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A SAMPLING THEOREM ON HOMOGENEOUS MANIFOLDS

ISAAC PESENSON

Abstract. We consider a generalization of entire functions of spherical ex-
ponential type and Lagrangian splines on manifolds. An analog of the Paley-
Wiener theorem is given. We also show that every spectral entire function on
a manifold is uniquely determined by its values on some discrete sets of points.

The main result of the paper is a formula for reconstruction of spectral
entire functions from their values on discrete sets using Lagrangian splines.

1. Introduction and main results

The classical Shannon-Whittaker sampling theorem says, that if f ∈ L2(R) and
its Fourier transform f̂ has support in [−ω, ω], then f is completely determined by
its values at points nΩ, where Ω = π/ω and in the L2-sense

f(t) =
∑

f(nΩ)
sin(π(t − nΩ))
π(t− nΩ)

.

Functions f ∈ L2(R) with property suppf̂ ⊂ [−ω, ω] form a Paley-Wiener class
PWω. The Paley-Wiener theorem states that f is in PWω if and only if f is an
entire function of exponential type ω.

Entire functions of finite exponential type are also uniquely determined and can
be recovered from their values on specific irregular sets of points xn. As was shown
by Paley and Wiener it is enough to assume that functions exp ixnt, n ∈ Z, form a
Riesz basis for L2([−π, π]).

One can consider even more general assumptions about the sequence xn. The
new and old results in the case when functions exp ixnt form different kinds of
frames in L2([−ω, ω]) were summarized by J. Benedetto [1].

On the other hand, I. Schoenberg [11] used cardinal splines for reconstruction
formula for the sequence xn = n. This result was recently generalized by Lyubarskii
and Madych [6] in the case when functions exp ixnt, n ∈ Z, form a Riesz basis for
L2([−π, π]).

In the compact case on the circle the similar statement takes place: every polyno-
mial of degree n is completely defined by any 2n+1 points and can be reconstructed
using Lagrange polynomials. This reconstruction formula is perfect, except that La-
grange polynomials tend to oscillate for large number of knots. Even in this case the
reconstruction by splines has an advantage (for example, for numerical integration)
because splines have minimal curvature.
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We consider a generalization of Lagrangian splines on homogeneous manifolds
and introduce an appropriate generalization of entire functions of spherical expo-
nential type which we call spectral entire functions of exponential type. Our goal is
to show that even on manifolds the reconstruction of irregularly sampled spectral
entire functions of exponential type by splines is possible as long as the distance
between points from a sampling sequence xn ∈ M is small enough. The known
proof of the Shannon-Whittaker formula uses the fact that functions eint form or-
thonormal basis in L2([−π, π]). Our explanation of this phenomenon is different:
an entire function of exponential type can be reconstructed from its values on cer-
tain discrete sets because it satisfies the Bernstein inequality. A subelliptic version
of this result was considered by the author in [8] and [9].

All our results take place for a self-adjoint operator with C∞-bounded coefficients
on a manifold with bounded geometry [3], [10]. To reduce the amount of necessary
definitions we consider the Laplace-Beltrami operator on a homogeneous manifold.

The following is a brief description of our main results.
Let M be a C∞-homogeneous manifold, i.e. the group of isometries is transitive

on M . The Laplace-Beltrami operator ∆ of the corresponding Riemmanian metric
dist(x, y), x, y,∈ M , and the operator D = ∆1/2 are self-adjoint positive definite
operators in the corresponding Hilbert space L2(M). According to the spectral
theory [4] there exist a direct integral of Hilbert spaces A =

∫
A(λ)dm(λ) and a

unitary operator F from L2(M) onto A, which transforms the domain of Dk onto
Ak = {a ∈ A|λka ∈ A} with norm

‖a(λ)‖Ak =
(∫ ∞

0

λ2k‖a(λ)‖2A(λ)dm(λ)
)1/2

besides F (Dkf) = λk(Ff), if f belongs to the domain of Dk. As is known, A is
the set of all m-measurable functions λ→ a(λ) ∈ A(λ), for which the norm

‖a‖A =
(∫ ∞

0

‖a(λ)‖2A(λ)dm(λ)
)1/2

is finite.
We will say that a function f from L2(M) is a spectral entire function of ex-

ponential type ω (ω-SE function) if its ”Fourier transform” Ff has support in
[0, ω]. The Eω(D) will denote the set of all ω-SE functions. The next theorem from
section 5 can be considered as an abstract version of the Paley-Wiener theorem.
Throughout the paper norm ‖f‖ means L2(M)-norm.

