9 is given by

The expected value of Equation 19 over random samples, I~9 from the i facet is the same as the ex-
pected value of the corresponding squared error !J.2 aIR for the unstandardized procedure, given by
Equation 11. Therefore, standardization on randomly chosen conditions of a facet does not generally
decrease the squared error for point estimates of universe scores.

If 1* could be chosen so that the two constants in Equation 19 are small compared to the first two
variance components in Equation 11, the expected squared error over R for the standardized niea-
surement procedure would be smaller than the expected squared error for the unstandardized proce-
dure, and a biased estimate with a small variance may be preferred to an unbiased estimate with a
large variance. Another possibility is to &dquo;calibrate&dquo; the measurement procedure by estimating the
value of a,~ and subtracting this value from all observed scores. However, there are serious problems
in estimating aN: (Cronbach et al., 1972, p. 101); and for most practical applications, standardization
cannot be expected to improve the accuracy of point estimates of universe scores.

Standardization is a much more promising approach when universe scores are estimated relative
to the expected universe score in the population. If all observations have I* as the conditions of the i
facet, the expected value of the observed score over the population is

and, assuming that JAI* is known, the error in estimating universe deviation scores from observed devi-
ation scores is

The main effect ei* does not appear in Equation 21 because it is a constant for all observed scores and
therefore has no effect on the differences between observed scores and the expected observed score.

The expected value of d~,n,~9 over repeated applications of the standardized measurement proce-
dure is given by

Therefore, the standardized measurement procedure is also biased in its estimates of universe devia-
tion scores; but the magnitude of the bias, consisting only of the interaction effect, ~~,,av is smaller

than it is for point estimates of universe scores. For a standardized measurement procedure, the c~l*
interaction is a constant for each object of measurement. Therefore, unless Ctol* is zero for all objects
of measurement, universe deviation scores are systematically overestimated for some objects of mea-
surement and are systematically underestimated for others.

The expected value, over replications, of the squared error in estimating the universe deviation
score for object, o, is

If an 1* with a small ol* interaction were available, the expected squared error could be reduced even
further, but this is usually not practical. The expected value of Equation 23 over the possible choices
for 1* is
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which is smaller than the expected squared error 620fR for the unstandardized, procedure. Therefore,
standardization tends to decrease the errors in estimates of deviation scores even if standardization is
on randomly chosen conditions of the i facet.

I 

The main advantage in standardization is that it can reduce the error variance. Standardization is
most useful when observed scores are used to estimate universe deviation scores and the main effect
variance for the standardized facet is relatively large. Standardization of the i facet eliminates o’(I)
from the error variance for estimates of universe deviation scores but not from the error variance for

point estimates.

Systematic E~~&reg;~~

Standardization can be a powerful tool for controlling errors of measurement for universe devia-
tion scores, but there is a price to be paid for this reduction in error variance. If the conditions of the i
facet are the same for all observations, the effects ai* and a,,,- are constants over replications of the
measurement procedure. For a given object of measurement, therefore, standardization changes
some effects from random variables to constants. Components of the error that are constant for all
observations on an object of measurement are called errors (Cronbach et ale~ 1972, p. 358).
The effect cr,* is a general systematic error, since it is a constant over all observations for all objects of
measurement. The interaction effect9 ~ol*, is a ~s~~eci fic ~ys~temc~tic e~°~°c~~°9 which is a constant for each
object of measurement but may vary from one object of measurement to another.

Systematic errors differ from random errors in two ways. First, since their expected value over
replications of the standardized measurement procedure is not zero, the systematic errors introduce
bias into estimates of the universe scores. The main effect a,t~ is the same for all objects of measure-
ment and represents a general bias, which is present in A but not in 6. The interaction effect, ~0,*9 is a
specific bias for each object of measurement, 0, and it affects both kinds of errors. Since the systemat-
ic errors are constants for each object of measurement, they do not tend to &dquo;cancel out&dquo; over a series
of observations9 and therefore increasing the number of replications does not decrease the systematic
error variance.

Second, the systematic errors are correlated across administrations of the measurement proce-
dure. Since the expected value of Equation 18 over the population is ~,*9 the expected value over I of
the covariance between the errors A on two independent administrations of the standardized pro-
cedure is given by

Similarly, the expected covariance between the errors d on two independent administrations of the
standardized measurement procedure is also given by ~(c~~o Thus, for the standardized procedure,
both types of errors of measurement are correlated, and the average correlation depends on the vari-
ance of the specific systematic errors (see Lord & Novick, 1968, page 181). Since the systematic errors
are correlated across observations, they increase the consistency among observations for each object
of measurement and therefore increase reliability while decreasing validity.

The Universe of Allowable ~~~~~~t~&reg;~~ and Reliability

In standardizing the i facet by requiring that every measurement involve the conditions 1*, a new

Downloaded from the Digital Conservancy at the University of Minnesota, http://purl.umn.edu/93227.  

May be reproduced with no cost by students and faculty for academic use.  Non-academic reproduction  

requires payment of royalties through the Copyright Clearance Center, http://www.copyright.com/ 



143

kind of universe, the universe of allowable observations, is introduced. The universe of allowable ob-
servations is a subset of the universe of generalization and includes all observations in the universe of
generalization that have the appropriate condition for each standardized facet. An instance of the
standardized measurement procedure is a randomly sampled observation from the universe of allow-
able observations, which defines the measurement procedure in the same way that the universe of
generalization defines an attribute (both are &dquo;extensive&dquo; definitions). By constrast, an instance of the
unstandardized measurement procedure is a randomly sampled observation from the full universe of
generalization.

The question of validity has been examined in terms of how well observations estimate the uni-
verse score, or how well the measurement procedure satisfies the invariance laws associ-
ated with the attribute. As a result of standardization, however, the observations that are actually
used to estimate universe scores are drawn from a subuniverse of the universe of generalization. A na-
tural question to ask, then, is how well the observed scores generalize to this universe of allowable ob-
servations. This question is equivalent to the question of how well repeated applications of the proce-
dure (i.e., repeated samples of observations from the universe of allowable observations) agree with
each other, and this issue is usually treated under the heading of reliability. Therefore, reliabilitv is
defined in terms of the universe of allowable observations:

A measurement procedure is reliable to the extent that its observed scores provide dependable
estimates of the expected value over the universe of allowable observations.

