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Abstract

Let F be a local field with finite residue field of characteristic p. Let
G be a connected reductive group over F and B a minimal parabolic
subgroup of G with Levi decomposition B = ZU . Let K be a special
parabolic subgroup of G, in good position relative to (Z,U).

Fix an absolutely irreducible smooth representation of K on a vec-
tor space V over some field C of characteristic p. Writing H(G,K, V )
for the intertwining Hecke algebra of V in G, we define a natural
algebra homomorphism from H(G,K, V ) to H(Z,Z ∩ K,V U∩K), we
show it is injective and identify its image. We thus generalize work
of F. Herzig, who assumed F of characteristic 0, G unramified and K
hyperspecial, and took for C an algebraic closure of the prime field Fp.
We show that in the general case H(G,K, V ) need not be commuta-
tive; that is in contrast with the cases Herzig considers and with the
more classical situation where V is trivial and the field of coefficients
is the field of complex numbers.

MS Class : 22E50

Key words : Local fields, Hecke algebra, Satake isomorphism

Adresses : Guy Henniart
Univ. Paris–Sud, Laboratoire de Mathématiques d’Orsay
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1 Introduction

1.1

Throughout the paper, F is a locally compact non–Archimedean field with
finite residue field k of characteristic p.

In this introduction, C is a field, we fix a connected reductive group G
over F , and we consider the locally pro–p–group G = G(F ).

A representation of G on a C–vector space W is smooth if every vector in
W has an open stabilizer in G. Classically one is interested in complex irre-
ducible smooth representations of G, because they occur as local components
of automorphic representations of adelic reductive groups.

In the recent decades, the study of congruences between modular forms
has had tremendous impact in Number Theory, leading in particular to a
proof of Fermat’s Last Theorem. This inexorably leads to the study of con-
gruences between automorphic forms or automorphic representations. As a
local counterpart, one has to explore smooth irreducible representations of G
on C–vector spaces, where C is a field of positive characteristic, for example
a finite field.

In this paper, our main interest lies in the case where C has the same
characteristic p as k.

1.2

Let K be an open compact subgroup of G. If π is a smooth representation
of G on a C–vector space W , then the subspace WK of fixed points under K
is endowed with an action of the convolution algebra H(G,K,C) of double
cosets in K\G/K, usually called a Hecke algebra.

If C is the field of complex numbers and π is irreducible, then it is known
that WK is finite dimensional and, if non–zero, is a simple module over
H(G,K,C). More precisely, the assignment W 7→ WK yields a bijection
between isomorphism classes of smooth irreducible complex representations
of G with non–zero fixed points under K, and isomorphism classes of simple
modules over H(G,K,C). The same is true, more generally, when the pro–
order of K is prime to the characteristic exponent of C [V1]. When C has
characteristic p however, the functor W 7→ WK reveals less about smooth
representations of G [O2]. Still it is important to understand the algebra
H(G,K,C) and its category of modules. In the classical setting, such an
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understanding is provided by the Satake isomorphism when K is a special
maximal compact subgroup of G (see below), and we want to generalize it
to the present setting.

1.3

The general framework for “Satake morphisms” is the following. We fix a
minimal parabolic subgroup B of G and a Levi decomposition B = ZU
where U is the unipotent radical of B. We assume G = KB and B ∩K =
(Z ∩K)(U ∩K). In § 2 we define a natural algebra homomorphism

S : H(G,K,C) −→ H(Z,Z ∩K,C) .

We speak of a “Satake isomorphism” when S is injective and we can identify
its image.

The prototype of Satake isomorphism is indeed due to Satake. In [Sa],
where C is the field of complex numbers, Satake established a Satake iso-
morphism for maximal open compact subgroups K satisfying some axiomatic
conditions, which he verified when G is a classical group, for natural maximal
compact subgroups K.

Remark.— For arithmetic purposes, it is more interesting to describe the
algebra H(G,K,Z) with integer coefficients. In his setting, Satake does get
such a description. For example, when G is a classical simple group with
trivial centre, H(G,K,Z) is a polynomial ring in m variables over Z, where
m is the rank of a maximal split torus in G.

Bruhat and Tits subsequently verified that Satake’s axioms are verified,
for any G, when K is a maximal compact subgroup which is special with
respect to Z, by which we mean that it corresponds to a special point of
the building of the adjoint group of G, belonging to an apartment attached
to a maximal split torus in Z (see § 3).

More recently, Haines and Rostami [Ha-Ro], motivated by applications
to Shimura varieties, established a similar Satake isomorphism with complex
coefficients, when K is a parahoric subgroup of G which is special with
respect to Z (with the same meaning as above). The classical proofs in [Sa]
and [Cartier] have to be modified then.
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1.4

For the previous Satake isomorphisms (in [Sa, Cartier, Ha-Ro]), the map
S is defined by the following formula, where we interpret H(G,K,C) as an
algebra of functions on G, andH(Z,Z∩K,C) as an algebra of functions on Z:

S(Φ)(x) = δ1/2(x)

∫
U

Φ(xu)du (Φ in H(G,K,C), x in Z) .

In the formula, du is a Haar measure on U and δ is the modulus character
of B, whose values are powers of p. Without the factor δ1/2, we already have
an algebra homomorphism (see § 2), but because of the factor δ1/2 the image
of S is invariant under the natural action of the Weyl group W of G; indeed
the image of S is the algebra of W–invariants in H(Z,Z∩K,C). The algebra
H(Z,Z∩K,C) is isomorphic to the group algebra over C of Z/Z∩K – which
is a finitely generated abelian group – so H(Z,Z ∩K,C) is commutative and
finitely generated over C, as is the image of S, hence also H(G,K,C).

An all–important special case was singled out by Langlands [Ll]: that is
the so–called “unramified” case, where G is unramified, i.e. quasi–split over
F and split over some unramified extension of F , and where K is a hyper-
special maximal compact subgroup of G. Langlands in that case interpreted
the Satake isomorphism above as giving a parametrization of the characters
of the algebra H(G,K,C) — hence of the isomorphism classes of complex
smooth irreducible representations of G with non–zero K–fixed vectors —
by certain semisimple conjugacy classes in a complex group LG “dual” to
G. He used the parametrization to define (partial) L–functions for automor-
phic representations of adelic reductive groups, and with the dual group he
formulated a conjectural classification of all complex smooth irreducible rep-
resentations of G — this is now proved for GLn [HT, H] and a lot is known
for split classical groups [Ar].

1.5

In our main case where C has characteristic p, the combinatorial arguments
remain, but we cannot use the modulus character of B, and all invariance
under W is lost. In analogy with the classical case nonetheless F. Herzig
[He1] introduced a map S : H(G,K,C)→ H(Z,Z ∩K,C) simply defined by

S(Φ)(x) =
∑

u∈U/U∩K

Φ(xu) for Φ in H(G,K,C) and x in Z .
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We prove:

Theorem.— Let K be a parahoric subgroup of G, special with respect to Z.
Let C be a field of characteristic p. Then

(i) S injective.

(ii) Its image is the space of functions supported on antidominant elements
of Z.

(iii) H(Z,Z ∩K,C) and the image of S are commutative algebras of finite
type over C.

(We say that an element x of Z is antidominant if x−r(U ∩ K)xr does not
blow up as the integer r goes to +∞).

Remarks.— 1) The results in the theorem remain true if we replace the
group K by the maximal compact subgroup of G containing K.

2) When C is Z we get an integral version of the results of [Ha-Ro], thus
generalizing [Sa, §9] and [ST]; see § 7.10.

In fact the previous theorem is the special case V = C of more general
results describing the (intertwining) Hecke algebra H(G,K, V ) for a smooth
absolutely irreducible representation of K on a C–vector space V . We now
turn to those more general results, which are inspired by the work of Herzig
[He1] in the unramified case.

1.6

We return for a moment to a general field C. We keep the first assumptions
of 1.3 but assume given in addition a smooth representation ρ of K on a
finite dimensional C–vector space V .

The (intertwining) Hecke algebra H(G,K, V ) is the convolution algebra
consisting of functions Φ from G to EndC(V ) which vanish outside finitely
many cosets KgK and satisfy Φ(kg) = ρ(k)Φ(g) and Φ(gk) = Φ(g)ρ(k) for
k and g in G. It is isomorphic to the endomorphism algebra of the smooth
representation of G compactly induced from ρ, and for any smooth repre-
sentation of G on a G–vector space W , the space W (ρ) := HomK(V,W ) is
a right–module over H(G,K, V ). When V is the trivial representation of
K on C, W (ρ) identifies with WK and we recover the algebra H(G,K,C).
When C is the field of complex numbers and ρ is irreducible, the assignment
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W 7→ W (ρ) again yields a bijection between isomorphism classes of complex
smooth irreducible representations W of G such that W (ρ) 6= 0 and isomor-
phism classes of simple right–modules over H(G,K,C) – again this extends
to any field C where the pro-order of K is invertible. For some complex
representations ρ, called types, we even have stronger statements.

A very important special case is the so–called level–zero case. In that
case K is a parahoric subgroup of G; writing K+ for its pro–p radical, i.e. its
maximal normal pro–p subgroup, we know that K/K+ is the group of points
over k of some connected reductive group G; the level–zero case occurs when
ρ is trivial on K+. When moreover ρ comes from a complex irreducible cusp-
idal representation of the finite reductive group G(k), L. Morris determined
the structure of H(G,K, V ) in [Mo].

1.7

By contrast, when the field C has characteristic p, the assignmentW 7→ W (ρ)
does not usually yield a bijection as above : this problem already arose for
trivial ρ. However Herzig [He1, He2] showed that one can use W (ρ) to reveal
properties of W , even giving, for G = GLn/F , a complete classification of
smooth irreducible representations of GLn(F ) over an algebraic closure of Fp
[He2], in terms of supercuspidal representations of GLr(F ), p < r ≤ n, thus
yielding the equivalent of Zelevinsky’s classification for complex representa-
tions1.

Our main interest here is in the following situation:

- K is a parahoric subgroup of G, special with respect to Z;

- C is a field of characteristic p;

- ρ is an absolutely irreducible representation of K on a C–vector space
V , trivial on the pro–p–radical K+.

1A smooth irreducible C–representation of G is cuspidal if it is not a subrepresenta-
tion of a representation obtained by parabolic induction from a smooth irreducible C–
representation of a proper Levi subgroup of G; it is supercuspidal if it is not a subquotient
of a such a parabolically induced representation. When C has characteristic 0 there is
no difference between the two notions. When C has positive characteristic, there is a
big difference; for example the Steinberg representation of GL2(F ), in characteristic p, is
cuspidal but not supercuspidal. Supercuspidal representations of G in characteristic p are
still a mystery in general, even for G = GL2; the only exception is GL2(Qp).
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As recalled above K/K+ is naturally a finite reductive group over k, and
we have at our disposal the theory of irreducible representations of such
groups on C–vector spaces, for which our reference is [CE]. When V is
absolutely irreducible, V U∩K has dimension 1 over C (see § 6), so that Z ∩K
acts on it via a character χV : Z ∩K → C×.

In the unramified case (G unramified, K hyperspecial), Herzig identified
H(G,K, V ), via a morphism defined as in 1.5, with the subalgebra of the
algebra H(Z,Z∩K,V U∩K) — which in his case is commutative — consisting
of functions supported on antidominant elements.

Remark.— The first investigations of such algebras when C has charac-
teristic p were done by Barthel and Livné [BL1,2] in the case where G is
GL2(F ) and C is an algebraic closure of Fp. With the same field C, the
algebras H(G,K, V ) have been described by Vignéras [V2] for split groups
G, and K a pro–p–Iwahori subgroup of G; applications to smooth irreducible
representations of GLn(F ) over C were given by Vignéras [V2] and Ollivier
[O1, O2].

1.8

Here we generalize [He1] to our situation. We use the same formula 1.5 of
Herzig for a map

S : H(G,K, V ) −→ H(Z,Z ∩K,V U∩K)

As in 1.7 we assume that ρ is absolutely irreducible, and we write ZV for the
subgroup of elements in Z normalizing the character χV ; we write Z− for the
monoid of antidominant elements in Z.

Theorem.— In the situation of 1.7, the map S is an injective algebra ho-
momorphism and its image consists of functions with support in ZV ∩ Z−.

In Herzig’s case, as mentioned above, the target algebra is commutative.
In our more general case however, we give an example where H(G,K, V ) is
not commutative in 4.4: in our example G = Z and V is one–dimensional.

In general we can describe the centre of H(G,K, V ) via the Satake homo-
morphism S. Let Z ′V be the set of elements x in ZV such that χV is trivial
on xyx−1y−1 for all y in ZV ; it is a subgroup of ZV with finite index.

Proposition.— In the situation of 1.7, the algebra H(G,K, V ) is a finitely
generated module over its centre and this centre, consisting of elements Φ in
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H(G,K, V ) such that S(Φ) has support in Z ′V , is an algebra of finite type
over C.

On the positive side, we can show that H(Z,Z ∩ K,V U∩K) is commu-
tative when Z is semi–simple simply connected, or semi–simple adjoint, or
split over an unramified extension of F — the only difficult case is the last
one; it will be given in a companion paper. As for H(G,K, V ) it is clear that
it is commutative if G is quasi–split, as then Z is a torus. In the mentioned
companion paper, we shall prove that H(G,K, V ) is commutative when G
is a classical group of isometries or similitudes, and when it is semi–simple
adjoint, semi–simple simply connected, or split over an unramified exten-
sion of F .

1.9

Let us now give the plan of the paper. In § 2, we explain the mechanism
giving rise to Satake homomorphisms. We proceed in an abstract manner,
dealing with a general locally profinite group G. From § 3 on, however, G is a
G(F ) where G is a connected reductive group over F . In § 4, we investigate
the case where G is anisotropic modulo its centre, so is its own minimal
parabolic subgroup. We determine in this case the centre of H(G,K, V ), we
give an example where H(G,K, V ) is not commutative, but show that it is
commutative in a few easy cases.

In § 5, we recall the classification of irreducible representations of groups
H(k), where H is a connected reductive group over k, on vector spaces over
fields of characteristic p.

The technical heart of the paper is in § 6. We state the Cartan and
Iwasawa decomposition for our special parahoric subgroup K and describe
the intersection of a “Cartan” double coset KgK with an “Iwasawa” double
coset KhU : one can take g, h in Z and we show that if KgK intersects KhU ,
then the class of g mod Z∩K is in some sense “smaller” than h mod Z∩K.
Also in § 6, for an element x in Z, we investigate the intersection of K with
the parabolic subgroup of G contracted by x.

In § 7 finally, we show that Herzig’s methods in [He1] extend to our case,
given the technical results of § 6.

It is a pleasure to thank F. Herzig for communicating his results to us in
a preprint form.
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2 Abstract Satake homomorphisms

2.1

The goal of this section is to unravel the basic mechanism behind the ex-
istence of Satake homomorphisms. For that reason we proceed in a rather
abstract manner.

Throughout the section, C is any commutative ring, and for any group H
we write C[H] for the group algebra of H over C. If H is a locally profinite
group, a C[H]–module is smooth if every element in it has an open stabilizer
in H.

We fix a locally profinite group G and an open subgroup K of G. We also
fix a smooth C[K]–module V ; we sometimes write ρ(k) for the endomorphism
v 7→ kv of V .

