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[1] We present the Vegetation Photosynthesis and Respiration Model (VPRM), a
satellite-based assimilation scheme that estimates hourly values of Net Ecosystem
Exchange (NEE) of CO2 for 12 North American biomes using the Enhanced Vegetation
Index (EVI) and Land Surface Water Index (LSWI), derived from reflectance data of the
Moderate Resolution Imaging Spectroradiometer (MODIS), plus high-resolution data for
sunlight and air temperature. The motivation is to provide reliable, fine-grained first-
guess fields of surface CO2 fluxes for application in inverse models at continental and
smaller scales. An extremely simple mathematical structure, with minimal numbers of
parameters, facilitates optimization using in situ data, with finesse provided by maximal
infusion of observed NEE and environmental data from networks of eddy covariance
towers across North America (AmeriFlux and Fluxnet Canada). Cross validation showed
that the VPRM has strong prediction ability for hourly to monthly timescales for sites
with similar vegetation. The VPRM also provides consistent partitioning of NEE into
Gross Ecosystem Exchange (GEE, the light-dependent part of NEE) and ecosystem
respiration (R, the light-independent part), half-saturation irradiance of ecosystem
photosynthesis, and annual sum of NEE at all eddy flux sites for which it is optimized.
The capability to provide reliable patterns of surface flux for fine-scale inversions is
presently limited by the number of vegetation classes for which NEE can be constrained
by the current network of eddy flux sites and by the accuracy of MODIS data and data for
sunlight.
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1. Introduction

[2] A primary goal of studying the terrestrial carbon cycle
is to determine the magnitude of Net Ecosystem Exchange
(NEE) of carbon dioxide between the terrestrial biosphere
and the atmosphere and to understand the main drivers for
hourly, seasonal, and interannual variations of NEE [Wofsy
and Harriss, 2002]. Particular interest attaches to time-

resolved measurements of fluxes on regional and continen-
tal scales, too small to be reliably resolved by global inverse
models, but too large for direct measurement.
[3] Inverse (‘‘top down’’) analyses of CO2 budgets on

regional scales utilize measurements of atmospheric CO2

concentrations on towers and by aircraft within the regions
where sources and sinks are most active [Tans, 1980; Fung,
1993; Tans et al., 1993; Bakwin et al., 1998; Lin et al.,
2004; Gerbig et al., 2005]. These data are influenced by
small-scale, near-field fluxes as well as by continental and
global sources and sinks, and the analysis therefore requires
fine-scale spatial and temporal resolution for both transport
fields and for distributions of surface fluxes [Gerbig et al.
2003a, 2003b; Baker et al., 2006]. Fluxes must be resolved
on timescales including hourly, seasonal, and annual and on
spatial scales as small as 1–10 km, a difficult challenge
because NEE represents the difference between uptake
(photosynthesis) and loss (respiration) processes that vary
on a wide range of timescales [Goulden et al., 1996; Katul
et al., 2001].
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[4] Since the inception of inverse modeling of CO2, it has
been recognized that surface flux submodels must accurately
represent relevant spatiotemporal variations of NEE [Fung
et al., 1987; Ruimy et al., 1995; Sellers et al., 1996; Goetz
and Prince, 1999; Xiao et al., 2002, 2004a, 2004b]. A priori
surface flux models must have a low order of parameteri-
zation, so that the optimization process is well constrained
[Denning et al., 1995; Lin et al., 2004], while retaining the
required fine spatial and temporal resolution.
[5] The present paper addresses the need to reliably

represent surface fluxes at fine time/space scales with
minimal parameters, into which we infuse the maximum
information from observations. We use remotely sensed
data to define vegetation properties with fine spatial reso-
lution. Unfortunately, temporal resolution is poor, and direct
information on NEE is lacking. We use measurements of
NEE from eddy flux towers [Baldocchi et al., 2001] for
direct flux data at high temporal resolution, capturing
ecosystem functional responses to the environment at sites
in North, Central, and South America, but, unfortunately,
only small spatial scales (1 km2).
[6] The Vegetation Photosynthesis Respiration Model

(VPRM) presented here assimilates remote sensing, meteo-
rological, and tower flux data for a large number of sites in
order to represent surface fluxes with the highest possible
fidelity. Model structure is made very simple to facilitate
subsequent inverse analysis. Formulation of the VPRM starts
from the Vegetation Photosynthesis Model (VPM) of Xiao
et al. [2004a, 2004b], which estimates Gross Ecosystem
Exchange (GEE) using satellite-based vegetation indices
and environmental data, adding respiration (R) to provide
NEE and a nonlinear function to account for the response of
GEE to light. The Enhanced Vegetation Index (EVI) [Huete

et al., 1997, 2002] estimates of the Fraction of Photosyn-
thetically Active Radiation (PAR) absorbed by photosyn-
thetically active parts of the vegetation (FAPARPAV) [Xiao
et al., 2004a, 2004b] and the Land Surface Water Index
(LSWI) help capture the effects of water stress and leaf
phenology [Xiao et al., 2004a, 2004b], especially for vege-
tation that becomes dormant in summer (e.g., grasslands).
[7] The VPRM shares many features of earlier models for

surface CO2 fluxes (e.g., NASA-CASA [Potter et al., 1993,
1999], SiB2 [Sellers et al., 1996], and TURC [Lafont et al.,
2002]) developed for, and most appropriate to, global-scale
inverse analysis, but it returns to the simpler functional
representation introduced by Fung et al. [1987]. As sum-
marized schematically in Figure 1, the VPRM systemati-
cally incorporates data from eddy flux towers, spanning
dominant vegetation types over North America, plus
MODIS data and high-resolution meteorological fields, to
provide a much finer representation of surface fluxes than in
previous simple models. VPRM NEE fields are thus opti-
mally consistent with eddy flux data, and the model is
readily exported to potential users and optimized using
atmospheric data. Inversion of the VPRM is intended to
enable it to capture seasonal and spatial variations of NEE
not explicitly represented a priori.

2. Model Framework

[8] Monteith [1972] showed that ecosystem production
correlates with the Fraction of Absorbed Photosynthetical-
ly Active Radiation (FAPAR). FAPAR is often estimated
as a linear or nonlinear function of the Normalized
Difference Vegetation Index (NDVI) [Prince and Goward,
1995; Running et al., 2000], the normalized ratio between

Figure 1. Schematic diagram of the Vegetation Photosynthesis Respiration Model (VPRM). EVI:
Enhanced Vegetation Index; LSWI: Land Surface Water Index; FAPARPAV: the fraction of incident light
absorbed by the photosynthetically active vegetation in the canopy; Tscale, Pscale, and Wscale: scalars for
temperature, leaf phenology, and canopy water content, respectively. Gross Ecosystem Exchange (GEE)
is the light-dependent part of Net Ecosystem Exchange (NEE), and Respiration (R) is the light-
independent part. MODIS refers to the Moderate Resolution Imaging Spectroradiometer onboard the
NASATerra and Aqua satellites; PAR0, l, a, and b are the four model parameters, one set per vegetation
type.
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satellite-derived reflectance in the red (rred) and near-
infrared (rnir) bands [Tucker, 1979],

NDVI ¼ rnir � rred
rnir þ rred

; ð1Þ

using NDVI from the Advanced Very High Resolution
Radiometer (AVHRR) to compute rates of terrestrial
photosynthesis [e.g., Fung et al., 1987; Potter et al., 1993].
[9] Recent studies [Xiao, et. al., 2004a, 2004b, 2005]

showed that MODIS EVI [Huete et al., 1997, 2002] is more
closely correlated with photosynthesis [Xiao et al., 2004a,
2004b] across a larger range of leaf area index and more
closely follows phenology:

EVI ¼ G� rnir � rredð Þ
rnir þ C1 � rred � C2 � rblueð Þ þ L

; ð2Þ

where G = 2.5, C1 = 6, C2 = 7.5, and L = 1. Inclusion of the
blue band helps account for atmospheric contamination, and
L helps compensate for soil background reflectance. The
VPRM also utilizes the LSWI [Xiao et al., 2004a, 2004b] to
help capture effects of water stress and phenology on plant
photosynthesis:

LSWI ¼ rnir � rswir
rnir þ rswir

; ð3Þ

where NIR refers to the 841–876 nm band, and SWIR refers
to 1628–1652 nm.

