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Highlights 25 

 We used comprehensive satellite-based, meteorological and geographical data to develop 26 

a satellite-based model for estimating the PM2.5 concentration. 27 

 Representative animations are created to visualize the spatiotemporal variation of the 28 

predictors. 29 

 We applied the adaptive neuro-fuzzy inference system (ANFIS) for the first time as a 30 

core model to estimate the spatiotemporal variation of PM2.5 concentration. 31 

 We compared ANFIS with support vectors machine and back-propagation artificial 32 

neural network.  33 

 Adaptive model identification technique has been used to identify the optimal predictive 34 

model. 35 

 36 
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 38 

 39 

 40 
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 42 
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Abstract  44 

We applied three soft computing methods including adaptive neuro-fuzzy inference system 45 

(ANFIS), support vectors machine (SVM) and back-propagation artificial neural network 46 

(BPANN) algorithms for estimating the ground-level PM2.5 concentration. These models were 47 

trained by comprehensive satellite-based, meteorological, and geographical data. A 10-fold 48 

cross-validation (CV) technique was used to identify the optimal predictive model. Results 49 

showed that ANFIS was the best-performing model for predicting the variations in PM2.5 50 

concentration. Our findings demonstrated that the CV-R2 of the ANFIS (0.81) is greater than that 51 

of the SVM (0.67) and BPANN (0.54) model. The results suggested that soft computing methods 52 

like ANFIS, in combination with spatiotemporal data from satellites, meteorological data and 53 

geographical information improve the estimate of PM2.5 concentration in sparsely populated 54 

areas. 55 

 56 

 57 
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Data availability  63 

 64 

The type and source of the data set considered in this study. 65 

Name of the 

data set 

Data source (Developer) 

(All websites accessed on Jan 2016) 

Data format 
Software 

required 

Data 

availability 

OMI Near-

UV AOD 

Aura OMI AOD product via NASA 

Giovanni interface 

http://giovanni.sci.gsfc.nasa.gov/giov

anni/?instance_id=omil2g 

HDF / NetCDF 

files 
ArcGIS 

Freely 

available 

Major road 

PSMA Australia Transport and 

Topography product 

https://www.psma.com.au/products/tr

ansport-topography 

 

ESRI shape files " " 

Price 

depends on 

the area of 

interest 

Minor road 
" " " " " " " " 

Industrial 

point source 

PM2.5 

emissions 

Australia National Pollutant 

Inventory 

http://www.npi.gov.au/reporting/indu

stry-reporting-materials 

xml files 
Microsoft 

Excel / R 

Freely 

available 

Australia 

population 

density 

Australian Bureau of Statistics 

http://www.abs.gov.au/ausstats/abs@

.nsf/mf/1270.0.55.007 

PNG 

ESRI Grid 

GeoTIFF 

ArcGIS " " 

Australia 

land use 

classification 

Australian Bureau of Statistics 

http://www.abs.gov.au/websitedbs/ce

nsushome.nsf/home/meshblockcounts 

Excel spreadsheets / 

CSV files 

Microsoft 

Excel / R / 

ArcGIS 

" " 

Elevation 

U.S. Geological Survey 

https://www.usgs.gov/products/maps/

topo-maps 

PNG 

GeoTIFF 
ArcGIS " " 

Normalized 

difference 

vegetation 

index 

Terrestrial Ecosystem Research 

Network 

http://www.auscover.org.au/node/9 

NetCDF files  " " " " 

Temperature  

Rainfall  

Humidity  

Solar exposure 

Australian Bureau of Meteorology 

http://www.bom.gov.au/climate/maps

/#tabs=Maps 

ESRI Grid 

GIF 

 

" " " " 

 66 
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Software availability  67 

The following software has been used in this study for statistical analysis, spatial data processing 68 

and map creation: 69 

 R v.3.2.3 (R Foundation for Statistical Computing, Vienna, Austria)  70 

 MATLAB R2014b (MathWorks Inc., Natick, USA)  71 

 ArcGIS version 10.2 (ESRI Inc., Redlands, USA)  72 

Note: No specific software component has been developed for this study. 73 

 74 

 75 

 76 

 77 
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 79 

 80 

 81 
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1. Introduction 83 

Exposure to fine particulate matter (PM2.5, particles with aerodynamic diameter less than 2.5 84 

μm) is a leading environmental risk factor associated with respiratory and cardiovascular 85 

morbidity and mortality (Franklin et al., 2007) and it is the twelfth-ranked contributor to the 86 

global burden of diseases (Forouzanfar et al., 2015).  87 

Urbanisation increases the risk of being exposed to PM2.5 (Han et al., 2015), and Australia, as 88 

one of the most urbanised countries in the world , is faced with adverse health effects of PM2.5. 89 

To date, very little attention has been paid to the health effect of exposure to PM2.5 in Australia. 90 

Some studies consistently suggest that PM2.5 is associated with respiratory diseases and has 91 

significant effects on mortality (Barnett et al., 2005; Simpson et al., 2005), while conflicting 92 

results have been reported on cardiovascular health effects (Hinwood et al., 2006). These 93 

inconsistent results could be due to difficulties in assessing the Australian population exposure to 94 