Theorem 1.1. The following conditions are equivalent:
a) function f belongs to Eω(D);
b) function f satisfies Bernstein inequality

‖Dkf‖ ≤ ωk‖f‖

for every natural k;
c) for any h ∈ L2(M) the complex valued function of one variable t ∈ (−∞,∞)

F (t) = 〈eitDf, h〉 =
∫
M

eitDfhdµ

is an entire function of exponential type ω which is bounded on the real line, i.e. it
has analytic extension to the complex plane C and there exists a constant a = a(h)
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such that

|F (z)| ≤ aeω|z|, z ∈ C;

d) the abstract function eitDf has continuation to the plane as an entire function
and there exists a constant b such that

‖eizDf‖ ≤ beω|z|, z ∈ C.

Here are some examples.
1. If M = Rd and ∆ is the usual Laplace operator then we can show that Eω(D)

is the set of all entire functions of spherical exponential type ω.
2. If M is compact, then

⋃
ω>0Eω(D) = E(D) is the linear span of all eigen-

functions of D. In the case when ∆ is a Laplace-Beltrami operator of invariant
metric and M is equivariantly imbedded in Rq then, E(D) can be identified with
restrictions of polynomials in Rq onto M , [3], [7].

3. In the case of the non-compact symmetric space and the corresponding
Laplace-Beltrami operator the spaceE(D) consists of all L2 functions whose Fourier-
Helgason transform has compact support [3], [6].

The Y (r, λ) will denote the set of all sets of points Z = {xγ} such that
a) infγ 6=µ dist(xγ , xµ) > 0;
b) balls B(xγ , λ), form a cover of M with multiplicity ≤ r.
The latter means that every ball has non-empty intersections with no more than

r other balls from this family. The discussion of existence and construction such
sets of points is given in the second section.

Lemma 1.2. There exist integers r = r(M) > 0 and ρ(M) > 0 such that the set
Y (r(M), λ) is not empty as long as λ ≤ ρ(M).

In section 2 we also discuss the analysis on manifolds. We need a notion of an
elliptic operator and corresponding regularity theory in the Sobolev scale of spaces
Hs(M),−∞ < s <∞ .

Let s > d/2, λ ≤ ρ(M), and Z ∈ Y (r(M), λ). We introduce Us(Z), the space of
all functions in Hs(M) whose restriction on Z is zero.

The main goal of section 3 is to prove the following theorem.

Theorem 1.3. There exist λ0 ≥ 0, C0 ≥ 0 such that for every λ ≤ λ0 every
Z ∈ Y (r(M), λ) and every f ∈ Uk(Z), k = 2ld, d = dimM, l = 1, 2, ..., the following
inequality takes place

‖f‖ ≤ (C0λ)k‖Dkf‖,

where D = ∆1/2.

In section 4 we construct Lagrangian splines. A similar approach was used by
Lemarie [4].

Theorem 1.4. For any function f from H2k(M), k = 2ld, l = 1, 2, ..., there exists
a unique function sk(f) from the Sobolev space H2k(M), such that

a) f |Z = sk(f)|Z ;
b) sk(f) minimizes functional u→ ‖∆ku‖.
Every such function sk(f) is of the form

∑
f(xγ)L2k

γ where the function L2k
γ ∈

H2k(M), xγ ∈ Z minimizes the same functional and takes value 1 at the point xγ
and 0 at all other points of Z. These functions L2k

γ form a Riesz basis in the space

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use



4260 ISAAC PESENSON

of all polyharmonic functions with singularities on Z, i.e. in the space of such
functions from H2k(M) which in the sense of distributions satisfy equation

∆2ku =
∑
xγ∈Z

αγδ(xγ)

where δ(xγ) is the Dirac measure at the point xγ . If in addition the set Z is
invariant under some subgroup of diffeomorphisms acting on M , then every two
functions L2k

γ , L
2k
µ are translates of each other.

In the case of euclidean space such functions L2k
γ are called Lagrangian splines.

We have the following direct approximation theorem.

Theorem 1.5. There exists λ0 > 0, c0 > 0 which depend only on the manifold
and operator ∆ such that for the given Z ∈ Y (r(M), λ) with λ < λ0 the following
estimate takes place

‖f − sk(f)‖ ≤ (c0λ)k‖∆k/2f‖, f ∈ Hk(M), k = 2ld, l = 1, 2, ....

The main result of the paper is the following theorem.

Theorem 1.6. For the same constants λ0 > 0 and c0 > 0 as above
a) every ω-SE function f ∈ Eω(D), ω > 0 is uniquely determined by its values

on any set Z ∈ Y (r(M), λ) as long as λ < (c0ω)−1;
b) for every such set Z the sequence of splines sk(f) =

∑
f(xγ)L2k

γ , k = 2ld, l =
1, 2, ..., converges to f ∈ Eω(D) in L2(M)-norm.