2.1. Gross Ecosystem Exchange

[10] We divide NEE into a light-dependent term, Gross
Ecosystem Exchange (GEE), and a light-independent part,
ecosystem respiration (R), where NEE = �GEE + R,
following the sign convention that uptake of CO2 by plants
is a negative flux (removal from the atmosphere). GEE is
represented by

GEE ¼ e� 1

1þ PAR=PAR0ð Þ � PAR� FAPARPAV ; ð4Þ

where FAPARPAV is the Fraction of Photosynthetically
Active Radiation (PAR, mmol m�2 s�1) absorbed by the
photosynthetically active portion of the vegetation (PAV),
PAR0 is the half-saturation value, and e is the light use
efficiency (mmol CO2/mmol PPFD) at low light levels. We
decompose e into the product of the maximum quantum
yield, e0, and factors ranging between 0 and 1 that reduce
light use efficiency,

e ¼ e0 � Tscale �Wscale � Pscale ð5Þ

On average, e0 has a value around 1/6 for well-watered, C3

plants at optimal temperatures.
[11] The parameter Tscale in equation (5) represents the

temperature sensitivity of photosynthesis, calculated at each
time step using the equation developed for the Terrestrial
Ecosystem Model [Raich et al., 1991]:

Tscale ¼
T � Tminð Þ T � Tmaxð Þ

T � Tminð Þ T � Tmaxð Þ � T � Topt
� �2h i ; ð6Þ

where Tmin, Tmax, and Topt are minimum, maximum, and
optimal temperatures (0C) for photosynthesis, respectively

[Aber and Federer, 1992; Raich et al., 1991]. If air
temperature falls below Tmin, Tscale is set to be zero [Xiao et
al., 2004a, 2004b].
[12] Since temperature and PAR are correlated on a daily

basis, inclusion of Tscale in equation (5) modifies values of
PAR0 inferred from tower flux data. Moreover, were the
parameters Tmin, Tmax, and Topt in equation (6) to be fit to
eddy flux data along with the respiration equation (below)
and PAR0, parameter values would be unstable because of
correlation between the parameters; therefore Tmin, Tmax,
and Topt were fixed at literature values. The role of Tscale in
the VPRM is explored in a sensitivity analysis below.
[13] The function Pscale accounts for effects of leaf age on

canopy photosynthesis, using EVI and LSWI to identify the
green-up (leaf expansion) and senescence phases [Xiao et
al., 2002, 2004a; Boles et al., 2004]. For evergreen classes,
Pscale is assumed to be 1 for the whole year. For deciduous
vegetation and grasslands we computed Pscale as a linear
function of LSWI from bud burst to leaf full expansion
(‘‘phase 1’’) by

Pscale ¼ 1þ LSWI

2
: ð7Þ

[14] After leaf full expansion (phase two), Pscale was set to
1, and equation (7) was adopted again during senescence
(phase 3). The dates for the three phases of phenology (bud
burst, full canopy, and senescence) were obtained using an
EVI seasonal threshold similar to that of the MODIS
phenology product MOD12Q2 [Friedl et al., 2003]. Thus
for large-scale application of the VPRM across North
America, MOD12Q2 dates can be used directly.
[15] The effect of water stress on GEE (Wscale) is a

complex function of soil moisture and vapor pressure deficit
(VPD) [e.g., Field et al., 1995; Running et al., 2000]. Soil
moisture is currently used within the VPRM, since it cannot
be derived directly from weather or remote sensing data
[Pathmathevan et al., 2003]. We explored the use of the soil
moisture product from the North American Land Data
Assimilation System (NLDAS) [Mitchell et al., 2004], but
we found the NLDAS product to be insufficiently accurate
in simulating site soil moisture data. VPD could be derived
from meteorological data, but it is a relatively minor
influence compared to other factors (e.g., soil moisture)
for most North American vegetation [cf. Powell et al., 2006;
Makela et al., 2006; Cunningham, 2005]. A test run
including VPD in the optimization of the VPRM at Harvard
Forest produced results indistinguishable from a model
where this factor was omitted, in part because of the very
strong correlation of VPD with air temperature.
[16] Therefore following Xiao et al. [2004a], we express

Wscale as

Wscale ¼ 1þ LSWI

1þ LSWImax

; ð8Þ

where LSWImax is the maximum LSWI within the plant-
growing season for each site (or pixel). LSWI has been
shown to capture drought-induced changes in plant
canopies for ecosystems that senesce during dry periods,
such as grasslands, but not for other vegetation. Hence
effects of water stress are not explicitly included in the
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VPRM and thus represent a principal source of unaccounted
variance to be captured in an inverse analysis via
adjustments to the VPRM parameters. This should be
possible in inverse studies with regional resolution in space
and month resolution in time, because soil moisture and
related quantities tend to covary on regional scales and to
change relatively slowly with time (�weeks).
[17] The complete expression for GEE in the VPRM is

thus given by

GEE ¼ l � Tscale � Pscale � Wscale � EVI

� 1

1þ PAR=PAR0ð Þ � PAR ð9Þ

Here l replaces e0, in order to aggregate into one parameter
empirical adjustments to Pscale, Tscale, and Wscale; l and
PAR0 are the only adjustable parameters for description of
the light-dependent part of NEE, with values derived below
from tower flux data.
[18] PAR is measured at all flux tower sites, but not across

the continent. At large scales the VPRM will be driven
using shortwave (SW) radiation, available for almost all of
North America from Geostationary Operational Environ-
mental Satellite (GOES) data [e.g., Diak et al., 2004] and
from assimilated meteorological products. SW is very
closely correlated with PAR; SW � 0.505 � PAR (units:
SW, Watts/m2; PAR, mmole m�2 s�1).

2.2. Ecosystem Respiration

[19] Plant and soil respiration rates generally increase as
temperatures rise [Grace and Rayment, 2000; Piovesan and
Adams, 2000], and we therefore represented R as

R ¼ a � T þ b: ð10Þ

We set T = Tlow in equation (10) when T 	 Tlow, to account
for the persistence of soil respiration in winter, when air
temperatures are very cold but soils remain warm. Values
for a, b, and Tlow were derived from tower flux data for
each vegetation type (Tables 1 and 2). The intercept in
equation (10) can be interpreted biogeochemically as the
flux-weighted mean size of the respiring pools of organic
matter in the ecosystem. In nature this number is determined
by a complex set of antecedent conditions, such as site
history and available stocks of necromass, in addition to
climate factors. The VPRM adopts the zero-order approx-
imation that these factors are uniform for each vegetation
type, because site-specific information is not currently
available from remote sensing or land cover databases. This
approximation thus represents a second principal source of
unaccounted variance, designed to be captured in an inverse
analysis via adjustments to the VPRM parameters.

2.3. Net Ecosystem Exchange

[20] The full VPRM model equation is

NEE ¼ � l� Tscale � Pscale � Wscale � 1

1þ PAR=PAR0ð Þ
� EVI � PARþ a � T þ b ð11Þ

NEE ¼ � l� Tscale � Pscale �Wscale �
1

1þ PAR=PAR0ð Þ
� EVI � PARþ a� T þ b ð12Þ

adjusted in an inverse model application to provide an
accurate representation for the distribution NEE in space
and time across North America. The a priori estimates of
these parameters are derived by optimizing the model using
flux towers data at sites denoted as ‘‘calibration sites’’. We
assess transferability across the landscape by examining
data from sites not used in deriving the prior estimates
(‘‘validation sites’’).

