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ABSTRACT
Parametric representations used for symbolic simulation of circuits
usually use BDDs. After a few steps of symbolic simulation, state
set representation is converted from one parametric representation
to another smaller representation, in a process called reparameteri-
zation. For large circuits, the reparametrization step often results in
a blowup of BDDs and is expensive due to a large number of quan-
tifications of input variables involved. Efficient SAT solvers have
been applied successfully for many verification problems. This pa-
per presents a novel SAT-based reparameterization algorithm that is
largely immune to the large number of input variables that need to
be quantified. We show experimental results on large industrial cir-
cuits and compare our new algorithm to both SAT-based Bounded
Model Checking and BDD based symbolic simulation. We were
able to achieve on average 3x improvement in time and space over
BMC and able to complete many examples that BDD based ap-
proach could not even finish.
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1. INTRODUCTION
Symbolic simulation is a widely applied technique for the anal-

ysis of complex transition systems and synchronous circuits in par-
ticular. In symbolic simulation, the transition relation is unwound
m times into an equation that represents the set of states that is
reachable in exactlym steps. The simulator keeps separate equa-
tions for each state variable. They are parameterized in the initial
state variables andm copies of the inputs of the circuit. Thus, the
set of states is stored in aparametric representation.

An efficient way to store and manipulate this parametric repre-
sentation of the set of states is crucial for the performance of the
algorithm. Such a representation describes a set of states as a vector
(f1, f2, . . . , fn) of functions in parametersP = {p1, p2, . . . , pm}.
Each parametric functionfi gives the value of one state variable.
For example, the set of statesS = {10, 01} is represented para-
metrically as(p1,¬p1). In this case, there is only one parameter
p1.

Most implementations use BDDs to represent these functions [6,
7, 1, 12]. These BDDs may grow exponentially in the number of
simulation steps, as the number of variables grows. In order to
address this problem, symbolic simulators compute a new, equiva-
lent parametric representation. The new representation can be sig-
nificantly smaller since it usually requires fewer variables. This
step is done as soon as one of the BDDs becomes too large. The
process of converting one parametric representation to another is
calledreparameterization. In Coudert et al. [6] and Aagard et al.
[1], the reparameterization algorithm first converts the parametric
representation into characteristic function form and then parame-
terizes this form. In [7], an algorithm is given for computing set
union in parametric form. Algorithms for reparameterization and
quantification are given that are based on this set union algorithm.
However, the reparameterization is done using BDDs, hence as the
number of simulation steps grows, the algorithm quickly becomes
very expensive. This is due to the fact that each simulation step in-
troduces more input variables, which need to be quantified during
reparameterization.

Contribution. We describe a SAT-based algorithm to perform
the reparameterization step for symbolic simulation. The algorithm
performs better than BDD-based reparameterization especially in
the presence of many input variables. The algorithm takes arbi-
trary Boolean equations as input. Therefore, it does not require
BDDs for the symbolic simulation. Instead, non-canonical forms
that grow linearly with the number of simulation steps can be used.

In essence, the SAT-based reparameterization algorithm com-
putes a new parametric function for each state variable one at a
time. In each computation, a large number of input variables are
quantified by a single call to a SAT-based enumeration procedure
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[3]. The advantage of this approach is twofold: First, all input vari-
ables are quantified at the same time, and second, the performance
of SAT-based enumeration procedure is largely unaffected by the
number of input variables that are quantified.

We demonstrate the efficiency of this new technique using large
industrial circuits with thousands of latches. We compare it to both
SAT-based Bounded Model Checking (BMC), which also unrolls
the circuit for a finite number of steps and also with BDD-based
symbolic simulation. Our new algorithm can go much deeper than
a standard Bounded Model Checker can. Moreover, the overall
memory consumption and the run times are, on average, three times
less than the values measured using a Bounded Model Checker.
The BDD-based symbolic simulator could not even verify most of
the circuits that we used.