The quantity (c0ω)−1 is an analog of the Nyguist sampling rate in the classical
case.

2. Analysis on homogeneous manifolds

Let M , dimM = d be a C∞-homogeneous Riemannian manifold. The B(x, ρ)
will denote a ball whose center is x ∈M and radius is ρ > 0. The measure of this
ball B(x, ρ) is independent of x and will be denoted by v(ρ). The notation Y (r, λ)
was introduced in the Introduction. It is clear that Y (r1, λ1) ⊂ Y (r2, λ2) if r1 ≥ r2

and λ1 ≤ λ2.
Denote by Tx(M) the tangent space of M at a point x ∈ M and let expx :

Tx(M) → M be the exponential geodesic map, i.e. expx(u) = γ(1), u ∈ Tx(M)
where γ(t) is the geodesic starting at x with the initial vector u : γ(0) = x, dγ(0)

dt =
u. If the inj(M) is the injectivity radius of M then the exponential map is a
diffeomorphism of a ball of radius ρ < inj(M) in the tangent space Tx(M) onto
the ball B(x, ρ). Using L’Hôpital rule one can show

lim
ρ→0

v(2ρ)
v(ρ)

= 2d,

where d = dimM. It implies the doubling property of Riemannian metric: there
exists a constant k which depends on Riemannian structure such that

v(2ρ) ≤ kv(ρ), ρ ≤ inj(M).

Fix a point x ∈ M and consider ball B(x, λ/4), λ ≤ inj(M). Using isometries
we can construct a family of disjoint balls B(xi, λ/4) such that there is no ball
B(x, λ/4), x ∈ M , which has non-empty intersections with balls from our family.
The same property implies that the family B(xi, λ/2) is a cover for M . Now,
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if x ∈ B(xi, λ) then B(xi, λ/4) ⊂ B(x, 2λ). Since any two balls from the family
B(xi, λ/4) are disjoint, it gives the estimate for the index of multiplicity r of the
cover B(xi, λ) i.e. r ≤ v(2λ)/v(λ/4) and using doubling property we obtain the
estimate

r ≤ v(2λ)
v(λ/4)

≤ r(M).

So, we proved Lemma 1.2 from Introduction.
Using any cover {B(xi, λ)} of finite multiplicity one can construct the partition

of unity with following properties.

Lemma 2.1. For every λ ≤ inj(M) there exists a non-negative partition of unity
{ψi} ∈ C∞0 (M) such that

a) suppψi ⊂ B(xi, λ),
b) |ψ(α)

i (x)| ≤ C(α), C(α) is independent on i for every multi-index α in the
coordinate system defined by exp.

By means of such partitions of unity it is possible to construct the Sobolev spaces
Hs(M),−∞ < s <∞. On C∞0 (M) the following norm is considered

‖g‖2s =
∞∑
i=1

‖ψig‖2s

where from the right we have the usual Sobolev norm. Then the Sobolev space
Hs(M) is introduced as the completion of C∞0 (M) with respect to this norm [10].
The spaces Hs(M) have the same properties as the standard Sobolev spaces on
Rn. In particular the scalar product on C∞0 (M) can be extended to a continuous
pairing 〈., .〉 between Hs(M) and H−s(M) and the latter are dual to each other
with respect to it. The following facts about the Laplace-Beltrami operator ∆ can
be found in [3], [10], [12], [13]. The closure from C∞0 (M) of ∆ in L2(M) is self-
adjoint and the positive definite operator and domain of Ds, s > 0, D = ∆1/2 is
exactly Sobolev space Hs(M). Using duality between Hs(M) and H−s(M), the
operator ∆k, k > 0, from the space Hs(M) can be extended to the space H−s(M)
and we have

〈∆kf, h〉 = 〈f,∆kh〉,

for f ∈ Hs(M), h ∈ H−s−2k(M),−∞ < s <∞.
The operator ∆ has the form

∑
|α|≤2 aα(x)∂α in any geodesic coordinate system

in the neighborhood B(xi, ρ) and since it is an invariant operator the estimate
|∂γaα| ≤ Cγ takes place uniformly with respect to i. The invariance of this operator
also implies uniform ellipticity in the sense that there exists a constant C > 0 such
that uniformly to (x, ξ) ∈M × T ∗(M)

|a(x, ξ)| ≥ C|ξ|2, (x, ξ) ∈M × T ∗(M).

Here a(x, ξ) is the principal symbol of ∆ and |ξ| is the distance on a cotangent
space T ∗(M) with respect to the given Riemannian structure on M .

