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A SAR interferometric model for soil moisture
Francesco De Zan, Alessandro Parizzi, Pau Prats-Iraola and Paco López-Dekker

Abstract—There is a need for scattering models that link
quantitatively SAR interferometric observables to soil moisture.
In this work we propose a model based on plane waves and
the Born approximation, deriving first the vertical complex
wavenumbers in the soil as a function of geometrical and
dielectric properties and successively the complex interferometric
coherences. It is observed that soil moisture behaves on the
phase in a similar way as tomography does, breaking the phase
consistency in triplets of interferograms. The proposed model is
validated with L-band airborne SAR data; preliminary inversion
results based on interferogram triplets and coherence magnitudes
are presented.

Index Terms—SAR Interferometry, soil moisture, coherence

I. INTRODUCTION

A relation between soil moisture and SAR interferometric

phase has been recognized at least since 1989, when re-

searchers working with SEASAT data at the Jet Propulsion

Laboratory reported motions of a few centimeters that were

linked to watering [1] and were clearly visible in one inter-

ferogram. This observation was made over agricultural fields

in California and the proposed explanation was based on the

effect of clay and salt expansion.

After SEASAT, interferometric features corresponding to

moisture changes have been repeatedly observed in satellite

SAR data (e.g. ERS, Envisat, ALOS, [2], [3], [4]) and in

airborne and indoor experiments (e.g. [5], [6], [7]). Different

explanations have been proposed, the most recurrent being the

same provided originally in [1]: the vertical expansion of the

fields, causing a differential effect in the radar line-of-sight.

This explanation is now under challenge, especially thanks

to the works of Hensley and Morrison [8], [9]. Hensley has

noted that the phase change is sometimes too large to be

caused by a realistic deformation; Morrison has shown in

an indoor experiment that the motion of the surface of the

soil under study (sand) is much smaller than the motion

of the corresponding C-band phase shift. The experimental

observations require more satisfactory models.

In this paper we provide a new explanation of interferomet-

ric phases and coherences (Sect. II) and validate it with real L-

band data over bare surfaces (Sect. III). We present first a very

simple model; some obvious improvements and extensions

are discussed in a dedicated section of the paper (Sect. IV).

The main idea is that the differential propagation of the

electromagnetic waves into the soil causes the interferometric

effects, by affecting the vertical wavenumber in a thin layer

close to the surface, in dependence on the moisture level.

So far the subject of soil moisture estimation with SAR

has been addressed mainly with scatterometric/polarimetric
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techniques, focusing on amplitude properties. For a review

of the topic the reader is referred to [10]. Several relations

have been developed to link the back-scattered amplitude to

soil moisture levels. The main limitation for amplitude-based

techniques was found to be surface roughness, which can

influence backscatter independently of moisture. Differential

methods can reduce the impact of roughness, for instance

comparing the amplitude levels at two different frequencies,

polarizations or incident angles.

Different from amplitudes, the full potential of interferom-

etry for soil moisture retrieval is still largely unknown. It

makes sense to investigate it, especially considering the typical

precision of interferometric methods. Even if we were not

interested in retrieving soil moisture levels with interferometric

techniques, we could still be interested in predicting the effect

on the interferograms and the coherence maps, at least to be

able to compensate for it and isolate additional signals like

change detection and deformation.

A link between interferometric phases and propagation in a

wet soil was already mentioned in [1] but quickly discarded

in favor of the mechanical expansion hypothesis. The au-

thors of [11] showed –thanks to finite-difference time-domain

modeling– that small scattering bodies in the soil or moisture

gradients can produce phase and coherence variations. This is

very similar to what we propose here, the difference is that we

propose an analytical formulation. A simple analytical model

has the advantage of helping the physical intuition even though

it is usually less flexible compared to numerical simulation.

II. PROPAGATION AND BACKSCATTER MODEL

The model that we present consists of two distinct parts:

the propagation of the incident wave in the soil and the

backscatter. This artificial decoupling allows a simple ana-

lytical treatment and is justified by the assumption that the

backscatter is generated only by small particles or small

discontinuities in the soil. It is the very common first-order

Born approximation (see, e.g. [12]): First, the incident field is

computed as if the discontinuities were not present; second,

the backscatter is estimated as a function of the computed

incident field (it is actually a function of the total field, which

is what makes the exact problem non-linear).

Concerning the propagation part, the soil is modeled as a

uniform, lossy dielectric with a complex refraction index. The

imaginary part of the refraction index is linked to the energy

dissipation in the material (Ohmic losses). For the relation

between the moisture parameters and the refraction index we

refer to [13], which gives empirical curves for different soil

types and frequencies (one example is reproduced in Fig. 2).