According to this definition, a measurement procedure is reliable if the observed scores for each ob-
ject of measurement cluster around the expected observed score for repeated application of the stan-
dardized procedure. This definition is consistent with classical test theory if the &dquo;true score&dquo; is de-
fined as the expected value over the universe of allowable observations.

Reliability is defined as a property of a measurement procedure and does not depend on the defi-
nition of the attribute. As noted earlier, validity depends on both the measurement procedure and the
attribute being measured. Reliability provides an index of consistency among observed scores, and
validity provides justification for an interpretation of observed scores in terms of the universe of gen-
eralization defining an attribute.

Random E~&reg;~~ and Reliability Coefficients

Since the attribute is defined in terms of the universe of generalization, measurements of the at-
tribute involve inferences to the universe of generalization rather than to the universe of allowable ob-
servations. However, the reliability of the standardized procedure is also of interest; therefore, the de-
pendability of inferences from observed scores to the expected value over the universe of allowable ob-
J.1:f, is often examined. In doing so, the i facet is treated as a fixed effect.

If the i facet were treated as fixed, the variance components for the facet would be confounded
with those for the other facets and would not be estimated independently. If the z facet is not included
in the analysis of the G study, the facet would be what Cronbach et al. (1972, p. 122) call a &dquo;hidden
facet.&dquo; With the a facet fixed, the universe score variance is

The expected value of the covariance term in Equation 26 is zero; but for any particular 7*, this co-
variance may be either positive or negative. Subsequent development and discussion is simplified con-
siderably by taking the expected value of Equation 26 over conditions of the faceto
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For generalization over the universe of allowable observations, the expected universe score variance is

given by Equation 27 and the error variance is given by a2(R). For inferences to ~<*. the generalizabil-
ity coefficient is

This coefficient is approximately equal to the expected squared correlation, over 1* and I2, between
observed scores and the expected value over the universe of allowable observations. This coefficient
assumes that generalization is over replications, but not over the i facet, and it indicates the expected
consistency of observed scores for a standardized measurement procedure. Therefore, Equation 28
can be interpreted as a reliability coefficient, but it represents an &dquo;average&dquo; reliability over 1*, rather
than the reliability for a specific standardized measurement procedure.

The reliability coefficient in Equation 28 does not estimate the dependability of inferences to 11,,,
the expected value over the universe of generalization defining the attribute. A generalizability coeffi-
cient for inferences to p~, is given by the ratio of the universe score variance in Equation 9 to the ex-
pected observed score variance for a standardized measurement procedure:

Since Equation 29 reflects the expected agreement between observed scores and the value of the attri-
bute, ¡.aeo, it can be interpreted as a validity coefficient. Equation 29 is the expected validity over 1*.

The reliability, as given by Equation 28, is limited by the magnitude of the random errors only. If
the facet is standardized, the interaction effect, ao,~, is a systematic error and contributes to the
numerator of Equation 28 as well as to its denominator. Since variance components are positive, the
reliability index in Equation 28 is always greater than or equal to the validity index in Equation 29.
For the sampling model, this well-known result from classical test theory (i.e., that reliability is an
upper bound for validity) can be interpreted as reflecting the fact that inferences to the universe of al-
lowable observations are generally more dependable than inferences to the more broadly defined uni-
verse of generalization.

In evaluating measurement procedures, it will often be necessary to work with partial informa-
tion, because most universes of generalization have many facets and only a few facets can be syste-
matically investigated in any G study. Since large sample sizes are generally needed for the accurate
estimation of variance components in designs with as few as two facets (Smith, 1978), an adequate
analysis of the generalizability of a measurement procedure will typically require a number of G
studies. Although a G study that does not estimate the variance component for the i facet does not
provide enough information to estimate the validity index in Equation 29, it may provide enough in-
formation to estimate the reliability index in Equation 28.

Systematic Errors and validity

The difference between Equation 29, which is interpreted as a validity coefficient, and Equation
28, which is interpreted as a reliability coefficient, is in the role played by o~(o7). Equation 25 states
that a2(~I), the specific systematic error variance, is the expected covariance of the errors of measure-
ment over repeated observations on the object, o. As c~(o7) increases, the covariance between the ob-
served scores on two independent administrations of the standardized measurement procedure in-
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creases, and thus the reliability increases. However, as a2(ol) increases, the validity coefficient in
Equation 29 decreases. By contrast, both the reliability and validity are decreasing functions of oz(~Z),
the random error variance.

For a standardized measurement procedure, taking the expected value over repeated measure-
ments implies taking an expected value over ~Z but not over I; and the expected value over the uni-
verse of allowable observations, pt, is analogous to the &dquo;true&dquo; score of classical test theory. In the lim-
it, as the number of replications approaches infinity, the magnitude of the random errors approaches
zero, and the observed score approaches Vt. Therefore, pj is a parameter for which the standardized
measurement procedure provides unbiased estimates. Since the measurement procedure is intended
to provide estimates of the universe score, pi,,, the correlation between ii, and pt provides an index of
the agreement between what the procedure actually estimates without bias and what it is intended to
estimate. The expected value over I of the squared correlation between pt and IA,, is approximately
equal to

Equation 30 is approximately equal to the squared correlation between the universe score and an ob-
served score for which the sampling of the universe of allowable observations is sufficiently thorough
so that random errors can be ignored; in the limit, as 11,- approaches infinity, a2(IZ) approaches zero
and Equation 29 reduces to Equation 30. Since a2(R) cannot be negative, Equation 30 provides an

upper bound on Equation 29 and therefore provides an upper bound on the validity of the

standardized measurement procedure.
Equation 30 can be represented as a validity coefficient corrected for attenuation.

where the numerator of Equation 31 is the validity coefficient given by Equation 29 and the denomi-
nator is the reliability coefficient given by Equation 28. ~~2(~;~; ~) represents a disattenuated validity
coefficient for the standardized measurement procedure.

The Reliability-Validity Paradox

The inference from the observed score to the universe score can be separated into two parts. The
first part is an inference from the observed score to pt~, the expected value over the universe of allow-
able observations; and the second part is an inference from /1~ to /1°’ the expected value over the uni-
verse of generalization, or the universe score. The dependability of inferences from observed scores to
universe scores can be factored to reflect these two partial inferences:

The first factor in Equation 32 is a reliability coefficient and represents the dependability of infer-
ences from observed scores to p~-. The second factor in Equation 32 is a disattenuated validity coeffi-
cient and represents the dependability of inferences from pj to ~o.

