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Abstract We introduce a parameterized notion of feature size that interpolates be-
tween the minimum of the local feature size and the recently introduced weak feature
size. Based on this notion of feature size, we propose sampling conditions that apply
to noisy samplings of general compact sets in euclidean space. These conditions are
sufficient to ensure the topological correctness of a reconstruction given by an off-
set of the sampling. Our approach also yields new stability results for medial axes,
critical points, and critical values of distance functions.
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1 Introduction

In this paper, we use the framework of distance functions to study some geometric
and topological approximation problems on compact subsets of R

n.
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1.1 Motivation

In many practical situations, the object of study is only known through a finite set of
possibly noisy sample points. It is then desirable to try to recover the geometry and the
topology of the object from this information. The most obvious example is probably
surface reconstruction, where the points are measured on the surface of a real world
object. Also, a current research topic in cosmology is to study the large-scale struc-
ture formed by the galaxies, which seems to be an interconnected network of walls
and filaments [27]. In other applications, the shape of interest may live in a higher-
dimensional space, as for instance in machine learning and in particular in manifold
learning. This is also the case in time series analysis, when the shape of study is the
attractor of a dynamical system sampled by a sequence of observations [25].

In this context, an important question is to find a sampling condition guaranteeing
that the object can be reconstructed correctly. Besides providing theoretical guaran-
tees, such a condition may be used to drive the reconstruction process itself. Indeed, a
possible reconstruction strategy is to look for the shapes that are best sampled by the
data points. In what follows, we investigate these questions in a fairly general setting,
assuming a very simple reconstruction process.

1.2 Previous Work

The currently most successful framework for dealing with such problems is based on
the notion of ε-sample introduced by Amenta et al. [1]. A sampling of a shape K is
an ε-sampling if every point p in K has a sample point at distance at most ε lfsK(p),
where lfsK(p) denotes the local feature size of p, that is, the distance from p to the
medial axis of the complement of K . It has been shown that surfaces smoothly em-
bedded in R

3 can be reconstructed homeomorphically from any 0.06-sampling using
the Cocone algorithm [2]. The major limitation of the ε-sample framework is that
it cannot handle sharp edges. Indeed, the local feature size vanishes on such edges,
implying that any ε-sample must have an infinite number of points in their vicinity.
Boissonnat et al. [3] recently gave sampling conditions applying to nonsmooth sur-
faces in R

3 and guaranteeing that the restricted Delaunay triangulation of the surface
is isotopic to the surface. Yet, to the best of our knowledge, no reconstruction algo-
rithm comes with theoretical guarantees in the case of nonsmooth shapes, except for
curves [13].

One of the simplest methods for reconstructing arbitrary shapes is to output an
offset of the sampling for a suitable value α of the offset parameter. Topologically,
this is equivalent to taking the α-shape [17] of the data points, which can be com-
puted efficiently in R

3 using the Delaunay triangulation. Recently, Niyogi, Smale,
and Weinberger [24] proved that this method indeed provides reconstructions having
the correct homotopy type for densely enough sampled smooth submanifolds of R

n.
The precise sampling condition is that the Hausdorff distance between the sampling
and the submanifold should not exceed

√
9–

√
8 times the minimum of the local fea-

ture size function over the submanifold. Note that this condition is similar to the
ε-sampling condition, except that noise is allowed and local adaptivity to the varia-
tions of the local feature size is lost. It was recently shown that under a similar but
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locally adaptive condition, the union of balls centered on data points and with radius
proportional to the local feature size is homotopy equivalent to the submanifold [7].
Both conditions suffer from the same problem as ε-samplings, namely they do not
apply to shapes other than smooth submanifolds. For more general shapes, the ho-
mology groups can be estimated correctly from a sufficiently dense sampling using
topological persistence techniques [6, 11], but it is not known how to actually build a
reconstruction having the correct homology groups.

1.3 Contributions

In this paper, we introduce a parameterized set of sampling conditions that permit
to extend the result of Niyogi, Smale, and Weinberger to a large class of compact
subsets of euclidean space. Our sampling conditions resemble those used by Niyogi,
Smale, and Weinberger, except that they are not based on the local feature size but
rather on a parameterized notion of feature size that we call the μ-reach. The μ-reach
of a compact set K is the minimum distance between a point in K and a point in the
μ-medial axis of R

n \ K , which is a filtered version of the medial axis. In particular,
the μ-reach interpolates between the minimum of the local feature size (for μ = 1)
and the weak feature size (for μ → 0). A crucial ingredient in our approach is a
generalization of a result on the separation of the critical values of distance functions
recently obtained by Dey et al. [15] in the smooth case. We also introduce the concept
of critical function of a compact set, which can be used to choose the offset parameter
appropriately by searching for the values that optimize the sampling quality. Along
the way, we obtain new stability results for the μ-medial axis, as well as for critical
points, critical values, and for the critical function itself.