The influence of the soil type is secondary, compared to

moisture and frequency.
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A. Oblique incidence on a lossy dielectric

The geometry of the problem is 2-D, once the reference

system has been properly aligned (Fig. 1 provides a sketch).

Fig. 1. The geometry of plane wave incidence and refraction on a flat lossy
medium.

The xz plane is the incidence plane (the azimuth direction

y is orthogonal to this plane) and the air-soil discontinuity is

parallel to x and is positioned at z = 0. Note that the z-axis

is directed downwards. The incident angle is θinc.

The incident field is modeled as a plane wave, using the

radar carrier frequency c/λ as a reference. We follow the

derivation in [14]. For the TE case (electric field orthogonal

to the plane of incidence, HH polarization) the expressions for

the incident and refracted (with primes) electric fields are:

E(r) = ŷE0 e−jkzze−jkxx (1)

E′(r) = ŷ τE0 e−jk′

z
ze−jk′

x
x (2)

The symbol ŷ indicates the unit vector in the y direction. The

complex amplitude of the incident field is E0. The symbols

kx and kz represent the complex wavenumbers in the two

directions (with primes in the second medium). The Fresnel

transmission coefficient for the TE case is

τ = 2kz/(kz + k′

z). (3)

The reflected field is not treated, because it does not

contribute to the (monostatic) radar signal.

Fig. 2. The variation of the real and imaginary part of the relative dielectric
constant according to [13]. The soil type is 51% sand and 13% clay and the
frequency is 1.4 GHz.

Now the goal is to derive k′

x and k′

z , i.e. the propagation

in the second medium (the soil), for a given incidence geom-

etry (kx = (2π/λ) sin θinc and kz = (2π/λ) cos θinc). The

horizontal boundary conditions have to be satisfied:

k′

x = kx. (4)

To derive k′

z let us observe that the wave equations hold

in the Fourier domain for both media: k2

x + k2

z = ω2ǫµ and

k′2

x +k′2

z = ω2ǫ′µ. The ǫ and ǫ′ are the two dielectric constants

at the radar operating frequency: For the first medium (air) we

can assume ǫ = ǫ0. Finally, once θinc and kx are set, k′

z is

only a function of ǫ′:

k′

z(ǫ
′) =

√

ω2ǫ′µ − k2
x. (5)

Since the medium is lossy, ǫ′ and k′

z are complex numbers. The

above equation has two solutions because of the ambiguity of

the square root, and we chose the “physical” one, i.e. the one

with a negative imaginary part. This corresponds to a wave that

attenuates going downward, so that |E′(x, y, z)| → 0 when

z → ∞. The constant amplitude planes in the second medium

are parallel to the interface, whereas the constant phase planes

are not. The phase propagates in the direction of refraction,

determined by kx and the real part of k′

z . In practice the

impedance contrast is so large that kx and the incident angle

have almost no influence on k′

z(ǫ
′).

This derivation has been conducted for the HH case. The

VV case is much similar for what we are concerned. In

particular, assuming isotropy of the medium, the propagation

in the lossy medium (k′

z) is independent of the polarization.

The media are assumed to be isotropic and linear: these

conditions are sufficient for reciprocity to hold [15], so that

the propagation effects from the antenna to the scatterer and

vice versa are identical. Because of this, the wavenumbers are

simply doubled in the following to account for the two-way

propagation.

B. Interferometric model

A focused pixel at range r0 and azimuth y0 can be mod-

eled as a three-dimensional integral of elementary scatterer

contributions from the soil, each with the proper propagation

phase:

p(r0, y0) =

∫

ξ′(x, y, z)e−j4π
r0

λ
−j2kxx−j2k′

z
z· (6)

·h(r − r0, y − y0) dx dy dz.

The integral has support in the half-space with z > 0; h(r, y) is

the end-to-end response of the SAR imaging system in the soil,

and ξ′(x, y, z) is the three-dimensional scatterer distribution.

The range r in the soil can be approximated locally by

r = r0 + x sin θ′ + z cos θ′, (7)

with θ′ being the refraction angle. Since the penetration is

very limited, the variation of θ′ has almost no effect on the

signal. Moreover, the ground-range and azimuth extensions of

the resolution cell are constant at all depths.
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With the substitution

ξ(z) =

∫

ξ′(x, y, z)e−j4π
r0

λ
−j2kxx· (8)

·h(x sin θ′ + z cos θ′, y − y0) dx dy

one can rewrite (6) to obtain the simple relation:

p(r0, y0) =

∫

∞

0

ξ(z)e−j2k′

z
z dz. (9)

This expression highlights that the only relevant direction for

our case is z (in particular the ground range x is irrelevant

because the propagation along the boundary will always be

the same). A change in soil moisture will induce a change in

ǫ′, thus in k′

z , and consequently in the integral (9).