Notations and Conventions.We will use the following nota-
tions and conventions throughout the paper. Sets will be denoted by
capital letters, as inS for the set of states,V for the set of state vari-
ables,Im for the set of input variables, andP for the set of para-
metric variables. We use a superscript ofm for input variables to
denote input variables accumulated overm steps of symbolic sim-
ulation. We will always usem for the number of simulation steps
andn for the number state variables. An ordered tuple of lower
case letters denotes a vector of variables. For example, the state
variable vector withn state variables is(v1, v2, . . . , vn). The vec-
tor is denoted by using a bar over the symbol. For example, a state
vector will be denoted bȳv or in full form by (v1, v2, . . . , vn). A
particular parametric assignment is given byp̄ = (p1, p2, . . . , pk).
The set of all possible2n vectors ofn state variables isSn, the set
of all possible2k assignments tok parameters isPk, and the set of
all possible input vectors isWm. Other uppercase calligraphic let-
ters denote subsets of these sets. When the number of components
in a vector is clear, we will often drop the subscripts, and just use
S,P, and so on. Functions will be denoted by lower case symbols,
e.g.,f(Im). In the brackets after a function symbol, the list of vari-
ables on which the function depends (the support set) is given, e.g.,
h1
i (p1, p2, . . . , pi). The value of a function for a particular assign-

ment to its support variables is given ash1
i (p1, p2, . . . , pi) or in

shorth1
i (p̄). A vector of functions will be denoted by a bar over

the top of the function symbol. For example, a vector of parametric
functions ish̄(P ) = (h̄1(P ), h̄2(P ), . . . , h̄n(P )). The symbols
α andβ will denote the constants 0 or 1.

2. BMC AND EXTENSIONS
Model checking[5] techniques suffer from the state explosion

problem. In case of BDD-based symbolic model checking this
problem manifests itself in the form of unmanageably large BDDs.
This problem is partly addressed byBounded Model Checking(BMC)
[2]. In BMC, the transition relation for a complex circuit and its
specification are jointly unwound to obtain a Boolean formula, which
is then checked for satisfiability by using a SAT procedure such as
Chaff [11]. If the formula is satisfiable, a counterexample can be
extracted from the output of the SAT procedure. If the formula
is not satisfiable, the circuit and its specification can be unwound
more to determine if a longer counterexample exists. This process
terminates when the length of the potential counterexample exceeds
its completeness threshold (i.e., is sufficiently long to ensure that no
counterexample exists [8]) or when the SAT procedure exceeds its
time or memory bounds. BMC has been used successfully to find
subtle errors in very large circuits.

The enabling technique for Bounded Model Checking is propo-
sitional satisfiability solving (SAT). A SAT solvers reads a formula
in conjunctive normal form (CNF) and finds a satisfying assign-

ment if there is any. If not, the solver returns that the formula
is unsatisfiable. SAT solving is one of the classical NP-complete
problems. Over the last 4 years, propositional SAT checkers have
demonstrated tremendous success on various classes of SAT for-
mulas. The key to the effectiveness of DPLL based SAT checkers
like Chaff [11], is non-chronological backtracking, efficient con-
flict driven learning of conflict clauses, and improved decision heuris-
tics. A full description of SAT checkers can be found in the refer-
ences mentioned above. We would just like to make the following
observations.

The efficiency of SAT procedures has made it possible to han-
dle circuits with thousands of state variables, much larger than any
BDD-based model checker is able to do at present. The strength
of various SAT checkers lies in their implementation of constraint
propagation, non-chronological backtracking, decision heuristics,
and learning. In our algorithm, we use the Chaff SAT checker [11],
as it has been demonstrated to be one of the most powerful SAT
checker on a wide class of problems.

In BMC, the size of the SAT instance grows linearly with the un-
winding depth. However, for very large circuits, even linear growth
can be prohibitive: Either the formula already exceeds the memory
limits, or the SAT instance is too hard for the SAT solver. No at-
tempt is made to reduce the size of the representation.

BMC is not at all effective for showing that a property is true
unlessm exceeds the completeness threshold for the design and
the property. Since this completeness threshold is, in most cases,
prohibitively large, several extensions to BMC have been proposed
in order to detect the absence of counterexamples:

In the counterexample guided abstraction refinement framework
(CEGAR) (e.g. [4]), model checking is performed on a safe ab-
straction of the model. Thus, if the property holds on the abstract
model, it also holds on the concrete model. If this is not so, an
abstract counterexample is obtained from the model checker. This
abstract counterexample is then used to constrain the states in a
Bounded Model Checking SAT instance. If the constrained BMC
SAT instance is satisfiable, the abstract counterexample can be sim-
ulated on the concrete model and a bug is found. If not, the abstrac-
tion is refined using various heuristics.