We consider the smooth C[G]–module indGKV made out of the functions
f from G to V which verify f(kg) = kf(g) for g in G and k in K, and vanish
outside a finite number of cosets Kg; the action of G is via right translations.
If W is any smooth C[G]–module, Frobenius reciprocity yields a canonical
isomorphism of HomC[K](V,W ) onto HomC[G] (indGKV,W ): if ψ is a C[K]–
morphism from V to W , the corresponding C[G]–morphism from indGk V to
W is given by f 7→

∑
h∈G/K

hψ(f(h−1)).

2.2

Of central interest to us is the endomorphism algebra EndC[G] (indGK(V )),
which by Frobenius reciprocity is canonically isomorphic as a vector space to
HomC[K](V, indGKV ).

We want a model of that algebra as an algebra H(G,K, V ) on double
cosets in K\G/K. More generally, it is of interest to consider the space
HomC[G] (indGKV , indGKV

′) where V ′ is another smooth C[K]–module; by
Frobenius reciprocity it is isomorphic to HomC[K](V, indGKV

′), and again we
seek a description of it as a space of functions on G. We write ρ′ for the
action of K on V ′.

To work well (compare [V1, I.8], it is useful to make two further assump-
tions, in force from now on.

A1) Any double coset KgK in G is the union of finitely many cosets Kg′,
and also the union of finitely many cosets g′′K. (That is the case, for
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example, when K is compact modulo a closed subgroup central in G).

A2) V and V ′ are finitely generated over C[K].

With assumptions A1) and A2), if we associate to a C[K]–morphism ϕ
from V to indGKV

′ the function Φϕ : G→ HomC(V, V ′) given by Φϕ(g)(v) =
ϕ(v)g (for g in G and v in V ), we get an isomorphism of HomC[K](V, indGKV

′)
with the C–module H(G,K, V, V ′) of functions Φ : G→ HomC(V, V ′) which
satisfy

(i) Φ(kg) = ρ′(k)Φ(g) and Φ(gk) = Φ(g)ρ(k) for g in G, k in K.

(ii) Φ vanishes outside finitely many cosets KgK.

If f is a function in indGKV , its image under the C[G]–morphism corre-
sponding to ϕ above is given by a convolution product with Φ = Φϕ:

Φ ∗ f(g) =
∑

h∈G/K

Φ(h)(f(h−1g)) for g in G .

Note that the summand depends only on hK by (i), and that the sum is
finite by (ii) and assumption A1.

If V ′′ is another finitely generated smooth C[K]–module, the composition
map from HomC[G](indGKV, indGKV

′)×HomC[G](indGKV
′, indGKV

′′) to HomC[G](indGKV, indGKV
′′)

is reflected in a convolution operation
H(G,K, V ′, V ′′)×H(G,K, V, V ′)→ H(G,K, V, V ′′) (Ψ,Φ) 7→ Ψ∗Φ given by

Ψ ∗ Φ(g) =
∑

h∈G/K

Ψ(h)Φ(h−1g) for g in G .

Again the summand depends only on hK and the sum is finite. This convolu-
tion operation is C–bilinear, and there is an obvious “associativity” property
if we consider a further finitely generated smooth C[K]–module V ′′′.

Taking V = V ′ = V ′′, we get an (associative) algebra structure on
H(G,K, V, V ), which we rather write H(G,K, V ), and which we call the
Hecke algebra of V in G, or sometimes the intertwining algebra of
V in G.

12



2.3

We want to extend somewhat the previous constructions. Consider the C–
module F (G,K, V ) of all functions f : G→ V such that f(kg) = kf(g) for k
in K and g in G. It contains indGKV as the submodule of functions supported
on finitely many cosets Kg. Consider also the analogous module F (G,K, V ′)
for V ′.

Let f be in F (G,K, V ) and Φ in H(G,K, V, V ′). We want to define a
function Φ ∗ f in F (G,K, V ′) by the above convolution formula

(Φ ∗ f)(g) =
∑

h∈G/K

Φ(h)(f(h−1g)) for g in G .

To make sense of the formula, we first remark that the summand, by (i)
again, depends only on the coset hK; also the sum is finite because Φ van-
ishes outside finitely many cosets KxK and, by assumption A2), each KxK
consists of finitely many cosets hK. By (i), the resulting function Φ ∗ f be-
longs to F (G,K, V ′), and we recover the previous definition of Φ ∗ f if f is
in indGKV .

Remark.— If the support of Φ is the disjoint union of cosets hiK, i ∈ I,
then Φ ∗ f(g) =

∑
i∈I

Φ(hi)(f(h−1
i g)) for any g in G.

If V ′′ is another finitely generated smooth C[K]–module, and Ψ an ele-
ment in H(G,K, V ′, V ′′) we have the associativity formula

(Ψ ∗ Φ) ∗ f = Ψ ∗ (Φ ∗ f) ,

which can be proved directly but also follows from topological considerations.
Indeed put on V the discrete topology and on F (G,K, V ), F (G,K, V ′) and
F (G,K, V ′′) the topology of pointwise convergence; by the remark above
the map f 7→ Φ ∗ f , for fixed Φ, is a continuous map from F (G,K, V ) to
F (G,K, V ′). Since indGKV is clearly dense in F (G,K, V ) the associativity
formula holds for f in F (G,K, V ) because it already holds for f in indGKV .

2.4

The action of H(G,K, V, V ′) sends F (G,K, V ) to F (G,K, V ′) and this ob-
viously commutes with the action of G on the latter spaces via right trans-
lations.
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Let N be a closed subgroup of G; we write F (G/N,K, V ) for the set of
functions in F (G,K, V ) which are constant on cosets gN , and Fc(G,K, V )
for the set of functions in F (G/N,K, V ) which vanish outside finitely many
cosets KgN . They are clearly submodules of F (G,K, V ) and the operation of
H(G,K, V, V ′) sends F (G/N,K, V ) into the analogous module F (G/N,K,V ′)
and Fc(G/N,K, V ) into Fc(G/N,K, V

′). In particular Fc(G/N,K, V ) is a
module over the Hecke algebra H(G,K, V ).

If P is any closed subgroup of G normalizing N , its action on F (G,K, V )
by right translations stabilizes F (G/N,K, V ) and Fc(G/N,K, V ) and this
action of P commutes with the operation of H(G,K, V, V ′). The subgroup
P ∩N acts trivially so that the action of P factors through P/P ∩N .

Remark.— The action of P on Fc(G/N,K, V ) is smooth: indeed if f in
Fc(G/N,K, V ) vanishes outside finitely many cosets KgiN , i ∈ I, and takes
value vi at gi, then P∩

⋂
i∈I
g−1
i Kigi acts trivially on f , where Ki is the stabilizer

of vi in K.

2.5

To put ourselves in the context of a Satake morphism, we specialize to the
following situation where:

(i) K is compact modulo a closed subgroup J central in G

(ii) P is a closed subgroup of G, which is the semi–direct product of an
invariant closed subgroup N with a closed subgroup M containing J .

We assume that K, M , N satisfy the following conditions:

C1) G = KP (Iwasawa decomposition)

C2) P ∩K is the semi–direct product of N ∩K by M ∩K

This is clearly inspired by the situation of reductive groups, treated from
§ 3 on, but it can also be applied in other situations, even trivial ones, where
G would be discrete and K, M trivial!

Remark.— By (i) and (ii), M ∩K is compact modulo its subgroup J ; the
group N ∩K is compact since N ∩ J , contained in N ∩M , is trivial. Also
notice that (i) implies that condition (A1) of 2.2 is satisfied.
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In this context, the existence of a Satake morphism, proved in 2.7, will
derive from the following proposition, proved in 2.6.

Proposition.— Restricting to M the functions in F (G/N,K, V ) yields a bi-
jection of F (G/N,K, V ) onto F (M,M∩K,V N∩K) which sends Fc(G/N,K, V )
onto Fc(M,M ∩K,V N∩K).

Remark.— Because M ∩K normalizes N ∩K, the set V N∩K of elements of
V fixed by N ∩K is a module over C[M ∩K]. We have used the notation
relative to (M,M ∩K) as we did relative to (G,K). Note also that the space
Fc(M,M ∩ K,V N∩K) is nothing but indMM∩KV

N∩K . Finally the restriction
map in the proposition is obviously C–linear and compatible with the action
of M via right translations, which is smooth.

2.6

The proof of the proposition is rather straightforward. For f in F (G/N,K, V )
we write fM for its restriction to M .

a) We first verify that for f in F (G/N,K, V ), fM indeed belongs to
F (M,M ∩K,V N∩K). The property fM(km) = kfM(m) for k in M ∩K
and m in M being obvious, the point is to show that f(m) is fixed by
N ∩ K for m in M ; but for n in N ∩ K we have nf(m) = f(nm) =
f(mm−1nm) = f(m) because m−1nm belongs to N .

b) The map f 7→ fM is injective; indeed if fM = 0 then f(kmn) = 0
for all m in M , n in N and k in K, so that f = 0 by the Iwasawa
decomposition C1).

c) The following lemma implies that the image of Fc(G/N,K, V ) is con-
tained in Fc(M,M ∩K,V N∩K).

Lemma.— For g in G, KgN ∩M is a single coset (K ∩M)m.

Proof. Since KgN ∩M is non–empty by the Iwasawa decomposition C1) we
may assume g in M . If k in K and n in N are such that m = kgn belongs
to M then k = mn−1g−1 belongs to P ; projecting to M we get by C2) that
mg−1 belongs to M ∩K hence m ∈ (M ∩K)g �

d) It remains to prove the surjectivity statements.
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Let F belong to C(M,M ∩K,V N∩K). If m in M , k in K and n in N
verify m = kmn then k = mn−1m−1 belongs to N ∩K and kF (m) =
F (m). This shows that we can unambiguously define a function f :
G→ V by the formula f(kmn) = kF (m) for k in K, m in M , n in N ;
that function belongs to F (G/N,K, V ) and fM is equal to F . If F is
supported on finitely many cosets (M ∩K)mi then f is supported on
the cosets KmiN .

The proposition is proved.

2.7

Let us stay in the context of 2.3–2.5. The operation ofH(G,K, V, V ′) sending
Fc(G/N,K, V ) to Fc(G/N,K, V

′) commutes with the action of M via right
translations, and the isomorphisms f 7→ fM in Prop. 2.5 are M–equivariant.
It follows then from Prop. 2.5 that there is a unique map S = SMG (V, V ′)
from H(G,K, V, V ′) to H(M,M ∩K,V N∩K , V ′N∩K) such that

(Φ ∗ f)M = S(Φ) ∗ fM for f in FC(G/N,K, V ) and Φ in H(G,K, V, V ′) .

(Here of course the convolution operation on the right hand side is taken with
respect to M and M ∩ K; also, by continuity, as in 2.3, the same formula
holds for f in F (G/N,K, V ).

If V ′′ is another finitely generated smooth C[K]–module, the composite
SMG (V ′, V ′′) ◦ SMG (V, V ′) is equal to SMG (V, V ′′) so that when V = V ′, then
S = SMG (V, V ) is an algebra morphism, which we call a Satake morphism.

Remark.— In the cases we look at in § 7, S will be injective. We have no
abstract general criterion for injectivity. It is not enough that V be generated
as C[K]–module by V N∩K : indeed take for G a finite non–trivial abelian
group and N = G, M = K = 1, and take for V the trivial module C. Then
indGKV is the regular representation C[G] of G and the map S : C[G] → C
is given by ∑

g∈G

αgg 7−→
∑
g∈G

αg .

Proposition.— For Φ in H(G,K, V, V ′), S(Φ) is given by
S(Φ)(m)(v) =

∑
n∈N/N∩K

Φ(mn)(v) for m in M and v in V N∩K.

The proof will be given in 2.8, but we first give a few comments.
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(i) The proposition is reminiscent of the classical definition of the Satake
morphism via integration on mN (cf. 1.4).

(ii) As v is fixed by N ∩K, the summand depends only on n(N ∩K).

(iii) The sum itself is finite. Indeed the support of Φ consists of finitely
many cosets gK and if we have equalities mn = gk and mn′ = gk′ for
some k, k′ in K and n, n′ in N , then n′−1n = k′−1k belongs to N ∩K
so that n belongs to n′(N ∩K).

2.8

Let us prove the formula in Proposition 2.7. Fix Φ in H(G,K, V, V ′). By
(ii) and (iii) above, the right hand side defines a function ϕ on M , with
values in HomC(V N∩K , V ′). By the lemma in 2.6, ϕ is supported on finitely
many cosets (M ∩ K)m. Let us first verify that ϕ belongs to H(M,M ∩
K,V N∩K , V ′N∩K). We have Φ(kg) = ρ′(k)Φ(g) for k in K and g in G.
Taking k in N ∩ K gives that ϕ(m)(v) belongs to V ′N∩K for v in V N∩K :
indeed

ρ′(k)(ϕ(m)(v)) =
∑

n∈N/N∩K

Φ(kmn)(v)

=
∑

n∈N/N∩K

Φ(mm−1kmn)(v)

and we can use the change of summation n 7→ m−1kmn, sincem−1km belongs
to N . Taking rather k in M ∩K then yields

ϕ(km) = ρ′M(k)ϕ(m)

where we have written ρ′M(k) for the endomorphism v 7→ kv of V ′N∩K .
We also have Φ(kg) = Φ(g)ρ(k) for k in K and g in G. Taking k in

M ∩K gives ϕ(mk) = ϕ(m)ρM(k) where ρM(k) is the endomorphism v 7→ kv
of V N∩K : indeed we compute, for v in V N∩K ,

ϕ(mk)(v) =
∑

n∈N/N∩K

Φ(mkn)(v)

=
∑

n∈N/N∩K

Φ(mknk−1k)(v)

=
∑

n∈N/N∩K

Φ(mknk−1)(ρM(k)v)

17



and as k in M ∩K normalizes N ∩K we can use the change of summation
n 7→ knk−1.

We have proved that ϕ belongs to H(M,M ∩K,V N∩K , V ′N∩K).
We now want to prove that (Φ∗f)M = ϕ∗fM for any f in Fc(G/N,K, V ).
For m in M we have (Φ ∗ f)(m) =

∑
h∈G/K

Φ(h)(f(h−1m)). As G = PK

we may replace the sum over G/K with a sum over P/P ∩K. The resulting
sum over P/P ∩ K can be obtained by summing first over N/N ∩ K then
summing the result — which is right invariant under N — over M/M ∩K.
We obtain

(Φ ∗ f)(m) =
∑

j∈M/M∩K

∑
n∈N/N∩K

Φ(jn)(f(j−1m))

since f(n−1j−1m) = f(j−1mm−1jn−1j−1m) which is f(j−1m) because
m−1jn−1j−1m belongs to N . But the right hand side is exactly ϕ ∗ fM .

This proves the proposition.

For future use, it is worth noting a transitivity property of the Satake
morphism constructed above.

In addition to the setting of 2.5 we assume given a closed subgroup B of
G, which is the semi–direct product of an invariant closed subgroup U by a
closed subgroup Z. We assume in addition that P contains B, M contains Z,
N is contained in U and the central subgroup J is contained in Z. Concerning
K we assume

(i) G = KB (Iwasawa decomposition)

(ii) (B ∩K) is the semi–direct product of B ∩ U by B ∩ Z.

Those assumptions are of course inspired by the case of two parabolic
subgroups P,B, with P containing B, in a reductive group G over F , with
their Levi decompositions.

The assumptions in 2.5 and above have the following easy consequences:

a) M ∩B is the semi–direct product of M ∩ U and Z.

b) U is the semi–direct product of N and M ∩ U .

c) M ∩B ∩K is the semi–direct product of M ∩ U ∩K and Z ∩K.
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d) U ∩K is the semi–direct product of N ∩K and M ∩ U ∩K.