1.4 Outline

Section 2 recalls the necessary background on distance functions and their gradient
and critical points. In Sect. 3, we use a key lemma on distance functions to derive
an approximation result on μ-medial axes. Section 4 introduces the critical function
and the μ-reach, and proves our generalization of the result of Niyogi, Smale, and
Weinberger on offsets. Section 5 concludes the paper.

2 Background on Distance Functions

The distance function RK of a compact subset K of R
n associates to each point

x ∈ R
n its distance to K :

x �→ RK(x) = min
y∈K

d(x, y),

where d(x, y) denotes the euclidean distance between x and y. Conversely, this func-
tion characterizes completely the compact set K since K = {x ∈ R

n |RK(x) = 0}.
Note that RK is 1-Lipschitz. For a positive number α, we denote by Kα the α-offset
of K defined by Kα = {x |RK(x) ≤ α}. The Hausdorff distance dH (K,K ′) between
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Fig. 1 A two-dimensional
example with two closest points

two compact sets K and K ′ in R
n is the minimum number r such that K ⊂ K ′r and

K ′ ⊂ Kr . It is not difficult to check that the Hausdorff distance between two compact
sets is the maximum difference between the distance functions associated with the
compact sets:

dH (K,K ′) = sup
x∈Rn

∣
∣RK(x) − RK ′(x)

∣
∣.

2.1 The Gradient and its Flow

Given a compact subset K of R
n, its associated distance function RK is not dif-

ferentiable on the medial axis of R
n \ K . However, it is possible [22] to define a

generalized gradient function ∇K : R
n → R

n that coincides with the usual gradient
of RK at points where RK is differentiable. For any point x ∈ R

n \ K , we denote by
ΓK(x) the set of points in K closest to x (Fig. 1):

ΓK(x) = {

y ∈ K |d(x, y) = d(x,K)
}

.

Note that ΓK(x) is a nonempty compact set. There is a unique smallest closed ball
σK(x) enclosing ΓK(x) (cf. Fig. 1). We denote by ΘK(x) the center of σK(x) and by
FK(x) its radius. ΘK(x) can equivalently be defined as the point on the convex hull
of ΓK(x) nearest to x. For x ∈ R

n \ K , the generalized gradient ∇K(x) is defined as
follows:

∇K(x) = x − ΘK(x)

RK(x)
.
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It is natural to set ∇K(x) = 0 for x ∈ K . For x ∈ R
n \ K , one has the following

relation [22]:

∇K(x)2 = 1 − FK(x)2

RK(x)2
.

Equivalently, ‖∇K(x)‖ is the cosine of the (half) angle of the smallest cone with
apex x that contains ΓK(x). The map x �→ ‖∇K(x)‖ is lower semicontinuous [22],
which means that for all x0, lim infx→x0 ‖∇K(x)‖ ≥ ‖∇K(x0)‖. Although ∇K is not
continuous, it is shown in [22] that Euler schemes using ∇K converge uniformly, as
the integration step decreases, toward a continuous flow C : R

+ × R
n → R

n. The
integral line of this flow starting at a point x ∈ R

n can be parameterized by arc length
s �→ C(t (s), x). It is possible to express the value of RK at the point C(t (l), x) by
integration along the integral line with length l downstream the point x:

RK

(

C
(

t (l), x
)) = RK(x) +

∫ l

0

∥
∥∇K

(

C
(

t (s), x
))∥

∥ds.

It is proven in [22] that the functions FK and RK are increasing along the trajectories
of the flow. In the particular case where K is a finite set, various notions of flows
related to this one have been independently introduced by Edelsbrunner [16], Giesen
and al. [20], and R. Chaine [4] using Voronoï diagrams and Delaunay triangulations.

2.2 Critical Point Theory for Distance Functions

The critical points of RK are defined as the points x for which ∇K(x) = 0. Equiva-
lently, a point x is a critical point if and only if it lies in the convex hull of ΓK(x).
When K is finite, this last definition means that critical points are precisely the in-
tersections of Delaunay k-dimensional simplices with their dual (n− k)-dimensional
Voronoï facets [20]. Note that this notion of critical point is the same as the one con-
sidered in the setting of nonsmooth analysis [10] and Riemannian geometry [9, 21].

The topology of the offsets Kα of a compact set K are closely related to the
critical values of RK (i.e., the values of its distance function at critical points). The
weak feature size of K , or wfs(K), is defined as the infimum of the positive critical
values of RK . Equivalently it is the minimum distance between K and the set of
critical points of RK . Notice that wfs(K) may be equal to zero. The following result
from [6] shows that wfs(K) may be viewed as the “minimum size of the topological
features” of the set K :

Lemma 2.1 If 0 < α,β < wfs(K), then Kα and Kβ are homeomorphic and even
isotopic. The same holds for the complements of Kα and Kβ .