In [10], this framework is changed as follows: An abstract coun-
terexample is no longer obtained. The only information of interest
is the lengthm of the abstract counterexample. This lengthm is
then used as the bound for a normal, unconstrained BMC instance.
If the BMC instance is satisfiable, a bug is found. If this is not the
case, information from the SAT solver is used to generate the next
abstract model.

In [9], a new framework is introduced: The algorithm initially
performs Bounded Model Checking for somem steps in order to
refute the property. If this fails, the proof of unsatisfiability ex-
tracted from the SAT solver is used to simplify a fixed-point com-
putation. The purpose of the fixed-point computation is to detect
the case when the property actually holds. This may fail, and if so,
the algorithm is repeated with an increased value ofm.

All three approaches therefore solely rely on Bounded Model
Checking to refute the property. The extensions are used to detect
the case that the property is true.

3. PARAMETRIC REPRESENTATION
Characteristic functions and parametric representations are two

well known methods of representing a set of Boolean vectors. A set
of Boolean vectors over the state variables represents a set of states.
Consider a setS of vectors over the variablesV = {v1, v2, . . . , vn}.
As described above,̄v = (v1, v2, . . . , vn) denotes a particular vec-
tor or a particular assignments to the variables inV . If the charac-

525



teristic functionξ(V ) represents the setS of vectors, then

S = {v̄ ∈ Sn | ξ(v̄) = 1}. (1)

Example.The following example will be used throughout the
paper. Letv1 andv2 be two Boolean state variables. Consider the
set of states{01, 10, 11}. This set of states has the characteristic
functionξ(V ) = v1 ∨ v2.

On the other hand, ifS is represented parametrically with a vec-
tor of n functions f̄(P ) = (f1(P ), f2(P ), . . . , fn(P )) overm
parametersP = {p1, p2, . . . , pm}, then

S = {v̄ ∈ Sn | ∃p̄ ∈ Pm[v1 = f1(p̄) ∧ . . . ∧ vn = fn(p̄)]}. (2)

Informally, the set of vectors inS is given by the range of the vec-
tor of functions(f1(p̄), f2(p̄), . . . , fn(p̄)), where p̄ ranges over
all possible Boolean vectors inPm. For the running example,
one possible parametric representation with three parametersP =
{p1, p2, p3} is

(f1(P ) = p1 ∧ p2, f2(P ) = ¬(p1 ∧ p2) ∨ p3).

Note that, in general,m 6= n. For the particular case of symbolic
simulation that we will discuss later, the number of parameters will
be equal to the number of input variables to the circuit times the
number of simulation steps, which can be much larger thann.

A parametric representation can be easily converted to a charac-
teristic function by using the following equation:

ξ(V ) = ∃p̄[(v1 ↔ f1(p̄)) ∧ . . . ∧ (vn ↔ fn(p̄))]. (3)

In other words,ξ(v̄) is true if the there exists an assignmentp̄ to
the parameters such that the parametric functionf1(p̄) evaluates to
v1, f2(p̄) evaluatesv2, and so on. This is what is desired, sinceξ
is supposed to be true exactly for the vectors in the set. In the case
of symbolic simulation,̄p consists of the initial state and the inputs
on the path to the stateξ(v̄).

Note that the conversion into a characteristic function requires
Boolean quantification over the parameters. If the functions are
represented by BDDs, then this quantification becomes harder as
the number of parametersm and the number of state variablesn
increase. A similar quantification problem occurs in BDD-based
image computation when a transition relation is represented in con-
junctively decomposed form. In that case, the variables to be quan-
tified are the present state and input variables of the circuit, while
the next state variables are not quantified.

