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Abstract—In synthetic aperture radar (SAR) processing, autofocus
techniques are commonly used to improve SAR image quality
by removing its residual phase errors after conventional motion
compensation. This paper highlights a SAR autofocus algorithm based
on particle swarm optimization (PSO). PSO is a population-based
stochastic optimization technique based on the movement of swarms
and inspired by social behavior of bird flocking or fish schooling. PSO
has been successfully applied in many different application areas due
to its robustness and simplicity [1–3]. This paper presents a novel
approach to solve the low-frequency high-order polynomial and high-
frequency sinusoidal phase errors. The power-to-spreading noise ratio
(PSR) and image entropy (IE) are used as the focal quality indicator
to search for optimum solution. The algorithm is tested on both
simulated two-dimensional point target and real SAR raw data from
RADARSAT-1. The results show significant improvement in SAR
image focus quality after the distorted SAR signal was compensated
by the proposed algorithm.

1. INTRODUCTION

Synthetic Aperture Radar (SAR) system achieves fine azimuth
resolution by taking the advantage of the forward motion of the
radar platform to synthesize a very large antenna aperture and special
processing of the backscattered echoes. A major challenge in SAR
system development involves compensation for undesirable variations
in the azimuth SAR phase history. Primary causes of these phase
variations include oscillator and other subsystem phase instabilities,
uncompensated sensor motion, and atmospheric propagation.
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The uncompensated along-track motions errors can cause a severe
loss of geometry accuracy and degrade SAR image quality. In a
typical airborne SAR system, an inertia navigation unit (INU) and
a global positioning system (GPS) are employed to provide real-
time data for motion error compensation. After conventional motion
compensation, autofocus techniques are widely used to improve image
focus. Autofocus refers to the computer-automated estimation and
compensation of residual phase errors in SAR imagery.

Basically phase errors may be categorized as low-frequency phase
errors and high-frequency phase errors. The detail classification of
phase errors can be found in [4]. Depending on its nature and
magnitude, phase errors can significantly degrade the image quality
in terms of geometry linearity, resolution, image contrast, and signal-
tonoise ratio (SNR). Basically the low-frequency phase errors affect the
mainlobe of the system impulse response while high-frequency phase
errors affect the sidelobe region.

Many autofocus algorithms have been proposed and developed
since the early SAR development. A common approach in existing
autofocus algorithms is to model the phase error as one-dimensional
multiplicative noise in the azimuth domain. In general, autofocus
techniques can be divided into two groups, namely model-based
and non-parametric. Model-based autofocus techniques estimate the
coefficients of an expansion that models the phase error. Elementary
model-based autofocus may determine only the quadrature phase
error (QPE), while more elaborate methods estimate higher order
polynomial-like phase errors as well. The mapdirft (MD) and multiple
aperture mapdrift (MAM) are examples of model-based autofocus
algorithms for low-frequency phase errors compensation [5]. The
MD and MAM’s performance is only guaranteed if the phase error
estimated is correctly modeled. However, these types of techniques
are often unable to extract high-frequency phase errors due to the
complexity of the problem.

Another group of autofocus techniques, commonly known as non-
parametric autofocus, does not require explicit knowledge of the phase
errors when estimate the phase errors. The Eigenvector method
(EV) [6] and Phase Gradient Autofocus (PGA) [7] are among non-
parametric autofocus algorithms capable of estimating a variety of
phase errors. However, these algorithms are generally time-consuming
as their implementation involve long Fourier Transform operations and
require large memory storage to store the entire synthetic aperture
length. In addition, the performance of PGA will be degraded if
the window size is not properly selected for high-frequency sinusoidal
phase errors estimation. It should be noted that most of the existing
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nonparametric algorithms apply mainly to spotlight SAR imagery. The
autofocus algorithm for spotlight mode imagery cannot be directly
applied to imagery formed by the conventional stripmap mode. The
main difference is that in the spotlight mode, the individual target
apertures coincide, but in the stripmap case the apertures are offset
from each other.

This paper proposes a non-parametric autofocus algorithm for
motion compensation in SAR imaging based on particle swarm
optimization. It is an algorithm that capable to minimize both the low-
frequency polynomial-like phase errors and high-frequency sinusoidal
phase errors in a distorted SAR signal. Furthermore, it is applicable
to spotlight and stripmap SAR imagery.