For such a C∞-bounded uniformly elliptic differential operator on the manifold
with bounded geometry M the following regularity properties are simple conse-
quences of the corresponding results in Rd and can be proved using partition of
unity from Lemma 2.1 (see [2], [12], [13]).
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Lemma 2.2. a) If k > 0 is an integer, then on Hk(M) norms ‖(I+∆)k/2f‖, ‖f‖+
‖∆k/2f‖ and ‖f‖Hk(M) are equivalent.

b) The map ∆ : Hs(M)→ Hs−2(M), s ∈ R is continuous.
c) For any s, t ∈ R there exists c > 0 such that

‖g‖s ≤ c(‖∆g‖s−2 + ‖g‖t), g ∈ C∞0 (M);

d) If g ∈
⋃
s∈RH

s(M) and ∆g ∈ Hs−2(M), s ∈ R, then g ∈ Hs(M).

3. Basic inequalites

The first lemma is a part of mathematical folklore.

Lemma 3.1. If S generates a C0 one-parameter group of operators etS such that
‖etSf‖ = ‖f‖, then for every n ≥ 2 there exists a C(n) such that for all ε > 0 all
1 ≤ m ≤ n− 1 and all f in the domain of Sn

‖Smf‖ ≤ εn−m‖Snf‖+ ε−mC(n)‖f‖.

Proof. According to the Hille-Phillips-Yosida theorem the assumptions imply

‖(I + εS)−1‖ ≤ 1

and the same for the operator (I − εS). Then

‖f‖ ≤ ‖(I + εS)f‖

and the same for the operator (I − εS). It gives

ε‖Sf‖ ≤ ‖(I − εS)f‖+ ‖f‖ ≤ ‖(I + ε2S2)f‖+ ‖f‖ ≤ ε2‖S2f‖+ 2‖f‖.

So, for any f from the domain of S2 we have inequality

‖Sf‖ ≤ ε‖S2f‖+ 2/ε‖f‖, ε > 0.

The general case can be proved by induction.

Lemma 3.2. For the same operator S as above if for some f from the domain of
S

‖f‖ ≤ A+ a‖Sf‖, a > 0,

then for all m = 2l, l = 0, 1, 2, ...,

‖f‖ ≤ mA+ 8m−1am‖Smf‖
as long as f belongs to the domain of Sm.

Proof. As was shown above

‖Sf‖ ≤ ε‖S2f‖+ 2/ε‖f‖, ε > 0.

Now, our inequality is true for m = 1. If it is true for m then

‖f‖ ≤ mA+ 8m−1am(ε‖S2mf‖+ 2/ε‖f‖).

Setting ε = 8m−1(a)m22, we obtain

‖f‖ ≤ 2mA+ 82m−1(a)2m‖S2mf‖.
Lemma 3.2 is proved.
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Lemma 3.3. There exist λ0 = λ(M) and C = C(M) such that for any f ∈ C∞0 (M)
and any 0 < λ < λ0

‖f‖ ≤ C
(
λd/2(

∑
γ

|f(xγ)|2)1/2 + λd‖∆d/2f‖
)
.

Proof. We assume that λ is smaller than the injectivity radius; then B(xγ , λ) be-
longs to a geodesic coordinate system. The Taylor formula gives

f(x) = f(xγ) +
∑

1≤|α|<k
Cα∂

αf(x)(x − xγ)α

+
∑
|α|=k

Cα

∫ ρ

0

tk−1∂αf(xγ + tθ)θαdt

where α = (α1, ..., αd), (x−xγ)α = (x1−x1,γ)α1 ...(xd−xd,γ)αd ; θα = θα1
1 ...θαdd ; θ =

(x− xγ)/ρ, ρ = |x− xγ | and ∂α is a mixed partial derivative.
It is evident that the first sum is dominated by

C

k−1∑
j=1

λj
∑

1≤|α|≤j
‖∂αf‖L2(B(xγ ,λ))

for some C = C(k) ≥ 0. Next, using Schwartz inequality and the assumption that
k > d/2 we obtain

|
∫ ρ

0

∂αf(xγ + tθ)θαdt|2 ≤ Cρ2k−d
∫ ρ

0

|∂αf(xγ + tθ)|2td−1dt.

We integrate both sides of this inequality in the spherical coordinate system
(ρ, θ). Changing the order of integration in t and ρ we obtain that the L2(B(xγ , λ))-
norm of the term

∫ ρ

0

tk−1∂αf(xγ + tθ)θαdt

is dominated by

‖f‖L2(B(xγ ,λ)) ≤ λd/2|f(xγ)|+
k∑
j=1

λj
∑

i≤|α|≤j
‖∂αf‖L2(B(xγ ,λ)).

