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ABSTRACT 1. INTRODUCTION

Parametric representations used for symbolic simulation of circuits ~ Symbolic simulation is a widely applied technique for the anal-
usually use BDDs. After a few steps of symbolic simulation, state Ysis of complex transition systems and synchronous circuits in par-
set representation is converted from one parametric representatiorficular. In symbolic simulation, the transition relation is unwound
to another smaller representation, in a process called reparameterisn times into an equation that represents the set of states that is
zation. For large circuits, the reparametrization step often results in reachable in exactlyn steps. The simulator keeps separate equa-
a blowup of BDDs and is expensive due to a large number of quan- tions for each state variable. They are parameterized in the initial
tifications of input variables involved. Efficient SAT solvers have state variables angh copies of the inputs of the circuit. Thus, the
been applied successfully for many verification problems. This pa- Set of states is stored ingarametric representation

per presents a novel SAT-based reparameterization algorithm thatis An efficient way to store and manipulate this parametric repre-
largely immune to the large number of input variables that need to sentation of the set of states is crucial for the performance of the
be quantified. We show experimental results on large industrial cir- algorithm. Such a representation describes a set of states as a vector
cuits and compare our new algorithm to both SAT-based Bounded (f1, f2, - - . , f») of functions in paramete® = {p1,p2,... ,pm }.
Model Checking and BDD based symbolic simulation. We were Each parametric functioff; gives the value of one state variable.
able to achieve on average 3x improvement in time and space overFor example, the set of statés= {10, 01} is represented para-
BMC and able to complete many examples that BDD based ap- metrically as(p1, —p1). In this case, there is only one parameter

proach could not even finish. p1.
Most implementations use BDDs to represent these funct@ns [

7,1, 12]. These BDDs may grow exponentially in the number of

Categones and SUbJeCt DeSCI’IptOI‘S simulation steps, as the number of variables grows. In order to

B.5.2 Hardware]: Register-Transfer-Level Implementatioribe- address this problem, symbolic simulators compute a new, equiva-
sign Aids J.6 [Computer-Aided Engineering]: [Computer-Aided lent parametric representation. The new representation can be sig-
Design] nificantly smaller since it usually requires fewer variables. This
step is done as soon as one of the BDDs becomes too large. The
General Terms process of converting one parametric representation to another is
L ) calledreparameterizationIn Coudert et al. §] and Aagard et al.
Verification, Algorithms [1], the reparameterization algorithm first converts the parametric
representation into characteristic function form and then parame-
Keywords terizes this form. InT], an algorithm is given for computing set

union in parametric form. Algorithms for reparameterization and
quantification are given that are based on this set union algorithm.
However, the reparameterization is done using BDDs, hence as the

*This research was sponsored by the Semiconductor Research Corporationpumber of S|_mulat|(_)n_steps grows, the algorithm 9“'0"'3_/ becom_es
(SRC) under task ID 1027.001, the National Science Foundation (NSF) un- VEry expensive. This is due to the fact that each simulation step in-
der grant no. CCR-9803774, the Office of Naval Research (ONR), the Naval troduces more input variables, which need to be quantified during
Research Laboratory (NRL) under contract no. N0O0014-01-1-0796, and by reparameterization.
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[3]. The advantage of this approach is twofold: First, all input vari-

ment if there is any. If not, the solver returns that the formula

ables are quantified at the same time, and second, the performancé unsatisfiable. SAT solving is one of the classical NP-complete
of SAT-based enumeration procedure is largely unaffected by the problems. Over the last 4 years, propositional SAT checkers have

number of input variables that are quantified.

demonstrated tremendous success on various classes of SAT for-

We demonstrate the efficiency of this new technique using large mulas. The key to the effectiveness of DPLL based SAT checkers

industrial circuits with thousands of latches. We compare it to both
SAT-based Bounded Model Checking (BMC), which also unrolls
the circuit for a finite number of steps and also with BDD-based
symbolic simulation. Our new algorithm can go much deeper than

like Chaff [11], is non-chronological backtracking, efficient con-
flict driven learning of conflict clauses, and improved decision heuris-
tics. A full description of SAT checkers can be found in the refer-
ences mentioned above. We would just like to make the following

a standard Bounded Model Checker can. Moreover, the overall observations.
memory consumption and the run times are, on average, three times The efficiency of SAT procedures has made it possible to han-
less than the values measured using a Bounded Model Checkerdle circuits with thousands of state variables, much larger than any

The BDD-based symbolic simulator could not even verify most of
the circuits that we used.