We can apply Proposition 2.7 in three different situations.
Going from (G,K) to (Z,Z ∩K) yields a map

SMG : H(G,K, V, V ′) −→ H(M,M ∩K,V N∩K , V ′N∩K)

Going from (M,M ∩K) to (Z,Z ∩K) yields a map

SZM : H(M,M ∩K,V N∩K , V ′N∩K) −→ H(Z,Z ∩K,V U∩K , V ′U∩K)

(note that M∩U∩K acts on V N∩K and by d) the set of fixed points is V U∩K).
Finally going directly from (G,K) to (Z,Z ∩K) yields a map

SZG : H(G,K, V, V ′) −→ H(Z,Z ∩K,V U∩K , V ′U∩K)

(as mentioned in 2.7, when V = V ′ all three maps S are algebra homomor-
phisms).

Proposition.— SZG = SZM ◦ SMG .

The proposition is of course no surprise. It can be given an abstract non–
sense proof using the comment before Prop. 2.7 but for us it is quicker to use
Prop. 2.7 itself. Let Φ in H(G,K, V ) and x in Z. Then

SMG (Φ)(x)(v) =
∑

n∈N/N∩K

Φ(xn)(v) for v in V N∩K ,

and consequently

SZM ◦ SMG (Φ)(x)(v) =
∑

ν∈M∩U/M∩U∩K

∑
n∈N/N∩K

Φ(xνn)(v)

for v in V U∩K .
On the other hand

SZG(x)(v) =
∑

u∈U/U∩K

Φ(xu)(v) for v in V U∩K .

By properties b) and d) above this last summation on U/U ∩K can be done
first by summing over N/N ∩K then over M ∩ U/M ∩ U ∩K. The result
follows.
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2.9

For use in § 4, we now investigate a situation where K, in addition to verifying
the assumptions in 2.1 and 2.2, is normal in G.

We consider H(G,K, V, V ′) when V is given by a smooth character χ :
K → C× — so that the C–module V is C itself — and V ′ is a given by a
smooth character χ′ : K → C×. We write H(G,K, χ, χ′), H(G,K, χ) and
H(G,K, χ′) instead of H(G,K, V, V ′), H(G,K, V ) and H(G,K, V ′).

Let g be an element of G. It is immediate that the coset gK = Kg
supports a function in H(G,K, χ, χ′) if and only if χ(x) = χ′(gxg−1) for x
in K, and that then there exists a unique such function τg with value 1C
at g. In particular, H(G,K, χ, χ′) is non–zero if and only if χ and χ′ are
conjugate in G.

With g as above conjugating χ′ into χ, we write τ ′g−1 for the function in
H(G,K, χ′, χ) with support g−1K and value 1C at g−1. Then τg ∗ τ ′g−1, is
the unit of the algebra H(G,K, χ) and τ ′g−1 ∗ τg the unit of H(G,K, χ′), so
that Φ 7→ τg ∗Φ is an isomorphism – in fact an isomorphism of right modules
over H(G,K, χ) — of H(G,K, χ) onto H(G,K, χ, χ′), with inverse given by
Ψ 7→ τ ′g−1 ∗ Ψ. Also there is an algebra isomorphism ιg of H(G,K, χ) onto
H(G,K, χ′) given by Φ 7→ τg ∗ Φ ∗ τ ′g−1.

Given the above remarks, we assume from now on χ′ = χ. The coset
gK, for g in G, supports a function in H(G,K, χ) if and only if g belongs to
the stabilizer Gχ of χ in G, which is a subgroup of G containing K, and there
is a unique such function τg with value 1C at g. If R is a set of representatives
for Gχ/K in G, then H(G,K, χ) is a free C–module with basis (τr)r∈R. We
have the obvious multiplication formula

(∗) τg ∗ τg′ = τgg′ for g, g′ in Gχ .

If Gχ/K is abelian, we get τgg′ = χ(gg′g−1g′−1)τg′g for g, g′ in Gχ, and we
define G′χ as the set of g in Gχ such that χ(gxg−1x−1) = 1 for all x in Gχ;
clearly G′χ contains K.

Assume Gχ/K abelian. For h, g, x in Gχ we have

χ(ghx(gh)−1x−1) = χ(g(hxh−1x−1)g−1)χ(gxg−1x−1)
= χ(hxh−1x−1)χ(gxg−1x−1) ,

so that G′χ is a subgroup of Gχ: take g, h in G′χ or g in G′χ and h = g−1.
Moreover we obtain χ(grxg−rx−1) = χ(gxg−1x−1)r for any integer r and g, x
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in Gχ. If χ has finite order, which is automatic if K is compact, then Gχ/G
′
χ

has exponent dividing that order and if moreover Gχ/K is finitely generated,
then G′χ has finite index in Gχ.

Proposition.— Assume that K is normal in G and that Gχ/K is abelian.
Then the centre of H(G,K, χ) is the subalgebra H(G′χ, K, χ) and H(G,K, χ)
is a free module over its centre of rank the cardinality of G′χ/Gχ. If Gχ/K
is finitely generated, H(G′χ, K, χ) is a C–algebra of finite type; if moreover χ
has finite order, G′χ/Gχ is finite.

Remark.— Assume that the character χ of K into C× extends to a character
χ̃ of G′χ into C×: this happens if C is an algebraically closed field since then
C× is divisible. Then the map Φ 7→ Φχ̃−1 induces an algebra isomorphism
of H(G′χ, K, χ) onto H(G′χ, K, C), and the latter is nothing but the group
algebra C[G′χ/K].

Proof of the Proposition. Choose a set R of representatives for Gχ/K in G.
Let ϕ =

∑
r∈R

αrτr be an element of H(G,K, χ) with the coefficients αr taken

in C. Then for s in R we have

τs ∗ ϕ =
∑

αrτsr and

ϕ ∗ τs =
∑

αrχ(rsr−1s−1)τsr .

Hence ϕ is in the centre of H(G,K, χ) if and only if its support is in G′χ.
This proves the first assertion. If S is a set of representatives for Gχ/G

′
χ in

Gχ then by formula (*) above (τs)s∈S is a basis of H(G,K, χ) as a module
over its centre H(G′χ, K, χ). If Gχ/K is finitely generated, we have already
seen before the proposition that G′χ has finite index in Gχ provided χ has
finite order; finally if g1, . . . , gr are elements of G′χ whose images in G′χ/K
generate G′χ/K, formula (*) implies that τg1 , . . . , τgr generate the C–algebra
H(G′χ, K, χ).

2.10

Keep the situation of 2.9, still assuming that Gχ/K is abelian (which is the
case, of course, if G/K is abelian). It is interesting to know when H(G,K, χ)
is commutative, i.e. when G′χ = Gχ. Clearly G′χ = Gχ means that Gχ/Kerχ
is abelian.

Proposition.— If Gχ/K is cyclic, H(G,K, χ) is commutative.
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Indeed by construction K/Kerχ is central in Gχ/Kerχ. If Gχ/K is cyclic,
then Gχ/Kerχ is necessarily abelian.

The following example shows that we can hardly expect to improve on
the proposition, without further assumptions.

Example. Let G be a non–abelian group of order 8, and K its centre. Then
K has order 2 and is also the commutator subgroup of G; the quotient G/K
is abelian of exponent 2. If χ : K → C× is a faithful character, H(G,K, χ)
is not commutative.

Proposition.— If G is a semi–direct product of K with a commutative
subgroup S, then H(G,K, χ) is commutative.

Indeed each g in G can be written as ks with k in K and s in S, and g
is in Gχ if and only if s is. Take now g and h in Gχ and decompose them as
g = ks, h = `t. Then

ghg−1h−1 = k(s`s−1)(sts−1t−1)(tk−1t−1)`−1 .

Since S is abelian and s, t are in Gχ we get

χ(ghg−1h−1) = χ(k`k−1`−1) = 1

and consequently G′χ = Gχ. �

2.11

Let us stay in the context of 2.9, assuming further that Λ = G/K is abelian.
In § 7 we shall encounter a situation where we are given a submonoid Λ− of Λ.

Let G− be the inverse image of Λ− in G. The submodule H(G−, K, χ)
consisting of functions with support in G− (or, equivalently, G−∩Gχ) clearly
forms a subalgebra of H(G,K, χ). If G− ∩Gχ generates Gχ as a group, the
centre of H(G−, K, χ) is the submodule H(G′−χ , K, χ) of functions supported
on G′−χ = G− ∩G′χ: indeed for each g in Gχ there are x, y in G− ∩Gχ such
that g = x−1y, so that τg = (τx)

−1 ∗ τy, and if ϕ in H(G−, K, χ) commutes
with τx and τy, it also commutes with τg.

In § 3, Λ will be a finitely generated abelian group, and Λ− a finitely
generated submonoid of Λ. Then G−∩Gχ/K and G−∩G′χ/K are submonoids
of Λ−, but it is not automatic that they are also finitely generated. Indeed
if θ is a positive real number we can consider the submonoid {(x, y) ∈ N2 |
y ≤ θx} of the additive monoid N2, but it is finitely generated if and only if
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θ is rational. We shall use the well–known Gordan’s lemma from the theory
of convex polytopes [Fu, Prop. 1 p. 12].

Lemma.— Let L be a finitely generated free abelian group, and C a convex
rational polyhedral closed cone in L ⊗ R. Then L ∩ C is a finitely generated
monoid.

2.12

Finally, still in the context of 2.9, we mention a situation occuring in § 4.
We assume given a closed central subgroup J of G; we write Ḡ for the

quotient G/J , g 7→ ḡ for the quotient map, and K̄ for the image of K in
Ḡ. We assume that the character χ of K is trivial on J ∩K, i.e. comes via
inflation from a character χ̄ of K̄. Finally we assume that G/K is abelian,
so that Ḡ/K̄, isomorphic to G/JK, is also abelian. For g, x in G we have
χ(gxg−1x−1) = χ̄(ḡx̄ḡ−1x̄−1); it follows thatGχ is the inverse image of Ḡχ̄ and
similarlyG′χ is the inverse image of Ḡ′χ̄ (with obvious notation). Consequently
H(Ḡ, K̄, χ̄) is commutative if and only if H(G,K, χ) is.

Remarks.— 1) Let Φ be in H(G,K, χ). For g in G, the sum
∑

x∈J/J∩K
Φ(xg)

is finite and clearly depends only on ḡ; writing it Φ(ḡ) we get a function Φ̄
in H(Ḡ, K̄, χ̄). Since g 7→ ḡ gives an isomorphism of G/JK onto Ḡ/K̄, we
obtain that Φ 7→ Φ̄ is an algebra homomorphism, and H(Ḡ, K̄, χ̄) appears as
the quotient of H(G,K, χ) by the two–sided ideal generated by the central
elements τx − τ1 for x in J .

2) In a slightly different situation, assume given a closed central sub-
group J of G, and an extension χ̃ of χ to a smooth character of JK. Then
H(G, JK, χ̃) appears as the quotient of H(G,K, χ) by the two–sided ideal
generated by the central elements τx − χ(x)τ1 for x in J .

3 Parahoric subgroups

3.1

This section is mainly for reference. The field F is a locally compact non–
Archimedean field with finite residue field k of characteristic p, and G is a
connected reductive group over F . We put G = G(F ) — we shall use similar
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notation for all algebraic groups over F . On G we put the natural topology,
for which G is a locally pro–p topological group.

Following Haines and Rapoport [Ha–Ra], we recall one possible definition
of parahoric subgroups of G — of course it is compatible with the one given
by Bruhat and Tits [BT,II, 5.2.6 et 5.2.8] – and some of their properties. The
parahoric subgroups of G are some particular open compact subgroups of G.

We fix a separable algebraic closure Fsep of F and write G for the Galois
group of Fsep/F . We write Fu for the maximal unramified extension of F
in Fsep and I for the inertia subgroup of G, I = Gal(Fsep/Fu); we put
Γ = Gal(Fu/F ) and write σ for the arithmetic Frobenius automorphism of
Fu/F , which is a topological generator of Γ. We put Gu = G(Fu), and
similarly for other algebraic groups over Fu.

3.2

To G is functorially associated a finitely generated abelian group X∗(Z(Ĝ)I);
when the derived group Gder of G is simply connected, it is the group of
coinvariants X∗(D)I where D is the torus G/Gder, for the natural action of
I on the group X∗(D) of cocharacters of D.

We shall also need the canonical surjective homomorphism

qG : X∗(Z(Ĝ)I) −→ Hom(X∗(G)I ,Z)

whose kernel is the torsion subgroup of X∗(Z(Ĝ)I) [K, 7.4.4]; when Gder

is simply connected, it is simply given by the duality between X∗(D) and
X∗(D) for D = G/Gder.

We have a natural homomorphism vGu : Gu → Hom(X∗(G)I ,Z) given
by vGu(h)(λ) = valFu(λ(h)) for λ in X∗(G)I , where valFu is the normalized
valuation on Fu.

Kottwitz [K, 7.1 to 7.4] has defined a functorial surjective homomorphism
wG : Gu → X∗(Z(Ĝ)I) such that [K, 7.4.5]

vGu = qG ◦ wG .

Consider the analogously defined homomorphism vG : G→ Hom(X∗(G)G,Z),
and the natural restriction map ι : Hom(X∗(G)I ,Z) → Hom(X∗(G)G,Z).
Clearly vG(g) = ιvGu(g) for g in G.
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Lemma

(i) Ker vG = G ∩Ker vGu

(ii) Ker vG is the set of g in G such that wG(g) is torsion.

Proof. Let g ∈ G. For χ in X∗(G)I we have χσ(g) = χ(g) since gσ = g, so
that vGu(g) factors through the coinvariants of σ in X∗(G)I . But the natural
map

X∗(G)G −→ (X∗(G)I)σ

has finite cokernel, as is easily seen by tensoring with Q, so that vGu(g)
vanishes if and only if vG(g) vanishes. This gives (i), and (ii) follows since
KerqG is the torsion subgroup of X∗(Z(Ĝ)I).

Remark.— There is another useful way to look at the map vG. Let S
be the maximal F–split torus in the centre of G. Then X∗(G)G → X∗(S) is
injective with finite cokernel [cf. BT II, 4.2.6], which gives an injective map

Hom(X∗(S),Z) −→ Hom(X∗(G)G,Z)

with finite cokernel.
This results in an identification of X∗(S)⊗ZR with Hom(X∗(G)G,Z)⊗ZR,

and we may as well see vG as a map to X∗(S)⊗Z R, with image a lattice in
that real vector space, and even in the rational vector space X∗(S)⊗Z Q.

3.3

We write B for the building of the adjoint group Gad of G over Fu; it is a
polysimplicial complex on which Gu acts by simplicial automorphisms. The
set Bσ of fixed points under σ is the building of Gad over F ; it is also a
polysimplicial complex and G acts on Bσ by simplicial automorphisms.

Each facet in Bσ is contained in a unique σ–invariant facet of B and in
this way we get a bijection between facets of Bσ and σ–invariant facets of B:
the inverse map is obtained by intersecting a σ–invariant facet of B with Bσ.
Besides alcoves in Bσ correspond to σ–invariant alcoves in B.

Let F be a facet in B. The corresponding parahoric subgroup KGu(F) of
Gu is the set of g in KerwG which act trivially on F . It is an open bounded
subgroup of Gu. A parahoric subgroup of Gu is a subgroup of the form
KGu(F) for some facet F in B. [BT II, 5.2.6]
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If F is a σ–invariant facet of B, we put KG(F) = KGu(F)σ; it is an open
compact subgroup of G. A parahoric subgroup of G is a subgroup of the
form KG(F) for some σ–invariant facet F in B. If F ′ is the facet F ∩ Bσ of
Bσ we also put KG(F ′) = KG(F) [BT II, 5.2.6 and 5.2.8].