Suppose that the set of points Z = xγ belongs to Y (r(M), λ), λ is smaller than
the injectivity radius. Summation over all balls in corresponding cover gives

‖f‖ ≤ C

λd/2(
∑
|f(xγ)|2)1/2 +

k∑
j=i

λj‖f‖Hj(M)


≤ C

λd/2(
∑
γ

|f(xγ)|2)1/2 +
k∑
j=1

λj(‖f‖+ ‖∆j/2f‖)

 .

Repeated applications of Lemma 3.1 with ε = aλ lead to the inequality

λj‖∆j/2f‖ ≤ ad−jλd‖∆d/2f‖+ C(d)a−j‖f‖.
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If a is large enough, we come to the inequality

‖f‖ ≤ C(d)

{
λd/2(

∑
γ

|f(xγ)|2)1/2 + λ‖f‖+ λd‖∆d/2f‖
}

and for small λ it gives

‖f‖ ≤ C(d)

{
λd/2(

∑
γ

|f(xγ)|2)1/2 + λd‖∆d/2f‖
}
.

Lemma 3.3 is proved.

Now to prove Theorem 1.3 we use Lemma 3.2 which gives us

‖f‖L2(M) ≤ C
(
mλd/2(

∑
|f(xγ)|2)1/2 + 8m−1(λd)m‖(∆d/2)mf‖

)
,

where m = 2l, l = 0, 1, 2, .... In particular, if f ∈ Uk(Z), k = 2ld, l = 0, 1, ...,

‖f‖L2(M) ≤ (Cλ)k‖∆k/2f‖.

Theorem 1.3 is proved.

Lemma 3.4. 1) For any k > d/2

‖∆k/2f‖+

(∑
γ

|f(xγ)|2
)1/2

≤ Ck‖f‖Hk(M).

2) If k = 2ld, d =dim M, l = 0, 1, 2, ..., Z ∈ Y (r(M), λ), λ < λ0, then the above
two norms are equivalent.

Proof. In order to prove the inequality we consider the C∞0 (M) functions ϕγ with
disjoint supports such that ϕγ(xγ) = 1. Using the Sobolev embedding theorem we
obtain for any natural k > d/2(∑

γ

|f(xγ)|2
)1/2

≤ Ck

(∑
γ

‖fϕγ‖2Hk(M)

)1/2

≤ Ck‖f‖Hk(M).

To prove the second part of the lemma observe that we have already proved the
inequality

‖f‖ ≤ Ck


(∑

γ

|f(xγ)|2
)1/2

+ ‖∆k/2f‖

 , k = 2ld.

This inequality implies for k = 2ld

‖f‖Hk(M) ≤ Ck
{
‖f‖+ ‖∆k/2f‖

}
≤ Ck


(∑

γ

|f(xγ)|2
)1/2

+ ‖∆k/2f‖

 .

The proof of Lemma 3.4 is over.

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use



A SAMPLING THEOREM ON HOMOGENEOUS MANIFOLDS 4265

4. Splines on manifolds

Given a Z ∈ Y (λ, r) and a sequence {sγ} ∈ l2 we will be interested to find a
function sk ∈ H2k(M), k large enough, such that

a) sk(xγ) = sγ , xγ ∈ Z;
b) function sk minimizes functional u→ ‖∆ku‖.
The same problem for functional u→ ‖u‖H2k(M), u ∈ H2k(M), k > d/4, can be

solved easily.
For the given sequence sγ ∈ l2 consider a function f from H2k(M) such that

f(xγ) = sγ . Let Pf denote the orthogonal projection of this function f (in the
Hilbert space H2k(M) with natural inner product) on the subspace U2k(Z) ={
f ∈ H2k(M)|f(xγ) = 0

}
with the H2k(M)-norm. Then the function g = f − Pf

will be the unique solution of the above minimization problem for the functional
u→ ‖u‖H2k(M), k > d/4.

The problem with functional u→ ‖∆ku‖ is that it is not a norm. But we already
proved that for k = 2ld the norm H2k(M) is equivalent to the norm

‖∆2kf‖+

∑
xγ∈Z

|f(xγ)|2
1/2

.

So, the above procedure can be applied to the Hilbert space H2k(M) with the
inner product

〈f, g〉 =
∑
xγ∈Z

f(xγ)g(xγ) + 〈∆k/2f,∆k/2g〉

and it clearly proves existence and uniqueness of the solution of our minimization
problem for the functional u→ ‖∆ku‖, k = 2ld.