Notations and Conventionsve will use the following nota-

BDD-based model checker is able to do at present. The strength
of various SAT checkers lies in their implementation of constraint
propagation, non-chronological backtracking, decision heuristics,
and learning. In our algorithm, we use the Chaff SAT checkéy, [

tions and conventions throughout the paper. Sets will be denoted byas it has been demonstrated to be one of the most powerful SAT

capital letters, as iy for the set of stated/ for the set of state vari-
ables,I™ for the set of input variables, arfd for the set of para-
metric variables. We use a superscriptreffor input variables to
denote input variables accumulated owesteps of symbolic sim-
ulation. We will always usen for the number of simulation steps
andn for the number state variables. An ordered tuple of lower

checker on a wide class of problems.

In BMC, the size of the SAT instance grows linearly with the un-
winding depth. However, for very large circuits, even linear growth
can be prohibitive: Either the formula already exceeds the memory
limits, or the SAT instance is too hard for the SAT solver. No at-
tempt is made to reduce the size of the representation.

case letters denotes a vector of variables. For example, the state BMC is not at all effective for showing that a property is true

variable vector with: state variables igv1, v2, ... ,v,). The vec-

unlessm exceeds the completeness threshold for the design and

tor is denoted by using a bar over the symbol. For example, a statethe property. Since this completeness threshold is, in most cases,

vector will be denoted by or in full form by (vi,v2,... ,v,). A
particular parametric assignment is giveniy (p1,p2, ... ,Dk).
The set of all possibl@™ vectors ofn state variables i§,,, the set
of all possible2® assignments té parameters i, and the set of
all possible input vectors iBV™. Other uppercase calligraphic let-

prohibitively large, several extensions to BMC have been proposed
in order to detect the absence of counterexamples:

In the counterexample guided abstraction refinement framework
(CEGAR) (e.g. #]), model checking is performed on a safe ab-
straction of the model. Thus, if the property holds on the abstract

ters denote subsets of these sets. When the number of component&odel, it also holds on the concrete model. If this is not so, an

in a vector is clear, we will often drop the subscripts, and just use

S, P, and so on. Functions will be denoted by lower case symbols,

e.g.,f(I™). Inthe brackets after a function symbol, the list of vari-

ables on which the function depends (the support set) is given, e.g.

hi(p1,p2,...,pi). The value of a function for a particular assign-
ment to its support variables is given &5(p1,pe, ... ,p:) or in
shorth}(p). A vector of functions will be denoted by a bar over
the top of the function symbol. For example, a vector of parametric
functions ish(P) = (h1(P), h2(P),... ,hn(P)). The symbols

« andg will denote the constants 0 or 1.

2. BMC AND EXTENSIONS

Model checkindg5] techniques suffer from the state explosion
problem. In case of BDD-based symbolic model checking this
problem manifests itself in the form of unmanageably large BDDs.
This problem is partly addressed Bpunded Model Checkin@MC)
[2]. In BMC, the transition relation for a complex circuit and its
specification are jointly unwound to obtain a Boolean formula, whic

is then checked for satisfiability by using a SAT procedure such as

Chaff [11]. If the formula is satisfiable, a counterexample can be
extracted from the output of the SAT procedure. If the formula

is not satisfiable, the circuit and its specification can be unwound

abstract counterexample is obtained from the model checker. This
abstract counterexample is then used to constrain the states in a
Bounded Model Checking SAT instance. If the constrained BMC

,SAT instance is satisfiable, the abstract counterexample can be sim-

ulated on the concrete model and a bug is found. If not, the abstrac-
tion is refined using various heuristics.