3. Study Sites and Data

3.1. Vegetation and Tower Flux Data

[21] Tower measurements of NEE and water fluxes are
made at numerous sites in North America and worldwide
[Baldocchi et al., 2001]. We assembled a large subset of
these data to calibrate and test VPRM surface fluxes,
classified by vegetation type on the basis of the 1-km
International Geosphere Biosphere Programme (IGBP) clas-
sification [Belward et al., 1999].
[22] Since tower flux data are not available for each of the

17 IGBP vegetation classes, we grouped North American
ecosystems into nine major classes for which eddy flux data
are available: evergreen forests, deciduous forest, mixed
forest, shrubland (including open and closed shrubland),
savannas (savannas and woody savannas), cropland, grass-
land (grassland, cropland/natural vegetation mosaic, and
barren or sparsely vegetated), permanent wetlands, and
others (especially the water bodies).
[23] Two of these nine large classes needed to be sub-

divided to account for major biophysical differences within
them. The IGBP class ‘‘evergreen needleleaf forests’’
(�6.751% of land area) is broadly distributed, from boreal
boggy black spruce to subtropical slash pine. We combined
this class with ‘‘evergreen broadleaf forests’’, which have
negligible occurrence in North America (�0.5%), and then
subdivided into four classes (boreal (e.g., black spruce), wet
temperate/montane (e.g., Douglas fir, western white pine),
dry temperate (e.g., ponderosa pine), and subtropical (e.g.,
slash pine, with strong summertime droughts)) by climate
zone, using Holdridge Life Zone data [Monserud and
Leemans, 1992]. Similarly, ‘‘cropland’’ was divided into
soy and corn (to be expanded to include wheat when data
become available). Fortunately, suitable eddy flux data are
available for these subdivisions.
[24] We designated 11 tower sites to calibrate the four

parameters for each vegetation class (except water, snow
and ice, where fluxes are assumed zero), and identified 11
other sites for testing (‘‘validation’’) as listed in Table 1.
More details and data for the 22 test sites can be obtained
from network Web sites (http://public.ornl.gov/ameriflux/
and http://www.fluxnet-canada.ca/) and from the original
references in Table 1.
[25] The calibration sites for evergreen forests are the

Northern Old Black Spruce (NOBS/BOREAS) site in
Manitoba (boreal forest), Niwot Ridge in Colorado (subal-
pine coniferous forest), and Metolius Forest in Oregon
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(ponderosa pine) for wet and dry temperate evergreen,
respectively, and Donaldson (Florida slash pine) for sub-
tropical dry evergreen forest. We would like additional
evergreen classes for cool nonmontane pines (e.g., white
pine) and for hemlock, but flux data are unavailable.
[26] Harvard Forest was the calibration site for deciduous

broadleaf forests (�1.976%), which also included IGBP
class ‘‘deciduous needleleaf forests’’ (e.g., larch) that do not
occur extensively in North America. IGBP mixed forest
(�7.29%) was calibrated using Howland (Maine). IGBP
closed (�0.54%) and open shrubland (�8.6%) were com-
bined into ‘‘shrubland’’, and calibrated using Lucky Hills.
IGBP woody savannas (�1.3%) and savannas (�0.14%)
were combined (‘‘savannas’’) and calibrated using Tonzi
Ranch. The IGBP class of croplands (�3.77%) was adopted
as is and calibrated using data from Mead-S2 (Nebraska) for
both irrigated maize and soybeans, planted in rotation.
[27] IGBP ‘‘grasslands’’ (�3.3%), ‘‘crop/natural vegeta-

tion mosaic’’ (�3.9%), and ‘‘barren or sparsely vegetated
lands’’ (�1.8%) were combined into VPRM ‘‘grasslands’’
and calibrated at the Vaira range site. This class may be
affected by significant representation errors when the grass-
land calibration is applied to crop/natural mosaics, which in
the northern tier are often dairy farms interspersed with
woodlands. However, there are no data to allow subdivision
of these categories. The IGBP ‘‘permanent wetlands’’
(�0.7%) was calibrated at the eastern peatland site in
Canada. IGBP classes for water bodies (�59%), urban
and built-up (�0.18%), and snow and ice (�0.27%) were
combined into our last class, for which vegetation-derived
fluxes are assigned as zeros.
[28] Tower data sets provide several versions of NEE:

with and without filtering by turbulent intensity (u*) and
with or without gap filling. Some sites also provide GEE
and R, separated using various approaches. To avoid pos-
sible biases and inconsistencies from filling or separating
GEE and R, VPRM parameters were optimized against
unfilled tower NEE, with a u* filter applied to eliminate
unrepresentative observations.
[29] The current VPRM is intended to cover vegetation

from 11�N to 65�N and 50�W to 145�W, including the
continental United States, Mexico, and most of Canada. For
large-scale applications the 1-km IGBP vegetation data were

classified into these types and regridded to 10 � 10 km, or
1/4� � 1/6�, retaining information on the fractional cover-
age for each vegetation type. These data are provided to the
public with the VPRM distribution.

3.2. Satellite Data

[30] We analyzed multiyear satellite images from the
MODIS sensor aboard the Terra satellite (2000–2003/
2004), crossing the equator at 1030 local time. MODIS
views the entire surface of the Earth every 1–2 d measuring
36 spectral bands at 250 or 500 m resolution between 0.405
and 14.385 mm.
[31] We acquired 8-d mean MODIS surface reflectances

(MOD09A1) for our calibration and validation sites from
the Oak Ridge Distributed Active Archive Center (http://
www.modis.ornl.gov/modis/index.cfm), which provides
time series data for most flux towers in ASCII format. We
had to process MODIS subsets directly (Hierarchical Data
Format (HDF);http://landval.gsfc.nasa.gov) for sites where
the MODIS ASCII subsets were unavailable (e.g., Lucky
Hill).
[32] The MOD09A1 products give data for nine MODIS

pixels covering 1.5 km � 1.5 km, centered on each flux
tower. We averaged the 8-d mean surface reflectance data for
red (620–670 nm), NIR (841–876 nm), blue (459–479 nm),
and SWIR (1628–1652 nm) to calculate EVI and LSWI,
then applied a low-order smoothing algorithm (‘‘lowess’’,
locally weighted least squares) [Cleveland, 1981] to the
time series for each to reduce noise associated with imper-
fect atmospheric corrections in MOD09A1 data.

4. Results

[33] We optimized model parameters (l, PAR0, a, and b;
see Table 2) via nonlinear least squares (Newton-Raphson,
tangent linear approximation) and estimated confidence
intervals assuming Gaussian errors for both model and
tower data. For each calibration site we generated hourly
data from the smoothed time series of vegetation indices
(EVI and LSWI) and obtained measurements of air temper-
ature and PAR from the tower sites.
[34] Examples of observed and modeled NEE are shown

in Figure 2a. The VPRM provides consistent partitioning of

Table 2. Parameters PAR0, l, a, b, and Their Variances and Light Use Efficiency at Calibration Sitesa

Site Tmin Topt Tmax Tlow PAR0 l a b s-PAR0 s-l s-a s-b

HARVARD 0 20 40 5 570 0.127 0.271 0.25 14 0.002 0.006 0.060
HOWLAND 0 20 40 2 629 0.123 0.244 �.24 17 0.002 0.004 0.036
NOBS 0 20 40 1 262 0.234 0.244 0.14 5 0.004 0.002 0.015
NIWOT 0 20 40 1 446 0.128 0.250 0.17 13 0.003 0.003 0.018
METOLIUS 0 20 40 2 1206 0.097 0.295 �.43 39 0.002 0.003 0.028
SOY_MEADS2 5 22 40 2 2051 0.064 0.209 0.20 137 0.002 0.005 0.058
CORN_MEAD 5 22 40 2 11250 0.075 0.173 0.82 1746 0.002 0.006 0.081
TONZI 2 20 40 - 3241 0.057 0.012 0.58 293 0.002 0.002 0.036
VAIRA 2 18 40 - 542 0.213 0.028 0.72 23 0.006 0.002 0.035
DONALDSON 0 20 40 1 790 0.114 0.153 1.56 18 0.002 0.004 0.076
LUCKY-HILLS 2 20 40 - 321 0.122 0.028 0.48 14 0.004 0.001 0.019
PEATLAND 0 20 40 3 558 0.051 0.081 0.24 23 0.002 0.002 0.019

aUnits are as follows: PAR0: mmole m�2 s�1; l: mmole CO2 m
�2 s�1/mmole PAR m�2 s�1; a: mmole CO2 m

�2 s�1/0C; b: mmole CO2 m
�2 s�1. Light

use efficiency: l.
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tower NEE data into light-dependent and light-independent
parts for all calibration sites, and it thus provides an
independent tool for filling missing data (see Figure 2a).
(Note that Tscale is assumed to define the temperature
dependence of photosynthesis.) VPRM has the advantage
of incorporating satellite data into the process, and it can be
applied to any tower site. It yields consistent, independent
estimates of annual net exchange for all sites where the
optimization procedure is run.
[35] When driven by high-resolution data sets, the VPRM

equations are able to reproduce 1 to 4 years of data with
remarkable fidelity, including both diurnal cycles (Figure 2b)

and aggregation to monthly timescales (Figure 3), despite
their ultrasimple form. Inputs of accurate solar irradiance
and temperatures allow the VPRM to closely track hourly
variations; inputs from remote sensing data enable the
VPRM to also track the seasonal course of NEE. The model
even captures a significant amount of interannual variability,
driven by variations in T, PAR, and EVI (Figure 2a, right).
[36] Values of l for forests and crops range from 0.17 to