Roughly speaking, two subspaces of R
n are isotopic if they can be deformed one

into each other without tearing or self-intersection. For example, a circle and a trefoil
knot are homeomorphic but not isotopic.
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2.3 A Topological Approximation Result

It has been shown in [6] that compact sets with weak feature size larger than a given
constant satisfy a topological stability property. This property is defined in terms of
homotopy type, which we now recall. Given two topological spaces X and Y , two
maps f : X → Y and g : X → Y are said to be homotopic if there is a continuous
map H : [0,1] × X → Y such that ∀x ∈ X,H(0, x) = f (x) and H(1, x) = g(x). X

and Y are said to be homotopy equivalent if there are continuous maps f : X → Y

and g : Y → X such that g ◦ f is homotopic to the identity map of X and f ◦ g

is homotopic to the identity map of Y . An equivalence class for homotopy equiva-
lence is called a homotopy type. If two spaces X and Y are homeomorphic, then they
are homotopy equivalent. In general, the converse is not true. For instance, a square
and an annulus have the same homotopy type, though they are not homeomorphic.
However, homotopy equivalence between topological spaces implies a one-to-one
correspondance between connected components, cycles, holes, tunnels, cavities, or
higher-dimensional topological features of the two sets. More precisely, if X and Y

have same homotopy type, then their homotopy and homology groups are isomor-
phic.

The result of [6] we mentioned above is the following:

Theorem 2.2 Let K and K ′ be compact subsets of R
n, and let ε be such that

wfs(K) > 2ε, wfs(K ′) > 2ε, and dH (K,K ′) < ε. One has:

(i) R
n \ K and R

n \ K ′ have the same homotopy type.
(ii) If 0 < α ≤ 2ε, then Kα and K ′α have the same homotopy type.

We note that, in general, α cannot be set to 0 in the theorem. An example, given
in [6], consists of a planar closed curve containing oscillations similar to the ones of
the graph of x �→ sin(1/x) near 0. Because of these oscillations, the curve is sim-
ply connected. However any sufficiently small offset of the curve has a nontrivial
fundamental group and hence a different homotopy type as the curve itself.

3 Stability of Critical Points

In this section, we give quantitative estimates of how much objects such as medial
axes and critical points of the distance function to a compact set are affected by
Hausdorff perturbation of the compact set.

3.1 μ-critical Points

Let us first extend the notion of critical point of a distance function through the fol-
lowing definition:

Definition 3.1 (μ-critical point) A μ-critical point of the compact set K is a point at
which the norm of the gradient ∇K does not exceed μ.
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Fig. 2 Proof of Lemma 3.2

In particular, 0-critical points are exactly the critical points of the distance function
to K . Also, a point is μ-critical with μ < 1 if and only if it belongs to the medial axis
of R

n \ K . The concept of μ-critical points is closely related to the θ -medial axis
introduced recently in [14, 19]. The θ -medial axis of a compact set K is the set of
points p having at least two closest points q and r on K such that the angle between−→
pq and −→

pr is at least θ . Hence, a point having exactly two closest points on K is
in the θ -medial axis if and only if it is cos(θ/2)-critical. However, there is no such
relationship between the two concepts for points having at least three closest points
on K .

As the following lemma shows, the distance function to a compact set cannot grow
too fast around a μ-critical point:

Lemma 3.2 Let K ⊂ R
n be a compact set and x one of its μ-critical points. For any

y ∈ R
n, we have:

RK(y)2 ≤ RK(x)2 + 2μRK(x)‖x − y‖ + ‖x − y‖2.

Proof Let Γ be the set of points closest to x on K , and let B be the sphere centered
at x and containing Γ . Let also c be the center of the minimal enclosing ball of Γ ,
and α = cos−1(μ) (see Fig. 2, where Γ = {x1, x2, x3}).

We now claim that −→
xy makes an angle at most π − α with a vector

−→
xx′ for some

x′ ∈ Γ . Without loss of generality, we can assume that y belongs to B . First assume
that x belongs to the convex hull of Γ , i.e., α equals π/2. Equivalently, Γ is not
contained in any hemisphere, meaning that the property is satisfied for all y. If this is
not the case, Γ is contained in some hemisphere. We then have that the center of the
minimal enclosing geodesic disk of Γ is the point c′ where the ray [xc) pierces B .
By considering the complement of the disk, we get that the geodesic furthest point to
Γ on B is the antipode c′′ of the center of its minimal enclosing disk c′. The desired
inequality on angles is clearly satisfied when y equals c′′, since the angle α′ between−→
xc′ and the vector

−→
xx′ equals α whenever x′ belongs to the minimal enclosing sphere

of Γ . However, since c′′ is the point farthest to Γ on B , this is the worst case for y,
which concludes the proof of our angle inequality.