In [10], this framework is changed as follows: An abstract coun-
terexample is no longer obtained. The only information of interest
is thelengthm of the abstract counterexample. This lengihis
then used as the bound for a normal, unconstrained BMC instance.
If the BMC instance is satisfiable, a bug is found. If this is not the
case, information from the SAT solver is used to generate the next
abstract model.

In [9], a new framework is introduced: The algorithm initially
performs Bounded Model Checking for somesteps in order to
refute the property. If this fails, the proof of unsatisfiability ex-
tracted from the SAT solver is used to simplify a fixed-point com-

hputation. The purpose of the fixed-point computation is to detect

the case when the property actually holds. This may fail, and if so,
the algorithm is repeated with an increased valugof

All three approaches therefore solely rely on Bounded Model
Checking to refute the property. The extensions are used to detect
the case that the property is true.

more to determine if a longer counterexample exists. This process
terminates when the length of the potential counterexample exceeds,
its completeness threshgld (i.e., ispsufficiently longto ensF:Jre thatno - PARAMETRIC REPRESENTATION
counterexample exist8]) or when the SAT procedure exceeds its Characteristic functions and parametric representations are two
time or memory bounds. BMC has been used successfully to find well known methods of representing a set of Boolean vectors. A set
subtle errors in very large circuits. of Boolean vectors over the state variables represents a set of states.
The enabling technique for Bounded Model Checking is propo- Consider a sef of vectors over the variablé$ = {vi,v2,... ,vn}.
sitional satisfiability solving (SAT). A SAT solvers reads a formula As described abové, = (v1,v2, ... ,v,) denotes a particular vec-
in conjunctive normal form (CNF) and finds a satisfying assign- tor or a particular assignments to the variable¥inlf the charac-
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teristic functiong (V') represents the sétof vectors, then in new parameter®, where|P| <« |I™|. This is why reparam-
S = {08, |E0) =1} (1) eterization is useful. Obviously, a set of vectorsrirvariables
can be represented by parametric functions efriables. Hence,
|P| < n. This process of converting from one parametric represen-
tation to another is calleegparameterizatior6, 7].
For the example above, another parametric representation in just
two parameter®® = {p1,p2} is (h1(P) = p1,h2(P) = —p1 V

Example.The following example will be used throughout the
paper. Letr; andvs be two Boolean state variables. Consider the
set of stateq01, 10,11}. This set of states has the characteristic
functioné(V) = vy V va.

On the other hand, if is represented parametrically with a vec-
tor of n functions f(P) = (f1(P), f2(P),..., fa(P)) overm
parameters® = {p1,p2,... ,pm }, then

There has been some work on reparameterization using BDDs.
The most complete description can be foundinl]. The BDD-
based method quantifies the input variables one at a time from the

S={0€Sn | EPm[vr=friB)A...Nvn = fu(D)]} (2) parametric representatioh(/™). Each quantification involves a
Informally, the set of vectors i§' is given by the range of the vec-  parametric union of the two sets, each of which could require a
tor of functions(f1(p), f2(p), ..., f-(P)), wherep ranges over number of BDD operations, linear in the number of state bits. The
all possible Boolean vectors iR,,,. For the running example, = BDD-based algorithm had ™| variable eliminations in the outer
one possible parametric representation with three param@ters loop, and the inner loop iterates over all state bits. Thus, to elimi-
{p1,p2,p3}is nate all/™ variables|I™| - n BDD operations are needed, [1].

(f1(P) = p1 Ap2, f2(P) = —(p1 A p2) V p3). We present a SAT-based reparameterization algorithm. Our SAT-

based algorithm does this in one pass over the state bits. The outer
loop iterates over the state bits, and the inner computation quanti-
fies all I'™ variables in one run of the SAT checker. The details of
the algorithm are described in the next section.