Remarks.— 1) If F is a σ–invariant facet of B, then H1(σ,KGu(F)) = 1
[Ha–Ra, Remark 9].

2) If F is a σ–invariant facet of B, we shall also consider a slightly larger
group K̃G(F): it is the group of elements h of G fixing F such that wG(h)
is torsion. By the lemma in 3.2 it is the group of elements in KervG fixing
F . Clearly KG(F) has finite index in K̃G(F) so that K̃G(F) is open and
compact in G.

3.4

When G is a torus, B has only one point, Gu is abelian and has only one
parahoric subgroup KGu . The quotient Gu/KGu , isomorphic to X∗(G)I via
wG, is a finitely generated abelian group. The inverse image in Gu of the
torsion subgroup of Gu/KGu is the unique maximal bounded subgroup K̃Gu

of Gu; it contains KGu as an open invariant subgroup of finite index. If
X∗(G)I has no torsion, then K̃Gu = KGu ; this happens for example when G,
over Fu, is a product of induced tori.

In a similar manner, when G is anisotropic mod.centre, Bσ has only one
point, G has only one parahoric subgroup KG, and G/KG is a finitely gen-
erated abelian group. The inverse image in G of the torsion subgroup of
G/KG is the unique maximal compact subgroup K̃G of G; it contains KG as
an open invariant subgroup of finite index. Note also that if S is the maximal
split central torus in G, then KG ∩ S and K̃G ∩ S are equal to the maximal
compact subgroup of S: indeed K̃G ∩ S is compact hence contained in K̃S,
and on the other hand KG ∩ S contains KS by functoriality of the Kottwitz
morphism; but KS = K̃S because S is a split torus. Note also that S/KS

has finite index in G/KG.

3.5

Some exact sequences of groups are useful.
(i) Assume that Gder is simply connected, and write D = G/Gder. If F is a
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facet of B, then the natural exact sequence

1 −→ KGder,u(F) −→ KGu(F) −→ KD,u −→ 1

is exact (assertion c) in the proof of Prop. 3 in [Ha–Ra]).
If F is σ–invariant, then taking fixed points under σ gives (3.3 Remark 1)

an induced exact sequence

1 −→ KGder(F) −→ KG(F) −→ KD −→ 1 .

(ii) Assume we are given a z–extension G′ of G with kernel Z ′. Then the
exact sequence

1 −→ Z ′u −→ G′u −→ Gu −→ 1

gives rise to an exact sequence

1 −→ KZ′u −→ KG′u(F) −→ KGu(F) −→ 1

for any facet F of B. If F is σ–invariant we get another exact sequence

1 −→ KZ′ −→ KG′(F) −→ KG(F) −→ 1

(assertion a) in the proof of Prop. 3 in [Ha–Ra]).

3.6

A parahoric subgroup K of G has a characteristic subgroup, its pro–p radical,
the properties of which we now recall.

Lemma.— Let H be a profinite group, with an open pro–p subgroup J . Then
H has a largest open normal pro–p subgroup.

Proof. The subgroup J ′ =
⋂

g∈H/J
gJg−1 is an open subgroup of H, as an

intersection of finitely many open subgroups; by construction it is normal
in H, and is a pro–p group. In the finite discrete group H/J ′, take the
intersection of the p–Sylow subgroups; its inverse image H+ in H is clearly an
open normal pro–p subgroup. If H ′ is another open normal pro–p subgroup
of H, its image in H/J ′ is a normal p–subgroup, hence is included in the
intersection of the p–Sylow subgroups of H/S ′; consequently H ′ is contained
in H+, which proves the lemma.

Definition.— If H is a profinite group with an open pro–p subgroup, we
write H+ for its largest open normal pro–p subgroup, and we call it the pro–p
radical of H.
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3.7

Fix a parahoric subgroup K of G. Its pro–p radical K+ has another descrip-
tion using Bruhat–Tits theory, which we now recall. As usual we write OF
for the ring of integers of F , PF for its maximal ideal, and kF for the residue
field OF/PF .

IndeedK is canonically the group of points overOF of a smooth connected
affine group scheme GK over OF , with generic fibre G; that group is written
G0
x in [BT II 5.1, 30] if K fixes the point x in the building of Gad. Writing ḠK

for its special fibre, the map from GK(OF ) to ḠK(kF ) obtained by reduction
mod PF is surjective (by smoothness and Hensel’s lemma, see also [BTII,
5.1.32 (ii)]), and its kernel is an open pro–p subgroup of K.

Let R be the unipotent radical of ḠK , so that the quotient ḠredK = ḠK/R
is the maximal reductive quotient of ḠK . If k̄ is an algebraic closure of kF
then we get an exact sequence of finite groups

1 −→ R(k̄) −→ ḠK(k̄) −→ ḠredK (k̄) −→ 1 .

But the finite field kF is perfect, so R is a split unipotent group over kF .
Therefore H1(kF ,R(k̄)) is trivial, and taking fixed points under the Galois
group of k̄ over kF we get another exact sequence of groups

1 −→ R(kF ) −→ ḠK(kF ) −→ ḠredK (kF ) −→ 1

where R(kF ) is a p–group.

Proposition.— Fix a parahoric subgroup K of G. The pro–p radical K+ of
K is the kernel of the composite map from K = GK(OF ) to ḠredK (kF ).

Proof. Indeed from the construction that kernel is an open pro–p subgroup
of K, hence is included in K+. The reverse inclusion comes from the following
lemma, applied to the reductive group H = ḠredK over kF .

Lemma.— Let H be a connected reductive group over a finite field k of
characteristic p, and H the finite group H(k). Then any normal p–subgroup
of H is trivial.

The argument is well–known to experts and has been indicated to us by
F. Digne. Let B be a Borel subgroup of H and U its unipotent radical.
Looking at cardinals one sees that U = U(k) is a p–Sylow subgroup of H; as
all p–Sylow subgroups of H are conjugate, a normal p–subgroup J of H is
contained in U . But if B− is a Borel subgroup of G opposite to B, J is also
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contained in U− = U−(k) where U− is the unipotent radical of B−, so that
J is contained in U ∩ U− which is trivial. �

4 The case where G is compact mod. centre

4.1

In this section, C is any commutative ring, the field F is the same as in § 3,
and the connected reductive group G over F is assumed to be anisotropic
mod.centre — equivalently, the topological group G = G(F ) is compact
mod.centre.

As recalled in 3.4, G has a unique parahoric subgroup K, which is thus
invariant in G, and the quotient G/K is a finitely generated abelian group.
Also, G has a unique maximal compact subgroup K̃ and K̃/K is the torsion
subgroup of G/K. The pro–p radical K+ of K is invariant in G too, and
the quotient K/K+ is a finite abelian group of order prime to p. Indeed the
group ḠredK of 3.7 is a torus; examples in 4.2 will show that in general G/K+

is not abelian.
We fix a character χ : K → C× trivial on K+ and we investigate the

Hecke algebra H(G,K, χ), in particular its commutativity. As in 2.9 we
introduce the subgroups Gχ and G′χ of G; as K/K+ is finite, χ has only
finitely many conjugates under G, and Gχ has finite index in G. As Gχ/K
is finitely generated, G′χ has finite index in Gχ (2.9).

The algebra H(G,K, χ) is commutative exactly when G′χ = Gχ. That
is clearly the case when χ is trivial; in that case from 2.9 Proposition we
deduce:

Proposition.— (G anisotropic mod.centre) The Hecke algebra H(G,K,C)
is a commutative algebra of finite type over C.

Remarks.— 1) If G is semi–simple and simply connected, Kottwitz’s appli-
cation wG is trivial, and G is equal to K so that H(G,K, χ) is isomorphic to
C for any χ. This is of course a rare and trivial case.

2) As we shall see in 4.4, H(G,K, χ) is not always commutative. But from
2.9 Proposition, we know that its centre is H(G′χ, K, χ), a finitely generated
C–algebra; moreover H(G,K, χ) is a free module over H(G′χ, K, χ) of finite
rank |Gχ/G

′
χ|.

29



3) Similarly, for any subgroup K ′ between K and the maximal compact
subgroup K̃ we have that H(G,K ′, C) is commutative.

4.2

Let us first give a few more examples where H(G,K, χ) is commutative.
Let E be a finite separable extension of F , and D a central division

algebra over E, of finite degree. The multiplicative group D× is compact
modulo its centre E×. We can take G such that G = G(F ) = D×. The
derived group Gder of G is simply connected, and Gder(F ) is the group D1

of elements in D with reduced norm to E equal to 1; the quotient G/Gder is
the induced torus T such that T (F ) = E×.

We have the exact sequence of groups

1 −→ D1 −→ D×
N−→ E× −→ 1

given by the reduced norm N , and K is the inverse image of the unique
parahoric subgroup UE of E× (3.3 and 3.4). This implies that K, equal to
K̃, is the group of units UD in D, and that K+ is the group of principal units
U1
D; in particular G/K = D×/UD is isomorphic to Z, and unless D = E,

G/K+ is not abelian. From the first proposition in 2.10, we deduce:

Proposition.—With G = D× as above, the Hecke algebra H(D×, UD, χ) is
commutative for any character χ : UD → C× trivial on U1

D.

Remark.— Clearly we can also take for G a product of groups D×i , where
Di is a division algebra as above, and the corresponding Hecke algebras
H(G,K, χ) are always commutative. We can also take the product of such a
group with any torus, and commutativity still holds.

4.3

Keep the situation of 4.2. The torus T also appears as the centre of G and
taking F–rational points gives an exact sequence of groups

1 −→ E× −→ D× −→ Gad −→ 1 ,

where Gad is the adjoint group of G.
Writing Kad for the unique parahoric subgroup of Gad, we get an exact

sequence of groups 1→ UE → UD → Kad → 1, and Kad/Kad+ gets identified
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with k×D/k
×
E , where kE is the residue field of E, and kD that of D. Note that

Gad is compact so that Kad is not a maximal compact subgroup of Gad.
From 2.12 and 4.2 Proposition we get

Proposition.— In the situation above, let χ be a character Kad → C×

trivial on Kad+. Then the algebra H(Gad, Kad, χ) is commutative.

That can also be obtained from 2.9 since Gad/Kad is cyclic.
As in 4.2 Remark, we can take products, which by [BTIII] yield all semi–

simple groups which are anisotropic mod. centre and of adjoint type.

Corollary.— Assume that the group G of 4.1 is (anisotropic and) semi–
simple of adjoint type. Then H(G,K, χ) is commutative for any character
χ : K → C× trivial on K+.

4.4

We now give an example where H(G,K, χ) is not commutative. In that
example Gder is simply connected, but G is not semisimple. At this moment
we do not know whether there is such an example with G semisimple (but
of course not simply connected cf. 4.1 Remark).

We assume p odd, and we choose a ramified quadratic extension E of
F ; we write y 7→ ȳ for the non–trivial automorphism of E/F . We also
choose a division algebra D with centre E and reduced degree 4, such that a
uniformizer of D acts on its residue field kD via the Frobenius automorphism
of kD over the residue field kE of E. We write N for the reduced norm from D
to E; on residue fields, it induces the norm from kD to kE, which we write n.

Let G = {d, x, y) ∈ D× ×E× ×E× | N(d)x2y/ȳ = 1}. This is clearly the
group of F–points of a linear algebraic group G over F . As N is surjective,
we have a surjective homomorphism (d, x, y) 7→ (x, y) from G to E× × E×
with kernel D1 = KerN . The exact sequence

1 −→ D1 −→ G −→ E× × E× −→ 1

comes from an exact sequence of algebraic groups

1 −→ G1 −→ G −→ T −→ 1 .

As G1 is connected reductive and T is a torus, G is connected reductive, and
it follows that G1 is the derived group of G.
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Because T is an induced torus, the unique parahoric subgroup of E××E×
is UE × UE and from 3.5 (i) we get an exact sequence of groups

1 −→ D1 −→ K −→ UE × UE −→ 1

for the unique parahoric subgroup K of G. We deduce that

K̃ = K = {(d, x, y) ∈ UD × UE × UE | N(d)x2y/ȳ = 1} and
K+ = {(d, x, y) ∈ U1

D × U1
E × U1

E | N(d)x2y/ȳ = 1} , so

that K/K+ appears as {(z, t, u) ∈ k×D × k
×
E × k

×
E | n(z)t2 = 1}.

Proposition.— Assume that k has 3 elements. Let ε be a character k×D →
C× of order 16, and let χ be the character (z, x, y) 7→ ε(z mod UD) of K.
Then H(G,K, χ) is not commutative.

Remark.— The group k×D has order 80 = 34 − 1, so we have ε(−1) = −1.
We can take C = kD and ε(z) = z5. We can also choose for C the field
of complex numbers: that gives an example of intertwining algebra, over C,
for level zero [cf. Mo], which is not commutative; we believe this is the first
example of such.

Proof. We compute the subgroups Gχ and G′χ of 2.11. Let g = (d, x, y)
be in G; its action on K/K+ depends only on the valuation v of d and is
given by (z, t, u) 7→ (z3v , t, u). By the condition N(d)x2y/ȳ = 1, v is even.
On the other hand, the condition n(z)t2 = 1 imposes n(z) = 1 i.e. z40 = 1
so that z is a square in k×D. As ε has order 16, we get

ε(z3v−1) = 1 for even v, so that Gχ = G .

On the other hand, let ω̃ be a uniformizer of D; then g = (ω̃2, N(ω̃)−1, 1)
belongs to G. Let ξ be an element of UD with reduced norm −1 to E; its
image z in k×D satisfies n(z) = z40 = −1. If ω̃E is a uniformizer of E with ω̃2

E

in F , then h = (ξ, 1, ω̃E) also belongs to G. We compute

ghg−1h−1 mod K+ = (z8, 1, 1)

and χ(ghg−1h−1) = ε(z8). Since ε(z40) = ε(−1) = −1, we see that G′χ is
distinct from Gχ (equal to G) and H(G,K, χ) is not commutative indeed.
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4.5

We have presented our simplest example, but the same principle can be used
to provide other examples, in any residue characteristic. We only indicate
the modifications.

If p is odd, and the cardinality q of k is congruent to 1 modulo 4, then we
can take the same construction as above: E/F is quadratic ramified, D/E
is a central division algebra of degree 16, and G is given by the equation
N(x)y2z/z̄ = 1 in D× × E× × E×, K being given by the same equation in
UD × UE × UE, and K/K+ by the equation n(x̄)ȳ2 = 1 in k×D × k×E × k×E .
We take a character ε from k×D to C× with order 2r+1 where r is the 2–adic
valuation of q2 − 1, and we put χ(x, y, z) = ε(x mod UD) for (x, y, z) in G.
If p is odd and q is congruent to 3 modulo 4, we use the previous example
over a quadratic unramified extension F ′ of F — where the cardinality of the
residue field is q2, congruent to 1 modulo 8 — and take the Weil restriction
from F ′ to F to get an example over F .

If p is 2 and q is congruent to 1 modulo 3, we take E/F cubic cyclic
ramified, D/E a central division algebra of degree 81, G being given by the
equation N(x)y3z/zτ = 1 in D× × E× × E×, where τ is one of the non–
trivial automorphisms of E/F . Then K is given by the same equation in
UD × UE × UE, and K/K+ by the equation n(x̄)y3 = 1 in k×D × k×E × k×E .
We then take for ε a character from k×D to C× of order 3t+1 where t is the
3–adic valuation of q3 − 1 and we put χ(x, y, z) = ε(x mod UD) for (x, y, z)
in G, as above. If p is 2 and q is congruent to −1 mod 3, we use a quadratic
unramified extension as in the case where p is odd.