To conclude the proof of the lemma, it is sufficient to notice that RK(y) ≤ ‖y −x′‖
and expand ‖y − x′‖2 = 〈(y − x) + (x − x′), (y − x) + (x − x′)〉. �
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The same lemma already appeared in [22] with a different proof. We include it
here for the sake of completeness.

3.2 Behavior under Hausdorff Approximation

We now use Lemma 3.2 to understand how the μ-critical points of a compact set K

change when K is replaced by a compact set K ′ having a small Hausdorff distance
with K . Let us first state the following:

Lemma 3.3 Let K and K ′ be two compact subsets of R
n and dH (K,K ′) ≤ ε. For

any μ-critical point x of K and any ρ > 0, there is a μ′-critical point of K ′ at
distance at most ρ from x, with

μ′ ≤ ρ

2RK(x)
+ 2

ε

ρ
+ μ.

Proof Let us consider an integral line C of the vector field ∇K ′ parameterized by arc
length and starting at x. If C reaches a critical point of K ′ before length ρ, the lemma
holds. Assume this is not the case. Letting y = C(ρ), we have:

R′(y) − R′(x) =
∫ ρ

0

∥
∥∇K ′

(

C(s)
)∥
∥ds,

where R (resp. R′) denotes RK (resp. RK ′ ). Therefore, since ‖∇K‖ is lower semi-
continuous, there must exist a point p on the curve such that:

∥
∥∇K ′(p)

∥
∥ ≤ R′(y) − R′(x)

ρ
. (1)

Note that ‖p − x‖ ≤ ρ. Now Lemma 3.2 applied to x, y, and K reads:

R(y) ≤
√

R(x)2 + 2μR(x)‖x − y‖ + ‖x − y‖2.

Also, since ε = dH (K,K ′), we have that for all z ∈ R
n, |R(z) − R′(z)| ≤ ε. Hence:

R′(y) − R′(x) ≤
√

R(x)2 + 2μR(x)‖x − y‖ + ‖x − y‖2

− R(x) + 2ε

≤ R(x)

[
√

1 + 2μ‖x − y‖
R(x)

+ ‖x − y‖2

R(x)2
− 1

]

+ 2ε

≤ μ‖x − y‖ + ‖x − y‖2

2R(x)
+ 2ε

the last inequality coming from the fact that the square root function is concave.
Noticing that ‖x − y‖ ≤ ρ, dividing by ρ, and applying (1) shows that p satisfies the
desired requirements. �
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As a function of ρ, the upper bound on μ′ obtained in the previous lemma attains
its minimum at ρ = 2

√
εRK(x) and equals 2

√
ε/RK(x) + μ at that point. We thus

have:

Theorem 3.4 (Critical point stability theorem) Let K and K ′ be two compact subsets
of R

n and dH (K,K ′) ≤ ε. For any μ-critical point x of K , there is a (2
√

ε/RK(x)+
μ)-critical point of K ′ at distance at most 2

√
εRK(x) from x.

In what follows, we will need the fact that this critical point p of K ′ can be chosen
such that RK ′(p) ≥ RK ′(x), which is obvious from the proof of Lemma 3.3.

To conclude this section, we show that the previous theorem implies a conver-
gence result for μ-medial axes. The μ-medial axis of a compact set K , denoted
by Mμ(K), is the set of points x /∈ K such that ‖∇K(x)‖ ≤ μ. Note that the μ-
medial axis is different from the λ-medial axis introduced in [5]. Since ‖∇K‖ is
lower semicontinuous, the set Mμ(K) ∪ K is compact for any μ ∈ (0,1). So the
map μ → Mμ(K) ∪ K with values in the metric space (for Hausdorff distance) of
compact sets of R

n is continuous at μ if and only if for any sequence μn → μ,
dH (Mμn(K) ∪ K, Mμ(K) ∪ K) → 0 as n → ∞.

Theorem 3.5 (μ-medial axis convergence theorem) Let K be a compact subset
of R

n, and (Ki) be a sequence of compact sets converging to K for the Hausdorff
distance. If μ ∈ (0,1) is a continuity point of the map μ → Mμ(K) ∪ K , then
Mμ(Ki) ∪ Ki converges to Mμ(K) ∪ K for the Hausdorff distance.

Related results were obtained in [5] for a different filtration of the medial axis.

Proof To simplify the notation, we denote by M̃μ(K) = Mμ(K) ∪ K the union of
a compact with its μ-medial axis. Since

∥
∥∇K(x)

∥
∥2 = 1 − FK(x)2

RK(x)2

and FK(x) is bounded by the diameter of K , it follows that Mμ(K) is contained in
any ball with center in K and radius D > diam(K) such that

1 − diam(K)2

(D − diam(K))2
> μ2.