It is clear from Equation 28 that the reliability, which is the first factor in Equation 32, is im-

proved by increasing the impact of the oI interaction variance. This can be accomplished by selecting
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a single condition for standardization on the z facet. Since the ol interaction is the specific systematic
error, this approach to improving reliability has an undesirable consequence; as can be seen from
Equation 30, it decreases the disattenuated validity coefficient, which is the second factor in Equation
32 and thereby decreases the overall validity. Therefore, attempts to increase reliability by standard-
ization of the measurement procedure may decrease validity (Lord & Novick, 1968, p. 334).

Convergent Validity

The sampling model analyzes reliability and validity in terms of the evidence for inferences from
observed scores. In its emphasis on the justification of inferences, or interpretations, the sampling
model is akin to the more general view of validity embodied in construct validity (Cronbach & Meehl,
1955), which is discussed in a later section. At this point, it is convenient to discuss one form of con-
struct validity, namely, convergent validity (Campbell & Fiske, 1959), in terms of the sampling model.

Convergent validity is generally evaluated in terms of the correlations between measurements of
an attribute obtained by several different methods. If these correlations are low, the observed scores
are seen as being contaminated by method variance, and the validity of any of the methods for mea-
suring the attribute must be doubted. If the correlations are higher, convergent validity is supported.
The logic of convergent validity requires that several different methods be available for the measure-
ment of an attribute and therefore assumes that the attribute is a general property not tied to a partic-
ular method of observation.

The convergent validity of a measurement procedure can be examined by letting the i facet repre-
sent different methods of observation (e.g., objective tests, ratings, observation procedures). A mea-
surement procedure employing a particular method is standardized to that condition of the method
facet. With 1* representing a standardized method, the reliability of a measurement procedure can
be represented by Equation 28, and its validity can be represented by Equation 29. The validity coeffi-
cient in Equation 29 is approximately equal to the expected correlation between scores based on dif-
ferent methods (Kane & Brennan, 1977), and therefore it provides an index of the average &dquo;conver-
gent validity&dquo; over pairs of methods.

Convergent validity (Campbell & Fiske, 1959) has generally been analyzed in terms of the correla-
tions between specific pairs of methods, rather than the average correlation given by an intraclass cor-
relation coefficient like Equation 29. Boruch and Wolins (1970) have advocated the use of ANOVA to
partition observed score variance into components for traits, method, and random error; however,
Schmitt, Coyle9 and Saari (1977) have criticized the use of the analysis of variance in evaluating con-
vergent validity because it does not provide information about the convergent validity for particular
methods. The choice of a specific methodology is not crucial for the sampling model. Although this
paper has used analysis-of-variance models to develop the sampling model, correlational methods
would be more appropriate whenever the properties of specific methods were of interest.

Convergent validity is basically invariance over methods and depends on the interpretation of the
attribute as a general property that is not linked to a specific method of observation. Assuming that I
represents a method, the systematic errors ~ol are the object-method interactions. For a particular
method I*, ~o,~ represents the specific systematic error that results from using method 1*. A large
value for o2(0~ means that method has a serious effect on the results of measurement, and therefore
generalization over methods is not appropriate.

The definition of an attribute implies invariance over all facets in the universe of generalization,
including those that are standardized. If all of the invariance properties were tested and verified, then
the measurement procedure would be valid. If some of the invariance properties were tested and no
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violations were detected, the validity of the procedure would be partially supported. If even one invar-
iance property were seriously violated, the procedure would be invalid. Convergent validity is essen-
tially invariance over methods.

V. Theory Development

In measuring an attribute, ~~, for the object, o, the effects a; and ai are components of the error.
The larger these components are, the more difficult it is to obtain dependable estimates of ~n; and
therefore the effects a; and ~o; are generally viewed as sources of &dquo;noise,&dquo; which need to be controlled.
As described in the last section, standardization provides one way of dealing with these errors, but
standardization introduces systematic errors. Furthermore, the fact that observations depend on the i
facet may be of interest in itself, aside from its effect on inferences to 1A.. Where a functional relation-

ship between observed scores and the i facet can be described by an empirical law, a powerful tech-
nique for controlling errors of measurement becomes available. (In this section, the generic term &dquo;ef-

fect&dquo; is used instead of the term &dquo;facet,&dquo; because it is not being assumed here that the i effect is a
facet of the universe.)

The errors introduced into measurements of p. by the i effect can always be eliminated by shifting
attention to a new attribute, ~o;, which involves the same kind of operations that are used to define the
attribute p~o but which has as its objects of measurement the pairs &reg;i instead of the original objects of
measurement, o. The universe scores, /loi’ for these new objects of measurement are found by taking
the expected value of the observed scores over replications (but not over the i effect, which is now part
of the object of measurement rather than being a facet):

This redefinition of the objects of measurement changes cr~ and c~a; from being error components to
being components of the universe score. If the &reg;byects &reg;f measurement are defined by both i and &reg;9 the
difference between the two universe scores, p~; and p~o;’, involving different conditions of the i effect, is
taken as a substantive difference rather than as an error of measurement. Therefore, the i effects and
the &reg;i interactions, which account for the difference between JAoi and ~oz’ become part of the universe
score.

Measurements of p., are more dependable than measurements of V,, because the interpretation of
~o; is narrower than that of ii, and thus involves inferences that are less susceptible to errors than those
implied by 00. While the original attribute, /-10, characterizes o for all conditions of the effect, the new
attribute, ~~, characterizes o for a particular condition of the effect. Therefore, inferences from ob-
served scores to tAi involve generalization over R but not over i, while inferences to the more general
attribute, JAo, involve generalization over both i andR.

If the observed score XoiR is used to estimate JAoi’ the only source of error is the replication facet,
and the dependability of inferences from XoiR to ~o; is given by

Equation 34 is approximately equal to the expected value of the squared correlation between the ob-
served score XoLR and the universe score ~.

When the universe of generalization is restricted to a particular condition of the effect, /Áoi be-
comes the universe score, and Equation 34, which reflects the dependability of inferences from Xo~R to
~oi9 is a validity coefficient, with the ~a~ combinations as the objects of measurement and generalization
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over l~. This validity coefficient 4Q2(X,i&dquo; IA,,i) is never less than the validity coefficient ~~Z(X~,~,t9 ~) with
objects of measurement, o, and generalization over i and R. Restricting the universe of generalization
iniproves the validity of measurement whenever 02(oi) or its greater than zero. (Under the same
conditions, standardization of the i facet improves reliability but does not necessarily improve
validity.)