5 Irreducible mod.p representations of para-

horic subgroups

5.1

This section is also for reference, to be used in the final § 7. In this section, C
is a field of characteristic p, and k is a finite field of the same characteristic.
There is no other relation between C and k (cf. Remark 5.5).

We are interested in irreducible smooth representations of a parahoric
group K as in 3.3, on a C–vector space V . As V is not zero and the pro–
p–radical K+ of K is a pro–p group, K+ has a non–zero fixed point in V ;
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because V is irreducible and K+ is invariant in K, K+ acts trivially on V ,
so that K acts on V via its quotient K/K+.

As recalled in 3.4, that quotient is the group of points of a connected
reductive group over k. We thus recall the representation theory of such
groups in the natural characteristic p. Our main reference is the book of
Cabanes and Enguehard [CE, Chapter 1].

Linear algebraic groups over k will be denoted by underlined capital let-
ters like G, and the group of k–rational points by the corresponding ordinary
capital letter, like G.

We fix a connected reductive group G over k, a maximal k–split torus S
in G, and we write T for the centralizer of S in G; it is a torus since G is
quasi–split over k. We fix a Borel subgroup B of G containing T , and write
U for the unipotent radical of B.

We let Φ be the set of roots of G relative to S, and ∆ the set of simple
roots determined by the choice of B. For each root a in Φ, we let Ua be the
corresponding root subgroup of G (written U (a) in [Bo, 21.9]).

Writing N for the normalizer of S in G, we have the relative Weyl group
W = N/T ; it is known that W = N(k)/T (k) = N/T . [Bo, 21.2 Theorem].
For each a in ∆ there is a corresponding element sa in W with s2

a = 1 [Bo]
loc. cit. and those element generate W . We write S for the set of such
reflections.

5.2

The results of Cabanes and Enguehard apply to strongly split BN–pairs of
characteristic p [CE, Déf. 2.20]. Although that notion is clearly inspired by
the case of reductive groups over finite fields, they do not seem to state the
following, which is certainly well–known, possibly obvious to the experts.

Lemma.— (G,B,N,S), together with the decomposition B = TU , form a
strongly split BN–pair of characteristic p.

Remark.— We insist that the lemma is true whether or not G is split over k.

Proof. We review the different parts of the definition of loc. cit. First
(G,B,N,S) has to be a BN–pair, which is true by [Bo, Prop. 21.15]. Second
B has to the semi–direct product of an invariant p–group U and a commu-
tative group T of order prime to p, which is indeed true in our case.

Third, we need B∩Bw0 = T , where w0 is the longest element of W (with
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respect to S).
Those first three conditions mean that we have a split BN–pair of charac-

teristic p in the sense of loc. cit. But Carter [Carter, Chapter 2] has a stricter
notion of split BN–pair in that he imposes the condition

⋂
n∈N

nBn−1 = T ,

which he shows is true in our case. Moreover that condition indeed implies
B ∩Bw0 = T [Carter, Prop. 2.5.5 (ii)].

To have a strongly split BN–pair of characteristic p, Cabanes and En-
guehard impose a further condition which is a consequence of condition (C)
in [CE, § 2 exer. 5(a), p. 39] — in fact it is equivalent to (C) by the end of
the exercise. Condition (C) is imposed on some “root subgroups” Xα of G
attached to the non–divisible roots α in Φ — it is known by [B, Lie VI § 1,
Prop. 15] that those roots are the images of the simple roots in ∆ by the
action of W .

Condition (C) says:

(C) If α and β are non–divisible roots in Φ, α 6= ±β, then the commutators
(x, y), for x in Xα and y in Xβ, are contained in the subgroup generated
by the Xγ’s, where γ runs through roots which can be written as γ =
aα + bβ for positive integers a and b.

Again that is stated by Carter [Carter, p. 57], but for subgroups Yα which
are, at least formally, defined in a different manner.

In [CE], Xα is the set of p–elements in a group Bα which is defined
as follows: write α = wδ for an element w of W and δ in ∆, and then
Bα =w(B ∩Bw0sδ). On the other hand [Carter, p. 57 line -1] Yα is wYδ where
Yδ = U ∩ Uw0sδ [Carter, p. 50]. Now B = TU gives Bw0sδ = TUw0sδ as W
normalizes T , and by [Carter Prop. 2.5.9] B ∩Bw0sδ = T (U ∩ Uw0sδ) so that
finally Yα = Xα indeed.

This ends the proof of the lemma!

5.3

[CE, Theorem 6.10] provides, under some condition (*) on C, a precise re-
lationship between irreducible C–representations of G, and characters of the
Hecke algebra H(G,U,C).

By [CE, Prop. 6.6], G is the disjoint union of the double cosets UnU
where n runs through N . It follows that H(G,U,C) has a basis Tn where,
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for n in N , Tn corresponds to the double coset UnU ; moreover the structure
constants giving the multiplication in H(G,U,C) in that basis are in the
prime field of C.

In general, H(G,U,C) is not commutative. However, writing gp′ for the
prime–to–p part of the cardinality of G, assume

(∗) C contains all gp′-th roots of unity .

Then [CE, Thm. 6.10] gives:

(i) If V is an irreducible C–representation of G, V U is a simple module
over H(G,U,C).

(ii) The assignment V → V U gives a bijection between isomorphism classes
of irreducible C–representations of G and isomorphism classes of simple
modules over H(G,U,C).

(iii) Every simple module over H(G,U,C) has dimension 1.

In particular isomorphism classes of irreducible C–representations of G
correspond bijectively to characters H(G,U,C) → C. In turn those char-
acters are parametrized bijectively by pairs (χ, I) where χ is a character
T → C× and I is any subset of a set of simple roots ∆χ determined by χ: for
any root a in ∆, we let Ta be the intersection of T with the subgroup gener-
ated by Ua and U−a, and ∆χ is the set of roots a such that χ is trivial on Ta.
To such a pair (χ, I) corresponds the character ψ(χ, I) of H(G,U,C) defined
as follows: for n in N with image w in W , take a reduced decomposition
w = saj · . . . · sar , lift it to a decomposition of n = n1 · . . . · nrt (with ni ∈ sai
for i = 1, . . . , r, and t in T ) and put ψ(χ, I)(Tn) = (−1)rχ(t) if a1, . . . , ar all
belong to I and otherwise ψ(χ, I)(Tn) = 0; in particular ψ(χ, I)(t) = χ(t)
for all t in T .

5.4

Still under condition (*), let us derive a few consequences of the previous
results.

(a) Every irreducible C–representation of G is defined over the finite field
generated by the gp′–th roots of unity. Indeed all characters ψ(χ, I) are
clearly defined over such a field.
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(b) All irreducible C–representations V of G are absolutely irreducible: the
commutant of V is reduced to scalars, and the same remains true over
any extension C ′ of C.

(c) Let V be an irreducible C–representation of G, with associated charac-
ter ψ = ψ(χ, I). Let σ be an automorphism of C. Then the character
associated to C ⊗σ V is ψ(σ ◦ χ, I). In particular V and C ⊗σ V are
isomorphic if and only if σ◦χ = χ. Waldspurger’s proof [W, lemme 1.1]
adapts to give that V is in fact defined over the field of values of ψ.

5.5

We now deduce some results without condition (*), i.e. for a general field C
of characteristic p.

Proposition (i) If V is an absolutely irreducible C–representation of G,
V U has dimension 1.

(ii) The assignment V → V U yields a bijection between isomorphism
classes of absolutely irreducible C–representations of G and characters
H(G,U,C)→ C.

(iii) The characters H(G,U,C)→ C are parametrized bijectively by pairs
(χ, I) with χ a character T → C× and I a subset of ∆χ, with the same
formulas as above.

Remark. We can take for example the trivial representation of G on C =
Z/pZ, whatever k is.

Proof. The theorem is certainly true when C satisfies (*). In general adjoin
to C all gp′–th roots of unity. We obtain a finite Galois extension C ′/C
and C ′ satisfies (*).

(a) If V is an absolutely irreducible C–representation of G, then C ′ ⊗C V
is an irreducible C ′–representation of G, so (C ′ ⊗C V )U has dimension
1 over C ′. But (C ′ ⊗C V )U = C ′ ⊗C V U , so that V U has dimension
1 over C. This proves (i).

(b) Let V1, V2 be absolutely irreducible C–representations of G, and ψ1, ψ2

the corresponding characters H(G,U,C)→ C. If V1, V2 are isomorphic
clearly ψ1 = ψ2. Conversely assume ψ1 = ψ2. Consider C ′ ⊗C Vi for
i = 1, 2; the corresponding character ofH(G,U,C ′) = C ′⊗CH(G,U,C)
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is simply given by 1C′⊗ψi. As 1C′⊗ψ1 = 1C′⊗ψ2 we see that C ′⊗C V1

and C ′ ⊗C V2 are isomorphic C ′–representations of G. Consequently
V d

1 and V d
2 , where d is the degree of C ′/C, are isomorphic, and so are

V1 and V2. This proves the injectivity assertion in (ii).

(c) If ψ is a character H(G,U,C) → C, its restriction to elements Tt for
t in T clearly gives a character χ : T → C×. Moreover 1C′ ⊗ ψ is a
character of H(G,U,C ′) so it is of the form ψ(ι◦χ, I) for some I ⊂ ∆χ,
where we have written ι the inclusion of C into C ′. But then obviously
ψ is given by the formulas in 5.3 for ψ(χ, I), and ψ determines both χ
and I. In the other direction, if a parameter (χ, I) is given where χ is a
character T → C× and I a subset of ∆χ, then ψ(ι ◦χ, I) is a character
H(G,U,C ′) → C ′; its restriction to H(G,U,C) is a character taking
values in C so the formulas in 5.3 indeed define a character ψ(χ, I)
from H(G,U,C) to C. This proves (iii).

(d) Let ψ = ψ(χ, I) be a character H(G,U,C) → C. Let V ′ be an irre-
ducible C ′–representation of G corresponding to the character 1C′ ⊗ ψ
of H(G,U,C ′). By 5.4 c) there is an irreducible C–representation V
of G with C ′ ⊗C V isomorphic to V ′. The action of H(G,U,C) on V U

is then obtained by restricting to H(G,U,C) the action of H(G,U,C ′)
on V ′U , so indeed it is given by ψ(χ, I). Moreover V is absolutely
irreducible since V ′ is. This proves the surjectivity statement in (ii). �

5.6

We need a couple of properties, to be used in section 7. First we look at
automorphisms of the situation.

Let σ be an automorphism of G, preserving T and U . If π is a represen-
tation of G on a C–vector space V , π ◦σ is a representation of G on the same
vector space V . The action of H(G,U,C) on (π ◦ σ)U is also obtained by
composing with σ — which induces an automorphism of H(G,U,C) — the
action on πU . If π is absolutely irreducible, corresponding to the character
ψ(χ, I) of H(G,U,C), then π ◦ σ is also absolutely irreducible, and corre-
sponds to ψ(χ ◦ σT , I ◦ σ) where we have written σT for the automorphism
of T induced by σ, and I ◦ σ is the set {α ◦ σT | α ∈ I}.
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5.7

More important is some information on the action of parabolic subgroups —
we always assume them to be defined over k. Let P be a parabolic subgroup
of G containing B. Let N be its unipotent radical, and M its Levi subgroup
containing T . Then M∩B is a Borel subgroup of M with Levi decomposition
M ∩B = T (M ∩U). The set of roots of M with respect to M ∩U is a subset
∆M of ∆. We let P− = MN− be the parabolic subgroup opposite to P .

Let V be an absolutely irreducible C–representation of G, with associated
character ψ = ψ(χ, I).

(i) The representation ofM on V N is absolutely irreducible with associated
character ψ(χ,∆M ∩ I).

(ii) We have V = C[N−]V N , and in particular the projection of V onto
the coinvariants VN− induces an isomorphism of V N onto VN− , which
is M–equivariant.

When C satisfies condition (*) of 5.3, the first assertion is given by [Cab,
3.6] and the second by [Cab, 3.2]; the general case is a consequence, using
the reasoning of 5.5.

Remark. Applying (ii) to the contragredient representation of V (or, more
simply, replacing B, P by the opposites with respect to T ), we get that the
projection of V onto VN induces an isomorphism of V N− onto VN .

6 Double coset decompositions

6.1

This section, although a bit technical, is at the heart of our reasoning. We
prove a number of facts of combinatorial or geometric nature, which will be
crucial for the proof of our main results in the next section.

The context is the same as in [Ha-Ro] and [Ha-Ra], which we often refer
to. Our main notation, though, is close to that of [BT II].

In this section the coefficient ring C does not play a role, F is the same
field as in sections 3 and 4, G is a general connected reductive group over F .
As before we put G = G(F ) and similarly for other (underlined) algebraic
groups over F . All parabolic subgroups of G will be assumed to be defined
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over F , and a Levi subgroup of G will be a Levi subgroup defined over F
of a parabolic subgroup. We shall also have to consider algebraic groups H
over kF , and we write, as in section 5, H for H(kF ).

We fix a maximal F–split torus S in G, and we let Z be its centralizer in
G; then Z is a minimal Levi subgroup of G, and is anisotropic mod. centre.
To avoid any confusion with unipotent radicals, we write N — instead of N
as in [BT II] — for the normalizer of S in G. We let Φ be the set of roots of
S in G, Φred for the set of reduced roots. In the building B of Gad over F ,
we have the apartment A corresponding to S, and we choose a special vertex
v0 in A [T, 1.9][BTI, 1.3.7]; we think of A as a vector space with origin v0.

We write K for the special parahoric subgroup KG({v0}), in the notation
of section 3, and K̃ for the group K̃G({v0}).

6.2

We shall need the Cartan decomposition of G with respect to K. We let
W0 = W (G,S) be the Weyl group of G with respect to S, that is the quotient
N /Z; it is equal toN /Z [Bo, 21.2 Theorem] and acts naturally on S. Because
v0 is special, W0 has representatives in K and also appears as N ∩K/Z ∩K
[Ha-Ro, lemma 5.0.1]. The group N ∩ K acts via conjugation on Z and
Z ∩K, and since Λ = Z/Z ∩K is abelian, W0 acts naturally on Λ. Recall
also that Λ is a finitely generated abelian group.

The Cartan decomposition [Ha-Ro, Theorem 1.0.3] says that the map
Z → K\G/K sending z in Z to the double coset KzK induces a bijection
between the set of orbits of W0 in Λ and K\G/K. Using a couple of lemmas,
we want to express it in a way more convenient to us.

It is worth noting first the following facts.

Lemma (i) Z ∩K is the unique parahoric subgroup KZ of Z.

(ii) Z ∩ K̃ is the maximal compact subgroup K̃Z of Z.

(iii) The inclusion of Z ∩ K̃ in K̃ induces an isomorphism of Z ∩ K̃/Z ∩K
onto K̃/K.

Proof. (i) is given by [Ha-Ro, 4.1.1]. We have K̃ = (Z ∩ K̃)K by the
proof of Proposition 9.1.1 in [Ha-Ro], which gives (iii). On the other hand,
the maximal compact subgroup K̃Z of Z is the inverse image in Z of the
torsion subgroup Λtor of Λ (§ 3.4), and therefore the equality K̃Z = Z ∩ K̃
comes from [Ha-Ro, Proposition 11.1.4 and its proof].
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6.3

Recall from § 3.2 Remark that the map vZ : Z → X∗(S) ⊗Z R identifies
Λ/Λtor with a lattice Λ̄ in X∗(S)⊗ZR. By construction, vZ is W0–equivariant.