It follows from the critical point stability Theorem 3.4 that if K ′ is a compact such
that dH (K,K ′) < ε, then

M̃μ(K) ⊂ M̃μ+2ε1/4(K
′)ε+2

√
Dε

assuming that ε < diam(K). To prove this claim we consider two cases: given x ∈
M̃μ(K), if RK(x) <

√
ε, then d(x,K ′) < ε + √

ε < ε + 2
√

Dε, and so the claim
is true. Otherwise, we apply the critical point stability theorem to x, which directly
yields the result.
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Using the previous claim twice, we obtain

M̃μ−2ε1/4(K) ⊂ M̃μ(K ′)ε+2
√

Dε ⊂ M̃μ+2ε1/4(K)2ε+4
√

Dε.

Since μ → M̃μ(K) is continuous at μ, one has

dH

(

M̃μ−2ε1/4(K), M̃μ(K)
) → 0 and

dH

(

M̃μ+2ε1/4(K)2ε+4
√

Dε, M̃μ(K)
) → 0

as ε → 0. Replacing K ′ by the Ki ’s concludes the proof of the theorem. �

The convergence of the μ-medial axis is guaranteed only for values μ at which
the map μ → Mμ(K) ∪ K is continuous. The following result shows that the set of
discontinuity points is finite for a large class of compact sets.

Theorem 3.6 Let K be a subanalytic compact subset of R
n. For all but a finite num-

ber of values μ, μ → Mμ(K) ∪ K is continuous.

Subanalytic sets are a large class of subsets that includes, for instance, finite sets,
semi-algebraic sets, and sets defined by analytic equalities and inequalities. For pre-
cise definitions and references on subanalytic geometry, see [8] for instance.

Proof The proof of the theorem, which is based upon classical tools in subanalytic
geometry that are rather different than the ones used in this paper, is omitted. It is
almost the same as the proof of Theorem 6 in [5]. �

4 A Sampling Theory for Compact Sets

Based on the results obtained in the previous sections, we are now able to formulate
a theoretical framework for inferring the topology and geometry of a large class of
shapes from Hausdorff approximations.

4.1 The Critical Function of a Compact Set

We first introduce a function that one can associate with any compact set and that
encodes all the “μ-critical values” of the distance function to that compact set.

Definition 4.1 (Critical function) Given a compact set K ⊂ R
n, its critical function

χK : (0,+∞) → R+ is the real function defined by

χK(d) = inf
R−1

K (d)

‖∇K‖.
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We note that the infimum can be replaced by the minimum since ‖∇K‖ is lower
semi-continuous and R−1

K (d) is compact. It also results from the compactness of
R−1

K (d) that d �→ χK(d) is lower semi-continuous. As we will see, whether a compact
set is a Hausdorff approximation of a “simple” compact set or not can be read from its
critical function, which is the main motivation for introducing this concept. To back
up this claim, we will need the following technical result:

Theorem 4.2 (Critical function stability theorem) Let K and K ′ be two compact
subsets of R

n and dH (K,K ′) ≤ ε. For all d ≥ 0 , we have:

inf
{

χK ′(u) |u ∈ I (d, ε)
} ≤ χK(d) + 2

√
ε

d
,

where I (d, ε) = [d − ε, d + 2χK(d)
√

εd + 3ε].

Proof Let d ≥ 0 and x be a point in R−1
K (d) such that ‖∇K(x)‖ = χK(d). Denoting

χK(d) by χ to simplify the notation, we know by the Critical Point Stability Theorem
that there is a point p that is (2

√
ε/d + χ )-critical for K ′ and that lies at distance at

most 2
√

εd from x. Applying Lemma 3.2 to K and the points x and p, we get:

RK(p) ≤
√

d2 + 4χd
√

εd + 4εd

≤ d

√

1 + 4χ
√

ε/d + 4ε/d

≤ d + 2χ
√

εd + 2ε.

Recalling that p can be chosen such that RK ′(p) ≥ RK ′(x) and that |RK ′(p) −
RK(p)| ≤ ε concludes the proof. �

In particular, this stability property implies that the epigraph of χK converges to
the one of χK ′ for the Hausdorff distance as ε goes to 0.1

From a practical point of view, we note that it is feasible to compute the critical
function of a point cloud in R

3. Indeed, it follows from the definition that this function
is the minimum of functions associated with each Voronoi cell. For the Voronoi cell
Vτ dual to Delaunay simplex τ , the corresponding function is fτ : RK(Vτ ) → R

defined by:

fτ (d) =
√

1 − F (τ )2

d2
.

Hence, after appropriate transformations, computing the critical function boils down
to computing the upper envelope of the horizontal line segments RK(Vτ )×{F (τ )} ⊂
R

2, where τ ranges over the Delaunay triangulation of the point cloud. Figure 3 shows
the critical function obtained by this process in the case of a sampling of a square

1The epigraph of a real function f is the set of points (x, y) such that f (x) ≤ y.
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Fig. 3 Critical function of a
square embedded in R

3 with
side length 50 (top), and of a
sampling of that square (bottom)

with sidelength 50 lying in R
3. The Hausdorff distance between the sampling and the

square is 0.25. The critical function of the square equals
√

2/2 for 0 < d < 25, 0 for
d = 25, and

√

1 − 252/d2 for d > 25. The critical function of the sampling is very
close to the one the square, except for small d , which is consistent with the theorem.