Note that, in generalp # n. For the particular case of symbolic
simulation that we will discuss later, the number of parameters will
be equal to the number of input variables to the circuit times the
number of simulation steps, which can be much larger than

A parametric representation can be easily converted to a charac-

teristic function by using the follaaing Scuston 4. REPARAMETERIZATION USING SAT
§V) =3l = AED A Aon = 1Dl G) 49 Background

In other words £ () is true if the there exists an assignmegrto
the parameters such that the parametric funcfidp) evaluates to .

01, Ja(p) evaluatess, and so on. This is what s desired, siwe ¢ SSSTCCl IR0 L L TS 8 S e O he
is supposed to be true exactly for the vectors in the set. In the case, qu u : ’

of symbolic simulationp consists of the initial state and the inputs fu.nctlonshi will have a spgmﬂc structure, in that t.he functlbn
on the path to the statd®). will only depend on the variable®1, p2, . .. ,p;: }. This will be ex-

Note that the conversion into a characteristic function requires plicitly denoted byh. (p1,... ,pi). We will derive these functions

Boolean quantification over the parameters. If the functions are :gvf/r;efc?rr?he:#égi:’ﬁ6i'céhc;}'tllqguslttlggyéi?éctgehvy parametg{ al-
represented by BDDs, then this quantification becomes harder as o Vi i (P15 pic1)
the number of parameters and the number of state variables denote the Boolean cogdltlon under which the state it forced
increase. A similar quantification problem occurs in BDD-based g?titarlje \ézlufvth?r;]dtLdti (f o 'b'u;f?“fl)rdeg?tetthke I?/o?leag Co:é
image computation when a transition relation is represented in con-hc on unde ’ Cd E; Stﬁ eB IS orce d.:’ a ed auehm,h_a
junctively decomposed form. In that case, the variables to be quan- fria(é)ié chc; g;;g V;Eg ZS n?)t fg?czzquﬂhlelrog grnl)e rWhienis
tified are the present state and input variables of the circuit, while . ) :

the next state variables are not quantified. For the sef01, 10, 11} in the running example, suppose we let

Consider a circuit” with p inputs andn state variables. Sup- the first bit be represented by free parameter If the first bit

pose the circuit is symbolically simulated for steps, by building is 0, then the. §econd bit |s‘forged to be 1 in “}e set. Thus, the
Boolean expressions that represent the values of each of the stat oolean cqfno#nc;p ur;)(_je_r V‘l’h'ﬁm |shforced todlb'.sl? (fp1) - Epl'_ h
bits. After them-step simulation, suppose each statebis given oreover:, Ifthe firstbitis 1, t eﬂt e second bit Is ret; to be e':j er
by a Boolean expression denoted by the funcfig™). The vari- 0.0 1- ThUS/2(p1) = p1. Note thath (p) = 0, since the secon

m P ; m ; bit is not forced to 0 in any condition.
ables/™ appearing in each functioh (I™) are thep-m inputs plus The following decomposition aff; was introduced in7]:

The algorithm computes functionis; (P), ho(P), ... , hn(P)

then initial values of the state variables. Thys"*| = p-m + n.

We will denote the set of input vectors ovEF variables byl hi(p1, - pi) = i (p1, -, pi-1) V (pi A RS (p1, - piz1)) - (4)

and a particular input vector by Powerful symbolic simulators  Intuitively, Equation4 is interpreted as follows. The value of bit

can simulate a large number of steps, makingm > n. The v; is 1 precisely under the conditidrf, hence the first term in the

set of reachable states in steps, as a set of state vectorslin equation. If the parametefs to p;,—1 do not force the bit; to

variables, is given by be 1, then the bit is given by the free parameteunder the free
S = {pe& | JTeW™ v = f1(0) AAvn, = fo(D]} choice conditiorhs.