The increase in validity obtained by restricting the universe of generalization is part of a trade-off
by which errors of measurement are reduced but the interpretation of the attribute is narrowed. A
high value for Equation 34 indicates that an inference from the observed score ~,~ to the universe
score l.Aoi is dependable and therefore provides justification for such inferences. However, if Equation
34 is to be a validity coefficient, inferences must be limited to the universe score p,,i for a specific value
of i. The value of Equation 34 does not indicate the dependability of inferences from ~~; to p,,; , the
universe score for the same value of o and a different value of i, or to p~~9 the expected value of IA,,i over
all values of i. Therefore, a high value for 4Q’(Xi,, fi~;) provides support for a relatively limited set of
inferences.

The expected squared correlation between the universe score IAi and the universe score IA. is ap-
proximately equal to

Equation 35 can be derived by substituting &dquo;I&dquo; for ‘6I99 in Equation 14 and setting ~2(1~) equal to zero.
That is, Equation 35 provides an index of dependability of inferences to bi. for observed scores based
on a single condition of the facet and an infinite number of replications. Furthermore, by comparing
Equations 14, 34, and 35, it is clear that

&dquo; -. ~ ~ &dquo;&dquo;&dquo;&dquo;

Equation 36 partitions the dependability of inferences from ~;R to W,, into two parts. The first part,
~~2(K~1~, f~~,.), represents the dependability of inferences from to ~~~, the expected value over repli-
cations for a particular value of a. The second part, ~~Z(~o19~)9 is the dependability of inferences from
~~; to P.. For the investigator who intends to generalize to the universe score, li., therefore, there is no
benefit in fixing the condition of the effect. As a matter of fact, the dependability of inferences to IA,
would be improved by explicitly recognizing the i effect as a facet and by sampling it more

thoroughly.
The main benefit derived from restricting the universe of generalization is the increase in validity

or the dependability of inferences from observed scores to universe scores. The main disadvantage in
restricting the universe of generalization is that it can lead to a large increase in the number of objects
of measurement in the population. If there were No objects in the original population and N condi-
tions of the i effect, there are No N objects in the new population.

The choice between the more narrowly defined attribute, Vi, and the more broadly defined attri-
bute, pu, must be made on pragmatic grounds; as Kaplan (1964, p. 77) has put it, &dquo;it is easy to

sharpen concepts as much as we like9 wh~t is hard is to determine whether this sharpness is worth
achieving in a particular way.&dquo; For example, in analyzing data for a group of persons on several forms
of a test, the investigator doing a generalizability study would often assume that the test forms are
sampled from a universe of test forms and would generalize over test forms to IA.. However, the investi-
gator could generalize to the universe scores ~01 for specific test forms, i, and thereby treat the scores
on the different test forms as separate variables. Covariance structure analysis (J6reskog, 1978; Linn
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& Werts, 1979) provides one way to analyze the relationships among the different test forms. Covari-
ance structure analysis seeks to estimate the reliability of particular measures by analyzing the vari-
ances and covariances for these measures in terms of a specific model for the structure of the mea-
sures.

In general, the investigator who views the attribute broadly enough so that the different condi-
tions of the effect are associated with the same attribute will generalize to ~&dquo; while the investigator
who is interested in the relationship among scores for specific conditions of the 1 effect will generalize
to p,,,, for the different test forms.

Inferences That Go the Model

In some cases, it is possible to characterize how 00i depends on i and c~ by developing an empirical
law of the form:

where,f represents some function, v. is a variable that depends on o but does not depend on i, and WI is
a variable that depends on i but not on o. An important special case of Equation 37 has the following
form:

where represents some function, and i* is a particular condition of the i facet. A new variable, 001*’ is
defined in terms of a specific reference condition, i*, for the i effect. This new variable can be substi-
tuted for vo because it is a function of o but not of i. The fact that measurements of 001 and of y,;v are

more dependable than measurements of 00 facilitates the development of laws of the form given by
Equation 38.

If a law like that in Equation 38 can be developed, the limitation inherent in measurements of p4,i
can be overcome. With the help of Equation 38, information about pi.i* for any object provides infor-
mation about 001 for all conditions of the effect for which w, is known. Inferences from observations

involving one condition of the i effect to what would be expected for another condition of the i effect
are more difficult to develop than inferences based on invariance laws, but this more complicated ap-
proach provides a more detailed analysis of the relationship between o and i.

The law of thermal expansion, relating length to temperature provides a good example of the
kind of law indicated by Equation 38. Since variations in temperature generate errors in measure-
ments of length, the accuracy of measurement can be improved by defining a new quantity, /,,~ as the
length of a bar, b, at temperature t. The object of measurement for lbt is a bar-temperature combina-
tion, ht, instead of a bar. The attribute lb’ has a smaller universe of generalization than the attribute
li,, and the direct interpretation of measurements of /,, are restricted to the temperature t. However,
this restriction is effectively eliminated by the law of thermal expansion, which can be written as

where t* is some fixed reference temperature. (For convenience, t* is often taken to be 20’C, a com-
fortable value for room temperature.) For a fairly wide range of temperature, the coefficient of
thermal expansion, k, is a constant. Because temperature variations introduce error into measure-
ments of /,, lht~ can be measured more dependably than h. Since temperatures can be measured very
accurately, and since Equation 39 provides a good fit to data over a wide range of temperatures, fix-
ing the temperature for measurements of length does not seriously limit the interpretation of these
measurements.
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Examples of the model in Equation 37 are provided by latent trait theories (Lord, 1980; ~right ~
Stone, 1979), which represent the probability that a person answers an item correctly in terms of the
ability of the person and one or more item parameters. The ability parameter is an attribute of the
person and is assumed to depend on the person but not on the sample of items used to estimate it.
The item parameters are attributes of items and are assumed to depend on the items but not on the
sample of persons used to estimate them. Once the ability and item parameters for the latent trait
nzodel are estimated, an equation like Equation 37 can be used to estimate the performance of each
person to each item.