0.27 (Table 2), consistent with the expectation that optimum
light use efficiency at low light should be �1:6 (l = 0.17)
for a dense vegetation canopy. Values are lower for semiarid
grasslands and shrublands, again as expected. Values of r2

Figure 2a. (left) Examples of hourly output from the VPRM for Harvard Forest (top) and BOREAS/
NOBS (bottom). Observations (points) show u*-filtered hourly data only. (right) Comparison between the
observed (solid squares) and VPRM (blue line) monthly mean NEE (mmole m�2 s�1) over the 4-year
period at these two calibration sites. VPRM provides a consistent separation of the light-dependent part of
NEE (‘‘GEE’’) from the light-independent part (Respiration) across all sites.
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Figure 2b. A comparison between the observed (solid squares) and VPRM (open circles) mean diurnal
variation of NEE (mmole m�2 s�1) during the peak growing season at calibration sites.
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Figure 3
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range from 0.6 to 0.9 for calibration sites; correlations are
almost as good at many validations sites. Note the high
value of PAR0 (Table 2) for corn, apparently capturing the
high LUE [Gower et al., 1999]. PAR0 values in Table 2 are
higher at cropland xeric sites than would be found in
conventional analysis of a light curve, where NEE is fit to
a hyperbolic function of PAR. Midday summer temper-
atures often exceed Topt, and hence the VPRM infers high R
and low GEE, attributing the decrease in photosynthetic
efficiency to excessive heat rather than to light saturation.
[37] Figure 3, top, shows the relationship between the

seasonal dynamics of NEE and VPRM photosynthesis
factors. As expected, croplands and grasslands respond
strongly to phenology (Pscale) and the amount of photosyn-
thetically active vegetation (EVI). Likewise, variations in
Pscale and EVI, as well as light (PAR), strongly modulate the
uptake of CO2 at deciduous and mixed sites (Harvard and
Howland), whereas the temperature dependence of photo-
synthesis (Tscale) is the primary factor limiting uptake of
CO2 by well-watered evergreen forests (NOBS, Metolius/
Oregon, and Niwot). Intraseasonal trends in the VPRM
sometimes were able to capture water stress and changes
in EVI.
[38] There are a few surprises. Harvard and Howland

forests both include significant evergreen conifers, as typ-
ical for ‘‘deciduous’’ and ‘‘mixed’’ forests, and Tscale is thus
also critically important in limiting uptake at these sites in
winter. Donaldson is warm and evergreen, but in winter it is
not actually very green at all, and the very low values of
EVI limit uptake. The notably poor fit at Donaldson in
summer may be particular to the 2001–2002 interval used
for calibration; this was the end of a severe, extended
drought, and remotely sensed indices might not have
captured the associated aftereffects.
[39] Other discrepancies appear to be associated with the

inability of remotely sensed data to detect water stress and/
or conductance limitations during summer at sites with
strong coniferous representation (Donaldson, Metolius,
and Howland). Thus the VPRM overpredicts uptake at
these sites in middle and late summer, when photosynthesis
rates decline steeply but EVI and LSWI change only
modestly. At some sites the model does a surprisingly good
job in capturing declines in net uptake due to increased
respiration in middle and late summer, for example, NOBS/
BOREAS [Dunn et al., 2007].
[40] The shrubland site (Lucky Hill) had the worst fit.

Carbon dioxide exchanges at this site derive from both
organic and soil inorganic pools [Emmerich, 2003]; the
latter is beyond the scope of a model like the VPRM.
[41] We carried out VPRM simulations for 11 different

validation sites (SOBS, B1850, EOBS, DUKE-PP, INDI-
ANA, DUKE-HW, WCREEK, LCREEK, WLEF, BOND,

and ANLGRASS) using derived model parameters from
calibration sites in the same or similar vegetation classes,
without any adjustment. SOBS, B1850 and EOBS were
classified as old growth evergreen boreal forests, and model
parameters were taken fromNOBS. DUKE-PPwas classified
as evergreen dry temperate forest, and model parameters
were taken from Metolius. INDIANA and DUKE-HW were
classified as deciduous forest and model parameters were
taken from Harvard Forest. WCREEK, LCREEK, and
WLEFwere classified as mixed forest, and model parameters
were taken from Howland Forest, although this classification
is not completely accurate for WCREEK (a young maple
stand) and LCREEK (a major fraction is wetland). Soy and
corn at BOND and ANLGRASS were validated using
Mead-S2 soy and corn and VAIRA model parameters,
respectively. We were not able to test the VPRM indepen-
dently for other vegetation classes because of lack of tower
data.
[42] Most validation simulations were very successful.

Figure 4 shows that the diurnal variation of NEE was
slightly underestimated at B1850, DUKE-HW, and ANL-
GRASS and slightly overestimated at BOND-soy and
LCREEK. ANLGRASS nighttime respiration was notably
underestimated. Figure 5 shows the seasonal variation of
NEE at validation sites, and associated VPRM functions, as
in Figure 3. Seasonal peaks of NEE were slightly over-
estimated at DUKE-PP, INDIANA, ANLGRASS, and
BOND-SOY.
[43] Overall, when model parameters from calibrated sites

were applied to similar ecosystems for validation (Table 3),
r2 values were almost as high as at calibration sites,
demonstrating strong predictive ability for sites with similar
vegetation. WLEF was an outlier. Several studies have
noted [Desai et al., 2008; Wang et al., 2006] the sharp
differences between WLEF fluxes versus WCREEK and
LCREEK, which are not as similar to each other, or to
Howland, as one would like. Mackay et al. [2002] com-
pared WLEF stand types to IGBP classes and suggested that
four distinct stand types are needed to characterize the
region’s evapotranspiration fluxes. Possibly the great tower
height affects resolution of surface fluxes, extends the area
influencing the tower, or introduces measurement artifacts.
[44] The VPRM provides excellent prediction of monthly

NEE for most calibration and validation sites (Figure 6),
excluding WLEF. Since the optimization exclusively used
hourly data, the excellent agreement between VPRM and
observations at the monthly timescale (Table 3), represent-
ing aggregation by a factor of �600 in time, indicates
successful elimination of bias in the nonlinear optimized
functions. Only one calibration site (Donaldson/slash pine)
and two of the validation sites (ANL-grassland and Duke
Ponderosa pine) fail to scale up in time. These are the sites

Figure 3. (top) Seasonal dynamics of the prefactors Tscale, Pscale, and Wscale in the VPRM equation (equation (11)), driven
by satellite and meteorological data. All factors are significant, at various times and places. (bottom) Comparison of the
seasonal dynamics between observed (black) and VPRM (red) monthly mean NEE (mmole m�2 s�1) at calibration sites,
monthly means, averaged over all years. Values in the title bar give the fraction of the total variance of the mean seasonal
cycle of NEE captured by the model, [1 � var(NEEobs � NEEVPRM)/var(NEEobs)] (in parenthesis, the same quantity for
the time series of individual monthly means). Note that net uptake of CO2 corresponds to negative values of NEE.
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Figure 4. Comparison between the observed (solid squares) and predicted (open circles) diurnal mean
NEE (mmole m�2 s�1) over the peak photosynthetically active period, as in Figure 2b, but at validation
sites without adjustment of parameters.
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Figure 5. A comparison of the seasonal dynamics of model and observed NEE, as in Figure 3, but at
validation sites (no adjustment of VPRM parameters).
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are likely affected by water stress, which we already noted
may not be accurately captured in the VPRM.
[45] The VPRM validations did not capture the seasonal

cycle as well at boreal evergreen forests (SOBS, B1850, and
EOBS; see Table 3) as at other sites. These biomes exhibit
an especially strong seasonal cycle of ecosystem respiration,

controlled by subsurface processes such as slow thawing
and draining of snowmelt-saturated soils [Dunn et al., 2007]
that are not remotely sensible, as well as prior site history.
Thus the VPRM cannot distinguish the late summer trends
at these sites on the basis of the fit to the NOBS data.

Figure 6. (left) Observed and predicted monthly mean NEE (mmole m�2 s�1) for calibration sites (solid
symbols) and validation sites (open symbols) excluding WLEF. Regression line for all sites (dotted line)
is very similar to the regression for validation sites only (dashed line). (right) Mean NEE by site (except
WLEF) for the growing season. Line labeled (0,1) has zero intercept and slope = 1 (‘‘1:1 line’’).
Regression lines are labeled similarly.