The three condition&?, h; andh$ are mutually exclusive and

Thus symbolic simulation builds a parametric representation of the
complete, thus

set of states reachable in exactlysteps, where the parameters are

input variables™. R = =(hi VRY) =—hi A=hY. (5)
Usually, the number of parametdiS™ | is very large. The num- Continuing our example, we géb(p1,p2) = —p1 V (p2 A p1),

ber of possible valuations of these variable<li&"!, while the which is equivalent to the smaller parametric representatjonv

number of possible valuations of the state variablex'is There- p2 We presented in the previous section. It should be evident that

fore, many vectors id™ variables will map to the same state vec- A, hl, andh¢ depend only on the parametersto p;_;. Assign-
tor. Hence, it should be possible to reduce the number of parame-ing some specific value to a bit restricts the set of choices for the
ters. We aim at finding new functioris (P), h2(P), ... , hn(P) following bits. In our example, choosing = 0 restricts the value
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of the bitv, to 1. In this special form of a parametric represen-
tation, the parametric functioh; is restricted only by the choices
made for the earlier bits. Thus, the critical part of compufings
computing the three conditiorig , k9 andk$, which we describe
now.

4.2 Computings! and ng

Let us recall the meaning &f : It denotes the Boolean condition
in variables{p, .., pi_1 } under which the™ bit v, is forced to take
the value 1. In the given representatipfi™ ), bit v; is constrained
by other bits in what values it can take. Initially, these constraints
are given by the common variabl€%. We want to re-express these
constraints inP variables. Le{p = (p1,p2, .., pi—1) be a specific
assignment which makes the Boolean condifiglip:, ... ,pi—1)
true. Then all input vectors € W™, for which the functions
fi,..., fi—1 evaluate to the same valuefas, . .. , h;—1, are said
to be confirming to the assignmefy:, p2, .., pi—1). In essence,
the evaluation of the new parametric functions and the old para-
metric functions is the same for these input vectors. We introduce
the restriction functionp; (p1, .., pi—1, I™) to find this set of con-
firming inputs. The functiorp; restricts the set of input vectors
W™ to only those that conform with the given assignment to the
parameters. Formally, it can be written as

pi(prs o pim1, I™) = N\ hy(pr,spi) = fi(I™). (6)

Note thatp, = 1. Now the conditiorh; can be easily expressed
as follows: We want a Boolean condition{p1, .., p;—1 } variables
under whichw; is forced to take the value 1. So if an assignment
(p1, P2, .., Di—1) makesh; true, then that means that for all input
vectorst that conform with this assignment, the functififz) eval-
uates to 1. Hence,

hi (p1, - pic1) = VI (pi(p1, -, pi1, I™) = fi(I™) = 1). (7)
Analogously,h? can be expressed as
h?(ply "7p’i—1) = VI"TL (pz(pl, -5 Pi—1, Im) :>fl(Im) = 0) . (8)

Equation5 can be used to compufe, given bothh; andhS.
Thush; can be easily computed. Note that = p1, unless the bit
v1 is alwaysl or 0, in which caséi; = 1 or hy = 0. This follows
automatically fronp; = 1.

Thus, Equationd to 8 give us the following high level reparam-
eterization algorithm, that we callKDEREDREPARAM.

Hnput: fFI™) = (f1I™), f2(I™), ..., fn(I™)).
Il Output: A(P) = (h1(P), ha(P), ..., hn(P)).
ORDEREDREPARAM(F(I™) = (fi(I™), ..., fn(I™))

1 fori=1ton

2 pi—1

3 forj=1to7—1

4 pi — pi A\ (hj = f;)

5 hi —YI™(p; = f; = 1)

6 h) —YI™.(p; = f; = 0)

7 Rt vAD)

8 hi — h} V (pi A )

9 endfor

10 return (h1(P), ha(P),... ,hn(P))

Figure 1: High Level Description of the Reparameterization
Algorithm
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The following theorem states that the algorithm is correct. It
states that the set of state vectdirgiven by the new parametric
representation is exactly the same as that given by the original set
of state vectorsY. The proof of this theorem is provided in the
technical report version of this paper.

THEOREM 1. Suppose beginning with the parametric represen-
taion ¥ = {v € S| 3t € W™.o = f(i)}, we obtainy =
{5 €S|3p € P.v=h(p)} by following the algorithmtORDERE
DREPARAM. ThenX = ).