Note that an invariance property is a special case of Equation 38. In particular, if the function, ~,
is such that ~,; is a constant for all valnes of i, JAoi is invariant with respect to the i facet. In such cases,
there is no loss involved in taking o, instead of oi, as the object of measurement and there is some gain
in simplicity. (In practice, it is often convenient to assume that p,i is invariant with respect to the i fa-
cet, even where this assumption is known not to hold exactly.)

The Biidge A~~I&reg;~

The observations involved in measurement are of interest mainly because they support inferences.
These inferences are of two kinds. First, there is an inference from the observation to the universe
score. Second, there are inferences from one universe score to other universe scores and to other ob-
servations. Using the bridge analogy of Cornfield and Tukey (1956, p. 912), these two inferences can
be viewed as two spans of a bridge crossing a river. The first span represents inferences from the ob-
served score to a universe score, and the second span represents inferences from the universe score to
the universe scores for other attributes. If the second span is firmly supported by empirical laws, it
may be made quite long without weakening the total inference, thus making it profitable to shorten
the first span by narrowing the universe of generalization.

Inferences from observed scores to the universe score JAoi for the restricted universe of generaliza-
tion have a higher validity than inferences to /10. Therefore, restricting the universe strengthens the
first span. A well-confirmed law of the type given in Equation 38 provides a strong second span by
justifying inferences from one universe score to another. In such cases, restricting the universe of gen-
eralization does not limit the generality of the inferences; the second span is simply bearing more re-
sponsibility for the total inferences.

The of Measurements

In discussing inferences that go beyond the universe of generalization, it is useful to define a third
property of measurement in addition to reliability and validity, This third property, the import of
measurement, is associated with the total significance of what can be inferred from the measurement.
Hempel (1952) introduced import in terms of an example: i

... we might define the hage of a person as the product of his height in millimeters .and his age
in years. This definition is operationally adequate and the term &dquo;hage&dquo; thus introduced would
have relatively high precision and uniformity of usage; but it lacks theoretical import, for we
have no general laws connecting the hage of a person with other characteristics. (p. 46)

Import is a qualitative concept, which emphasizes the scope and significance of the inferences that
can be drawn from a measurement.

The invariance laws that justify the interpretation of observations as measurements provide a core
of import to all measurements. These laws support inferences from the observed scores to the universe
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score and, also, to all other observed scores in the universe of generalization. If the attribute is not in-
volved in any other empirical laws, the invariance laws define the total import of the measurement.
The extent to which the invariance laws lend import to measurements depends in part on the general-
ity of these laws. If attention is restricted to the invariance properties implied by their definitions, the
attribute 1A,, has greater import than the attribute ~o;. As such, measurements of ¡.aeoi do not justify infer-
ences to other conditions of the i facet. Measurement of /10, on the other hand, involves generalization
over all conditions of the i facet.

In practice, the development of empirical laws can lead to simultaneous increases in both the
validity and the import of measurements. This is accomplished by partitioning the universe of gener-
alization into a number of more narrowly defined subuniverses, while connecting the universe scores
for these subuniverses through empirical laws. Physics has used this strategy very effectively. Mea-
surement of such basic attributes as length have been gradually refined by restricting various facets in
their universe of generalization. At the same time, the import of length measurements has been in-
creased by theories like Euclidian geometry and classical mechanics.

The of Theories

Attributes that play a central role in fundamental theories have greater import than attributes
which are involved in one or two isolated empirical l~ws, or in no laws at all. The empirical laws that
determine the content of a theory and provide confirmation for the theory add to the import of all of
the attributes involved in the theory. Theories extend the range of inferences that may be drawn from
measurements and therefore increase their import. However, according to the sampling model, the
validation of measurements that are interpreted as dispositions does not depend on theory.

Measurements of a disposition are valid to the extent that they provide accurate estimates of uni-
verse scores. The existence of laws or theories involving a dispositional attribute has no direct bearing
on the validity of measurements of the attribute. For example, within atomic theory, the law of
thermal expansion, Equation 39, can be at least partially explained in terms of the motion of
molecules. However, the theory is not necessary in order to interpret the coefficient of thermal expan-
sion, k, which is simply the rate at which length changes as a function of temperature. The theory pro-
vides a causal explanation of thermal expansion but is not needed for the interpretation of k as a dis-
positional attribute and is therefore not used in validating measurements of k.

This point of view is generally consistent with the interpretation of measurements in science. In
his analysis of measurement in physics, Campbell ~I921, p. 134) concluded that &dquo;measurement is es-
sential to the discovery of laws&dquo; but he did not use the laws to evaluate measurement procedures.
Similarly, Suppes and Zinnes (1963) and, more recently, Krantz, Luce, Suppes, and Tversky(1971)
did not find it necessary to consider most of the laws involving attributes in their detailed analyses of
measurement.

Although they do not have a direct role in validating measurements for dispositional attributes,
theories have a significant indirect influence on the validity of such measurements. They make it
feasible to restrict the universe of generalization for attributes are therefore to increase the validity of
measurements without decreasing their import. These more narrowly defined attributes depend on
the theories for much of their import, while the magnitude of the errors of measurement are reduced
because fewer invariance properties are required.

The ‘~&dquo;~~d~&reg;ff Between and t

If import is ignored, it is easy to generate measurements with a high degree of validity by defining
the universe of generalization narrowly enough so that the inferences to the universe scores involve
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generalization over few facets. Such inferences are likely to be very dependable. In the limiting case,
where observations are interpreted simply as observations, there is no inference and, therefore, no
chance of an invalid inference.

However, the issue of import cannot be ignored, and trade-offs between validity and import must
be made; Kaplan’s (1964, p. 77) question about the appropriate degree of sharpness for concepts
must be addressed. The researcher who interprets observations narrowly draws more accurate infer-
ences but also says less about the world than the researcher who interprets observations broadly. The
choice between narrow but dependable interpretations and broader, but less dependable, interpreta-
tions is a choice of strategy. The continuum of available options has strict operationalism at one end
and construct validity at the other end.

Strict operationalism tries to define attributes narrowly enough to insure that the validity of the
interpretations is essentially perfect (Bechtoldt, 1959). The strict operationalist is unwilling to give
any hostages to the future in the form of assumed invariance properties that might turn out to be only
approximations. Strict operationalism is the strategy of pure empiricism, and theory plays essentially
no role. As described by Cronbach and ~eehl (1955), construct validity defines an attribute in terms
of all of the relationships in which it appears. From the standpoint of construct validity, the definition
of an attribute entails various laws; and in order for a measurement procedure to be valid, all of these
laws must be satisfied.