Consider a circuitC with p inputs andn state variables. Sup-
pose the circuit is symbolically simulated form steps, by building
Boolean expressions that represent the values of each of the state
bits. After them-step simulation, suppose each state bitvi is given
by a Boolean expression denoted by the functionfi(I

m). The vari-
ablesIm appearing in each functionfi(Im) are thep·m inputs plus
then initial values of the state variables. Thus,|Im| = p ·m+ n.
We will denote the set of input vectors overIm variables byWm

and a particular input vector bȳι. Powerful symbolic simulators
can simulate a large number of steps, makingp · m � n. The
set of reachable states inm steps, as a set of state vectors inV
variables, is given by

S = {v̄ ∈ Sn | ∃ῑ ∈ Wm[v1 = f1(ῑ) ∧ ∧vn = fn(ῑ)]}.
Thus symbolic simulation builds a parametric representation of the
set of states reachable in exactlym steps, where the parameters are
input variablesIm.

Usually, the number of parameters|Im| is very large. The num-
ber of possible valuations of these variables is2|I

m|, while the
number of possible valuations of the state variables is2n. There-
fore, many vectors inIm variables will map to the same state vec-
tor. Hence, it should be possible to reduce the number of parame-
ters. We aim at finding new functionsh1(P ), h2(P ), . . . , hn(P )

in new parametersP , where|P | � |Im|. This is why reparam-
eterization is useful. Obviously, a set of vectors inn variables
can be represented by parametric functions ofn variables. Hence,
|P | ≤ n. This process of converting from one parametric represen-
tation to another is calledreparameterization[6, 7].

For the example above, another parametric representation in just
two parametersP = {p1, p2} is (h1(P ) = p1, h2(P ) = ¬p1 ∨
p2).

There has been some work on reparameterization using BDDs.
The most complete description can be found in [7, 1]. The BDD-
based method quantifies the input variables one at a time from the
parametric representation̄f(Im). Each quantification involves a
parametric union of the two sets, each of which could require a
number of BDD operations, linear in the number of state bits. The
BDD-based algorithm has|Im| variable eliminations in the outer
loop, and the inner loop iterates over all state bits. Thus, to elimi-
nate allIm variables,|Im| · n BDD operations are needed [7, 1].

We present a SAT-based reparameterization algorithm. Our SAT-
based algorithm does this in one pass over the state bits. The outer
loop iterates over the state bits, and the inner computation quanti-
fies allIm variables in one run of the SAT checker. The details of
the algorithm are described in the next section.

4. REPARAMETERIZATION USING SAT

4.1 Background
The algorithm computes functionsh1(P ), h2(P ), . . . , hn(P )

in parametersP , where|P | ≤ n. Thus, the number of parame-
ters is at most equal to the number of state variables. Moreover, the
functionshi will have a specific structure, in that the functionhi
will only depend on the variables{p1, p2, . . . , pi}. This will be ex-
plicitly denoted byhi(p1, . . . , pi). We will derive these functions
in the orderh1, h2, . . . , hn. Intuitively, each new parameterpi al-
lows for the free choice of theith state bitvi. Leth1

i (p1, . . . , pi−1)
denote the Boolean condition under which the state bitvi is forced
to take value 1, and leth0

i (p1, . . . , pi−1) denote the Boolean con-
dition under which the state bitvi is forced to take value 0, and
hci (p1, . . . , pi−1) denote the Boolean condition under whichvi is
free to choose a value (is not forced to either 0 or 1).

For the set{01, 10, 11} in the running example, suppose we let
the first bit be represented by free parameterp1. If the first bit
is 0, then the second bit is forced to be 1 in the set. Thus, the
Boolean condition under whichv2 is forced to 1 ish1

2(p1) = ¬p1.
Moreover, if the first bit is 1, then the second bit is free to be either
0 or 1. Thus,hc2(p1) = p1. Note thath0

2(p1) = 0, since the second
bit is not forced to 0 in any condition.

The following decomposition ofhi was introduced in [7]:

hi(p1, .., pi) = h1
i (p1, .., pi−1) ∨ (pi ∧ hci (p1, .., pi−1)) . (4)

Intuitively, Equation4 is interpreted as follows. The value of bit
vi is 1 precisely under the conditionh1

i , hence the first term in the
equation. If the parametersp1 to pi−1 do not force the bitvi to
be 1, then the bit is given by the free parameterpi under the free
choice conditionhci .