Computingh! andh{ from Equations7 and8 involves univer-
sally quantifying a large number &f" variables. This is especially
expensive with a BDD-based representation. Moreover, represent-
ing parametric functions with BDDs becomes very expensive as
the number of simulation steps becomes larger as the number of
variables|I™| increases. BDDs can blow up due to variable or-
dering problems, and the size of BDDs can become exponential
in |[I"™|. However, if the parametric functions are represented by
Boolean expressions, the size of each expression is bounded by the
circuit size times the number of simulation steps. Therefore, sym-
bolic simulators that use non-canonical Boolean expressions can go
much deeper. Thus, we seek to complutevhen the functions are
given as Boolean expressions.

In [3], an efficient procedure to quantify existentially a large
number of variables from a Boolean formula is described. The pro-
cedure assumes that the formula is given in CNF. The procedure
quantifies a subset of the variables and generates a DNF clausal
representation in terms of the remaining variables. It is worthwhile
to note that the complexity of the procedure is mostly related to
the number of variablesot quantified and not to the number of
variables to be quantified. If the formula is not given in CNF, in-
termediate variables can be used to convert it to CNF. In essence,
the variables to be quantified are treated in the same way as the
intermediate variables.

We use this procedure to compui€ (wherea is either 1 or
0). However, note that we need to universally quantify vari-
ables, while the procedure does existential quantification. So we
re-express;' as

hi(p1,. .. s pi-1) )
= VI pi(p1,... ,pi-1, I™) — fi(I™) =« (10)
= 3"~ (pi(p,... ,pi-1, I™) — fi(I™) = a) (11)
= =3I pi(p1,.. ,pi—, I")A fi(I™) # (12)

Thus, the existential quantification can be carried out by our SAT-
based procedure to computé:'. The SAT checker is given the
formula p;(p1,... ,pi—1, I™) A fi(I™) # « in CNF with in-
termediate variables. The large number/8f variables poses no
problem, as they are treated just like intermediate variables by our
SAT-based enumeration procedure. The procedure computgs
in DNF over{ps, ... ,p;—1} variables.

After computingh; andh? (thus in CNF) h§ is given by—h; A
—hY. This can be converted to CNF, if required for the SAT checker,
by again introducing intermediate variables. This allows us to de-
rive h; using Equatiord. It appears that for computing eaéh,
two SAT-based enumerations are required, hence a to2al SAT-
based enumerations. In the next section, we show that there are a
number of optimizations. First, we show that a single SAT-based
enumeration can be used to compute betif and—h?. More-
over, we show that successive SAT runs are similar to earlier runs
and how to use this similarity to improve the performance of the
SAT checker.



4.3 Computingr? and »! in a single SAT run expensive. The parametric variables for initial state will be part of
The SAT formulas for computint! andh? only differinwhether ~ the I variables, as described earlier. (K1 (P), ..., hn(P)) is
f:(I"™) equals 0 or 1. In order to merge these two computations, the parametric representation at some step of the simulation, then

we ask the SAT-based enumeration procedure to enumerate cube&® SAT checker is asked to provide an assignment to the parame-
for the following formula: ters such that the state vector satisfies/hel(V) predicate. For-

mally, the SAT checker is asked to find a satisfying assignment for

pi(p1,... ,pi-1,1™) 13)
For each solution enumerated fintop;_; andI™), we checkthe Y1 = hi(P) Avz = ha(P) A ... Avn = ha(P) A Bad(V) (15)
value of f;(I™). We do this check by just evaluatirfg(1™) using If the SAT checker generates a satisfying assignment, then we know

the assignment to thE™ variables computed by the SAT checker. that the property fails, and a counterexample needs to be generated.
Note that we have to do this evaluation a large number of times, i

hence it should be made as fast as possible. Since this is just 4.6 ~Counterexample Generation

function evaluation, techniques such as compiled simulation can  For our symbolic simulator, the counterexample generation is
be used to do this much faster than what we do at present. nontrivial, since we do not keep the whole simulation. Periodi-