Constmct Validity

According to the American Psychological Association Standards (American Psychological Associ-
ation, 1974), a psychological construct is &dquo;a theoretical idea developed to explain and to organize
some aspects of existing knowledge,&dquo; and construct validity occurs &dquo;when one evaluates a test or
other set of operations in light of the specified construct&dquo; (p. 29). Cronbach and Meehl (1954) sum-
marized the logic of construct validity by saying,

Construct validation takes place when an investigator believes that his [or her] instrument re-
flects a particular construct, to which are attached certain meanings. The proposed interpreta-
tion generates specific testable hypotheses, which are a means of confirming or disconfirming
the claim. (p. 255)

A dispositional attribute is defined by its universe of generalization, and the laws involved in giving
meaning to such constructs are the invariance properties. The sampling model assumes that the inter-
pretation of a measurement generates testable hypotheses-the invariance properties, which can be
used to test the validity of the interpretation.

The sampling model is generally consistent with construct validity. Like construct validity, it sug-
gests that validity is more accurately represented as a series of upper bounds than as a single number.
Since most attributes assume invariance over a number of facets, it will usually require a series of
studies to establish invariance over all of the potentially important facets. If one or more of the re-
quired invariance properties does not hold, there are two general options available (see Cronbach &

Meehl, 1955, p. 260-264). First, the measurement procedure can be modified, possibly by sampling
more thoroughly or by standardizing some facets. Second, the attribute’s definition can be changed
by restricting the universe of generalization.

Although the sampling model is consistent with construct validity in most ways, it is less general
in the interpretations to which it can be applied. The sampling model emphasizes the interpretation
of attributes as dispositions, which are defined in terms of universes of observations, while construct
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validity applies to a variety of constructs ranging from theoretical attributes embedded in extensive
networks to basic dispositions. Theoretical constructs derive their meaning from the axioms of a
theory (Braithwaite, 1953) and are said to be defined implicitly by the network of laws implied by the
axioms of the theory. Measurements of an implicitly defined construct are validated by verifying the
theory. Because Cronbach and Meehl (1955) tend to emphasize the role of theory in providing an im-
plicit definition for theoretical constructs, they suggest that all of the laws involving an attribute
should be used in validating measurements of the attribute.

Because construct validity may apply to any kind of interpretation, it is more general than the
sampling model. However, the dispositional interpretations emphasized by the sampling model are
particularly important in science because they are especially relevant to the central activity of sci-
ence-theory testing. In order to avoid circularity, the measurements that are used to test a theory
must not depend on the theory for their validity. Therefore, in testing theories, dispositional interpre-
tations are typically emphasized in place of more theory-laden interpretations.

The observations used to measure a theoretical attribute can generally be interpreted on at least
two levels. First, the observations can be interpreted as samples from the universe of generalization
defining a disposition. The sampling model suggests methods that are appropriate for evaluating the
validity of a dispositional interpretation. Second, the observations can be interpreted as reflecting a
theoretical construct which is implicitly defined by a theory. Although Cronbach (1980b) has sug-
gested that a distinction be drawn between laws involved in the &dquo;core meaning&dquo; of a construct and
other hypotheses that &dquo;we are ready to abar~d&reg;~9&dquo; there are no general criteria for deciding which of
the laws in which an attribute appears are most relevant to its construct validity.

Use of the F 1 ~e~&reg;~k---~, ~~~ct~eal Consideration

In those cases where extensive theory exists, the effort required to test all of the implications of
the theory is likely to be prohibitive for any investigator. And since theories in the behavioral sciences
are often rather loose, the evidence for validity derived from the theory is likely to be ambiguous at
best and inconsistent at worst. By assuming that the theory as a whole implicitly defines constructs,
Cronbach and Meehl (1955) present an extremely formidable task to the investigator seeking to estab-
lish construct validity, and it would be useful to establish priorities for which laws or theories should
be included in validity studies.

The sampling model’s distinction between validity and import provides a basis for setting priori-
ties. Validity is defined in terms of invariance over a universe of generalization and is associated with
the &dquo;meaning&dquo; of an attribute in the narrow sense of denotation. Import is defined in terms of all of
the relationships in which the attribute is involved and is associated with &dquo;meaning&dquo; in the broader
sense of connotation. The sampling model emphasizes the interpretation of attributes as dispositions
and equates validation with the testing of invariance laws9 the theory as a whole defines the import of
measurements and therefore has a strong, but indirect, effect on validation.

By checking the invariance laws, the investigator establishes that the measurements support in-
ferences of some generality and are not simply reports of isolated incidents. The invariance laws pro-
vide the &dquo;core meaning,&dquo; or denotation, for basic attributes. The core meaning of derived attributes
includes their defining laws (e.g., the law of thermal expansion for the coefficient of thermal expan-
sion) in addition to the invariance laws. The validation of theoretical attributes, which are implicitly
defined by a theory, involves the confirmation of the theory as a whole. However, even for the most
theoretical of constructs, the sampling model suggests a reasonable place to begin the study of
validity.
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a The of Sampling M eI~ for Validity

The sampling model is basically quite simple. A dispositional attribute is defined in terms of a
universe of generalization. The &dquo;true&dquo; value of the attribute is the universe score, equal to the ex-
pected value over the universe of generalization. Measurement involves inferences from observations
to the expected value over the universe defining an attribute, and a measurement procedure is valid to
the extent that its inferences about universe scores are accurate. For these inferences to be justified,
certain invariance laws must hold, at least approximately, and these laws should be verified
empirically.

Although the application of the model becomes more complicated when standardization and
theory development are considered, the basic premises remain quite simple. The sampling model
makes no assumptions about underlying structures or processes; it neither affirms nor denies the ex-
istence of such theoretical constructs. It makes no assumptions about the distribution of observed
scores, the distribution of universe scores, or the relationships between different kinds of scores. The
model does not dictate what kinds of conditions can be defined as facets. The only restriction put on
the universe of generalization is that it be sufficiently well defined that it is possible to test the invar-
iance laws associated with the universe.

to the Sampling Model

A number of authors (Gillmore, 1979; Loevinger, 1965; Rozeboom, 1966) have objected to
sampling models by pointing out that measurements do not generally consist of random samples from
a clearly defined universe of generalization. Within the sampling model, the sequence of inferences
involved in going from observed scores to universe scores can be analyzed explicitly, thus making it
unnecessary to assume that measurement involves random sampling from the universe of generaliza-
tion. However, the model does require that universes be defined well enough to allow for the testing of
the invariance laws.