PM2.5. 95 

Ground level aerosol measurement has been historically provided by ground monitoring 96 

networks, but there are high establishing and maintaining expenses associated with these 97 

measurements (Wu et al., 2012). The sparse ground PM2.5 measurement network in Australia 98 

makes it difficult to evaluate the spatiotemporal variability of PM2.5 and has significantly 99 

restrained the epidemiological studies on PM2.5 health effects. Australia is the sixth largest 100 

country in the world by area while its population is quite small compared to the land size 101 

(Australian Government, 2015). Australia is one of the 10 least dense populated countries in the 102 

world (United Nations, 2015). The majority of the Australian population is living in the east and 103 

west coasts (Lunn et al., 2002). The population within these areas is concentrated in urban 104 

centres, particularly the capital cities (Australian Bureau of Statistics, 2012; Lunn et al., 2002). 105 
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Therefore, limited monitoring stations were established only in populated areas due to population 106 

distribution in Australia. Had such monitoring networks existed, there would have been no 107 

guarantee of an effective measurement of the spatiotemporal variation of PM2.5, since it is 108 

changing on scales much smaller than monitoring networks density.  109 

Estimates of air pollution exposure have been traditionally provided by assigning 110 

measurements derived from one (Chen et al., 2006) or several air pollution monitors (Barnett et 111 

al., 2005; Brook et al., 2010; Chan et al., 2006), allocating exposure using the nearest monitoring 112 

station (Lee et al., 2014) or using different proxies to estimate a local population’s exposure 113 

(Hoffmann et al., 2007; Salam et al., 2008; Samet, 2007). There is potential for over-smoothing 114 

the exposure estimation and the results are likely to be biased with all these approaches (Jerrett et 115 

al., 2005a).  116 

Satellite imagery is another important tool rapidly gaining interest in air pollution monitoring 117 

as it provides sequential observations over a broad area. Satellite sensors can be coupled with 118 

ground-based sensors at different spatiotemporal scales to reduce the limitations of surface 119 

monitoring station (Reis et al., 2015). Aerosol Optical Depth (AOD) is the most common 120 

parameter derived from satellite observations and applied to estimate PM2.5. AOD describes the 121 

level of which aerosols attenuate the electromagnetic radiation at a given wavelength by 122 

absorption or scattering in an atmospheric column (Chudnovsky et al., 2012; Kaufman et al., 123 

2002; NASA, 2013). The	 availability	 of	 satellite-derived AOD has	 helped	 to	 overcome the 124 

problems associated with sparse monitoring networks by providing observations where 125 

previously there were none (Hoff and Christopher, 2009; Reis et al., 2015).	126 

A variety of methods have been used to investigate the quantitative relationship between 127 

satellite-derived AOD and ground-level PM2.5 measurements. These studies mainly fall into two 128 
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major classes: numerical-based methods and empirical observation-based methods (Lin et al., 129 

2014). 130 

Numerical-based models, including dispersion and chemical transport models, are still under 131 

development due to the uncertainties regarding the definition of source inventories, and chemical 132 

and dynamical processes of aerosols in atmosphere (Gupta and Christopher, 2009b; Kondragunta 133 

et al., 2008). Empirical observation-based methods rely on the relationship between air quality 134 

measurements and different observations (Maciejewska et al., 2015). Several techniques have 135 

been used to describe this relationship including simple regression (Chu et al., 2003), multiple 136 

regression (Dirgawati et al., 2015; Gupta and Christopher, 2009b; Li et al., 2011), geostatistical 137 

methods (Jerrett et al., 2005b; Kunzli et al., 2005), generalized additive models (GAM) (Strawa 138 

et al., 2013), land use regression (Henderson et al., 2007; Kloog et al., 2011; Knibbs et al., 2014; 139 

Liu et al., 2009), and hybrid approaches (Beckerman et al., 2013b; Lindstrom et al., 2011). Soft 140 

computing refers to computational techniques which are able to achieve optimal solutions for 141 

analysing complicated phenomena at reasonable costs (Carnevale et al., 2016; Kruse et al., 2013; 142 

Ovaska, 2004). In recent years, soft computing techniques such as support vector machine 143 

(SVM) (Moazami et al., 2016; Reid et al., 2015; Yeganeh et al., 2012), Bayesian models (Corani 144 

and Scanagatta, 2016; McBride et al., 2007),  k-nearest neighbours (kNN) (Reid et al., 2015), and 145 

artificial neural network (ANN) (Al-Alawi et al., 2008; Gupta and Christopher, 2009a; Ordieres 146 

et al., 2005; Wu et al., 2012) have been gaining popularity in air quality modelling because of 147 

their high flexibility and well documented prediction abilities. However, other soft  comuting 148 

methodes like adaptive neuro-fuzzy inference system (ANFIS), which is accepted as an efficient 149 

and robust method for multivariate analysis, have not been used for modelling the spatiotemporal 150 

variations of PM2.5 concentrations. 151 
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Although most of the aforementioned methods can be applied to determine the relationship 152 

among AOD and PM2.5, imposing a specific method could make it difficult to select the best 153 

predictive model. Hence, adaptive model identification approach is used to choose the most 154 

efficient model by using cross-validation technique rather than fitting a specific model to the 155 

dataset (Reid et al., 2015; Syed, 2011). 156 

Few studies have investigated the relationship between PM2.5 and satellite-based AOD in 157 