2. SYSTEM MODEL

Consider a SAR system that travels along cross-range (y) direction.
The x direction (slant-range) is the direction perpendicular to the flight
path of the radar platform and kx as it corresponding spatial frequency,
the SAR raw signal s(x, y) can be defined as [8]:

s(x, y) =

∫∫

r(xi, yi)g(x− xi, y − yi, xi)dxidyi (1)

where r(·) is the surface reflectivity pattern, and g(·) is the impulse
response of the system (the return due to a unity point scatterer).

The uncompensated or distorted SAR raw signal (Sme) in two-
dimensional (kx, y) domain is defined as

sme(kx, y) =

∫∫

r(xi, yi)e
−jkxxig(kx, y − yi, xi)e

jθedxidyi (2)

where θe(·) is a two-dimensional multiplicative phase error in (kr, y)
domain. The SAR autofocus algorithm is to determine or estimate the
phase error θe(·) based on the uncompensated SAR raw signal. The
phase errors of the distorted SAR raw signal can then be minimized
from the estimated phase error of the autofocus algorithm. Figure 1
shows the basic block diagram of a typical SAR autofocus algorithm.

SAR autofocus is inherently a two-dimensional estimation
problem. Two assumptions commonly made by most of the existing
autofocus algorithms are that the phase error is space-invariant and
range independent to simplify the problem. The proposed algorithm
also applies the two assumptions in simulation and real SAR raw
data processing. Space-invariant compensation is adequate in many
operations of SAR systems where motion measurement errors are the
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Figure 1. Block diagram of a typical SAR autofocus.

major cause of phase errors. This assumption makes the phase error
separable from the integral of Eq. (2). The second assumption relies
on the fact that the effects of azimuth (cross-range) phase errors
are generally more dominant than the range phase errors. With
these assumptions, the perturbed SAR raw signal in range-compressed
domain is given by

se(yb)= |sa(yb)| e
j(φa(yb)+θe(yb)) a=1, 2, . . . , A; b = 1, 2, . . . , B (3)

where subscript a refers to the ath range bin, yb is the bth azimuth
position along the synthetic aperture for A range bins and B azimuth
positions of a discrete sample of SAR image. The magnitude and phase
of the range-compressed data for range bin a are defined by |sa(yb)| and
φa(yb), respectively. The uncompensated phase errors, θe is assumed
common to all range bins and independent of a. Therefore, the vector
of phase errors, ϕ

e
is given by:

ϕ
e
= [0, θe(y2), . . . , θe(yb)] (4)

Low-frequency phase error is one having a period larger than the
coherent processing interval [9]. Motion measurement errors are the
primary source of lowfrequency phase errors. A practical model to
describe these errors in azimuth domain of the K-th order polynomial
is given as:

θeLF (y) =

K
∑

k=1

aky
k −

Lsyn

2
≤ y ≤

Lsyn

2
(5)

where ak is the unknown coefficient ofK-th order polynomial error and
Lsyn is the synthetic aperture length. Basically, linear phase error will
only make a displacement in the output image. Since constant phase
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errors do not affect SAR image focus, the error model in Eq. (5) does
not include zero-order term.

In addition, high-frequency sinusoidal phase errors have more
rapid variations over the coherent aperture [9]. The major source
of high-frequency phase errors is uncompensated vibration of the
antenna phase center. A practical model to describe the high-frequency
sinusoidal phase errors, θeHF (y) in azimuth domain is given in [4] and
can be rewritten as follows:

θeHF (y) =

Nh
∑

k=1

Rk cos(ωky) (6)

ωk =
2πfs

N
k (7)

where fs is defined as sampling frequency of the signal, N is the number
of discrete sample points, Rk is random noise amplitude at harmonic
frequency ωk andNh is the total number of effective harmonics in θeHF .

In order to minimize the phase errors, the task of the proposed
algorithm is to find the best estimate of θeLF and θeHF from the
distorted or uncompensated SAR raw data, se. In this paper, the
effects of the low-frequency phase errors and high-frequency sinusoidal
phase errors will be analysed and the proposed algorithm will be
utilized to recover the phase errors.

The proposed algorithm not only tested in two-dimensional
simulated data but also verified in actual SAR raw data extracted
from RADARSAT-1. The phase errors estimation is formulated as
a nonlinear optimization problem for both the low-frequency high-
order polynomial and high-frequency sinusoidal phase errors. These
problems are difficult to solve using traditional search techniques
because of its multimodal, non-convex nature, resulting in multiple
local minima.