Some progress has been made in developing more precise definitions for universes. For example,
Anderson (1972), Bormuth (1970), and Popham (197~) have proposed methods for the specification of
the item facet for achievement tests, and Fiske (1977) and Wiggins (1973) have discussed the defini-
tions of a variety of facets. However, there is still considerable ambiguity in the universe definitions
for scientific attributes. In discussing the semantics of natural languages, Clark and Clark (1977, p.
412) have pointed out that &dquo;the boundaries for most categories are fuzzy. There is no clear boundary
between trees and one category shades off into the other.&dquo; Similarly, Nagel (1971, p. 30) talks
about the &dquo;penumbra of vagueness&dquo; of all scientific terms. The sampling assumptions required for
the interpretation of measurement are typically not satisfied exactly; like all models, the sampling
model is only an approximation.

In light of the substantial difficulties in drawing random samples from the universe of generaliza-
tion, the verification of the invariance laws presents a serious problem. The invariance laws are gener-
al empirical laws, and their testing involves inductive inferences similar to those involved in the test-
ing of any empirical laws. In practice, a measurement procedure is evaluated in a series of studies in
which its invariance laws are examined.

Invariance Laws and Inductive Inference

Even a cursory review of the issues involved in inductive inference would go far beyond the scope
of this paper, but some general remarks on this topic may put the problem of testing the invariance
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laws into perspective. According to Popper (1965, 1968), laws are conjectures which are subject to
possible refutation but not to confirmation. A general law applies to many observations, and any of
these observations could be used to test the law. A deterministic law that fails a single test or a statisti-
cal law that fails a large proportion of its tests is refuted. A law which is subjected to a wide variety of
empirical tests without being refuted is supported by these tests.

There is a clear lack of symmetry in Popper’s views; a law can be decisively refuted, but even a
large number of studies cannot definitely confirm the law. The more challenges of various kinds that
a law has been exposed to without being refuted, the more strongly it is considered to be supported,
but the law is never completely confirmed. In discussing validation, Cronbach (1980a) has made a
similar point:

The job of validation is not to support an interpretation, but to find out what might be wrong
with it. A proposition deserves some degree of trust only when it has survived serious attempts to
falsify it. (p. 103)

In a sense, Popper replaces the concept of confirmation by the concept of degree of confidence. A law
is subjected to empirical challenges, and confidence in the law increases whenever it meets a chal-
lenge (Lakatos, 1970).

According to the sampling model, the definition of an attribute involves a universe of generaliza-
tion. The claim that a measurement procedure generates valid measurements of the attribute is

equivalent to the conjecture that the observed scores are invariant with respect to sampling from this
universe. This conjecture can be decomposed into a number of specific invariance laws, each of which
applies to a specific facet. A successful test of any one of the invariance laws, based on a random
sample of conditions from the facet, provides direct support for the specific invariance law and some
support for the cluster of invariance laws associated with the attribute. As more and more invariance

properties are investigated without encountering refutations, the degree of confidence in the validity
of the measurements increases.

The strength of the evidence for validity provided by invariance over a particular facet will depend
on the facet studied. If there is some reason to suspect that the facet may have a large effect on ob-
served scores, evidence for invariance over that facet answers a serious challenge and therefore pro-
vides strong support. Note that G studies, which sample from only part of a facet, do not test invari--
ance over the full facet. They do provide evidence for invariance over the subuniverse sampled. Be-
cause they answer one possible challenge to the invariance law, they provide some evidence for
validity, but they are not very effective in establishing the limits of the universe.

Since it is usually not possible to estimate variance components for more than a few facets without
having very large sample sizes, the validation of most measurement procedures will require a series of
studies in which the invariance properties are systematically investigated. Those facets that are ex-
pected to introduce the greatest error variance should be investigated first. Subsequently, other facets
can be investigated. The resulting sequence of upper bounds on validity is perhaps less satisfactory
than a point estimate of validity, but it is probably more realistic to consider any coefficient resulting
from a G study as an upper bound than as an unbiased point estimate of validity.

The ~r~c ~~~ Effect in ~~ff~~~n~ ~Jn~~a~~~~~ of Generalization

Throughout most of this paper, it has been tacitly assumed that the conditions defining a facet
are given and that the task is to check the appropriate invariance laws. For purposes of exposition,
this assumption has been convenient, but in practice the situation is never quite this simple. Although
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Popper (1965, 1968) has emphasized the testing of laws, the invariance requirement may also be ad-
dressed by defining facets so that the observations are invariant over the facet.

Toulmin (1953) described scientific laws as rules of inference, rather than as inductive generaliza-
tions. The question to be asked about such rules of inference is not whether or not they are true, but
how widely they apply. Toulmin’s analysis is quite different from Popper’s; but for the purposes of
this paper, these two views are complementary. Toulmin’s (1953) treatment of scientific laws as rules
of inference fits the sampling model especially well. The whole purpose of the invariance properties is,
in fact, to justify inferences from observed scores to universe scores.

As applied to the invariance la~s9 thc task of determining how widely the law applies is closely
connected with the task of clarifying the boundaries of the universe of generalization. Toulmin makes
the point that the range of applicability of a law is generally not known when the law is first proposed,
and one of the aims of ei-npirical research is to determine how widely the law applies. The aim of
empirical investigations of the invariance laws is to see how widely observed scores can be generalized.

In most cases, decisions about whether or not to generalize over a class of conditions will depend,
in part, on whether observations are invariant over the conditions. If the observations are not invari-
ant over a facet, including the facet in the universe of generalization would decrease the validity of
measurements of the attribute; therefore, the facet is not likely to be included in the definition of the
universe. However, if the observations are invariant over the facet, including the facet in the universe
would not decrease validity and would increase the usefulness of the measurements. The universe of
generalization is designed so that the invariance laws will hold. Lumsden (1976, p. 271) makes a
similar suggestion.