The three conditionsh0
i , h

1
i andhci are mutually exclusive and

complete, thus

hci = ¬(h1
i ∨ h0

i ) = ¬h1
i ∧ ¬h0

i . (5)

Continuing our example, we geth2(p1, p2) = ¬p1 ∨ (p2 ∧ p1),
which is equivalent to the smaller parametric representation¬p1 ∨
p2 we presented in the previous section. It should be evident that
h0
i , h

1
i , andhci depend only on the parametersp1 to pi−1. Assign-

ing some specific value to a bit restricts the set of choices for the
following bits. In our example, choosingv1 = 0 restricts the value
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of the bit v2 to 1. In this special form of a parametric represen-
tation, the parametric functionhi is restricted only by the choices
made for the earlier bits. Thus, the critical part of computinghi is
computing the three conditionsh1

i , h
0
i andhci , which we describe

now.

4.2 Computingh1
i and hci

Let us recall the meaning ofh1
i : It denotes the Boolean condition

in variables{p1, .., pi−1} under which theith bit vi is forced to take
the value 1. In the given representationf̄(Im), bit vi is constrained
by other bits in what values it can take. Initially, these constraints
are given by the common variablesIm. We want to re-express these
constraints inP variables. Let̄p = (p1, p2, .., pi−1) be a specific
assignment which makes the Boolean conditionh1

i (p1, . . . , pi−1)
true. Then all input vectors̄ι ∈ Wm, for which the functions
f1, . . . , fi−1 evaluate to the same value ash1, . . . , hi−1, are said
to be confirming to the assignment(p1, p2, .., pi−1). In essence,
the evaluation of the new parametric functions and the old para-
metric functions is the same for these input vectors. We introduce
the restriction functionρi(p1, .., pi−1, I

m) to find this set of con-
firming inputs. The functionρi restricts the set of input vectors
Wm to only those that conform with the given assignment to the
parameters. Formally, it can be written as

ρi(p1, .., pi−1, I
m) =

i−1∧
j=1

hj(p1, .., pj) = fj(I
m). (6)

Note thatρ1 = 1. Now the conditionh1
i can be easily expressed

as follows: We want a Boolean condition in{p1, .., pi−1} variables
under whichvi is forced to take the value 1. So if an assignment
(p̄1, p̄2, .., p̄i−1) makesh1

i true, then that means that for all input
vectors̄ι that conform with this assignment, the functionfi(ῑ) eval-
uates to 1. Hence,

h1
i (p1, .., pi−1) = ∀Im. (ρi(p1, .., pi−1, I

m)⇒fi(Im) = 1) . (7)

Analogously,h0
i can be expressed as

h0
i (p1, .., pi−1) = ∀Im. (ρi(p1, .., pi−1, I

m)⇒fi(Im) = 0) . (8)

Equation5 can be used to computehci , given bothh1
i andh0

i .
Thushi can be easily computed. Note thath1 = p1, unless the bit
v1 is always1 or 0, in which caseh1 = 1 or h1 = 0. This follows
automatically fromρ1 = 1.

Thus, Equations4 to 8 give us the following high level reparam-
eterization algorithm, that we call ORDEREDREPARAM.

// Input: f̄(Im) = (f1(Im), f2(Im), . . . , fn(Im)).

// Output:h̄(P ) = (h1(P ), h2(P ), . . . , hn(P )).

ORDEREDREPARAM(f̄(Im) = (f1(Im), . . . , fn(Im))

1 for i = 1 to n

2 ρi ← 1

3 for j = 1 to i− 1

4 ρi ← ρi ∧ (hj = fj)

5 h1
i ← ∀Im.(ρi ⇒ fi = 1)

6 h0
i ← ∀Im.(ρi ⇒ fi = 0)

7 hci ← ¬(h1
i ∨ h0

i )

8 hi ← h1
i ∨ (pi ∧ hci )

9 endfor

10 return (h1(P ), h2(P ), . . . , hn(P ))

Figure 1: High Level Description of the Reparameterization
Algorithm

The following theorem states that the algorithm is correct. It
states that the set of state vectorsY given by the new parametric
representation is exactly the same as that given by the original set
of state vectorsX . The proof of this theorem is provided in the
technical report version of this paper.

THEOREM 1. Suppose beginning with the parametric represen-
tation X = {v̄ ∈ S | ∃ῑ ∈ Wm.v̄ = f̄(ῑ)}, we obtainY =
{v̄ ∈ S | ∃p̄ ∈ P.v̄ = h̄(p̄)} by following the algorithmORDERE-
DREPARAM. ThenX = Y.