3. PARTICLE SWARM OPTIMIZATION BASED
AUTOFOCUS (PSOA)

Particle swarm optimization (PSO) is an evolutionary algorithm
based on the intelligence and co-operation of group of birds or fish
schooling. It is a populationbased, stochastic optimization technique
first introduced by Kennedy and Eberhart in 1995 [10]. Compared
to conventional optimization techniques like genetic algorithms (GA),
PSO take the advantage of its algorithmic simplicity and robustness.
The major difference between PSO and other evolutionary algorithms
such as GA [11] is that PSO does not implement survival of the fitness,
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since all particles in PSO are kept as members of the population
through the course of the searching process. Each particle in the swarm
is influenced by its own successful experiences as well as the successes
experiences of other particles. In a PSO algorithm, the particles are
flying through multidimensional search space and have two essential
reasoning capabilities: their memory of their own best position and
knowledge of the swarm’s best position. A fitness function needs to be
defined in PSO algorithm to quantify the performance of each particle.
All the encountered positions of the particles are evaluated by the
fitness function to represent how well the particle satisfies the design
parameters. Finally, most the particles converge to global optimum,
which is expected to be the best desire result.

The PSR is used as the focal quality indicator to search for global
optimum solution in the SAR phase errors problem. The relationship
between peak power, spreading noise and Nh for SAR system can be
found in [4]. The objective and constraint functions of the PSO based
SAR autofocus algorithm for low-frequencyK-th order polynomial and
high-frequency sinusoidal phase errors may be summarized in Table 1.
The goal is to determine optimum solution that yields maximum PSR.

Table 1. The objective and constraint functions of the PSO based
SAR autofocus.

Given sγ(y)
Type of multiplicative phase noise or errors

Low-frequency K-th

order polynomial

High-frequency

sinusoidal

Objective function

PSR =
max(|Se(yb)|2)
var(|Se(yb)|2)

where

S(ω)=F
{

sγ(t)e−jγ(t)
}

PSR =
max(|Se(yb)|2)
var(|Se(yb)|2)

where

S(ω)=F
{

sγ(t)e−jγ(t)
}

Constraint function γ(y) −
K
∑

k=1

akyk = 0 γ(y)−
Nh
∑

k=1

Rk cos(ωk y)=0

for k = 1 to K for k = 1 to Nh

Bounded by −5 ≤ ak ≤ 5 0 ≤ Rk ≤ 1

The fitness function is a combination of the objective and
constraint functions as given in the following equation:
For low frequency K-th order polynomial phase errors:

θLF = PSR− E

[

γ(y)−
K

∑

k=1

aky
k

]

(8)
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For high-frequency sinusoidal phase errors:

θHF = PSR− E

[

γ(y)−

Nh
∑

k=1

Rk cos(ωky)

]

(9)

where E[x] = |x| denotes the constraint violation errors.
The PSO algorithm in conjunction with a local improvement

procedure for estimating low-frequency polynomial and high-frequency
sinusoidal phase errors can be found in [4] and may be summarized as:

1. Initialize a population of the potential solutions, called “particles”,
and each particle is assigned a randomized velocity and position.

2. Evaluate the fitness value for each solution vector using Eqs. (8)
and (9) to find the best solution which minimize θe.

3. Update the velocity and position of the particles according to the
following equations:

V t+1
id = ω×V t

id+c1×rand1×(pid−xt
id)+c2×rand2×(pgd−xt

id) (10)

xt+1
id = xt

id + V t+1
id (11)

where c1 and c2 are two positive acceleration constants
representing a “cognitive” and a “social” component, respectively;
ω is an inertia weight and rand1 and rand2 are two independent
uniform random numbers. The velocity of each particle is updated
according to its previous velocity (Vid), the personal best location
of the particle (pid) and the global best location (pgd).

4. Repeat steps 2–3 until the best solution is achieved, or a specified
maximum number of iterations is reached.

In actual implementation, the program was developed using
MATLAB� 6.5 application software running on an Intel Centrino�

Duo at 1.6GHz laptop with 1GB memory.

4. RESULTS AND DISCUSSIONS

In order to evaluate the performance of the proposed autofocus
algorithm, the following two standard tests are applied:

i) Two-dimensional (2-D) simulated SAR image test for point target.

ii) Two-dimensional (2-D) actual SAR image test (raw data extracted
from RADARSAT-1).

The one-dimensional point target response test is not included in
the performance analysis because it has been covered in [4]. For each
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test, two most common phase errors, namely low-frequency high-order
polynomial phase errors (LF-HPE), and high-frequency sinusoidal
phase errors (HF-SPE) are introduced into the system. The low-
frequency quadrature phase error is not included in the tests due to
this type of error can be easily removed by conventional model-based
autofocus techniques such as Mapdrift algorithm [5]. Table 2 shows
the summary of the two standard tests setup of the proposed algorithm
corrupted by LF-HPE and HF-SPE.