Random from the Universe of Aflowable 0bseiwationu

The purpose of G studies is to provide data that can be used in the design of effective measure-
ment procedures. In particular, an important goal in designing a measurement procedure is to reduce
the number of facets that must be randomly sampled in obtaining an observed score. There are three
ways to do this. First, if G studies show that all of the variance components (for the main effect and
interactions) for a facet arc zero, there is no need to be concerned about how this facet is sampled.
Second, facets that have been standardized are not sampled in estimating universe scores, although
the magnitude of the systematic errors for these facets must be estimated in G studies. Third, if the
universe of generalization is restricted in connection with the development of theory, thus defining a
new attribute, measurements of the new attribute will not involve sampling of the facet.

All of these modifications of the measurement procedure tend to decrease the number of facets
that are randomly sampled for each observed score. The only facets that need to be sampled random-
ly arc those for which interactions with the object of measurements are fairly large and apparently
random. Efforts to obtain random samples can be concentrated on these faccts; and if the number of
such facets can be decreased, the difficulty in taking random samples from the universe of allowable
observations is reduced.

The Role of in the Universe of Generalization

The universe of generalization is, to a large extent, shaped by theory. This occurs in at least three
ways. First, as discussed earlier, those effects that are explicitly involved in the theory are treated as
fixed conditions in the universe of generalization rather than as facets.
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Second, theory often suggests the kinds of observations that should be considered equivalent in
the sense of belonging to the same universe of generalization. For example, a cognitive psychologist
might put the responses to a certain question into the same universe of generalization, whether the
question was written, spoken, or projected on a screen and whether the responses were made by
speaking, writing, pressing a button, or giving a hand signal. Since the observations in this universe
have few surface features in common, it is the theoretical assumptions about cognitive processes that
supplies impetus for putting them into the same universe of generalization. One advantage of design-
ing attributes to fit a theory is that the import of the theory is built into the attribute.

Third, instead of defining an attribute in terms of the mean over the universe of generalization or
in terms of a particular condition of a facet, it is often useful to define the attribute in terms of an
&dquo;ideal&dquo; limiting condition which never occurs in practice. This avoids having the properties of the
measurements determined by any particular condition of observation. The interpretation of human
abilities in terms of the best performance, rather than typical performance, involves this kind of ideal
condition. Since the best performance can occur only if the person has adequate time to finish the
task, abilities are associated with neither a fixed time limit nor with the mean over a time-limit facet.
The assumption that the time limit does not affect performance substantially could be investigated by
conducting an experiment in which the time limit is extended; if performance improves significantly,
the time limit is too short.

The Steady State Requirement

Cronbach et al. (1972, p. 364) have stated that because generalizability theory &dquo;treats conditions
within a facet as unordered it will not deal adequately with the stability of scores that are subject to
trends , , ,&dquo; and that &dquo;the concept of universe score is of dubious value if the universe stretches over a
period when the person’s status is changing regularly and appreciably.&dquo; According to the sampling
model, to generalize over a facet is to treat the variability of observed scores due to the sampling of the
facet as error. If conditions of some kind are considered a facet, the attribute is the expected value
over all conditions of the facet and is not associated with any particular condition. For a relationship
to exist between observed scores and the conditions of a facet, each observed score must be associated
with a particular condition of the facet, and this is not consistent with the interpretation of the facet
as a source of error. Therefore, an effect cannot be interpreted as a facet and at the same time as an
attribute to be systematically investigated.

The problems associated with trends can be eliminated as soon as the trend is detected; this is ac-
complished by restricting the universe of generalization for each observation to a fixed condition of
the facet involved and by treating the trend as an empirical law. Undetected trends will tend to cause
the variance components for the facet to be large, and therefore the examination of variance compo-
nents can facilitate the detection of trends.

The Analysis-of-Variance as a Tool

Although the analysis of variance is a useful tool for the sampling gnodel, the formal statistical
models defining variance components should not be allowed to obscure the fundamental concerns
embodied in the invariance properties. As Cronbach (1976) has observed, the technical apparatus of
generalizability theory is less important than the questions suggested by the theory. The sampling
model provides a framework for considering the issues that arise naturally in the interpretation of
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measurements, The three types of issues that have been identified are those associated with reliability,
validity, and import. For convenience, most of the discussion of these issues has been in terms of vari-
ance components, but the same points could have been made using other terminology. In fact, where
there is interest in the relationship among the observed scores for particular conditions of a facet, cor-
relation coefficients might be preferred.

In some cases, it may be necessary to employ controlled experiments in investigating the effects of
a facet. For example, if an attribute is assumed to be unaffected by short periods of &dquo;coaching,&dquo; as is
often the case for aptitudes, it might be necessary to conduct controlled studies to check this assump-
tion and to analyze the resulting data in a way that is consistent with the design of the study. The
sampling model requires that the invariance properties implicit in the definition of an attribute be in-
vestigated; it does not specify how these invariance properties should be investigated.

Concluding Co1nnlentu

A dispositional attribute is defined in terms of a universe of generalization, and the universe score
for the attribute is the expected value over this universe. Therefore, the universe score is a parameter
defined over the universe of generalization, rather than a hypothetical entity. Although the sampling
model is basically quite simple, its application can be very difficult for two reasons. First, most mea-
surement procedures are not designed in terms of random sampling from the universe of generaliza-
tion, and therefore inferences from observed scores to the universe scores may be quite complicated.

The second and more fundamental difficulty is encountered in defining the universe of general-
ization. As noted earlier, some progress has been made in the methodology for defining universes, but
it is still true that the universes associated with most attributes are quite fuzzy. The difficulties in-
volved in defining universes, and subsequently sampling from these universes, arise for measurement
procedures in all of the sciences. Violations of sampling assumptions introduce vagueness into what
would otherwise be a precise statistical model, but they do not preclude effective use of the sampling
model. Rather, the sampling model highlights the weakness of some inferences that are routinely
made in interpreting measurements and should therefore encourage research aimed at defining uni-
verses more precisely.

Although the sampling model makes few assumptions, it provides an analysis of many issues as-
sociated with the dependability of measurement. The sampling model makes it possible to give
validity a straightforward interpretation and to draw a clear distinction between reliability and
validity The model provides the basis for a detailed analysis of standardization and of the resulting
systematic errors. The conclusions that reliability is an upper bound on validity and that some means
of improving reliability may cause validity to decrease are easily derived from the model. Further-
more, the model suggests an explicit mechanism for relating the refinement of measurement proce-
dures to the development of laws and theories.
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