Remark. 1) The apartmentA can be identified with the quotient ofX∗(S)⊗Z
R by the subspace orthogonal to all roots of S in G. On that quotient A an
element z of Z acts by the translation corresponding to −vZ(z). In particular
z acts trivially on A if and only if vZ(z) is orthogonal to all roots of S in G.

We let C be a Weyl chamber in X∗(S)⊗ZR, we put Λ̄+ = C ∩ Λ̄ and write
Λ+ for the inverse image of Λ̄+ in Λ, Z+ for the inverse image in Z; we call
elements of Z+ dominant (with respect to C). We put subscripts − for the
analogous objects corresponding to the opposite Weyl chamber, so that for
example Λ− = {λ−1 | λ ∈ Λ}, and we call elements of Z− antidominant.

Remark. 2) It is well known [B, Lie V, § 4. Proposition 6 (ii)] that Λ̄+ is a
set of representatives for the orbits of W0 in Λ̄.

Lemma.— Λ+ is a set of representatives for the orbits of W0 in Λ.

We give the proof in 6.4. Of course we can replace Λ+ with Λ− in that
lemma. Given that lemma, we can restate the Cartan decomposition.

Proposition.— (Cartan decomposition for K) The map Z → K\G/K,
z 7→ KzK, induces a bijection between Λ+ (or Λ−) and K\G/K.

6.4

Proof of lemma 6.3. Let λ, µ in Λ+ and w in W0 satisfy λ = w(µ). Projecting
to Λ̄ we get by 6.3 Remark 2 that λ = µν for some ν in Λtor, so that
w(µ) = µν. Choose a representative z for µ in Z and a representative n for
w in N ∩K; then we have

nzn−1 = zt

for some t in K̃Z hence in Z ∩ K̃ by 6.2 Lemma (ii). Consider now the
Kottwitz homomorphism wG of § 3.2. As wG takes values in an abelian
group, we get wG(t) = 1. But t belongs to K̃, and wG induces an injection
on K̃/K, so that t belongs to Z ∩K and w(µ) = µ, which proves the lemma.

6.5

We also need the Iwasawa decomposition for K.
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Proposition.— (Iwasawa decomposition) Let P be a parabolic subgroup of
G. Then G = PK.

Proof. It suffices to prove this when P is minimal. If P has Z as Levi
component, the result is given by Corollary 9.1 2(i) in [Ha-Ro]. Any minimal
parabolic subgroup P in G is conjugate to some minimal parabolic subgroup
B with Levi component Z, by an element g which we can write g = kb with
k in K and b in B. From G = BK we get G = kBk−1K = PK.

The next result we need is not true for a general parabolic subgroup of
G, only for semi–standard ones. Recall that a parabolic subgroup of G is
called semi–standard if it contains S, and that a Levi subgroup of G is
called semi–standard if the maximal split torus in its centre is contained
in S. A semi–standard parabolic subgroup of G has a unique semi–standard
Levi component, and conversely a semi–standard Levi subgroup of G is a
Levi component for some, possibly several, semi–standard parabolic sub-
groups of G.

Theorem.— Let P be a semi–standard parabolic subgroup of G, M its semi–
standard Levi component, N its unipotent radical. Then we have
P ∩ K̃ = (M ∩ K̃)(N ∩ K̃), N ∩ K̃ = N ∩K and P ∩K = (M ∩K)(N ∩K).

Of course, this will be used to construct Satake homomorphisms in § 7.
In fact we shall need only the case where M = Z, in which case the assertion
for P ∩ K is in [Ha-Ro, Corollary 9.1.2 (ii)] but we do not understand the
proof there. In any case, the added generality will be useful.

6.6

To prove the theorem, we progressively have to go deeper into the construc-
tion of K [BT II Chapter 4.25].

Let B be a minimal parabolic subgroup of G with Levi component Z,
contained in P , and let U be its unipotent radical. To U corresponds a set of
positive roots Φ+ of G, and the opposite unipotent radical U− corresponds
to Φ− = −Φ+

By [BTII, 5.2.4] we have an equality

K = U0U
−
0 N0

where U0 is an open compact subgroup of U , U−0 an open compact subgroup
of U−, and N0 an open compact subgroup of N containing Z ∩K: we have
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put Ω = {v0} in loc. cit. and taken into account the definition of parahoric
subgroups in [BTII, 5.2.6 and 5.2.8]. Using B− = Z U− instead of B we also
have

K = U−0 U0N0 .

Remark.— 1) As was pointed out by T. Haines [Ha, erratum] there are
typographical errors in [BT II, 5.2.4], hats should be removed in lines 8 and
10. But we use only the equalities in line 9.

In the following, it will be convenient to put Z0 = Z ∩K, Z̃0 = Z ∩ K̃,
Ñ0 = N0Z̃0.

Lemma.— We have U ∩ K̃ = U ∩ K = U0, U− ∩ K̃ = U− ∩ K = U−0 ,
N ∩ K̃ = Ñ0, N ∩K = N0.

As in [Lv, Corollary 12.6 (iii)], this is a consequence of the Bruhat de-
composition in G.

By 6.2 lemma (iii) we have K̃ = KZ̃0 so that

K̃ = U−0 U0Ñ0 = U0U
−
0 Ñ0 .

Let u in U ∩ K̃ be written as u = vv−ν with v in U0, v− in U−0 and ν in
Ñ0. Then ν = v−1

− v−1u belongs to U−U . The Bruhat decomposition [BTII,
5.15, see also Lv 0.18 (iii)] gives N ∩ U−U = {1} so that ν = 1, v− = 1,
u = v which shows that U ∩ K̃ = U0 and a fortiori U ∩K = U0. Using rather
K̃ = U−0 U0Ñ0 we get U− ∩ K̃ = U− ∩K = U−0 . Finally let u in N ∩ K̃ be
written as µ = vv−ν as above; then µν−1 belongs to UU−, hence ν = µ, so
that N ∩ K̃ = Ñ0, and similarly N ∩K = N0.

Remark.— 2) For each a in Φred, there is a corresponding root subgroup
Ua in G (Ua is written U (a) in [Bo 21.9]). By construction U0 is the product
of groups Ua,0 for a in Φ+ ∩ Φred, the product being taken for any ordering
on Φ+ ∩ Φred; here Ua,0 is some open compact subgroup of Ua. It follows
that Ua,0 = Ua ∩ U0 and the lemma implies Ua ∩ K̃ = Ua ∩ K = Ua,0. We
have the analogous statement for a in Φ−. If ψ is any closed subset of roots
in Φ+ ∩ Φred and Uψ the corresponding unipotent subgroup of U , [loc. cit.]

then Uψ ∩ K̃ = Uψ ∩K is the product of the groups Ua,0 for a in ψ.

6.7

We have U = N(U ∩M) and accordingly, by Remark 2) above, we get a
decomposition U0 = N0(U ∩ M)0. Using the opposite parabolic subgroup
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P = MN−, we have a similar decomposition U−0 = N−0 (U− ∩M)0.
We now proceed to the proof of 6.5 Theorem. That N ∩ K̃ = N ∩ K

comes from Remark 2 above.
Let p in P ∩ K̃; write it as p = vv−ν with v in U0, v− in U−0 and ν in Ñ0.

Decompose v = nu with n in N0, u in (U ∩M)0 and similarly v− = u−n−
with n− in N−0 and u− in (U− ∩M)0. Then

p = nuu−n−ν so that n−ν belongs to P .

The lemma below gives that ν belongs to N ∩M so that n− belongs to P so
n− = 1 and p = nuu−ν with n in N0 = N ∩K̃ and uu−ν obviously in M ∩K̃.
If moreover p belongs to P ∩ K, then uu−ν is in M ∩ K. This proves 6.5
Theorem.

Remark.— Starting with p in M ∩K yields n = 1 and p = uu−ν, so that

M ∩K = (U ∩M ∩K)(U− ∩M ∩K)(N ∩M ∩K) .

Lemma.— N−N ∩ P = N ∩M .

Assume n−ν = mn for n− in N−, ν in N , m in M , n in N . By the Bruhat
decomposition for M we can write

m = u−µu for u− in U− ∩M, µ in N ∩M, u in U ∩M ,

so that n−ν = u−µ un and U−νU = U−µU . This implies ν = µ by the
Bruhat decomposition for G. Then n− is in P , so n− is trivial. �

6.8

The preceding proof may be applied more generally. Indeed let Ω be a
bounded non–empty subset of A, and KΩ the group of elements in KerwG
fixing Ω. By [Ha-Ra, Remark 4] and unramified descent, KΩ is the group
of points over the ring of integers OF of F of the group scheme G0

Ω in [BT
II 5.1.24]. By [BT II 5.2.4] again we get decompositions KΩ = UΩU

−
ΩNΩ =

U−ΩUΩNΩ and each of UΩ, U
−
Ω is a product of root subgroups Ua,Ω. By the

same reasoning as above, we deduce:

(i) UΩ = KΩ ∩ U , U−Ω = KΩ ∩ U−, NΩ = N ∩ KΩ, Ua,Ω = KΩ ∩ Ua for
a ∈ Φ.

44



(ii) P ∩KΩ = (M ∩KΩ)(N ∩KΩ).

(iii) M ∩KΩ = (U ∩M ∩KΩ)(U− ∩M ∩KΩ)(N ∩M ∩KΩ).

We can even complement (iii). It is known [BT II, last line of 5.2.4 and
4.6.6 Corollary] that KΩ = UΩU

−
ΩUΩZ0. Using the Bruhat decomposi-

tion as above we get

(iv) M ∩ KΩ = (U ∩ M ∩ KΩ)(U− ∩ M ∩ KΩ)(U ∩ M ∩ KΩ)Z0; this is
consistent with [Ha-Ro, lemma 4.1.1] which shows, at least when Ω is
a facet of A, that M ∩ KΩ is the group of elements in M ∩ KerwM
fixing the projection of Ω onto the apartment of the building of Mad

corresponding to S.

6.9

We now fix a minimal parabolic subgroup B with Levi component Z and
unipotent radical U and we investigate the intersection of a double coset
KzK with a double coset KtU for z, t in Z.

Fixing B determines a set of positive roots Φ+, a positive Weyl chamber C
in A made out of the points on which positive roots take nonnegative values.
In C there is a unique alcove a0 in A with vertex v0, and we let I be the
corresponding parahoric subgroup: it is a (connected) Iwahori subgroup of
G (see the discussion of Iwahori subgroups in [Ha]). We use the notations
Z+, Z− etc. introduced in 6.3.

Proposition.— Let z in Z−. Then KzK ∩ zU = z(U ∩K).

By [BT I, 4.4.4 (ii)]2 we have

K̃zK̃ ∩ UzK̃ = zK̃

so K̃zK̃ ∩ zU = zK̃ ∩ zU = z(K̃ ∩U). But K̃ ∩U = K ∩U by 6.6 lemma. �

2The reader has to realize that we can indeed apply the results of [BI I 4.4.4] to our
situation; one way to see that goes as follows: their group Ĝ is our group G, their group
G is the group G′ of [BT II 5.2.11] generated by the parahoric subgroups of G and the
inclusion ϕ : G′ → G is of connected type. Their group K is our group K̃ which, being
special, is a good maximal compact subgroup [BT I, 4.4.1] Finally their B̂0 is just U and
their V̂ 0

D is C. Also take into account 6.3 Remark 1.
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6.10

We now investigate the intersection KzK ∩KtU for z in Z− and t in Z.
Recall the map vZ : Z → X∗(S) ⊗ R of 3.2; for a root a in Φ and z in

Z, we put < a, z >= a(vZ(z)), seeing a as a linear form on X∗(S) ⊗ R. As
this only depends on the image λ of z in Λ = Z/Z ∩K, we also write it as
< a, λ >.

Write ∆ for the set of simple roots in Φ+. The image of Λ in R∆ by the
map A : λ 7→ (< a, λ >)a∈∆ is a lattice; by 6.3 Remark 1 the kernel Λ0 of A
is the set of elements in Λ acting trivially on the building of Gad over F .

The closed cone R∆
+ gives an ordering ≤ on R∆, and Λ− is the inverse

image of the set of negative elements. It is clear that for λ in Λ− there are
only finitely many elements x of A(Λ) with A(λ) ≤ x ≤ 0.

Proposition.— Let z in Z−, t in Z, and write λ, µ for their images in Λ.
If K̃zK̃ ∩ K̃tU is non empty, then A(µ) ≥ A(λ). If KzK ∩ KtU is non
empty and A(µ) = A(λ) then µ = λ.

The first assertion is [BTI, 4.4.4 (i)]. Let us assume KzK ∩ KtU non
empty and A(µ) = A(λ). Then we have z = tx with A(x) = 0 and also zk =
k′tu for some k and k′ in K, u in U . Applying the Kottwitz homomorphism
wG, which is trivial on K and U , we get wG(x) = 0, and in particular
vG(x) = 0. This implies valF (χ(x)) = 0 for all F–rational characters χ of
G; but on the other hand A(x) = 0 so finally vZ(x) = 0, and x belongs to
Z ∩ K̃. Then wG(x) = 0 implies that x in fact belongs to Z ∩ K, so that
µ = λ. �

Remark. Clearly the Weyl group W0 stabilizes Λ0. Taking λ in Λ0 and
µ = wλ for some w in W0 we get A(λ) = A(µ) = 0; on the other hand
KzK = KtK has non-empty intersection with KtU so that the proposition
gives µ = λ. We thus see that W0 acts trivially on Λ0.

6.11

For the end of this section, we fix an element z in Z. We let Φ>0, Φ0, Φ<0

be the sets of roots a such that < a, z > is > 0, 0 or < 0 respectively.
We let M be the (semi–standard) Levi subgroup of G generated by Z and

the root subgroups Ua of G, for a in Φ0; we let N be the unipotent subgroup
generated by the Ua for a in Φ>0, N− the one generated by the Ua for a in
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Φ<0. Then M is the intersection of the parabolic subgroups P = MN and
P− = MN , and is their common Levi component.

If H is any of those algebraic groups over F , we indicate with a subscript
0 the intersection H(F ) ∩K.

We have to describe how the groups Ua,0 for a in Φred are constructed in
[BT II, 5.2]. First to the special point v0 is attached a function Φ→ R and
its “optimisée” g [BT II, 5.2.3]. Then by the definition of [BT II, 5.2.2] we
have, for a in Φred,

Ua,0 = Xa,g(a) X2a,g(2a)

where the Xa,u, u ∈ R, are the open compact subgroups of Ua written Ua,u
in loc. cit (the second term is omitted if 2a is not in Φ); the filtration by u
in R is decreasing and one has zXa,uz

−1 = Xa,u+<a,z>. In particular, we get

Lemma.— Let a ∈ Φred.

(i) For a in Φ0 or Φ>0, Ua,0 contains zUa,0z
−1.

(ii) For a in Φ0 or Φ<0, zUa,0z
−1 contains Ua,0.

(iii) zN0z
−1 ⊂ N0, zN−0 z

−1 ⊃ N−0 , zM0z
−1 = M0.

6.12

For use in section 7, we need to describe the image of K ∩ z−1Kz in K/K+.
As recalled in 3.7, K/K+ is the group of points over kF of the reductive ḠredK ,
which we will simply write Ḡ. As stated in 6.1, if H is an algebraic group
over kF , we put H = H(kF ), so that Ḡ = K/K+.