If fi(I™) evaluates td, then we know that the cube found by  cally, we reparameterize the representation and hence lose the in-
the SAT checker cannot belong k. This is because we found  formation about input variables up to that point. In order to gener-
at least one consistent assignmenitovariables that leads to the  ate counterexamples, we need to store all intermediate parametric
value O for f; (™), hence biti is not forced to 1 for all consistent  representations and the simulated functions that these representa-
assignments té™. Thus, the cube ifp1,... ,p;_1} is added to tions are derived from. This storage can be done on a disk, offline.
—h}. Similarly, if f;(I™) evaluates to 1, then the cube is added to We pick up one state that violates the safety property and ask the
—h?. Thus, both-h? and—h} are computed in a single SAT run,  SAT checker to provide an assignment to the input variables that
and themy is computed as given in Equatién lead from the most recent parameterized representation to the bug.
4.4 | | Since the simulated functions are stored on the disk, they can be

. ncremental SAT directly used in the SAT checker, rather than unrolling the circuit

The optimized SAT formula for computirtg*, o € {0, 1} (Equa- again. Once we get a state at the step when the last reparameter-
tion 13) is very similar to the formula given to the SAT checker for jzation was done, we choose one state from that step and repeat

computingh; . Sincep; = A;;ll(hj = f;), the following recur- the whole process again. This is similar to the strategy that stan-
rence is evident: dard BDD-based model checkers use. They begin with one bad
pi(p1y . pie1, I™) = pici(p1y ..., pi2, I™) A state, and then keep on intersecting pre-images with the frontier
m state sets, until they get to an initial state.
(hi—1(p1,... ,pi—1) = ficr(I™)) (14) g

Thus, an incremental SAT checker can be used, provided we delete

the clauses that were added as blocking clauses and the conflict?- EXPERIMENTAL RESULTS

clauses inferred from them while enumeratiffy , . An incremen- We report our experimental results on a 1.3 GHz AMD Athlon

tal SAT checker keeps all the conflict clauses learned while enumer- processor machine with 1 GB of main memory running RedHat

ating solutions tg;_;. This is correct because of the recurrence Linux 7.1. We set a memory limit of 700 MB. The large industrial

above. circuits we use are taken from various processor designs. Both
We have implemented an incremental SAT checker on top of the circuits were used i, where SAT-based abstraction-refine-

zChaff along with the cube enumeration. This SAT checker allows ment was done for verification of safety properties. All D series

us to remove the blocking clauses added in the previous SAT run. circuits have a counterexample, while both properties hold on the

The advantage of incremental SAT checking is that all the learning IU circuit. 1Up1 and IUp2 are the same circuit, but checked with

done while computing;_1 comes for free when checking. Only different properties.
the clauses correspondingtg_; = f;—1 need to be added, and We compare our algorithm against a BMC algorithm implemented
only the blocking clauses and the conflict clauses inferred from the in the NuSMV model checker 1fl]) with the zChaff SAT checker
blocking clauses need to be deleted. and the abstraction-refinement results4h We invoke reparame-

. terization when the largest function crosses a fixed threshold, which
4.5 Safety Property CheCkmg is 10000 nodes in the expression at present. BMC keeps on un-

Symbolic simulation with reparameterization works as follows: winding the transition relation, while we periodically reduce the
Beginning with the initial states, the circuit is simulated up to a size of representation with reparameterization. Therefore, compar-
certain depth, say, when the functions become too large. At this ing against BMC is fair. Our algorithm is not yet complete for
point, reparameterization is applied, and a smaller parametric rep-safety properties, in that it cannot prove properties true without re-
resentatiomh* (P*) = (h¥(P*),h5(P*),... ,hE(P¥)) is com- sorting to abstraction-refinement, as described in the full version of
puted representing the set of states reached in exactigps. The this paper.
superscript here just emphasizes the fact that this parametric repre- In Tablel, the column marked “bug length”, denotes the length
sentation is for stef. After that point, symbolic simulation con-  of the shortest counterexample to the safety property, if the prop-
tinues usingh”* (P*) as the set of initial states in parametric form. erty is false. The “bmc time” column records the amount of time
This is continued until a bug is found or the time limit is exceeded. the BMC algorithm required for finding the bug, the “abs-ref time”
In this section, we describe the method used for finding violations records the amount of time the abstraction-refinement algorithm
of safety properties. took to find the bug or to prove the property, and the column marked