Table 2. Two standard tests setup of the PSO based autofocus
algorithm.

No Standard Test Simulated Phase Errors Focal Quality Metric

1 2-D Simulated 

SAR Image Fifth-order LF-HPE: 
=

=
K

k

k
keLF yay
1

)(�

(5� -rad Quadratic, 2� -rad Cubic, 4� -rad 

Quartic and 3� -rad Quintic) 

HF-SPE : 
=

=
hN

k
kkeHS yRy

1

)cos()( ��

(R1 = 0, R2 = 0.33� , R3 = 0.71 , R4 = 0.8� , R5 

= 0.6� , R6 = 0.5 ) ,  (For Nh = 5)

SNR (Signal-to- 

  Noise Ratio) 

IE (Image Entropy)

2 2-D Actual

SAR Image 

from 

RADARSAT

Fifth-order LF-HPE: 
=

=
K

k

k
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1

)(�
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=
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4.1. Two-dimensional Simulated SAR Image Test

The first test of the proposed algorithm performance examines the 2-D
simulated SAR image of a point target. The two primary focal quality
metrics used in evaluating the quality of two-dimensional SAR image
are SNR and IE. The SNR is a measure of the average signal power
(within −3 dB mainlobe) to noise power (in all sidelobes) ratio. On
the other hand, image entropy is a conventional focal quality indicator
used to measure how well an image is focused. The IE increases as
the image becomes more blurred and decreases as the image becomes
more focused. In other words, when the value of entropy is minimum,
it indicates that an image is best focused. Given that the SAR data is
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in discrete form, an approximation of the IE [12, 13] is given as:

IE = −
M−1
∑

m=0

N−1
∑

n=0

sm, n ln sm, n (12)

where sm, n is the normalized target reflectivity of an image.
Figure 2 illustrates a simulated SAR image of an ideal 2-D

SAR signal for a point target processed by Range-Doppler Algorithm
(RDA). Figure 3 and Figure 4 show a simulated 2-D SAR image
for point target corrupted by low-frequency high-order polynomial
and high-frequency sinusoidal phase errors respectively. The number
of both range and azimuth samples in the simulation test is 1024.
As depicted in Figure 3, the LF high-order polynomial phase errors
defocus the mainlobe and cause minor distortion in the sidelobes
regions of the point target. It can also be observed that the HF
sinusoidal phase errors cause pair echoes to appear as spurious targets
as shown in Figure 4.

Figure 2. Ideal 2-D SAR image.

Figures 5 and 6 show the compensated 2-D SAR image by using
PSO based autofocus algorithm for point target corrupted by LF-
HPE and HF-SPE respectively. The visual inspection of Figure 5 as
compared to Figure 3 shows some improvement of the image quality.
It can be observed from Figure 5 that the defocus of mainlobe and
sidelobe of the point target has been minimized after compensated by
PSO based autofocus algorithm. In addition, when compared Figure 6
to Figure 4 by visual inspection, significant image quality improvement
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can be observed where spurious targets caused by HF-SPE have almost
totally been eliminated.

Figure 3. 2-D SAR image corrupted by LF-HPE.

Figure 4. 2-D SAR image corrupted by HF-SPE.

Furthermore, the results of the SNR and IE as shown in Table 3
clearly indicate that the simulated 2-D SAR image for point target
shows great improvement in image focus quality after compensated
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by PSO based autofocus algorithm. From Table 3, it is found that
higher SNR and lower IE value are obtained for the simulated 2-D
SAR image as a result of the minimization of the phase errors by PSO
based autofocus algorithm. (It should be noted that the smaller value
of IE indicates better focus of the image).

Figure 5. 2-D SAR image corrupted by LF-HPE (compensated by
PSO autofocus).

Table 3. SNR and IE of the simulated 2-D SAR image.

Standard Test 1 5-th order LF-HPE HF-SPE (Nh = 5)

SNR (dB) IE SNR (dB) IE

1
2-D Simulated SAR

Image (Ideal)
9.2596 7.72792 9.2596 7.72792

2

2-D Real SAR Image

(Corrupted by

phase errors)

8.8315 8.73471 8.8491 9.52160

3

2-D Real SAR Image

(Compensated by

PSO based autofocus

algorithm)

9.0591 7.83289 9.2022 7.93074
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Figure 6. 2-D SAR image corrupted by HF-SPE (compensated by
PSO autofocus).