Computingh1
i andh0

i from Equations7 and8 involves univer-
sally quantifying a large number ofIm variables. This is especially
expensive with a BDD-based representation. Moreover, represent-
ing parametric functions with BDDs becomes very expensive as
the number of simulation steps becomes larger as the number of
variables|Im| increases. BDDs can blow up due to variable or-
dering problems, and the size of BDDs can become exponential
in |Im|. However, if the parametric functions are represented by
Boolean expressions, the size of each expression is bounded by the
circuit size times the number of simulation steps. Therefore, sym-
bolic simulators that use non-canonical Boolean expressions can go
much deeper. Thus, we seek to computehi when the functions are
given as Boolean expressions.

In [3], an efficient procedure to quantify existentially a large
number of variables from a Boolean formula is described. The pro-
cedure assumes that the formula is given in CNF. The procedure
quantifies a subset of the variables and generates a DNF clausal
representation in terms of the remaining variables. It is worthwhile
to note that the complexity of the procedure is mostly related to
the number of variablesnot quantified and not to the number of
variables to be quantified. If the formula is not given in CNF, in-
termediate variables can be used to convert it to CNF. In essence,
the variables to be quantified are treated in the same way as the
intermediate variables.

We use this procedure to computehαi (whereα is either 1 or
0). However, note that we need to universally quantifyIm vari-
ables, while the procedure does existential quantification. So we
re-expresshαi as

hαi (p1, . . . , pi−1) (9)

= ∀Im.ρi(p1, . . . , pi−1, I
m)→ fi(I

m) = α (10)

= ¬∃Im.¬ (ρi(p1, . . . , pi−1, I
m)→ fi(I

m) = α) (11)

= ¬∃Im.ρi(p1, . . . , pi−1, I
m) ∧ fi(Im) 6= α (12)

Thus, the existential quantification can be carried out by our SAT-
based procedure to compute¬hαi . The SAT checker is given the
formula ρi(p1, . . . , pi−1, I

m) ∧ fi(Im) 6= α in CNF with in-
termediate variables. The large number ofIm variables poses no
problem, as they are treated just like intermediate variables by our
SAT-based enumeration procedure. The procedure computes¬hαi
in DNF over{p1, . . . , pi−1} variables.

After computingh1
i andh0

i (thus in CNF),hci is given by¬h1
i ∧

¬h0
i . This can be converted to CNF, if required for the SAT checker,

by again introducing intermediate variables. This allows us to de-
rive hi using Equation4. It appears that for computing eachhi,
two SAT-based enumerations are required, hence a total of2n SAT-
based enumerations. In the next section, we show that there are a
number of optimizations. First, we show that a single SAT-based
enumeration can be used to compute both¬h1

i and¬h0
i . More-

over, we show that successive SAT runs are similar to earlier runs
and how to use this similarity to improve the performance of the
SAT checker.
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4.3 Computingh0
i and h1

i in a single SAT run
The SAT formulas for computingh1

i andh0
i only differ in whether

fi(I
m) equals 0 or 1. In order to merge these two computations,

we ask the SAT-based enumeration procedure to enumerate cubes
for the following formula:

ρi(p1, . . . , pi−1, I
m) (13)

For each solution enumerated (inp1 to pi−1 andIm), we check the
value offi(Im). We do this check by just evaluatingfi(Im) using
the assignment to theIm variables computed by the SAT checker.
Note that we have to do this evaluation a large number of times,
hence it should be made as fast as possible. Since this is just a
function evaluation, techniques such as compiled simulation can
be used to do this much faster than what we do at present.

If fi(Im) evaluates to0, then we know that the cube found by
the SAT checker cannot belong toh1

i . This is because we found
at least one consistent assignment toIm variables that leads to the
value 0 forfi(Im), hence biti is not forced to 1 for all consistent
assignments toIm. Thus, the cube in{p1, . . . , pi−1} is added to
¬h1

i . Similarly, if fi(Im) evaluates to 1, then the cube is added to
¬h0

i . Thus, both¬h0
i and¬h1

i are computed in a single SAT run,
and thenhci is computed as given in Equation5.