4.2 μ-reach

Using the critical function, we can define a parameterized notion of “feature size”
that interpolates between the minimum local feature size and the weak feature size:

Definition 4.3 (μ-reach) The μ-reach rμ(K) of a compact set K ⊂ R
n is defined by

rμ(K) = inf{d | χK(d) < μ}.
Equivalently, rμ(K) is the minimum distance between a point in K and a point in the
closure of Mμ(K).

We have that r1(K) coincides with the minimum over K of the local feature size
function [1, 2]. Note that this number is also the same as the reach of K , which
was introduced by Federer [18] in the context of the study of curvature measures. As
μ increases, rμ(K) decreases and limμ→0+ rμ(K) ≤ wfs(K). The inequality can be
strict: for instance, if K is the union of two tangent disks, then the μ-reach of K is 0
for all μ > 0, whereas wfs(K) = +∞. However, if the limit is positive, then equality
holds. In any case, it can be proved using the lower semi-continuity of the critical
function that limε→0+(limμ→0+ rμ(Kε)) = wfs(K).
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The advantage of this notion over the reach is that it is nonzero—for well-chosen
μ—for a large class of objects. For example, as is well known, piecewise-linear sur-
faces have zero reach since their sharp edges are in the closure of the medial axis of
their complement. However, if K is a piecewise-linear surface, then there is a max-
imum real number λ such that no ball with radius less than λ intersects at least two
nonadjacent faces. This number was introduced by Ruppert [26] in the context of
mesh generation. Now for a vertex of K , we can consider the angle of the minimal
enclosing cone of the normals of the facets incident to the vertex. Calling θ the mini-
mum of these angles over all vertices and letting μ = cos(θ/2), we have that rμ ≥ λ.

The weak feature size is also nonzero for a large class of shapes. However, we will
see that the weak feature size is not sufficient for our purpose. The main reason for
this is given in the next paragraph.

4.3 Separation of Critical Values

The fact that a compact set is close to a compact set with positive μ-reach implies
restrictions on the possible locations of the critical values of its distance function, as
we now show. A result similar to ours was proven by Dey et al. [15] recently but in
the special case of closed surfaces smoothly embedded in R

3 and sampled without
noise.

Theorem 4.4 (Critical values separation theorem) Let K and K ′ be two compact
subsets of R

n, ε be the Hausdorff distance between K and K ′, and μ be a non-
negative number. The distance function RK has no critical values in the interval
]4ε/μ2 , rμ(K ′) − 3ε[. Besides, for any μ′ < μ, χK is larger than μ′ on the interval

]
4ε

(μ − μ′)2
, rμ(K ′) − 3

√

εrμ(K ′)
[

.

Before proving the theorem, we note that taking μ too small does not give any in-
formation on the critical values, since the lower bound then exceeds the upper bound.
This is why it is preferable to work with the μ-reach than with the weak feature size.

Proof Let us prove the first part of the theorem. Assume that d is a critical value of
RK , i.e., χK(d) = 0. By the critical function stability theorem, we have that

inf
{

χK ′(u) |u ∈ [d − ε, d + 3ε]} ≤ 2

√
ε

d
.

So if d < rμ(K ′) − 3ε, this implies that μ ≤ 2
√

ε/d , which implies that d cannot
belong to the desired interval. Now for the second part of the theorem, we assume
that d is a μ′-critical value of RK and apply the same theorem again. This time we
get that if

d + 2χK(d)
√

εd + 3ε < rμ(K ′)

then μ ≤ μ′ + 2
√

ε/d , which is precisely the lower bound of the desired interval.
Now the former condition can be successively strenghtened as follows:

d + 2
√

εd + 3ε < rμ(K ′),
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Fig. 4 The separation bounds
on critical values are almost
tight

(√
d + √

ε
)2

< rμ(K ′) − 2ε,

d <
(
√

rμ(K ′) − 2ε − √
ε
)2

,

d < rμ(K ′) − ε − 2
√

ε
(

rμ(K ′) − 2ε
)

,

d < rμ(K ′) − ε − 2
√

εrμ(K ′),

d < rμ(K ′) − 3
√

εrμ(K ′),

where the latter inequality assumes ε ≤ rμ(K ′). Since the theorem is also true (with
a void conclusion) when this condition is not satisfied, this achieves the proof. �

The bounds given in the first part of the theorem are actually tight up to a multi-
plicative constant. An example is shown in Fig. 4, where K ′ is a union of a circle arc
and two segments. The circle arc meets the two segments tangentially, and these form
an angle α equal to 2 sin−1(μ) for some μ > 0. The critical function χK ′(d) equals
μ for 0 < d < r ′, where r ′ is the radius of the circle arc. Since the center of the circle
is critical, we have χK ′(r ′) = 0, so rμ(K ′) = r ′. For the tightness of the upper bound,
just take for K the set of points at distance at most ε from K ′, assuming that ε < r ′.
Then we have that the center of the circle is a critical point of the distance function
to K , with r ′ − ε as corresponding critical value. For the lower bound, consider a
point p on one of the segments, and let p′ be its closest point on the other segment
(here we assume that α < π/2). Let C be the circle with diameter pp′. To obtain K

from K ′, replace the part of K ′ enclosed by C by the circle arc of C bulging out
of K ′. The center c of C is a critical point of RK . Calculations shows that the ratio
between ε = dH (K,K ′) and the corresponding critical value r is 1 − cos(α). Since
1 − cos(α) = Θ(sin2(α)) = Θ(μ2), the lower bound is also tight up to a multiplica-
tive constant.

4.4 Reconstruction by Offsets

We now formulate a sampling condition inspired by the work of Amenta et al. [1, 2,
23]:

Definition 4.5 ((κ,μ)-approximation) Given two nonnegative real numbers κ and μ,
we say that a compact K ⊂ R

n is a (κ,μ)-approximation of a compact K ′ ⊂ R
n if

the Hausdorff distance between K and K ′ does not exceed κ times the μ-reach of K ′.
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Fig. 5 Distance function to a
sampling of an equilateral
triangle. If the offset parameter
is appropriately chosen, then the
offset of the sampling (its
boundary is shown in bold) is
homotopy equivalent to the
triangle

In particular, if K ′ is an embedded surface in R
3, finite (κ,μ)-approximations are

related to noisy (ε, κ)-samples introduced in [12], and finite (κ,1)-approximations
are related to ε-samples of K (with ε = κ) as defined in [23]. One difference is
that the points in an ε-sample are assumed to lie on the surface, whereas (κ,μ)-
approximations can be noisy. The other difference is that ε-samples are allowed to be
less dense in areas where the surface is not too curved and where the object bounded
by the surface is not too “thin.” This local adaptivity of ε-samples is a nice feature,
but unfortunately nonsmooth shapes as simple as polyhedra do not admit—finite—ε-
samples, even when the sharp edges are arbitrarily flat. In contrast, polyhedra admit
finite (κ,μ)-approximations, since they have positive μ-reach for suitable μ as ex-
plained before.

An important property of (κ,μ)-approximations of a compact set is that they allow
one to reconstruct the compact set in a topologically correct way using simple offsets
(see Fig. 5).

Theorem 4.6 (Reconstruction theorem) Let K ⊂ R
n be a (κ,μ)-approximation of a

compact set K ′. If

κ <
μ2

5μ2 + 12

then the complement of Kα is homotopy equivalent to the complement of K ′, and Kα

is homotopy equivalent to K ′η for sufficiently small η, provided that

4dH (K,K ′)
μ2

≤ α < rμ(K ′) − 3dH (K,K ′).
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Proof By the Separation of Critical Values Theorem, we know that RK has no criti-
cal values in the interval ]4ε/μ2, rμ(K ′) − 3ε[, where ε denotes dH (K,K ′). Hence
by Lemma 2.1 the (complements of) Kα all have the same homotopy type when α

belongs to this interval (including its lower bound). We may thus prove the theorem
for α = 4ε/μ2. Since performing an offset on a compact set translates into translating
its critical function to the left by the same value, we get that

wfs
(

Kα
) ≥ rμ(K ′) − 3ε − 4ε

μ2
.

Also:

dH

(

Kα,K ′) ≤ 4ε

μ2
+ ε.

By a result in [6], Theorem 1 recalled in Sect. 2, a sufficient condition for the
conclusion of the theorem to be true is that

dH

(

Kα,K ′) <
1

2
min

(

wfs
(

Kα
)

,wfs(K ′)
)

.

The assumption on κ is precisely such that this is the case. �

When K ′ is a closed—unnecessarily smooth—connected surface embedded in R
3,

the conclusion of the Reconstruction theorem can be strengthened. Using results in
[6], we have indeed that each boundary component of the offset of K is isotopic
to K ′. Besides, we note that a result similar to our Reconstruction Theorem has been
obtained by Niyogi, Smale, and Weinberger [24]. The constants in this work are better
than ours,2 but the setting is limited to smoothly embedded hypersurfaces. Also, when
K is finite, we may substitute the offset by the α-shape [17] with the same value of
the parameter, since the two are known to be homotopy equivalent [16].