Let us describe Ḡ, following [BT II, 5.3.1], which also refers to [BT II, 4.6].
The schematic closure of S in GK yields a maximal split torus S̄ in Ḡ, and

the schematic closure of Z gives a maximal torus Z̄, which is the centralizer
of S̄ in Ḡ. The root system Φ̄ of S̄ in Ḡ is a sub–root system of Φ. As v0 is
a special point, the reflections attached to Φ̄ are the same as those attached
to Φ; if a and 2a are in Φ, one of them is in Φ̄ and if a is a root in Φ such
that neither 2a nor a/2 is in Φ, then a is in Φ̄.

As in [BT II 4.6.9] we define a function g∗ from Φ to the monoid R̃ =
R ∪ R+, by the rule

g∗(a) = g(a) if g(a) + g(−a) > 0
g∗(a) = g(a)+ if g(a) + g(−a) ≤ 0
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(note in fact the last inequality is an equality since g is optimal and quasi–
concave). By [BT II 4.6.10], (which can be applied by [BT II 5.1.31]) we
have for a in Φred

K+ ∩ Ua,0 = Xa,g∗(a) X2a,g∗(2a)

where for u in R we have put

Xa,u+ =
⋃
v>u

Xa,u.

In particular, we get

Lemma.— For a in Φred ∩ Φ>0, zUa,0z
−1 is contained in K+ ∩ Ua,0 and for

a in Φred ∩ Φ<0, z−1Ua,0z is contained in K+ ∩ Ua,0.

In fact it also follows from [BT II, 4.6.10] that Φ̄ is the set of a in Φ such
that g(a) + g(−a) = 0. For a in Φred the image of Ua,0 in Ḡ is the root
subgroup Ūa if a is in Φ̄ (then a is non–divisible in Φ̄) and we put ā = a; if a
is not in Φ̄, then 2a is and the image of Ua,0 in Ḡ is Ū2a; we put then ā = 2a.
The image of Z0 in Ḡ is Z̄.

6.13

Let N̄ be the unipotent subgroup generated by the Ūa for a in Φ>0 ∩ Φ̄ and
similarly define N̄

−
and M̄ . Clearly N̄ is the image of N0 in Ḡ, N̄− is the

image of N−0 , and M̄ the image of M0. The action of z on M0 by conjugation
induces an action on M̄ , which we write σ.

Proposition.— The image of K ∩ z−1Kz in Ḡ× Ḡ via the map sending k
to (k mod K+, zkz−1 mod K+) is the set of (mn, σ(m)n−) for m in M̄ , n
in N̄ , n− in N̄−.

In particular, the image of K ∩ z−1Kz in K/K+ is M̄N̄ .

The group z−1Kz is the parahoric subgroup of G fixing the special point
z−1(v0), image of v0 under the action of z−1. Consequently K ∩ z−1Kz is
the subgroup KΩ of G ∩KerwG fixing the whole geodesic Ω between v0 and
z−1(v0). By [Ha-Ra, Remark 4], it is the same as the group of points over
OF of the connected group G0

Ω of [BT II, 5.2.4] and as such it is generated
by Z0 and KΩ ∩ Ua for a ∈ Φred (cf. [BTII, 5.24 and 4.6.6 Corollary]).

Now for a in Φred we have KΩ ∩ Ua = Ua,0 ∩ z−1Ua,0z, which is Ua,0 if a
is in Φ0 or Φ>0 and z−1Ua,0z if a is in Φ<0. It has image Ūā in Ḡ in the first
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case, and trivial image in the second. We see already that the image of N0 in
Ḡ× Ḡ is N̄ ×{1}, and reasoning with z−1 instead of z we get that the image
of N−0 is {1} × N̄−. Clearly also the image of M0 is the set of (m,σ(m))
for m in M̄ .

Now by loc. cit. KΩ is generated by U∩KΩ, U−∩KΩ and Z0, from which
it follows that KΩ is generated by N ∩KΩ, N−∩KΩ and M ∩KΩ = M0. It is
then clear that the image of K ∩ z−1Kz = KΩ in Ḡ× Ḡ is in the prescribed
set.

Remark.— We could have used instead [T, 3.5 and 3.5.1], but that paper
does not really give proofs.

7 Satake isomorphisms

7.1

In this section, we finally prove the theorems stated in the introduction.
Given the results of sections 5 and 6, we essentially follow Herzig’s proofs in
[He1].

We use the same notation as in section 6, fixing in particular the maxi-
mal split torus S of the ambiant group G, its centralizer Z, and a minimal
parabolic subgroup B with Levi component Z and unipotent radical U . We
write ∆ for the set of simple roots of S in U . We also fix a special vertex v0

in the apartment A and write K for the corresponding parahoric subgroup,
K+ for its pro–p radical.

As in section 5, we fix a field C of characteristic p, and we consider
an absolutely irreducible representation ρ of K/K+ on a C–vector space V ,
which we also view as a smooth representation — actually finite dimensional
— of K, trivial on K+.

By 6.5 we have G = BK and B ∩K = (Z ∩K)(U ∩K) so that § 2 gives
us a Satake homomorphism (of algebras)

S : H(G,K, V ) −→ H(Z,Z ∩K,V U∩K).

We have seen that Ḡ = K/K+ is the group of kF–rational points of a reduc-
tive Ḡ group over kF . The image of B ∩ K in Ḡ is the group B̄ of points
of a Borel subgroup of Ḡ, the image Ū of U ∩ K is the group of points of
its unipotent radical, and the image Z̄ of Z ∩K is the group of points of a
maximal torus of G; we have B̄ = Z̄Ū , of course.
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From section 5, we see that V U∩K has dimension 1, and that Z̄ acts on
it via a character χ : Z̄ → C×, which we also view as a smooth character
of Z ∩K trivial on Z ∩K+. As we have seen in § 4, Z acts by conjugation
on Z ∩K, which is its unique parahoric subgroup; it also acts on the pro–p
radical Z ∩ K+ of Z ∩ K, so it acts on Z̄ and the support of the algebra
H(Z,Z ∩K,V U∩K) is the stabilizer Zχ of the character χ in Z.

The set Z− of anti–dominant elements in Z is a submonoid of Z, con-
taining Z ∩K. The main goal of this final section is to prove the following
result.

Theorem.— The Satake homomorphism S from H(G,K, V ) to
H(Z,Z ∩ K,V U∩K) is injective and its image is the subalgebra made out
of functions with support in Z− ∩ Zχ.

7.2

Theorem 7.1 is the same as Theorem 1.8, and it includes assertions (i) and
(ii) of Theorem 1.5. Before turning to the proof of Theorem 7.1, let us deduce
Proposition 1.8, which includes the last assertion of Theorem 1.5. Note that
Proposition 1.8 is true when G is anisotropic mod. centre, by 4.1 Remark 2.
In particular, that applies to Z.

Recall also from 4.1 that Zχ has finite index in Z, and its subgroup Z ′χ
also has finite index in Z (of course Z = Zχ = Z ′χ if χ is trivial). Choose
an element s in S with < a, s >< 0 for every a in ∆. For every element
z in Z, there is a positive integer n such that snz is antidominant. We
deduce that Z− generates Z as a group; as Z ′χ contains S, we also see that
Z− ∩ Z ′χ generates Z ′χ, and Z− ∩ Zχ generates Zχ. It then follows from
2.13 that the centre of H(Z−, Z ∩ K,V U∩K) is H(Z− ∩ Z ′χ, Z ∩ K,V U∩K);
if χ is trivial, H(G,K, V ) is commutative. Finally the finiteness assertions
of Proposition 1.8 are consequences of the following lemma, using the same
reasoning as in 2.9.

Lemma.— The monoid (Z− ∩ Z ′χ)/(Z ∩ K) is finitely generated, and has
finite index in (Z− ∩ Zχ)/(Z ∩K).

To prove the lemma, recall the homomorphism vZ : Z → X(S) ⊗Z Q.
Its image is a lattice and its kernel Z ∩ K̃ contains Z ∩K with finite index.
The subset Z− is defined by the equations < a, z >≤ 0 for a in ∆. Apply-
ing Gordan’ lemma 2.11 we get that Z−/(Z ∩ K), (Z− ∩ Zχ)/(Z ∩ K) and
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(Z− ∩ Z ′χ)/(Z ∩K) are finitely generated commutative monoids. If d is the
exponent of χ, we have seen in 2.9 that xd belongs to Z ′χ if x belongs to
Zχ, and consequently xd belongs to Z− ∩ Z ′χ if x belongs to Z− ∩ Zχ; since
(Z− ∩ Zχ)/(Z ∩ K) is a finitely generated monoid, it follows that Z− ∩ Z ′χ
has finite index in Z− ∩ Zχ, which proves the lemma.

7.3

Let now turn to the proof of Theorem 7.1. It has several steps, which we
turn into lemmas.

Lemma 1.— Let z in Z−. Then KzK supports a non–zero function of
H(G,K, V ) if and only if z belongs to Zχ. In that case, the space of such
functions has dimension 1 over C, it contains a unique function Tz such that
Tz(z) induces the identity on V U∩K.

Choosing a set of representatives Σ of Λ = Z/Z ∩K in Z we get, by the
Cartan decomposition, a basis (Tz)z∈Σ∩Z−∩Zχ for H(G,K, V )

Lemma 2.— Let z in Σ ∩ Z− ∩ Zχ. Then we have S(Tz) = Σaατα for some
scalars aα in C, where the sum is over the set of α in Σ ∩ Zχ such that the
images z̄ and ᾱ in Λ verify A(ᾱ) ≥ A(z̄). Moreover the only such α such
that A(ᾱ) = A(z̄) is α = z, and az = 1.

Lemma 3.— Let Φ in H(G,K, V ). Then S(Φ) vanishes outside Z− ∩ Zχ.

By Lemma 3 the sum in Lemma 2 may be restricted to α in Σ∩Z−∩Zχ.

The proof of Theorem 7.1 from these lemmas follows the usual “triangu-
lar” argument : let Φ = ΣazTz be a general non–zero element in H(G,K, V ),
with z running through Σ ∩ Z− ∩ Zχ. Among the z’s with az 6= 0, choose
one, say z0, such that A(z̄0) is minimal (for the order on R∆). Evaluate
S(Φ) at z0; by Lemma 2, S(Tz0)(z0) = 1. On the other hand, if az 6= 0
and S(Tz)(z0) 6= 0 then A(z̄0) ≥ A(z̄) by Lemma 2 again; this implies
A(z̄0) = A(z̄) by minimality of A(z̄0) and consequently z = z0 (Lemma 2).
In particular S(Φ)(z0) = az0 6= 0 and S is injective.

Let us turn to sujectivity. For a positive integer r, let Z−(r) be the set of z
in Σ∩Z−∩Zχ such that the number of elements x in A(Λ) with A(z̄) ≤ x ≤ 0
is at most r. By induction on r we prove that τz belongs to the image of
S for z in Z−(r). If z belongs to Z−(1) then A(z̄) = 0 and by Lemma 2
S(Tz) = τz. If z belongs to Z−(r + 1), then by Lemma 2 S(Tz) is τz plus a
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linear combination of τz′ with z′ in Z−(r), so by induction, τz is indeed in
the image of S. �

7.4

We now prove lemma 1.
Let z in Z−. To determine the functions in H(G,K, V ) supported on

KzK, it is enough to look at their value at z. That value can be any endo-
morphism ϕ of V which satisfies

(∗) ρ(k2)ϕ = ϕρ(k1)

whenever k1 and k2 in K verify k2z = zk1. This last condition means that
k1 belongs to K ∩ z−1Kz and that k2 = zk1z

−1.
Now by 6.13 Proposition (and using its notation) the image of K∩z−1Kz

in Ḡ× Ḡ is the set of (mn, σ(m)n−) for m in M̄ n in N̄ , n− in N̄− — notice
that N̄ is in Ū− since z is in Z−. We can translate (*) into

(∗∗) ρ(σ(m)n−)ϕ = ϕρ(mn) for m in M̄,

n in N̄ , n− in N̄−.
This exactly means that ϕ factors through a linear map

ϕ̃ : VN̄ −→ V N̄−

such that
σ(m)ϕ̃ = ϕ̃m for m in M̄

where we write m for the natural action of m on VN̄ or V N̄− . Now by 5.7
(ii) the projection π of V N̄− onto VN̄ is an M̄–equivariant isomorphism, so
the condition above actually means that ϕ̃ ◦π is an endomorphism u of V N̄−

satisfying σ(m)u = um for m in M̄ . The representation of M̄ on V N̄− is
absolutely irreducible by 5.7 (i); if V has associated character ψ(χ, I), it has
associated character ψ(χ,∆M̄ ∩ I). Also, by 5.6 its composition with σ has
associated character ψ(χ ◦ σZ ,∆M̄ ∩ I) where σZ is the restriction of σ to
Z ∩ K. It follows that a non–zero endomorphism u as above exists if and
only if χ ◦ σZ = χ i.e. if and only if z belongs to Zχ, and then there is only
a line of such endomorphisms, with a unique one which acts as identity on
V Ū .

This ends the proof of the first lemma.
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7.5

We now turn to the proof of Lemma 2. The last assertion is an immediate
consequence of 6.9 Proposition, giving KzK ∩ zU = z(U ∩ K), and the
formula for S in 2.7, Proposition.

By the same formula, if α in Σ∩Zχ is such that aα 6= 0 then KzK∩KαU
is non empty, which by 6.10 Proposition implies A(ᾱ) ≥ A(z̄), and even α = z
if A(ᾱ) = A(z̄). This gives Lemma 2.

7.6

Let us now turn to the proof of Lemma 3, which closely follows [He1, Proof
of Theorem 1.2].

Fix Φ in H(G,K, V ) and z in Z, not in Z−. We have to show that S(Φ)
vanishes at z. By assumption there is a root a in ∆ such that < a, z >> 0.
We decompose U as a semi–direct product of Ua with the invariant subgroup
Ua generated by the root subgroups U b with b positive and not a multiple of
a. The same computation as Herzig’s then gives that S(Φ)(z) is 0 if zUa,0z

−1

is a proper subgroup of Ua,0∩K+ (note that by 6.12 Lemma, Ua,0∩K+ indeed
contains zUa,0z

−1).

To conclude, we use Herzig’s trick in [He1, Step 5]. We may as well
assume Φ = Tξ for some ξ in Σ ∩ Z− ∩ Zχ.

Let Y be the set of z in Σ with S(Tξ)(z) 6= 0. If Y is not included in Z−,
there is a root a in ∆ and z in Y such that < a, z >> 0. Choose a total
ordering on ∆ starting with a, and choose z in Y such that (< b, z >)b∈∆ is the
greatest possible for the lexicographic ordering on R∆, so that < a, z >> 0.

We have z2Ua,0z
−2 ( zUa,0z

−1 ⊆ Ua,0 ∩K+, so that z2Ua,0z
−2 is a proper

subgroup of Ua,0 ∩K+. In particular S(T 2
ξ )(z2) = 0. But on the other hand

S(T 2
ξ ) = S(Tξ)

2 so

S(T 2
ξ )(z2) =

∑
t∈Σ

S(Tξ)(t)S(Tξ)(t
−1z2)

The term in that sum with t = z is non–zero. If the term with t is not
zero then (< b, t >)b∈∆ and (< b, t−1z2 >)b∈∆ are both not greater than
(< b, z >)b∈∆ in R∆. This implies A(z̄) = A(t̄) and by 6.10 Proposition
z = t. This shows S(T 2

ξ )(z2) 6= 0, a contradiction. �
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7.7

For future use, let us now examine what remains of the previous results when
we are given another absolutely irreducible representation ρ′ of K/K+ on a
C–vector space V ′. Write ψ(χ, I) and ψ(χ′, I ′) for the parameters of V and
V ′, as in § 5.5.