The set of all L2(M)-solutions of the equation

∆2ku =
∑
xγ∈Z

αγδ(xγ),

where δ(x) is the Dirac measure and {αγ} ∈ l2 will be denoted by S2k(M). Our
next goal is to show that every sk(f) ∈ S2k(M).

Indeed, suppose that sk ∈ H2k(M) is a solution to the minimization problem
and h ∈ U2k(Z). Then

‖∆k(sk + λh)‖2 = ‖∆ksk‖22 + 2Reλ
∫
G

∆ksk∆khdµ+ |λ|2‖∆kh‖22.

The function sk can be a minimizer only if for any h ∈ U2k(Z)∫
M

∆ksk∆khdµ = 0.

So, the function Φ = ∆ksk ∈ L2(M) is orthogonal to ∆kU2k(Z). Let ϕγ be the
same set of functions as above and h ∈ C∞0 (M). Then the function h−

∑
h(xγ)ϕγ

belongs to the U2k(Z) ∩ C∞0 (M). Thus,

0 =
∫
M

Φ∆k(h−
∑

hγϕγ)dµ =
∫
M

Φ∆khdµ−
∑

h(xγ)
∫
M

Φ∆kϕγdµ.
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In other words

∆kΦ =
∑
xγ∈Z

αγδ(xγ),

or

∆2ksk =
∑
xγ∈Z

αγδ(xγ),

where δ(x) is the Dirac measure.
Moreover, for any integer r > 0
r∑

γ=1

|αγ |2 = 〈
∞∑
1

αγδ(xγ),
r∑
1

αγφγ〉 ≤ C‖
∞∑
1

αγδ(xγ)‖H−2k(M)(
r∑
1

|αγ |2)1/2,

where C is independent on r. It shows that the sequence {αγ} belongs to l2.
Now suppose that f ∈ H∞(M) and

∆2kf =
∑
xγ∈Z

αγδ(xγ),

where {αγ} ∈ l2.
Because of Lemma 3.4 for any ε > 0

|〈∆2kf, g〉| = |〈
∑

αγδ(xγ), g〉|

≤
(∑

|αγ |2
)1/2 (∑

|g(xγ)2
)1/2

≤ C
(∑

|αγ |2
)1/2

‖g‖Hd/2+ε(M).

It shows that the distribution
∑∞

1 αγδ(xγ) = ∆2kf belongs to H−d/2−ε(M).
Since the operator ∆2k is C∞-bounded and uniformly elliptic of order 4k we can
use the corresponding regularity result from section 2, which gives that f belongs to
H−d/2−ε+4k(M) which is included in H2k(M) for all k > d. The assertion that the
orthogonal complement of ∆kU2k(Z) is a subset of S2k(Z) is proved. Conversely,
if f, h belong to S2k(Z) and U2k(Z) ∩ C∞ respectively, then, since f ∈ H2k(M)
and h ∈ H2k(M), then pairing 〈., .〉 is an extension of the scalar product in L2(M),∫

M

f∆khdµ = 〈∆kf, h〉 =
∑

αγh(xγ) = 0.

Thus we proved the following:

Lemma 4.1. A function f ∈ L2(M) satisfies equation

∆2kf =
∑
xγ∈Z

αγδ(xγ),

where {αγ} ∈ l2 if and only if f is a solution to the minimization problem stated
above.

Lemma 4.2. Every function from S2k(Z), k = 2ld, is uniquely determined by its
values at points xγ ∈ Z. In particular, for any xγ ∈ Z there exists a unique
L2k
γ (Z) ∈ S2k(Z) such that it takes value 1 at the point xγ and 0 at all other points

in Z. These functions form a Riesz basis in S2k(Z).
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Recall that the last assertion means that for any g ∈ S2k(Z) in L2(M) we have
g =

∑
γ g(xγ)L2k

γ and there are C1, C2 > 0 such that

‖g‖2 ≤ C1

(∑
|g(xγ)|2

)1/2

≤ C2‖g‖2, g ∈ S2k(Z).

Proof. Since S2k(Z) is closed in the L2(M)-norm and S2k(Z) ⊂ H2k(M), the
L2(M)-norm and H2k(M)-norm are equivalent on S2k(Z). Moreover, one can show
that on the space S2k(Z), k = 2ld, the norm H2k(M) is equivalent to the norm
(
∑
|f(xγ)|2)1/2, f ∈ S2k(Z).

Indeed, if ϕγ ∈ C∞ have disjoint supports in B(xγ , λ/4) and ϕγ(xµ) = δγµ, |ϕγ |
≤ 1, then the function F =

∑
γ∈N f(xγ)ϕγ is in H2k(M) and f(xγ) = F (xγ), k >

d/2. Because of the minimization property

‖∆kf‖ ≤ ‖∆kF‖ ≤ C
(∑

γ

|f(xγ)|2
)1/2

.