Figure 7. Selected portion of the fully processed image of
RADARSAT-1 SAR data.
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(a)

(b)

Figure 8. SAR image from RADARSAT-1 raw data. (a) Zoom-in
version for comparison with Figures 9 & 11, (b) Original version for
comparison with Figures 10 & 12.
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4.2. Two-dimensional Actual SAR Image Test

In order to further verify the effectiveness of the proposed algorithm, a
particular set of real SAR raw data [14] extracted from an existing
space-borne SAR sensor (RADARSAT-1) is employed. The image
entropy is used again as a measure of the image quality. However, the
SNR is not used in this test as the signal and noise is no longer clear
in the case of natural terrains of actual SAR image. RADARSAT-1 is
Canada’s first commercial Earth observation satellite and was launched
in 1995. It uses a SAR sensor to image the Earth at a single frequency
of 5.3GHz (C band) and its data are stored in Committee of Earth
Observations Satellites (CEOS) format. For this test, only a selected
portion (a port and bridge) of the fully processed image (Vancouver,
Canada) of RADARSAT-1 SAR raw data is employed as shown in
Figure 7.

As shown in Table 2, the raw data of selected portion are
corrupted by LFHPE and HF-SPE and the proposed algorithm is
applied subsequently to minimize the phase errors. Figure 8 shows
a processed SAR image of the selected portion of the RADARSAT-1
SAR raw data processed by RDA. In addition, Figure 9 and Figure 10
show the same SAR images but corrupted by the LF-HPE and HF-
SPE respectively. As illustrated in Figure 9, the LF-HPE defocuses
the image but the basic shape of the image (a port and bridge) still
can be maintained. This is due to the fact the LF-HPE mainly
defocus the mainlobe without affects much on the sidelobe regions.
The degree of distortion depends on the number of order and value of
the coefficients of LF-HPE. Figure 10 shows that the HF-SPE create
a lot spurious targets (ghost image) as the effects of the pair echoes.
On the other hand, Figures 11 and 12 show the compensated SAR
images from RADARSAT-1 raw data by using PSO based autofocus
algorithm which was corrupted by LF-HPE and HF-SPE respectively.
The visual inspection of Figure 11 as compared to Figure 9 shows a
little improvement in the image focus quality since the LF-HPE (up to
fifth-order for this case) did not introduce high degree of distortion
of SAR image as compared to HF-SPE. However, when compared
the Figure 12 to Figure 10 by visual inspection, significant image
focus quality improvement can be observed where most of the spurious
targets (ghost image) caused by HF-SPE have been removed.

Table 4 shows the results of the IE for the uncompensated
and compensated SAR images from RADARSAT-1 raw data. From
Table 4, it can be seen that smaller IE value is obtained for the SAR
images after compensated by PSO based autofocus algorithm. The
results of IE further confirmed that the proposed algorithm has robust
performance in estimating the LF-HPE and HF-SPE.
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Figure 9. SAR image from RADARSAT-1 raw data corrupted by
LF-HPE.

Figure 10. SAR image from RADARSAT-1 raw data corrupted by
HF-SPE.
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Figure 11. SAR image from RADARSAT-1 raw data corrupted by
LF-HPE (compensated by PSO autofocus).

Figure 12. SAR image from RADARSAT-1 raw data corrupted by
HF-SPE (compensated by PSO autofocus).
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Table 4. IE of the RADARSAT-1 SAR image.

Standard Test 2 5-th order LF-HPE HF-SPE (Nh = 3)

IE IE

1
2-D Simulated SAR

Image (Ideal)
16.5837 16.5837

2

2-D Real SAR

Image (Corrupted

by phase errors)

17.9090 18.5361

3

2-D Real SAR

Image (Compensated

by PSO based

autofocus algorithm)

16.7166 17.1098

Based on results of the standard test 1 and 2, it is clearly shown
that the proposed PSO based autofocus algorithm is a non-parametric
and capable of estimating all types of phase errors in two-dimensional
space. The strength of the PSO derives from the interactions among
particles as they search the problem space collaboratively [15]. The
main reason for the success of PSO algorithm lies in its particles ability
to communicate information they find about each other by updating
their velocities in terms of local and global bests.

5. CONCLUSION

A SAR non-parametric autofocus algorithm based on particle swarm
optimization has been presented. The proposed algorithm is capable
of estimating both low-frequency and high-frequency of phase errors in
two-dimensional space. It is also applicable to stripmap SAR imagery.
The simulated and real SAR raw data testing results clearly show that
the proposed algorithm is effective to minimize both the low-frequency
high-order polynomial and high-frequency sinusoidal phase errors.
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