Let z ∈ Z−. Then, following the proof of Lemma 1 step by step, we
see that KzK supports a non–zero function of H(G,K, V, V ′) if and only if
conditions (i) and (ii) below are satisfied:

(i) χ′(x) = χ(zxz−1) for all x in Z ∩K ;

(ii) ∆M̄ ∩ I = ∆M̄ ∩ I ′ .

(Here we are using the same notation as in 6.11 and 7.5).
When conditions (i) and (ii) are satisfied, the space Fz of functions in

H(G,K, V, V ′) supported on KzK is one–dimensional; indeed the map from
Fz to HomC(V U∩K , V ′U∩K) sending Φ to S(Φ)(z) is an isomorphism, by 6.9
Proposition and the formula for S in 2.7.

Let us write Z−(χ, χ′) for the set of z in Z− satisfying conditions (i)
and (ii). Choose a basis vector for each of V U∩K and V ′U∩K . Then for
z in Z−(χ, χ′) there is a unique function Tz in H(G,K, V, V ′) sending the
basis vector of V U∩K onto the basis vector of V ′U∩K . Recalling the set of
representatives Σ of Z/Z ∩K in Z that we have chosen, we get a basis for
H(G,K, V, V ′) made out of the Tz for z in Σ ∩ Z−(χ, χ′).

7.8

We have just seen that H(G,K, V, V ′) is non–zero if and only if Z−(χ, χ′) is
non–empty. This can be expressed more simply.

Proposition.— H(G,K, V, V ′) is non–zero if and only if χ and χ′ are con-
jugate by an element of Z.

Clearly, by condition (i), if H(G,K, V, V ′) is non–zero then χ and χ′ are
conjugate by an element of Z. Conversely assume that for some z in Z we
have χ′(x) = χ(zxz−1) for all x in Z∩K. We can certainly choose an element
s in S such that < a, sz >< 0 for all simple roots a in ∆. Then sz belongs
to Z− and the associated Levi subgroup of Ḡ is Z̄ for which ∆Z̄ is empty. It
follows that sz belongs to Z−(χ, χ′), hence the proposition.
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Still with z as above, we get an algebra isomorphism of H(Z,Z ∩K,χ)
onto H(Z,Z ∩ K,χ′) sending ϕ to ϕ′ : x 7→ ϕ(zxz−1). Since conjugation
by z preserves Z− we obtain an algebra isomorphism of H(Z−, Z ∩ K,χ)
onto H(Z−, Z ∩ K,χ′) and, via Theorem 7.1, an algebra isomorphism of
H(G,K, V ) onto H(G,K ′, V ′). However, in general it is not clear if we can
arrange for such an isomorphism to be given by convolution with a function
in H(G,K, V, V ′).

7.9

Turning to Lemma 3 now, we note that the first part of its proof is still valid,
and gives that for Φ in H(G,K, V, V ′), S(Φ) vanishes at an element z in
Z provided zUa,0z

−1 is a proper subgroup of Ua,0 ∩K+ for some positive
root a. But examples [He2, 6.14] show that S(Φ) need not vanish on all of
Z − Z−. Describing the image of H(G,K, V, V ′) under the Satake map S is
a challenging problem.

Nevertheless, we can adapt Lemma 2 to ensure:

Proposition.— S is injective on H(G,K, V, V ′).

Indeed, let Φ be a non–zero function in H(G,K, V, V ′), and write it as
a linear combination ΣaαTα for α in Σ ∩ Z−(χ, χ′). Among the β’s in Σ ∩
Z−(χ, χ′) with aβ 6= 0, choose one such that A(β̄) is minimal. For α in
Σ∩Z−(χ, χ′) such that aα 6= 0, S(aαTα) vanishes at β unless A(β̄) ≥ A(ᾱ); by
the choice of β, A(β̄) ≥ A(ᾱ) implies A(β̄) = A(ᾱ) and by 6.10 Proposition
α = β. In conclusion S(aαTα) vanishes at β unless α = β. In particular
S(Φ) does not vanish at β and in particular is non–zero. That proves the
Proposition.

7.10

Finally, let us return to the case of trivial coefficients C, justifying now
Remarks 1) and 2) in 1.5. We now allow C to be any commutative ring.

Let K ′ be any group intermediate between the special parahoric subgroup
K that we have fixed and the corresponding maximal compact subgroup K̃.

Lemma 1.— We have G = BK ′, U ∩K ′ = U ∩K and B ∩K ′ = (Z ∩K ′)
(U ∩K ′).

Proof. Since G = BK, a fortiori G = BK ′. We saw in Theorem 6.5
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that B ∩ K̃ = (Z ∩ K̃)(U ∩ K̃) and U ∩ K̃ = U ∩ K. The equalities
U ∩K̃ = U ∩K ′ = U ∩K and B∩K ′ = (Z∩K ′)(U ∩K ′) follow immediately.

By §2 and the lemma, we get a Satake morphism S ′C from H(G,K ′, C)
to H(Z,Z ∩K ′, C) and we want to compare S ′C with the Satake morphism
SC from H(G,K,C) to H(Z,Z ∩K,C) that we have considered so far.

We first note that as a vector space, H(G,K ′, C) is naturally a subspace
of H(G,K,C), more precisely it is the subspace of functions which are bi–
invariant under K ′. However the inclusion of H(G,K ′, C) into H(G,K,C)
is not, if K ′ 6= K, and algebra isomorphism. Similarly H(Z,Z ∩ K ′, C) is
a subspace, usually not a subalgebra, of H(Z,Z ∩ V,C). Nevertheless we
prove:

Lemma 2.— By restriction to H(G,K ′, C), the Satake morphism SC
induces S ′C.

This follows immediately from the equality U ∩K = U ∩K ′ in Lemma 1
and the formula describing S ′C and SC .

Remark.— Assume that [K ′ : K] is invertible in C. Then the map Φ →
[K ′ : K]−1Φ is an algebra homomorphism of H(G,K ′, C) into H(G,K,C).
As the inclusion of Z̃ in K̃ yields an isomorphism of Z̃/Z into K̃/K, we have
[Z ∩ K ′ : Z ∩ K] = [K ′, K] and the map ϕ 7→ [K ′ : K]−1ϕ is an algebra
homomorphism of H(Z,Z ∩ K ′, C) into H(Z,Z ∩ K,C). This is coherent
with Lemma 2.

7.11

Finally let us turn to a description of the kernel and image of SC . When C
is the field of complex numbers they have been determined by Haines and
Rostami [Ha-Ro], thus generalizing the classical results of Satake [Sa] for K̃.

After establishing some notation, we recall the result of [Ha-Ro] and de-
rive our description in general.

We let δ : Z → C× be the modulus character of B, restricted to Z; its
values are integral powers of the cardinality q of the residue field of F . Since
δ is trivial on Z ∩K, we may consider it as a character of Λ = Z/Z ∩K —
we use the same letter δ.

For any commutative ring C, we identify, as we may, the Hecke algebra
H(Z,Z∩K,C) with the group algebra C[Λ]; we write eλ for the basis element
of C[Λ] corresponding to λ ∈ Λ. Recalling thatW0 acts on Λ, we get an action
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of W0 on the algebra C[Λ].
The main result of [Ha-Ro] is that the homomorphism δ1/2SC from

H(G,K,C) to H(Z,Z ∩K,C) = C[Λ] is injective and its image is the space
of W0–invariant elements of C[Λ]: indeed if we take for du the Haar measure
on U giving measure 1 to Z ∩ K, then our map SC is exactly the Satake
transformation considered in loc. cit, cf. 1.4.

It will be convenient to have a variant characterizing the image of SC in
terms of a twisted action of W0 on C[Λ]; we follow [ST, §2], where the case
where G is split is treated.

For w in W0 and λ in Λ, we put

w ◦ eλ = δ1/2(λ/w(λ))ew(λ) ,

thus getting a linear action (w,ϕ) 7→ w ◦ ϕ on C[Λ].
For an element ϕ = Σaλeλ in C[Λ], we have

δ1/2ϕ = Σaλδ
1/2(λ)eλ ,

so that δ1/2ϕ is invariant under w in W0 if and only if

δ1/2(λ)aλ = δ1/2(w(λ))aw(λ) for all λ in Λ

that is, exactly when
w ◦ ϕ = ϕ .

Consequently, the image of SC is the space of elements of C[Λ] invariant
under the twisted action of W0.

7.12

The following lemma shows that the correction factor δ1/2(λ/w(λ)) is in fact
an integral power of p, so that the twisted action of W0 makes sense on C[Λ]
for any commutative ring C where p is invertible, i.e. any Z[1/p]–algebra cf.
[ST, § 2] for the case where G is split.

Recall that δ(z) for z in Z can be expressed as the normalized absolute
value of the determinant of Ad(z) acting on the F–vector space Lie(U).
That vector space is the direct sum of the subspaces La = Lie(Ua), a ∈ Φ+

red;
accordingly δ(z) factorizes as a product of δa(z), each an integral power of q.

Lemma.— Let z in Z have image λ in Λ, and let w in W0. Then δ(λ/w(λ))
is the product of δa(z)2 over positive reduced roots a with w(a) negative.
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Proof. Let n in N have image w in W0, so that w(λ) is the image in Λ of
nzn−1. Then for a in Φ+

red we have

det(Ad(nzn−1) | La) = det(Ad(z) | Lw−1(a)) since n−1Lan = Lw−1(a) .

Thus δ(λ/w(λ)) can be expressed as the product over a in Φ+
red, of

δa(z)δw−1(a)(z)−1.
Now let b be an element of Φ+

red, and look at the occurences of b and −b in
that product. If w(b) is positive, there are two terms cancelling each other;
if w(b) is negative, then we get a contribution δb(z)δ−b(z)−1 = δb(z)2. This
proves the Lemma.

7.13

For each λ in Λ−, let Wλ be its stabilizer in W0 and put

Sλ =
∑

w∈W0/Wλ

w ◦ eλ .

As λ belongs to Λ−, each factor in the expression for δ(λ/w(λ)) given by 7.12
Lemma 2 is a positive integer, so that by the definition of the twisted action,
Sλ is an element of Z[Λ]. By construction, it is invariant under the twisted
action of W0.

Theorem.— SZ is injective and the family Sλ, λ in Λ−, is a basis of its
image.

The proof has several steps, and runs until 7.15.
The first assertion is immediate since SC is injective.
That the Sλ are Z–linearly independent is a consequence of the following
statement.

Proposition.— The family Tλ, λ ∈ Λ, where Tλ = eλ if λ /∈ Λ− and
Tλ = Sλ for λ in Λ−, is a basis of Z[Λ].

Proof. Let λ in Λ−. If for some w in W0, w(λ) is in Λ−, then w(λ) = λ,
so that all the terms in Sλ except eλ itself are in Zeµ for some µ in Λ− Λ−.

Assume we have a relation ΣaµTµ = 0 where the aµ’s are integers. Ex-
pressing each Sλ in terms of the eµ, we first get aλ = 0 for each λ in Λ−, and
then, obviously, aµ = 0 for all other µ’s. �
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Corollary.— (of Proposition) The family (Sλ)λ ∈ Λ− is a basis for the
submodule of Z[Λ] made out of elements invariant the twisted action of W0.

Indeed if ϕ =
∑
λ∈Λ

aλeλ is invariant under the twisted action of W0 then

ϕ−
∑
λ∈Λ−

aλSλ

is also invariant, but its support contains no element of Λ−, so it has
to be 0. �

7.14

As the image of SZ is made out of elements invariant under the twisted action
of W0, it remains only to prove that each Sλ, λ in Λ−, is in the image of SZ.
For that we use a “triangular” argument again. For λ ∈ Λ− write Eλ for the
characteristic function of KzK when z has image λ.

Proposition.— Let λ in Λ0. Then we have SZ(Eλ) = Sλ = eλ.

Proof. Consider SZ(Eλ) − Sλ; it is certainly invariant under the twisted
action of W0 and, by 6.10 Proposition, its support contains no element of Λ−,
so we conclude SZ(Eλ) = Sλ. On the other hand, 6.10 Remark gives
Sλ = eλ. �

For a positive integer r, we let Λ−(r) be the set of λ in Λ− such that there
are at most r elements x in A(Λ) with A(λ) ≤ x ≤ 0. Clearly Λ−(1) = Λ0.
By induction on r, we show that for each λ in Λ−(r), Sλ is in the image of SZ.
The case r = 0 is given by the Proposition. Let λ be in Λ−(r + 1); by 6.10
Proposition, we have SZ(Eλ) = Sλ + Φλ where Φλ is a Z–linear combination
of Sµ with µ in Λ−(r) so that by induction Sλ is in the image of SZ. This
ends the proof of 7.13 Theorem.

7.15

Let now C be any commutative ring. From the Theorem and Proposition in
7.13 we immediately get, by tensor product with C:

Theorem.— The map SC : H(G,K,C) → C[Λ] is injective and the family
1C ⊗ Sλ, λ in Λ−, is a basis of its image (as a C–module).
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Remarks.— 1) Assume p · 1C = 0. It follows from our main result with
Fp–coefficients (Theorem 1.5), that 1C ⊗ Sλ = 1C ⊗ eλ for all λ in Λ−; this
can also be seen directly from 7.12 Lemma.

2) Let K ′ be any group intermediate between K and K̃, and put Λ′ =
Z/(Z ∩ K ′). Then the above theorem translates to this setting:
S ′C : H(G,K ′, C) → C[Λ′] is injective, and its image has a basis Sλ′ , λ

′

in Λ′−, where Sλ′ is given by the formula

Sλ′ =
∑

w∈W ′/Wλ′

w ◦ eλ′ with obvious notation .

This can easily be seen from 7.10 and the theorem above.

7.16

As a final comment, let us note the following generalization of the classical
results of Satake [Sa].

Theorem.— For any commutative ring C, the C–algebra H(G,K,C) is
finitely generated.

It is enough to prove this when C is the ring of integers Z. Applying SZ,
it amounts to proving that the algebra Z[Λ]W0 of elements in Z[Λ] invariant
under the twisted action of W0, is finitely generated. We imitate [B, VI, §3.4].
By [loc. cit., § 1, no 6, Prop. 1.8] we have, for any λ in Λ− and w in W0,

A(w(λ)) ≥ A(λ) .

By 6.10 Proposition, it follows that in the support of Sλ =
∑

W0/Wλ

w · eλ, the

term eλ is the only element eµ with A(µ) minimal. Choose a finite system of
generators λ1, . . . , λr of the monoid Λ−. As in [B, VI, § 3, no 2, Lemme 2],
if n1, . . . , nr are non–negative integers, then in the support of Sn1

λ1
· · ·Snrλ1 the

only term eµ with A(µ) minimal is eλ where λ = λn1
1 · · ·λnrr . As in 7.14,

it follows that the algebra homomorphism from Z[X1, . . . , Xr] to Z[Λ]W0 ,
sending Xi to Sλi for i = 1, . . . , r, is surjective. �

Note that the analogous result, with the same proof, holds for any group
K ′ intermediate between K and K̃.
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[B] N. Bourbaki.— Groupes et algèbres de Lie, Chapitres 4, 5 et 6, Masson,
Paris, 1981.

[BTI] F. Bruhat and J. Tits.— Groupes réductifs sur un corps local, Publ.
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