Since for k = 2ld the H2k(M) norm on S2k is equivalent to the norm ‖∆kf‖ it
implies equivalence of it to the norm (

∑
γ |f(xγ)|2)1/2.

It shows that every f ∈ S2k(Z), k = 2ld, is completely determined by its values
f(xγ). In particular for any xγ ∈ Z there exists a unique function L2k

γ (Z) in S2k(Z)
such that it takes value 1 at the point xγ and 0 at all other points in Z. Lemma
4.2 is proved.

The last two lemmas give complete proof of Theorem 1.4 from the Introduction.
Next, if f ∈ H2k(M), k = 2ld, l = 0, 1, ... and Z ∈ Y (r(M), λ), λ < λ0, then

f − sk(f) ∈ U2k(Z) and by Theorem 1.3 we have for k = 2ld, l = 0, 1, ...,

‖f − sk(f)‖ ≤ (C0λ)k‖∆k/2(f − sk(f))‖.
Using the minimization property of sk(f) we obtain

‖f − sk(f)‖ ≤ (c0λ)k‖∆k/2f‖, k = 2ld, l = 0, 1, ....

Thus, we proved the approximation Theorem 1.5.

5. The spectral entire functions on manifolds and

the sampling theorem

Let M,∆, L2(M) be as above. The goal of this section is to introduce an appro-
priate generalization of entire functions of exponential type. In a classical setting
a function from L2(R) is an entire function of exponential type if its Fourier trans-
form has compact support. In our situation ∆ is a self-adjoint positive operator in
the Hilbert space L2(M). We consider D = ∆1/2 and the domain of Dk is exactly
Sobolev space Hk(M). According to the spectral theory [5], there exist a direct
integral of Hilbert spaces A =

∫
A(λ)dm(λ) and a unitary operator F from L2(M)

onto A, which transforms Hk(M) onto Ak = {a ∈ A|λka ∈ A} with norm

‖a(λ)‖Ak =
(∫ ∞

0

λ2k‖a(λ)‖2A(λ)dm(λ)
)1/2

besides F (Df) = λ(Ff), f ∈ H1(M).
We will say that the function f from L2(M) is a spectral entire function of

exponential type ω or ω-SE function if its “Fourier transform” Ff = a has support
in [0, ω]. The Eω(D) will denote the set of all ω-SE functions.
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The first theorem is evident.

Theorem 5.1. a) The set
⋃
ω>0Eω(D) ⊂ C∞(M) is dense in L2(M);

b) the Eω(D) is a linear closed subspace in L2(M).

We now prove that conditions a) and b) from Theorem 1.1 are equivalent.
Let f belong to the space Eω(D) and Ff = a ∈ A. Then(∫ ∞

0

λ2k‖a(λ)‖2A(λ)dm(λ)
)1/2

=
(∫ ω

0

λ2k‖a(λ)‖2A(λ)dm(λ)
)1/2

≤ ωk‖a‖A, k ∈ N,
which gives the Bernstein inequality for f .

Conversely, if f satisfies the Bernstein inequality, then a = Ff satisfies ‖a‖Ak ≤
ωk‖a‖A. Suppose that there exists a set σ ⊂ [0,∞] \ [0, ω] whose m-measure is not
zero and a|σ 6= 0. We can assume that σ ⊂ [ω+ ε,∞) for some ε > 0. Then for any
k ∈ N we have∫

σ

‖a(λ)‖2A(λ)dm(λ) ≤
∫ ∞
ω+ε

λ−2k‖λka(λ)‖2A(λ)dµ ≤ ‖a‖2A (ω/ω + ε)2k

which shows that either a(λ) is zero on σ or σ has measure zero. The implications
b)→ d) → c) in Theorem 1.1 are evident. So it is enough to show the implication
c)→ b) which is a consequence of the following lemma.

Lemma 5.2. Let D be a generator of a one-parameter group of operators etD in
a Banach space B and ‖etDf‖ = ‖f‖. If for some f ∈ B there exists an ω > 0 such
that the quantity

sup
k∈N
‖Dkf‖ω−k = R(f)

is finite, then R(f) ≤ ‖f‖.
Proof. By assumption ‖Drf‖ ≤ R(f)ωr, r ∈ N . Now for any complex number z
we have

‖ezDg‖ = ‖
∞∑
0

(zrDrg)/r!‖ ≤ R(f)
∞∑
0

|z|rωr/r! = R(f)e|z|ω.