Table 3. Correlation Coefficients for Monthly and Hourly NEE and Means for All Seasons and for the Growing Season Hourly Data of

Tower Flux and VPRM Calculations at Calibration and Cross-Validation Sitesa

Site Calibration Site Years r2 Monthly r2 Hourly

Mean NEE-All
(mmole m�2s�1)

Growing Seas
(mmole m�2s�1)

Obs VPRM Obs VPRM

HARVARD - 4 0.96 0.83 �1.64 �1.70 �7.24 �7.50
HOWLAND - 4 0.33 0.65 �0.59 �0.59 �1.32 �2.61
NOBS - 4 0.83 0.72 �0.54 �0.59 �1.75 �1.96
NIWOT - 4 0.25 0.56 �0.19 �0.19 �0.85 �1.13
METOLIUS - 3 0.55 0.63 �0.99 �0.99 �1.66 �1.31
SOY_MEADS2 - 1 0.61 0.66 0.08 0.05 �2.32 �2.05
CORN_MEADS2 - 1 0.94 0.83 �1.54 �1.58 �8.13 �9.42
TONZI - 3 0.57 0.43 �0.59 �0.59 �1.22 �0.81
VAIRA - 3 0.44 0.55 �0.42 �0.43 �1.33 �2.43
DONALDSON - 2 �1.04 0.82 �1.49 �1.52 �1.15 �2.12
LUCKY-HILLS - 4 0.36 0.46 0.02 0.01 0.31 0.74
PEATLAND - 1 0.50 0.71 �0.04 �0.04 �0.77 �1.06
SOBS NOBS 5 0.81 0.69 �0.88 �1.23 �2.04 �2.83
EOBS NOBS 1 0.88 0.74 �0.51 �0.29 �1.91 �1.70
B1850 NOBS 4 0.84 0.62 �0.66 �0.57 �1.97 �1.69
DUKE_PP METOLIUS 4 �0.43 0.58 �1.01 �2.63 �1.66 �4.89
DUKE_HW HARVARD 4 0.64 0.58 �1.00 0.47 �3.59 �1.80
INDIANA HARVARD 4 0.59 0.65 �0.70 �0.40 �4.35 �4.94
WCREEK HOWLAND 5 0.77 0.77 �0.87 �1.78 �5.36 �7.95
LCREEK HOWLAND 4 0.53 0.66 �0.27 �0.18 �2.12 �2.68
WLEF HOWLAND 2 �11.0 0.46 0.26 �0.37 �0.52 �3.94
SOY_BOND SOY_MEAD 1 0.80 0.72 0.31 0.85 �2.62 �3.02
CORN_BOND CORN_MEAD 1 0.76 0.63 �1.27 �0.53 �7.02 �9.03
ANLGRASS VAIRA 2 �.040 0.57 �0.34 �0.80 �0.52 �1.32

aOnly intersection data (available in both observation and model columns) were used. Growing season hourly data: April to June for VAIRA and
ANLGRASS; June to August for all other sites. Correlation coefficients: r2.
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[46] We quantified the role of satellite vegetation indices
and of the temperature function for photosynthesis (Tscale)
using a series of reduced models. Each was optimized
independently using NEE data for Harvard and NOBS, then
compared to the VPRM:

NEEmodel�2 ¼ � l0 � Tscale �
1

1þ PAR=PAR0
0

� �� EVI � PAR

þ a0 � T þ b0 ð13Þ

NEEmodel�1 ¼ � l00 � Tscale �
1

1þ PAR=PAR00
0

� �� PAR

þ a00 � T þ b00 ð14Þ

NEEmodel�0 ¼ � l000 � 1

1þ PAR=PAR000
0

� �� PARþ a000 � T þ b000

ð15Þ

Model-2 deletes the water and phenology scaling factors
using LSWI, Model-1 deletes all satellite information
(LSWI and EVI), and Model-0 deletes these and also drops
Tscale.

[47] Figure 7 compares GEE from the VPRM to GEE
from these reduced models, and to GEE partitioned from
eddy flux data. At Harvard the shaping of the uptake curve
by Pscale plays a role, and inter- and intraseasonal changes
of EVI are very important (Figure 7a). The role of Tscale is
surprisingly significant, as noted above, and omitting Tscale
ruins the seasonal fit at Harvard.
[48] Data inputs from LSWI and EVI are much less

important for representing fluxes from boreal evergreens
(Figure 7b), as expected. However, interannual variations of
EVI appear significant in capturing interannual variations of
GEE. At this site also, no good fit can be obtained unless
Tscale is included to limit photosynthesis in cold weather.

5. Discussion

[49] This paper develops and validates the VPRM, a
satellite-based vegetation photosynthesis and respiration
model, intended to provide NEE over North America with
fine temporal and spatial resolution. The model has very
simple structure and few adjustable parameters. It was tested
using observations from all across the AmeriFlux and
Fluxnet-Canada networks. When combined with maps of
vegetation type, meteorological data for temperature, and
satellite-derived shortwave radiation, it provides an excel-
lent a priori representation of surface CO2 fluxes, with

Figure 7. A comparison between GEE (mmole m�2 s�1) obtained by fitting VPRM, MODEL-2,
MODEL-1, and MODEL-0 to tower data from 2000 to 2003 at Harvard Forest (a) and NOBS/BOREAS
(b). VPRM incorporates EVI, Pscale, and Wscale (driven by satellite data), plus Tscale driven by
meteorological data. MODEL-2 drops LSWI factors (Pscale and Wscale), MODEL-1 drops all satellite
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hourly time resolution and spatial resolution equal to that of
the vegetation data (1 km for the IGBP).
[50] There are many process-based biogeochemical mod-

els (e.g., SiB2 or Biome-BGC) that simulate the storage and
fluxes of water, carbon, and nitrogen by vegetation, litter,
and soil. They can provide estimates of net primary pro-
duction (NPP) or gross primary production (GPP), and in
some cases, NEE, with hourly resolution. However, these
models require complex parameter specification. For exam-
ple, 47 parameters were spatially interpolated for regional
simulations of SiB2 [Wang et al., 2007a]. In many cases,
model parameters need frequent recalibration within short
time periods, and the models may incur significant compu-
tational effort.
[51] The data-driven approach of the VPRM is capable of

reproducing spatial and temporal variations of NEE using
simple equations plus a compact database derived from
MODIS. There are only four parameters per vegetation type
that persist for the whole annual cycle, with spatial and
temporal variations rendered by high-resolution meteoro-
logical and remote sensing data.
[52] Statistical uncertainties in the VPRM are given in

Tables 2 and 3. Important additional systematic errors arise
in part from the model structure. The lack of a soil moisture
component and inability to remotely sense water stress are
discussed above. Errors also arise because of limited reso-
lution in the vegetation classification. Calibration and val-
idation sites do not have identical vegetation assemblages,
and the landscape includes assemblages not represented at
all in present networks (e.g., northern white pine forests and
loblolly pine plantations). Differences in vegetation func-
tional responses are associated with climate, soil properties
and soil moisture, canopy structure, necromass, and tree
ages and distribution, none of which can currently be
resolved using tower site data. Related errors arise from
misclassification by the IGBP (e.g., at LCREEK).
[53] Noise in MODIS data also introduces significant

errors in EVI and LSWI, and the noisy time series of
MODIS data leads to errors in phenology. Notably large
errors in model NEE accrue because of deficiencies in the
driver data (sunlight and temperature), affecting CO2 flux
predictions from all surface flux models. Detailed studies of
errors in driver data will be described in a subsequent paper.