4.4 Incremental SAT
The optimized SAT formula for computinghαi , α ∈ {0, 1} (Equa-

tion 13) is very similar to the formula given to the SAT checker for
computinghi−1. Sinceρi =

∧i−1
j=1(hj = fj), the following recur-

rence is evident:

ρi(p1, . . . , pi−1, I
m) = ρi−1(p1, . . . , pi−2, I

m) ∧
(hi−1(p1, . . . , pi−1) = fi−1(Im)) (14)

Thus, an incremental SAT checker can be used, provided we delete
the clauses that were added as blocking clauses and the conflict
clauses inferred from them while enumeratinghαi−1. An incremen-
tal SAT checker keeps all the conflict clauses learned while enumer-
ating solutions toρi−1. This is correct because of the recurrence
above.

We have implemented an incremental SAT checker on top of
zChaff along with the cube enumeration. This SAT checker allows
us to remove the blocking clauses added in the previous SAT run.
The advantage of incremental SAT checking is that all the learning
done while computingρi−1 comes for free when checkingρi. Only
the clauses corresponding tohi−1 = fi−1 need to be added, and
only the blocking clauses and the conflict clauses inferred from the
blocking clauses need to be deleted.

4.5 Safety Property Checking
Symbolic simulation with reparameterization works as follows:

Beginning with the initial states, the circuit is simulated up to a
certain depth, sayk, when the functions become too large. At this
point, reparameterization is applied, and a smaller parametric rep-
resentation̄hk(P k) = (hk1(P k), hk2(P k), . . . , hkn(P k)) is com-
puted representing the set of states reached in exactlyk steps. The
superscript here just emphasizes the fact that this parametric repre-
sentation is for stepk. After that point, symbolic simulation con-
tinues usinḡhk(P k) as the set of initial states in parametric form.
This is continued until a bug is found or the time limit is exceeded.
In this section, we describe the method used for finding violations
of safety properties.

Suppose thatS0(V ) is the initial state predicate andBad(V )
is the predicate describing the set of states that violate the safety
property of interest. For the initial states, we generate a parametric
representation from the predicateS0(V ) using the algorithm in [1].
The initial state predicates are usually small, hence this is not very

expensive. The parametric variables for initial state will be part of
the Im variables, as described earlier. If(h1(P ), . . . , hn(P )) is
the parametric representation at some step of the simulation, then
the SAT checker is asked to provide an assignment to the parame-
ters such that the state vector satisfies theBad(V ) predicate. For-
mally, the SAT checker is asked to find a satisfying assignment for

v1 = h1(P ) ∧ v2 = h2(P ) ∧ . . . ∧ vn = hn(P ) ∧Bad(V ) (15)

If the SAT checker generates a satisfying assignment, then we know
that the property fails, and a counterexample needs to be generated.

4.6 Counterexample Generation
For our symbolic simulator, the counterexample generation is

nontrivial, since we do not keep the whole simulation. Periodi-
cally, we reparameterize the representation and hence lose the in-
formation about input variables up to that point. In order to gener-
ate counterexamples, we need to store all intermediate parametric
representations and the simulated functions that these representa-
tions are derived from. This storage can be done on a disk, offline.
We pick up one state that violates the safety property and ask the
SAT checker to provide an assignment to the input variables that
lead from the most recent parameterized representation to the bug.
Since the simulated functions are stored on the disk, they can be
directly used in the SAT checker, rather than unrolling the circuit
again. Once we get a state at the step when the last reparameter-
ization was done, we choose one state from that step and repeat
the whole process again. This is similar to the strategy that stan-
dard BDD-based model checkers use. They begin with one bad
state, and then keep on intersecting pre-images with the frontier
state sets, until they get to an initial state.

5. EXPERIMENTAL RESULTS
We report our experimental results on a 1.3 GHz AMD Athlon

processor machine with 1 GB of main memory running RedHat
Linux 7.1. We set a memory limit of 700 MB. The large industrial
circuits we use are taken from various processor designs. Both
the circuits were used in [4], where SAT-based abstraction-refine-
ment was done for verification of safety properties. All D series
circuits have a counterexample, while both properties hold on the
IU circuit. IUp1 and IUp2 are the same circuit, but checked with
different properties.