4.5 Parameter Selection

The main shortcoming of the Reconstruction Theorem is that it does not give a way to
find a suitable value for the offset parameter. From this perspective, a natural question
is how can we tell whether a given compact set K is a (κ,μ)-approximation of some
compact set K ′? We claim that this question can be answered to some extent by
analyzing the critical function of K .

First, if K is a (κ,μ)-approximation of a compact set K ′, the Separation of Critical
Values Theorem implies that for all μ′ > 0, the critical function χK is larger than μ′
on the interval

]
4dH (K,K ′)
(μ′ − μ)2

, rμ(K ′)(1 − 3
√

κ)

[

.

2Approximately by a factor 3.
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If we take, for instance, μ′ = μ/2, the ratio between the bounds of this interval is at
least

ρ = (1 − 3
√

κ)

16κ
μ2.

Note that for small enough κ and for fixed μ, this ratio ρ is proportional to κ−1.
Hence, the critical function of a (κ,μ)-approximation with small κ has to be larger
than μ/2 on a “long” interval, more precisely on an interval whose ratio is at least ρ.
This means that looking for all such intervals is a valid strategy for finding a super-set
of the pairs (κ,μ) such that K is a (κ,μ)-approximation of some compact set, at least
for small enough κ .

Conversely, the strategy we just described cannot yield “false positives,” that is,
sufficiently long intervals where the critical function is high, always witness the exis-
tence of a compact K ′ being (κ,μ)-approximated by K . Indeed, if we find that χK is
larger than μ on an interval of the form ]a, aρ[, then K is obviously a ((ρ −1)−1,μ)-
approximation of its a-offset. Hence, the lower bounds of these “long” intervals are
convenient choices for the offset parameter.

We note that the critical function of a compact set can be larger than some constant
μ on several disjoint intervals with arbitrarily large ratios. In this case, each one of
these interval could correspond to a different homotopy type. Of course, if one has
prior information on either κ , μ, or the Hausdorff distance between K and K ′, it is
possible to restrict the set of possible homotopy types by narrowing the search for
long intervals to the set of intervals satisfying the corresponding constraints.

This stands in sharp contrast with the sampling theory developed by Amenta et al.
Indeed, a point set cannot be a κ-sampling of surfaces with different homotopy types
for κ < 0.06, since there is a provably correct algorithm that recovers the surface
under this sampling condition [2]. However, this unicity property cannot hold if one
allows noisy samples. For example, let K1 be a noise free sampling of the unit sphere
such that the Hausdorff distance between K1 and the unit sphere is ε, and the distance
between any sample and its closest sample is not smaller than ε/2. Now let K2 be
the point cloud obtained from K1 by replacing each sample p by a copy of K1 scaled
by ε2 and centered on p. Then we clearly have two plausible homotopy types for
K2, namely the one of the sphere or the one of the disjoint union of �K1 spheres.
This construction can obviously be iterated to get any number of different homotopy
types.

We end this section with a real world example. Figure 6 shows a sampled gearshift
together with its critical function. Critical values appear in three ranges. Critical val-
ues induced by neighboring sample points lie in the interval [0,2.5]. Then between 9
and 10, the neck of the model gets closed, which creates a void that fills in approxi-
mately at 20. We see that the critical function is high (larger than 0.4) on the interval
[2.5,9]. This implies in particular that the sampling is a (0.4,0.4)-approximation of
its 2.5-offset, which has the correct homotopy type, namely the one of a disk. Inter-
vals included in [10,20], which correspond to the homotopy type of a sphere, have
smaller values of μ and smaller ratios. This is in accordance with the fact that the
homotopy type of a sphere is visually less plausible than the one of a disk.



478 Discrete Comput Geom (2009) 41: 461–479

Fig. 6 A sampled gearstick
knob and its critical function

5 Discussion

Summary In this paper, we have formulated a parameterized set of sampling condi-
tions under which the geometry and topology of a compact subset of Euclidean space
can be recovered from an approximation of it. Also, these conditions allow one to de-
termine which compact sets are well sampled by a given compact set, at least to some
extent. Moreover, this task only requires to analyze the critical function of the given
compact set, which is a real function defined on the set of positive real numbers. Our
approach also yields new stability results for medial axes, critical points, and critical
values of distance functions.

Future Work Several important questions remain wide open. First, do our sampling
conditions allow one to recover differential information, for example, orientation of
tangent spaces? A key question in this respect seems to be the stability of the gra-
dient field of distance functions under Hausdorff perturbations. Second, the main
shortcoming of our approach is that it assumes that the magnitude of the perturbation
is uniform over the object, since we use Hausdorff distance. If this is not the case, it
might be difficult to find a uniform offset parameter leading to a correct reconstruc-
tion. Is it possible to generalize our ideas to design a nonuniform sampling theory in
the spirit of the one developed by Amenta and Bern? Finally, what can be said when
the ambient metric space is not Euclidean?
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