6. Conclusions

[54] The VPRM assimilates large amounts of data from
remote sensing, meteorology, and flux towers and com-
presses the acquired knowledge into just four parameters in
each vegetation class. Vegetation indices (EVI and LSWI)
from the MODIS sensor, representation of the temperature
dependence of photosynthesis, and accurate driver data are
all that is required to describe the hourly and seasonal
dynamics of NEE across the landscape. When coupled to
accurate data sets for these factors, the VPRM partitions
NEE into GEE (light-dependent) and R (light-independent)
without complex algorithms or submodels, and with a
minimal resort to arbitrary assumptions. The four parame-
ters of the VPRM drive a model with very simple structure

that demonstrates strong predictive ability for NEE from
hourly to monthly timescales.
[55] The selected calibration and validation sites provide

a minimal representation of the vegetation of North
America. At present, over 200 eddy flux tower sites make
up a global FLUXNET network (http://www.daac.ornl.gov/
FLUXNET). Data for CO2, H2O, and energy flux for
numerous ecosystem types have been accumulated; but
availability of quality-assured data has not kept pace. Once
multiyear data from more eddy flux tower sites are avail-
able, the VPRM can be refined and extended across a wider
range of ecosystem and climate and soil conditions, and to
other continents. Enhanced vegetation classification, includ-
ing stand ages, would provide the basis for further improve-
ments while conserving the simple structure of the VPRM.
[56] The VPRM can be applied at the scale of North

American, providing a detailed representation of the spatio-
temporal variation of CO2 fluxes across the landscape, with
a low-dimensional parameter space for optimization in an
inverse model framework. The calibrated model coefficients
(l, PAR0, a, and b) represent a priori parameter estimates.
We envision the principal application of the VPRM to be
reoptimization of the parameters at local, regional, or
continental scales in top down analyses of carbon fluxes.
The model and underlying databases are publicly available
at (http://www-as.harvard.edu/data/).

[57] Acknowledgments. We would like to thank the flux site inves-
tigators for providing their data through AmeriFlux and Fluxnet-Canada
programs. This study was supported at Harvard University by a grant from
the National Science Foundation Bio-complexity in the Environment
Program (ATM-0221850) and by grants from the U.S. Department of
Energy in the Terrestrial Carbon Program, grant DE-FG02-98ER62695,
and the Northeast Regional Center (NERC) of the National Institute for
Global Environmental Change (NIGEC) under cooperative agreement DE-
FCO2-03ER63613; also by NASA grants NAG5-11154 and
NNG05GA76G from the Terrestrial Ecological Program. We also thank
William E. Emmerich for providing Lucky Hills flux data from the USDA-
ARS Agriflux Carbon project. The research at Duke Forest was supported
by the Office of Science (BER), U.S. Department of Energy, grant DE-
FG02-00ER63015 (Hardwood Forest), and through its Southeast Regional
Center (SERC) of the NIGEC under cooperative agreement DE-FC02-
03ER63613 (Pine Plantation). The research at the Metolius ponderosa pine
site was supported by the Office of Science (BER), U.S. Department of
Energy, grant DE-FG0203ER63653.

References
Aber, J. D., and C. A. Federer (1992), A generalized, lumped-parameter
model of photosynthesis, evapotranspiration, and net primary production
in temperate and boreal forest ecosystems, Oecologia, 92, 463–474.

Baker, D. F., S. C. Doney, and S. D. Schimel (2006), Variational data
assimilation for atmospheric CO2, Tellus, Ser. B, 58, 359–365.

Bakwin, P. S., P. P. Tans, D. F. Hurst, and C. Zhao (1998), Measurements of
carbon dioxide on very tall towers: Results of the NOAA/CMDL pro-
gram, Tellus, Ser. B, 50, 410–415.

Baldocchi, D. D., et al. (2001), FLUXNET: A new tool to study the tem-
poral and spatial variability of ecosystem-scale carbon dioxide, water
vapor, and energy flux densities, Bull. Am. Meteorol. Soc., 82, 2415–
2435.

Baldocchi, D. D., L. Xu, and N. Kiang (2004), How plant functional-type,
weather, seasonal drought, and soil physical properties alter water and
energy fluxes of an oak-grass savanna and an annual grassland, Agric.
For. Meteorol., 123, 13–39.

Belward, A. S., J. E. Estes, and K. D. Kline (1999), The IGBP-DIS global
1-km land-cover data set DISCover: A project overview, Photogramm.
Eng. Remote Sens., 65(9), 1013–1020.

Bergeron, O., H. A. Margolis, A. Black, C. Coursolle, A. L. Dunn, A. G.
Barr, and S. C. Wofsy (2007), Comparison of carbon dioxide fluxes over

GB2005 MAHADEVAN ET AL.: NET ECOSYSTEM EXCHANGE MODEL

15 of 17

GB2005



three boreal black spruce forests in Canada, Global Change Biol., 13,
89–117.

Boles, S., X. Xiao, J. Liu, Q. Zhang, S. Munkhtuya, and S. Chen (2004),
Land cover characterization of temperate East Asia using multi-temporal
VEGETATION sensor data, Remote Sens. Environ., 90, 477–489.

Clark, K. L., H. L. Gholz, J. B. Moncrieff, F. Cropley, and H. W. Loescher
(1999), Environmental controls over net exchanges of carbon dioxide
from contrasting Florida ecosystems, Ecol. Appl., 9(3), 936–948.

Clark, K. L., H. L. Gholz, and M. S. Castro (2004), Carbon dynamics along
a chronosequence of slash pine plantations in north Florida, Ecol. Appl.,
14(4), 1154–1171.

Cleveland, W. S. (1981), LOWESS: A program for smoothing scatterplots
by robust locally weighted regression, Am. Stat., 35, 54–54J.

Cook, B. D., et al. (2004), Carbon exchange and venting anomalies in an
upland deciduous forest in northernWisconsin, USA, Agric. For. Meteorol.,
126, 271–295.

Coops, N. C., R. H. Waring, and B. E. Law (2005), Assessing the past and
future distribution and productivity of ponderosa pine in the Pacific
Northwest using a process model, 3-PG, Ecol. Modell., 183(1), 107–124.

Coulter, R. L., M. S. Pekour, D. R. Cook, G. E. Klazura, T. J. Martin, and
J. D. Lucas (2006), Surface energy fluxes and carbon dioxide fluxes
above different vegetation types within ABLE, Agric. For. Meteorol.,
136, 147–158.

Cunningham, S. C. (2005), Photosynthetic responses to vapor pressure
deficit in temperate and tropical evergreen rainforest trees of Australia,
Oecologia, 142(4), 521–528.

Davidson, E. A., K. Savage, L. V. Verchot, and R. Navarro (2002a), Mini-
mizing artifacts and biases in chamber-based measurements of soil
respiration, Agric. For. Meteorol., 113, 21–37.

Davidson, E. A., et al. (2002b), Belowground carbon allocation in forests
estimated from litterfall and IRGA-based soil respiration measurements,
Agric. For. Meteorol., 113, 39–51.

Davis, K. J., P. S. Bakwin, C. X. Yi, B. W. Berger, C. L. Zhao, R. M.
Teclaw, and J. G. Isebrands (2003), The annual cycles of CO2 and H2O
exchange over a northern mixed forest as observed from a very tall tower,
Global Change Biol., 9, 1278–1293.

Denning, A. S., I. Y. Fung, and D. Randall (1995), Latitudinal gradient of
atmospheric CO2 due to seasonal exchange with land biota, Nature, 376,
240–243.

Desai, A., P. V. Bolstad, B. D. Cook, K. J. Davis, and E. V. Carey (2005),
Comparing net ecosystem exchange of carbon dioxide between an old-
growth and mature forest in the upper Midwest, USA, Agric. For.
Meteorol., 128(1–2), 33–55.

Desai, A., et al. (2008), Influence of vegetation and seasonal forcing on
carbon dioxide fluxes across the Upper Midwest, USA: Implications for
regional scaling, Agric. For. Meteorol., 148, 288–308.

Diak, G. R., J. R. Mecikalski, M. C. Anderson, J. M. Norman, W. P. Kustas,
R. D. Torn, and R. L. DeWolf (2004), Estimating land surface energy
budgets from space –Review and current efforts at the University of
Wisconsin-Madison and USDA-ARS, Bull. Am. Meteorol. Soc., 85,
65–78.

Dunn, A. L., C. C. Barford, S. C. Wofsy, M. L. Goulden, and B. C. Daube
(2007), A long-term record of carbon exchange in a boreal black spruce
forest: Means, responses to inter-annual variability, and decadal trends,
Global Change Biol., 13, 577–590.

Emmerich, W. E. (2003), Carbon dioxide fluxes in a semiarid environment
with high carbonate soils, Agric. For. Meteorol., 116, 91–102.

Field, C. B., T. J. Randerson, and C. M. Malmstrom (1995), Global net
primary production–Combining ecology and remote-sensing, Remote
Sens. Environ., 51, 74–88.

Friedl, M. A., X. Zhang, and E. Tsvetsinskaya (2003), Observing and
deriving land cover properties and dynamics for use in weather and
climate models, Annu. Meet. Am. Meteorol. Soc., paper J8.1, Long
Beach, Calif., 9–13 February.