We compare our algorithm against a BMC algorithm implemented
in the NuSMV model checker ([11]) with the zChaff SAT checker
and the abstraction-refinement results in [4]. We invoke reparame-
terization when the largest function crosses a fixed threshold, which
is 10000 nodes in the expression at present. BMC keeps on un-
winding the transition relation, while we periodically reduce the
size of representation with reparameterization. Therefore, compar-
ing against BMC is fair. Our algorithm is not yet complete for
safety properties, in that it cannot prove properties true without re-
sorting to abstraction-refinement, as described in the full version of
this paper.

In Table1, the column marked “bug length”, denotes the length
of the shortest counterexample to the safety property, if the prop-
erty is false. The “bmc time” column records the amount of time
the BMC algorithm required for finding the bug, the “abs-ref time”
records the amount of time the abstraction-refinement algorithm
took to find the bug or to prove the property, and the column marked
“sym time” denotes the amount of time our algorithm takes to sim-
ulate up to the bug and find the bug. For IUp1 and IUp2, properties
are true. Since IUp1 and IUp2 did not have any bug, we did not
record the time for these two circuits in the “sym bug time” col-
umn.

528



Circuit # latches # inputs bug Run time sym max sym max # reparame-
length BMC[2] abs-ref [4] sym length time terizations

D2+ 94 11 15 18 79 32 221 1000 8
D5+ 343 7 32 15 38.2 17 127 1000 13
D24 223 47 10 5 8 7 543 1000 9
D6 161 16 20 289 833 145 64 1000 5
D18 498 247 28 6834 9955 1698 56 3000 7
D20 532 30 14 2349 1947 574 89 3000 9
IUp1 4494 361 true 3000* 3350 - 183 3000 45
IUp2 4494 361 true 3000* 712 - 183 3000 45

Table 1: Experimental Results on Large Industrial Benchmarks. Columns marked with “sym” denote the results with our symbolic
simulator. Times reported are in seconds. BMC was able to complete just 39 steps and then ran out of memory for IUp1 and IUp2.
Since IUp1 and IUp2 did not have any bug, we did not record the time for these two circuits in the “sym bug time” column.

To show that our algorithm can go deeper than BMC, we con-
tinue simulating these circuits past the bug and record the maxi-
mum length we can reach within the time limit. The “sym max
length” column denotes the maximum length that we simulate the
circuit for in the time given in the column “sym max time”. The last
column records the number of reparameterizations done for simu-
lating up to the maximum length.

We would like to point out that in [4], a spurious counterexam-
ple of length 72 was found, which could not even be simulated with
SAT on a machine with 3 GB of memory. However, we could simu-
late it for 72 steps in 987 seconds and for 183 steps in 3000 seconds
on the smaller machine with our algorithm.

It is evident from the results that our algorithm is more power-
ful than the plain BMC algorithm. We are able to go much deeper
and can do it in shorter amount of time. In fact, we were even able
to do better than the results obtained with abstraction. It should
be noted that multiple refinement steps are required in abstraction-
refinement, and in each step, a spurious counterexample is simu-
lated using SAT. Therefore, abstraction-refinement can be slower
in many cases.

The BDD-based reachability program of [7] does property check-
ing and can also do fixed points. However, it was able to find bugs
for D2 and D5 circuits only. For the rest of the circuits, it either
exceeded the time or memory limit.

6. CONCLUSION AND FUTURE WORK
The paper presents a SAT-based reparameterization algorithm,

which allows to perform symbolic simulation much faster than us-
ing BDDs. The method uses an unwinding of the transition relation
and thus is comparable to BMC. However, the reparameterization
step, which is done when the equation becomes too big, makes it
possible to go much deeper into the transition system than what
BMC without reparameterization can do. The reparameterization
algorithm captures a small, symbolic representation of the states
that are reachable with exactlym steps. Using this representation
as new initial state predicate, the algorithm starts over.

The algorithm as given does not prove a property to be true. This
is the case with BMC as well, and the presented algorithm can be
used as a replacement for BMC within most methods that make
BMC complete, such as counterexample guided abstraction refine-
ment. In the future, we want to evaluate the performance improve-
ments obtainable by using the algorithm as replacement for BMC
in this setting. In particular, we would like to investigate how to
extract proofs of unsatisfiability or interpolation-based proofs.
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