In the last expression ξ(z) can be seen as a realization of a

stochastic process, characterized by the property

E[ξ(z)ξ∗(z0)] = f(z)δ(z − z0), (10)

where f(z) is a vertical scattering density profile (a positive

function).

The expected value of the interferogram between two im-

ages with different k′

z in the soil is computed as follows:

I(ǫ′
1
, ǫ′

2
) = E[p1 p∗

2
]

= E

[
∫∫

ξ(z1) e−j2k′

z1
z1 dz1

(

ξ(z2) e−j2k′

z2
z2 dz2

)

∗

]

=

∫

∞

0

f(z) e−j2k′

z1
z(e−j2k′

z2
z)∗ dz (11)

making use of (9) and (10), which allows simplifying the

double integral (the product of p1 and p2) to a single one.

Each scatterer will interfere coherently only with itself, with

the complex weighting given by the local phasor. The phase

effect is thus a consequence of the differential propagation in

the vertical direction.

In the particular case of a uniform vertical profile the

integral (11) gives:

I(ǫ′
1
, ǫ′

2
) =

1

2jk′

z1
− 2jk′

z2

∗
(12)

and the complex coherence results:

γ =
I(ǫ′

1
, ǫ′

2
)

√

I(ǫ′
1
, ǫ′

1
)I(ǫ′

2
, ǫ′

2
)

(13)

=
2j

√

Im(k′

z2
)Im(k′

z1
)

k′

z2

∗ − k′

z1

(14)

This expression gives both interferometric phases and coher-

ences.

Figure 3 reports an example of coherence magnitudes as

a function of master and slave moisture levels. Generally

speaking, the more the two moisture values differ, the smaller

is the coherence.

Similarly, Fig. 4 reports the interferometric phases. There is

a very high sensitivity to small moisture changes. For example,

a moisture change from 20% to 21% corresponds to 10 deg

interferometric phase variation. For the phases we are ignoring

an additional contribution due to the complex transmission

coefficient τ at the boundary. The phase of the transmission
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Fig. 3. The modulus of the coherence (14) as a function of soil moisture
for a soil 51% sand and 13% clay acquired in L-band from and incidence of
45 deg (ǫ modeled following [13]).

coefficient does not affect the coherence moduli. Figure 5

reports the phase jump for the transmitted field at the interface

for the TE un TM cases. As it was noted already in [1],

the magnitude of this phase is very small compared to the

variations observed in real data. It is also much smaller than

the phases predicted by our model and it would be the only

aspect to distinguish the HH and VV interferograms.

0.0 0.1 0.2 0.3 0.4 0.5
master moisture (mv)

0.0

0.1

0.2

0.3

0.4

0.5

s
la

v
e

 m
o

is
tu

re
 (

m
v
)

interferometric phase

Fig. 4. The interferometric phases in degrees according to (14) as a function
of soil moisture for a setting as in Fig. 3. The phase variation is non-linear.

According to the presented model, the interferometric

phases have a non-linear behavior which can be understood

examining Fig. 4: depending on the image taken as a reference,

the total phase excursion looks larger or smaller. This is an

indication that we are not seeing a single object, but more than

one, similarly to what happens in tomography. Another way to

see it, is to say that the covariance matrix of the acquisitions is

not real, even after compensating for a free-space propagation

term.

From the coherence expression (14) it follows that a mere

change in the penetration depth does not change the interfero-

metric phase. This is because a change in the penetration depth
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Fig. 5. The phase of the (one-way) transmission coefficient for different
moisture levels and the parameters of Fig 3.

is linked to a change in the imaginary part of k′

z (remember

the propagation is exp(−jk′

zz)), while a change in the vertical

phase is linked to a change in the real part of k′

z . If the real

part of k′

z stays the same, so will the phase of the coherence,

since the denominator in (14) becomes purely imaginary, like

the numerator.

It is a common misconception that a pure change in the pen-

etration depth can yield changes in the phase. One can think

that the change in penetration depth between two acquisitions

is equivalent to adding or subtracting scatterers. New deeper

scatterers in the image with drier conditions are not correlated

with the ones visible in the image with wetter conditions, so

that finally they do not contribute to the interferometric phase

but only to the coherence loss. The phase effect, as explained

by this model, is essentially due to the common scatterers

which are taken with different phases due to propagation

effects. Penetration plays a role only in weighting the scatterers

(hence the differential propagation phases) at different depths.