Suppose thab (V') is the initial state predicate anBad(V) “sym time” denotes the amount of time our algorithm takes to sim-
is the predicate describing the set of states that violate the safetyulate up to the bug and find the bug. For IUp1 and IUp2, properties
property of interest. For the initial states, we generate a parametricare true. Since IUpl and IUp2 did not have any bug, we did not
representation from the predicaig(V') using the algorithm in1]. record the time for these two circuits in the “sym bug time” col-
The initial state predicates are usually small, hence this is not very umn.
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Circuit | # latches| # inputs bug Run time sym max| sym max| # reparame-

length | BMC[2] | abs-reffi] | sym length time | terizations
D2F 94 11 15 18 79 32 221 1000 8
D5* 343 7 32 15 38.2 17 127 1000 13
D24 223 47 10 5 8 7 543 1000 9
D6 161 16 20 289 833 145 64 1000 5
D18 498 247 28 6834 9955 | 1698 56 3000 7
D20 532 30 14 2349 1947 | 574 89 3000 9
IUpl 4494 361 true 3000* 3350 - 183 3000 45
1Up2 4494 361 true 3000* 712 - 183 3000 45

Table 1: Experimental Results on Large Industrial Benchmarks. Columns marked with “sym” denote the results with our symbolic
simulator. Times reported are in seconds. BMC was able to complete just 39 steps and then ran out of memory for IUpl and IUp2.
Since IUp1 and IUp2 did not have any bug, we did not record the time for these two circuits in the “sym bug time” column.

To show that our algorithm can go deeper than BMC, we con-
tinue simulating these circuits past the bug and record the maxi-
mum length we can reach within the time limit. The “sym max

length” column denotes the maximum length that we simulate the 2]

circuit for in the time given in the column “sym max time”. The last
column records the number of reparameterizations done for simu-

lating up to the maximum length.

(3]

We would like to point out that in4], a spurious counterexam-
ple of length 72 was found, which could not even be simulated with
SAT on a machine with 3 GB of memory. However, we could simu-

late it for 72 steps in 987 seconds and for 183 steps in 3000 seconds [4

on the smaller machine with our algorithm.

It is evident from the results that our algorithm is more power-
ful than the plain BMC algorithm. We are able to go much deeper

and can do it in shorter amount of time. In fact, we were even able [5]
to do better than the results obtained with abstraction.
be noted that multiple refinement steps are required in abstraction- [6]

It should

refinement, and in each step, a spurious counterexample is simu-
lated using SAT. Therefore, abstraction-refinement can be slower

in many cases.

The BDD-based reachability program @f floes property check-

ing and can also do fixed points. However, it was able to find bugs
for D2 and D5 circuits only. For the rest of the circuits, it either

exceeded the time or memory limit.

6. CONCLUSION AND FUTURE WORK

The paper presents a SAT-based reparameterization algorithm,
which allows to perform symbolic simulation much faster than us-

ing BDDs. The method uses an unwinding of the transition relation

(8]

and thus is comparable to BMC. However, the reparameterization
step, which is done when the equation becomes too big, makes it
possible to go much deeper into the transition system than what

BMC without reparameterization can do. The reparameterization [10]

algorithm captures a small, symbolic representation of the states

that are reachable with exactty steps. Using this representation

as new initial state predicate, the algorithm starts over.
The algorithm as given does not prove a property to be true. This

is the case with BMC as well, and the presented algorithm can be 11

used as a replacement for BMC within most methods that make
BMC complete, such as counterexample guided abstraction refine-
ment. In the future, we want to evaluate the performance improve-

ments obtainable by using the algorithm as replacement for BMC [12]

in this setting. In particular, we would like to investigate how to

extract proofs of unsatisfiability or interpolation-based proofs.
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