Fung, I. (1993), Models of oceanic and terrestrial sinks of anthropogenic
CO2: A review of the contemporary carbon cycle, in The Biogeochemistry
of Global Change: Radiative Trace Gases, edited by R. S. Oremland,
pp. 166–189, CRC Press, Boca Raton, Fla.

Fung, I. Y., C. J. Tucker, and K. C. Prentice (1987), Application of ad-
vanced very high resolution radiometer to study atmosphere-biosphere
exchange of CO2, J. Geophys. Res., 92, 2999–3015.

Gerbig, C., J. C. Lin, S. C. Wofsy, B. C. Daube, A. E. Andrews, B. B.
Stephens, P. S. Bakwin, and C. A. Grainger (2003a), Towards constrain-
ing regional scale fluxes of CO2 with atmospheric observations over a
continent: 1. Observed spatial variability from airborne platforms,
J. Geophys. Res., 108(D24), 4756, doi:10.1029/2002JD003018.

Gerbig, C., J. C. Lin, S. C. Wofsy, B. C. Daube, A. E. Andrews, B. B.
Stephens, P. S. Bakwin, and C. A. Grainger (2003b), Towards constrain-

ing regional scale fluxes of CO2 with atmospheric observations over a
continent: 2. Analysis of COBRA data using a receptor-oriented frame-
work, J. Geophys. Res., 108(D24), 4757, doi:10.1029/2003JD003770.

Gerbig, C., J. C. Lin, J. W. Munger, and S. C. Wofsy (2005), What can
tracer observations in the continental boundary layer tell us about fluxes?,
Atmos. Chem. Phys. Disc., 5, 9249–9290.

Goetz, S. J., and S. D. Prince (1999), Modeling terrestrial carbon exchange
and storage: The evidence for and implications of functional convergence
in light use efficiency, Adv. Ecol. Res., 28, 57–92.

Goulden, M. L., J. W. Munger, S. M. Fan, B. C. Daube, and S. C. Wofsy
(1996), Measurements of carbon storage by long-term eddy correlation:
Methods and a critical evaluation of accuracy, Global Change Biol., 2,
169–182.

Goulden, M. L., et al. (1998), Sensitivity of boreal forest carbon balance to
soil thaw, Science, 279, 214–217.

Goulden, M. L., G. C. Winston, A. M. S. McMillan, M. E. Litvak, E. L.
Read, A. V. Rocha, and J. R. Elliot (2006), An eddy covariance mesonet
to measure the effect of forest age on land-atmosphere exchange, Global
Change Biol., 12, 2146–2162.

Gower, S. T., C. J. Kucharik, and J. M. Norman (1999), Direct and indirect
estimation of leaf area index, fAPAR and net primary production of
terrestrial ecosystems, Remote Sens. Environ., 70, 29–51.

Grace, J., and M. Rayment (2000), Respiration in the balance, Nature, 404,
819–820.

Griffis, T. J., T. A. Black, K. Morgenstern, A. G. Barr, Z. Nesic, G. B.
Drewitt, D. Gaumont-Guay, and J. H. McCaughey (2003), Ecophysiolo-
gical controls on the carbon balances of three southern boreal forests,
Agric. For. Meteorol., 117, 53–71.

Hollinger, D. Y., S. M. Goltz, E. A. Davidson, J. T. Lee, K. Tu, and H. T.
Valentine (1999), Seasonal patterns and environmental control of carbon
dioxide and water vapor exchange in an ecotonal boreal forest, Global
Change Biol., 5, 891–902.

Hollinger, S. E., C. J. Bernacchi, and T. P. Meyers (2005), Carbon budget of
mature no-till ecosystem in North Central Region of the United States,
Agric. For. Meteorol., 130, 59–69.

Huete, A. R., H. O. Liu, K. Batchily, and W. V. Leeuwen (1997), A
comparison of vegetation indices global set of TM images for EOS-
MODIS, Remote Sens. Environ., 59(3), 440–451.

Huete, A., K. Didan, T. Miura, E. P. Rodriguez, X. Gao, and L. G. Ferreira
(2002), Overview of the radiometric and biophysical performance of the
MODIS vegetation indices, Remote Sens. Environ., 83, 195–213.

Katul, G. G., R. Leuning, J. Kim, O. T. Denmead, A. Miyata, and Y. Harazono (2001),
Estimating CO2 source/sink distributions within a rice canopy using high-
er-order closure model, Boundary Layer Meteorol., 98, 103–125.

Lafleur, P. M., N. T. Roulet, and S. W. Admiral (2001), The annual cycle of
CO2 exchange from a bog peatland, J. Geophys. Res., 106, 3071–3082.

Lafleur, P. M., N. T. Roulet, J. L. Bubier, T. R. Moore, and S. Frolking
(2003), Interannual variability in the peatland-atmosphere carbon dioxide
exchange at an ombrotrophic bog, Global Biogeochem. Cycles, 17(2),
1036, doi:10.1029/2002GB001983.

Lafont, S., L. Kergoat, G. Dedieu, A. Chevillard, E. Kjellström, U. Karstens,
and O. Kolle (2002), Spatial and temporal variability of land CO2 fluxes
estimated with remote sensing and analysis data over western Eurasia,
Tellus, Ser. B, 54, 820–833.

Lin, J. C., C. Gerbig, S. C. Wofsy, A. E. Andrews, B. C. Daube, C. A.
Grainger, B. B. Stephens, P. S. Bakwin, and D. Y. Hollinger (2004), Mea-
suring fluxes of trace gases at regional scales by Lagrangian observations:
Application to the CO2 Budget and Rectification Airborne (COBRA)
study, J. Geophys. Res., 109, D15304, doi:10.1029/2004JD004754.

MacKay, D. S., D. E. Ahl, B. E. Ewers, S. T. Gower, S. N. Burrows,
S. Samanta, and K. J. Davis (2002), Effects of aggregated classifications
of forest composition on estimates of evapotranspiration in a northern
Wisconsin forest, Global Change Biol., 8, 1253–1265.

Makela, A., P. Kolari, J. Karimaki, E. Nikinmaa, M. Peramaki, and P. Hari
(2006), Modeling five years of weather-driven variation of GPP in a
boreal forest, Agric. For. Meteorol., 139, 382–398.

Meyers, T. P., and S. E. Hollinger (2004), An assessment of storage terms in
the surface energy balance of maize and soybean, Agric. For. Meteorol.,
125, 105–115.

Mitchell, K. E., et al. (2004), The multi-institution North American Land
Data Assimilation System (NLDAS): Utilizing multiple GCIP products
and partners in a continental distributed hydrological modeling system,
J. Geophys. Res., 109, D07S90, doi:10.1029/2003JD003823.

Monserud, R. A., and R. Leemans (1992), Comparing global vegetation
maps with the kappa-statistic, Ecol. Modell., 62(4), 275–293.

Monson, R. K., A. A. Turnipseed, J. P. Sparks, L. E. Scott-Denton, K. Sparks,
and T. E. Huxman (2002), Carbon sequestration in a high-elevation,
subalpine forest, Global Change Biol., 8, 459–478.

GB2005 MAHADEVAN ET AL.: NET ECOSYSTEM EXCHANGE MODEL

16 of 17

GB2005



Monteith, J. L. (1972), Solar radiation and productivity in tropical ecosys-
tem, J. Appl. Ecol., 9, 747–766.

Oren, R., C.-I. Hsieh, P. Stoy, J. Albertson, H. R. McCarthy, P. Harrell, and
G. G. Katul (2006), Estimating the uncertainty in annual net ecosystem
carbon exchange: Spatial variation in turbulent fluxes and sampling errors
in eddy-covariance measurements, Global Change Biol., 12, 883–896.

Pathmathevan, M., T. Koike, X. Li, and H. Fujii (2003), A simplified land
data assimilation scheme and its application to soil moisture experiments
in 2002 (SMEX02), Water Resour. Res., 39(12), 1341, doi:10.1029/
2003WR002124.

Piovesan, G., and J. M. Adams (2000), Carbon balance gradient in Eur-
opean forests: Interpreting EUROFLUX, J. Vegetation Sci., 11, 923–926.

Potter, C. S., J. T. Randerson, C. B. Field, P. A.Matson, P. M. Vitousek, H. A.
Mooney, and S. A. Klooster (1993), Terrestrial ecosystem production: A
process model based on global satellite and surface data, Global Biogeo-
chem. Cycles, 7, 811–841.