III. VALIDATION WITH REAL DATA

In this section we report some results obtained with data

from the ESA AGRISAR campaign of 2006 [16]. The dataset

comprises, among others, 12 SAR images acquired by the

E-SAR L-band system of DLR and ground measurements

of moisture. The test site is near the village of Demmin in

northern Germany. The acquisitions span three months and

a half, between April, 19th and August, 2nd (see Tab. I).

Figure 7 displays as an example the differential interferometric

phase of a pair of images in the dataset. As it is often the case,

phase discontinuities follow the boundaries between different

agricultural fields. Since vegetation is not modeled, we picked

a corn field (field number 222 in [16]) which is expected to

have a delayed growth. In-situ measurements of soil moisture

are available only for neighboring fields, but the values are

similar for different fields (see Fig. 12).

A. Forward model

We predict complex coherences using moisture values from

one of the available fields, namely field number 101, us-

ing (5) and (14). Fig. 6 allows comparing predicted and

TABLE I
ACQUISITION DATES OF THE E-SAR IMAGES DURING THE AGRISAR

CAMPAIGN OF 2006. THE SECOND COLUMN REPORTS THE

CORRESPONDING DAY OF THE YEAR (DOY).
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Fig. 7. The interferometric phase between May, 24th and June, 6th. Since
the phase has not been calibrated, only relative effects are meaningful. Phases
are expressed in degrees.

observed coherence magnitudes, using 8 images acquired

between May, 11th and July, 12th. Each subfigure collects the

coherences for a different master. The polarization channel is

HH+VV; similar results are also obtained for HH and VV.

In this time span the agreement is generally good except for

the last image (July, 12th) which seems to be uncorrelated

possibly due to corn growth.

Before and after the selected time span, the model is

not valid: the observed coherence is generally low. Before

May, 11th it is probably due to plowing, since the two available

images are totally uncorrelated with the rest. From July, 12th

on (2 more images) it might be that the corn has grown too

much, and the model is too simple. Another indication of the

loss of validity of our model is the polarimetric phase between

the HH and VV channels. The Fresnel coefficients give a very

small contribution, and consequently the polarimetric phase is

expected to be very small. However this is observed only from

May, 11th to June, 13th according to Fig. 9.

In order to compare the interferometric phases directly,

one should start with a good calibrated phase and have no

motion in the area of interest. In order to circumvent this

problem, we introduce the concept of phase triplets which are

immune to phase calibration and also provide an insight into
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Fig. 6. Comparison between modeled (dashed lines) and observed (solid lines) coherences on field 222 of the AGRISAR 2006 dataset for the HH+VV
polarization. The model seems to lose validity during July, possibly because of crop growth (corn).

the consequences of our model.

Phase triplets are phases of the three possible interferograms

that can be made with three images. In the easiest case, one

would expect that these phases match in such a way that

having two of them allows to systematically predict the third,

apart from decorrelation effects. For example, if ϕm,s is the

multilooked phase between master m and slave s, with three

images one would expect the triple difference

ϕ1,2,3 = ϕ1,2 + ϕ2,3 − ϕ1,3 (15)

to be small (modulo 2π). Still, the model predicts system-

atic mismatches of tens of degrees. These are confirmed by

observations in different polarimetric channels, as reported in

Fig. 8.

It is worth noting that ignoring the small phase jump at the

interface, i.e. the phase of the transmission coefficient, has no

effect on the quantity ϕ1,2,3, which remains unchanged when

one image is multiplied by an arbitrary constant phase term.

B. Moisture inversion experiment

In this section we report about the inversion of moisture

values from L-band SAR data. The inverse problem is always

more delicate compared to the forward model, and we do

not intend to validate an inversion algorithm, considering the

limited data available.

There are several possibilities to invert the problem. Inver-

sions based only on coherence magnitudes are prone to an

ambiguity problem, since both increasing and decreasing soil

moisture can produce the same coherence loss. The example

we present is thus an inversion conducted using coherence

magnitudes and phase triplets. Looking at Fig. 6 it seems

that the model is valid until June, 21st: after that date an

additional decorrelation term should be added, associated with

crop growth. Because of this, the inversion results are based

on six images between May, 11th and June, 21st.

Fig. 8. Predicted and observed phase mismatches in all possible triplets
obtained with the 7 images between May, 11th and July, 5th.