It implies that for any functional h ∈ B∗ the scalar function (ezDf, h) is an entire
function of exponential type ω which is bounded on the real axis R1 by the constant
‖h‖‖f‖. An application of the Bernstein inequality gives

‖(etDDkf, h)‖C(R1) = ‖
(
d

dt

)k
(etDf, h)‖C(R1) ≤ ωk‖h‖‖f‖.

The last one gives for t = 0

|(Dkf, h)| ≤ ωk‖h‖‖f‖.
Choosing h such that ‖h‖ = 1 and (Dkf, h) = ‖Dkf‖ we obtain the inequality

‖Dkf‖ ≤ ωk‖f‖, k ∈ N , which gives

R(f) = sup
k∈N

(ω−k‖Dkf‖) ≤ ‖f‖.

Lemma 5.2 is proved.

Finally, combining the Bernstein inequality for SE-functions with approximation
Theorem 1.5 we are coming to the uniqueness and reconstruction Theorem 1.6 for
the SE-functions.
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Using Lemma 3.4 and Bernstein inequality one can also show that for SE-
functions f the L2(M) norm is equivalent to the norm (

∑
xγ∈Z |f(xγ |2)1/2, Z ∈

Y (r(M), λ), λ < λ0.

Acknowledgments

I would like to thank Professors L. Ehrenpreis and R. Strichartz for useful con-
versations.

References

1. J. Benedetto, Irregular sampling and frames, Wavelets: A tutorial in Theory and Applications
(C.K.Chui, ed.), Academic Press, Boston, 1992, pp. 445–507. MR 93c:42030

2. J. Cheeger, M. Gromov, M. Taylor, Finite propagation speed, kernel estimates for functions
of the Laplace operator and the geometry of complete Riemannian manifolds, J. Diff. Geom.
17 (1982), 15–53. MR 84b:58109

3. S. Krein, I. Pesenson, Interpolation Spaces and Approximation on Lie Groups, The Voronezh
State University, Voronezh, 1990, (Russian).

4. P. Lemarie, Bases d’ondeletts sur les gropes stratifies, Bull. Soc. Math. France, 117 (1989),
211–232. MR 90j:42066

5. J.- L. Lions, E. Magenes, Non-Homogeneous Boundary Value Problem and Applications,
Springer-Verlag, 1975.

6. Y. Lyubarskii, W. R. Madych, The Recovery of Irregularly Sampled Band Limited Functions
via Tempered Splines, J. of Functional Analysis 125 (1994), 201–222. MR 96d:41013

7. I. Pesenson, The Bernstein Inequality in the Space of Representation of Lie group, Dokl.
Akad. Nauk USSR 313 (1990), 86–90; English transl. in Soviet Math. Dokl. 42 (1991).
MR 92j:43010

8. I. Pesenson, Reconstruction of Paley-Wiener functions on the Heisenberg group, Translations
of AMS (to appear).

9. I. Pesenson, Sampling of Paley-Wiener functions on stratified groups, J. of Fourier Analysis
and Applications 4 (1998), 269–280. MR 99j:41024

10. J. Roe, An index theorem on open manifolds. I, II, J. Diff. Geom. 27 (1988), 87–113, 115–136.
MR 89a:58102

11. I. Schoenberg, Cardinal Spline Interpolation, CBMS, 12, SIAM, Philadelphia, 1973.
MR 54:8095

12. M. Shubin, Spectral theory of elliptic operators on non-compact manifolds, S.M.F. Asterisque
207 (1992), 35–108. MR 94h:58175

13. R. Strichartz, Analysis of the Laplacian on the complete Riemannian Manifold, J. Funct.
Anal. 52 (1983), 48–79. MR 84m:58138

Department of Mathematics, Temple University, Philadelphia, Pennsylvania 19122

E-mail address: pesenson@math.temple.edu

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use

http://www.ams.org/mathscinet-getitem?mr=93c:42030
http://www.ams.org/mathscinet-getitem?mr=84b:58109
http://www.ams.org/mathscinet-getitem?mr=90j:42066
http://www.ams.org/mathscinet-getitem?mr=96d:41013
http://www.ams.org/mathscinet-getitem?mr=92j:43010
http://www.ams.org/mathscinet-getitem?mr=99j:41024
http://www.ams.org/mathscinet-getitem?mr=89a:58102
http://www.ams.org/mathscinet-getitem?mr=54:8095
http://www.ams.org/mathscinet-getitem?mr=94h:58175
http://www.ams.org/mathscinet-getitem?mr=84m:58138

	1. Introduction and main results
	2. Analysis on homogeneous manifolds
	3.  Basic inequalites
	4. Splines on manifolds
	5. The spectral entire functions on manifolds and\ the sampling theorem
	Acknowledgments
	References