Potter, C. S., S. A. Klooster, and V. Brooks (1999), Inter-annual variability
in terrestrial net primary production: Exploration of trends and controls
on regional to global scales, Ecosystems, 2, 36–48.

Powell, T. L., R. Bracho, J. H. Li, S. Dore, C. R. Hinkle, and B. G. Drake
(2006), Environmental controls over net ecosystem carbon exchange of
scrub oak in central Florida, Agric. For. Meteorol., 141(1), 19–34.

Prince, S. D., and S. N. Goward (1995), Global primary production: A
remote sensing approach, J. Biogeogr., 22, 815–835.

Raich, J. W., E. B. Rastetter, J. M. Melillo, D. W. Kicklighter, P. A. Steudler,
B. J. Peterson, A. L. Grace, B. Moore, and C. J. Vorosmarty (1991),
Potential net primary productivity in South America: Application of a
global-model, Ecol. Appl., 1, 399–429.

Ruimy, A., P. G. Jarvis, D. D. Baldocchi, and B. Saugier (1995), CO2

fluxes over plant canopies and solar radiation: A review, Adv. Ecol.
Res., 26, 1–68.

Running, S. W., P. E. Thornton, R. Nemani, and J. M. Glassy (2000),
Global terrestrial gross and net primary productivity from the Earth
Observing System, in Methods in Ecosystem Science, edited by O. E.
Sala et al., pp. 44–57, Springer, New York.

Schmid, H. P., C. S. B. Grimmond, F. Cropley, B. Offerle, and H.-B. Su
(2000), Measurements of CO2 and energy fluxes over a mixed hardwood
forest in the midwestern United States, Agric. For. Meteorol., 103, 355–
373.

Sellers, P. J., D. A. Randall, G. J. Collatz, J. A. Berry, C. B. Field, D. A.
Dazlich, C. Zhang, G. D. Collelo, and L. Bounoua (1996), A revised land
surface parameterization (SiB2) for atmospheric GCMs. Part I: Model
formulation., J. Clim., 9, 676–705.

Song, J., and M. L. Wesely (2003), Evaluation of modeled surface fluxes
with aircraft observations, Agric. For. Meteorol., 117, 159–171.

Song, J., M. L. Wesely, D. J. Holdridge, and D. R. Cook (2006),
Estimating the long-term hydrological budget over heterogeneous sur-
faces, J. Hydrometeorol., 7(1), 203–214.

Stoy, P. C., G. G. Katul, M. B. S. Siqueira, J.-Y. Juang, H. R. McCarthy, H.-S.
Kim, A. C. Oishi, and R. Oren (2005), Variability in net ecosystem
exchange from hourly to inter-annual time scales at adjacent pine and
hardwood forests: A wavelet analysis, Tree Physiol., 25, 887–902.

Su, H.-B., H. P. Schmid, C. S. B. Grimmond, C. S. Vogel, and A. J.
Oliphant (2004), Spectral characterizes and correction of long-term
eddy-covariance measurements over two mixed hardwood forests in
non-flat terrain, Boundary Layer Meteorol., 110, 213–253.

Tans, P. P. (1980), On calculating the transfer of c-13 in reservoir models of
the carbon-cycle, Tellus, 32(5), 464–469.

Tans, P. P., J. A. Berry, and R. F. Keeling (1993), Oceanic 13C/12C observa-
tions, a new window on CO2 uptake by the oceans, Global Biogeochem.
Cycles, 7, 353–368.

Tucker, C. J. (1979), Red and photographic infrared linear combination for
monitoring vegetation, Remote Sens. Environ., 8, 127–150.

Turner, D. P., S. Urbanski, D. Bremer, S. C. Wofsy, T. Meyers, S. T. Gower,
and M. Gregory (2003), A cross-biome comparison of daily light use
efficiency for gross primary production, Global Change Biol., 9, 383–
395.

Verma, S. B., et al. (2005), Annual carbon dioxide exchange in irrigated and
rainfed maize-based agroecosystems, Agric. For. Meteorol., 131, 77–96.

Wang, W., K. J. Davis, B. D. Cook, M. P. Butler, and D. M. Ricciuto
(2006), Decomposing CO2 fluxes measured over a mixed ecosystem at
a tall tower and extending to a region: A case study, J. Geophys. Res.,
111, G02005, doi:10.1029/2005JG000093.

Wang, J. W., A. S. Denning, L. X. Lu, I. T. Baker, K. D. Corbin, and K. J.
Davis (2007a), Observations and simulations of synoptic, regional, and
local variations in atmospheric CO2, J. Geophys. Res., 112, D04108,
doi:10.1029/2006JD007410.

Wang, W. G., K. J. Davis, B. D. Cook, C. X. Yi, M. P. Butler, D. M.
Ricciuto, and P. S. Bakwin (2007b), Estimating daytime CO2 fluxes over
a mixed forest from tall tower mixing ratio measurements, J. Geophys.
Res., 112, D10308, doi:10.1029/2006JD007770.

Wofsy, S. C., and R. C. Harriss (2002), The North American Carbon Pro-
gram (NACP), Report of the NACP Committee of the U.S. Interagency
Carbon Cycle Science Program, 56 pp., U.S. Global Change Res. Pro-
gram, Washington, D.C.

Wofsy, S. C., M. L. Goulden, J. W. Munger, S.-M. Fan, P. S. Bakwin, B. C.
Daube, S. L. Bassow, and F. A. Bazzaz (1993), Net exchange of CO2 in a
midlatitude forest, Science, 260, 1314–1317.

Xiao, X., S. Boles, J. Y. Liu, D. F. Zhuang, and M. L. Liu (2002), Char-
acterization of forest types in Northeastern China, using multi-temporal
SPOT-4 VEGETATION sensor data, Remote Sens. Environ., 82, 335–
348.

Xiao, X., D. Hollinger, J. Aber, M. Goltz, E. A. Davidson, Q. Zhang, and
B. Moore III (2004a), Satellite-based modeling of gross primary produc-
tion in an evergreen needleleaf forest, Remote Sens. Environ., 89, 519–
534.

Xiao, X., Q. Zhang, B. Braswell, S. Urbanski, S. Boles, S. C. Wofsy,
B. Moore III, and D. Ojima (2004b), Modeling gross primary production
of temperate deciduous broadleaf forest using satellite images and climate
data, Remote Sens. Environ., 91, 256–270.

Xiao, X., Q. Zhang, S. Saleska, L. Hutyra, P. D. Camargo, S. C. Wofsy,
S. Frolking, S. Boles, M. Keller, and B. Moore III (2005), Satellite-based
modeling of gross primary production in a seasonally moist tropical ever-
green forest, Remote Sens. Environ., 94, 105–122.

Xu, L., and D. D. Baldocchi (2003), Seasonal trends in photosynthetic
parameters and stomatal conductance of blue oak (Quercus douglasii)
under prolonged summer drought and high temperature, Tree Physiol.,
23(13), 865–877.

Xu, L., and D. D. Baldocchi (2004), Seasonal variation in carbon dioxide
exchange over a Mediterranean annual grassland in California, Agric.
For. Meteorol., 123, 79–96.

Yi, C., et al. (2004), A nonparametric method for separating photosynthesis
and respiration components in CO2 flux measurements, Geophys. Res.
Lett., 31, L17107, doi:10.1029/2004GL020490.

�������������������������
V. Y. Chow, A. L. Dunn, E. W. Gottlieb, P. Mahadevan, J. W. Munger,

and S. C. Wofsy, Department of Earth and Planetary Science and Division
of Applied Science and Engineering, Harvard University, Cambridge, MA
02138, USA. (swofsy@deas.harvard.edu)
C. Gerbig, Max-Planck-Institut für Biogeochemie, Hans-Knoell-Straße

10, D-07745, Jena, Germany.
J. C. Lin, Department of Earth and Environmental Sciences, University of

Waterloo, 200 University Avenue West, Waterloo, ON, N2L 3G1, Canada.
D. M. Matross, Department of Environmental Science, Policy, and

Management, University of California, Berkeley, Berkeley, CA 94720,
USA. (dmatross@nature.berkeley.edu)
X. Xiao, Complex Systems Research Center, Institute for the Study of

Earth, Oceans and Space, Morse Hall, 39 College Road, University of New
Hampshire, Durham, NH 03824, USA.

GB2005 MAHADEVAN ET AL.: NET ECOSYSTEM EXCHANGE MODEL

17 of 17

GB2005