Fig. 9. The polarimetric phase between HH and VV channels.
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The moisture values are obtained minimizing the following

figure of merit F :

F =
∑

n>m>k

|ϕn,m,k − ϕ′

n,m,k|
2

2π +
∑

n,k

|γn,k − γ′

n,k|
2. (16)

The primed symbols are the observed quantities, whereas the

unprimed ones are the corresponding quantities predicted by

the forward model, which is a function of the moisture values.

The phase differences are always expressed in the ambiguous

interval [−π, π] and the minimization is constrained to yield

moisture values between 0 and 1. The first moisture value of

the series is forced at 10% since our current understanding

is that this technique is unable to yield absolute moisture

levels, but only relative changes. It is thus necessary to provide

a starting value. This might be unnecessary in the presence

of long series of observations, which could offer calibration

opportunities.

Results for the inversion based on coherence magnitudes

and phase triplets are reported in Fig. 10 for the HH and VV

channels, although there is no significative difference between

them. For comparison, in situ measurements are reported in

Fig. 12.

Fig. 10. Moisture from model inversion on field 222, supposed to be bare
[16]. The first value is forced at 10%. The averaging window is 50×200. The
inversion algorithm is based on phase triplets and coherence magnitudes.

Other inversion possibilities involve using phase-only infor-

mation, which might be more robust to temporal decorrelation.

If the phases are well-calibrated, also with respect to motion,

then they might be used directly, otherwise one could resort

to the triplets, which are immune to any phase offset. Results

based exclusively on the triplets are reported in Fig. 11.

In this preliminary inversion experiments, the results are

comparable to in situ measurements. Apparently the triplet-

based method is able to give good results also including

the acquisition of July, 5th, which could be interpreted as

an indication that phases are more robust than coherence

magnitudes.

IV. DISCUSSION

The proposed model seems to fit well with experimental

data in a particular case, however further investigations and

Fig. 11. Moisture from model inversion on field 222, supposed to be bare
[16]. The first value is forced at 10%. The averaging window is 50×200. The
inversion algorithm is based on phase triplets.

Fig. 12. In situ measurements of moisture in the top 5cm of soil in fields
nearby field 222. (Data provided by the European Space Agency, collected
by the University of Kiel)

adaptations are needed to assess its validity beyond the given

example.

One issue consists in the possible presence of surface

roughness and the corresponding surface scattering compo-

nent. Such component is expected to be less relevant for low

frequencies and smooth surfaces, so that experiments with

P-band would be very interesting. A surface component can

affect both interferometric coherences and phases limiting the

possibility of inversion. One might include it in the models, for

instance resorting to polarimetric techniques and/or including

amplitudes in the analysis. A similar discussion could be held

for a vegetation component.

The penetration predicted by the proposed model is very

limited: For example in L-band one finds two-way attenuations

in the order of one to several decibels per centimeter (1-

3dB/cm for moisture levels in the range 10%-50%). For this

reason long wavelengths are interesting, since it is expected

that they would be sensitive to moisture values in deeper

layers.

Another issue involves the hypotheses of uniform scatterer

density and uniform moisture in the vertical direction. The
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larger the penetration depth, the more questionable are the

hypotheses. Different vertical scattering profiles are in prin-

ciple easy to model with the Born approximation (integrating

analytically or numerically Eq. 10). It is also relatively easy to

model the phase variations in the vertical direction induced by

a horizontal stratification of moisture. However it is unlikely

that all these parameters can be inverted from the data, so that

the choice of relevant parameters will be critical.

In this work we have been careful to select observables

which are not sensitive to phase changes related to a classic

deformation term. In this way we could avoid the need for

accurate phase calibration; at the same time, we must say that

our observations are not ruling out deformation as a possible

additional explanation for phase changes. The observations of

the interferogram mismatches exclude that the sole effect of

moisture change is a rigid motion of the scattering layer.

V. CONCLUSION

A model based on plane waves and Born scattering is able to

relate moisture variations to SAR interferometric observables,

at least for bare fields acquired at L-band. According to

this model, large phase and coherence effects can be simply

explained with the differential vertical propagation of the elec-

tromagnetic waves, a function of different dielectric constants.

An unexpected property predicted by the model, the non-

conservativeness of phases in triplets of images, has been

observed in the data. This property might be used in the inverse

problem, especially because it is insensitive to arbitrary phase

offsets. On the other hand, its recognition calls for a revision

of the optimal estimators derived for SAR interferometry with

stacks (e.g. [17]), at least for some scenarios, taking into

account non-real coherency matrices.

Vegetated soils require probably more complicated models:

polarimetric techniques could help separating the various

contributions.

Inversion of moisture variations from interferometric phases

is likely to be feasible from a series of frequent observations,

even though absolute figures might have to be obtained in a

different way.
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