Australia (Gupta et al., 2007; Gupta et al., 2006; Meyer et al., 2008). While other studies have 158 

recommended the meteorological and geographical factors incorporation to the AOD–PM2.5 159 

relationship to improve models' performance (Chudnovsky et al., 2014; Liu et al., 2009), there is 160 

a clear need to conduct an Australian study to develop a satellite-based model investigating 161 

significant geographical and meteorological factors including humidity, planetary boundary 162 

layer, and wind speed and direction.  163 

In this study, we aimed to improve the estimate of PM2.5 concentration by using remotely-164 

sensed AOD in conjunction with comprehensive meteorological and geographical data.  Three 165 

different soft computing algorithms were applied to estimate the monthly average exposure to 166 

PM2.5 in the South-east Queensland (SEQ) region of Australia, from 2006 to 2011. In turn, an 167 

adaptive model identification approach was used to choose the optimal model from ANFIS and 168 

other soft computing methods: SVM and BPANN, by using 10-fold cross-validation (Pandey et 169 

al., 2013; Syed, 2011). We ultimately used the model with the best predictive ability to estimate 170 

spatiotemporal variation of PM2.5 in this sparsely populated area with dense vegetation cover.   171 

2. Materials and Methods 172 

2.1. Study location and ground-level PM2.5 measurements 173 
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SEQ is a region in the state of Queensland, Australia, which covers 22,420 km2 and is home to 174 

3.05 million people out of the state's population of 4.58 million based on the 2011 Australian 175 

census (Australian Bureau of Statistics., 2012). The study area consists of Brisbane, the state's 176 

capital city, as well as other urban and rural centres including Ipswich, Logan City, Gold Coast, 177 

Sunshine Coast, and the Lockyer Valley. Motor vehicle emissions and industrial boilers are 178 

identified as major sources of PM2.5 in SEQ (Queensland Government., 2014). The Queensland 179 

government and other agencies are responsible for regulatory aerosol monitoring in SEQ. We 180 

obtained quality-assured 24	h	ground-level PM2.5 measurements from January 2006 to December 181 

2011. During the study period, PM2.5 was measured at 8 monitoring sites across SEQ 182 

(supplement, page S3). We used monthly averages of the daily measured PM2.5, and the 183 

inclusion criteria for a given month was that less than 5% of the daily measurements were 184 

missing.  185 

 186 

2.2. Land use data 187 

We obtained data on anthropogenic and natural land use variables as spatial predictors that 188 

were possible predictors of measured PM2.5 concentrations. The selected land use variables, 189 

summarised in Table 1, were examined to discover which ones improved the prediction of PM2.5 190 

(Knibbs et al., 2014). They included proxies for emissions from traffic, point sources and 191 

changing land cover conditions. 192 

The impacts of vegetation cover and its phenological state on the relationship between the 193 

PM2.5 and satellite AOD were also examined in the present study. Normalized difference 194 

vegetation index (NDVI) is used to provide a measure of greenness and vegetation cover. NDVI 195 
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was found to be an effective predictor for pollutant concentrations in previous studies 196 

(Chudnovsky et al., 2014; Dirgawati et al., 2015; Su et al., 2009). The monthly mean NDVI data 197 

were derived from an Advanced Very High Resolution Radiometer (AVHRR) sensor carried on 198 

the National Oceanic and Atmospheric Administration (NOAA) satellite and processed by the 199 

Australian Bureau of Meteorology (BoM) at a spatial resolution of 1 km (Bureau of 200 

Meteorology, 2015).   201 

2.3. Satellite data 202 

Daily global gridded observations of AOD at a resolution of 0.25 degrees latitude and 203 

longitude are derived from the Ozone Monitoring Instrument (OMI) aboard the Aura satellite 204 

(Levelt et al., 2006). Aura crosses the equator in a sun-synchronous polar orbit for the daylight 205 

ascending orbit (Torres et al., 2007), and it passes over SEQ at approximately 14:00 local time. 206 

We download the monthly average OMI AOD level 2 Near-UV AOD and single Scattering 207 

Albedo product (OMAERUVG.003 at 342.5 nm) from NASA Giovanni interface for each month 208 

from 2006–2011.  209 

 210 

 211 

 212 

 213 

 214 

 215 

 216 

 217 

 218 
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Table 1. Independent variables included as potential predictors of PM2.5 219 

Variables (units) Spatial 

resolution 

Point  

or 

buffer 

Data source 

OMI Near-UV AOD 0.25 degrees 

Lat/Lon 

Point Aura OMI AOD product via NASA Giovanni interface 

Distance to coast (m) - Point ArcGIS geoprocessing tools 

Distance to port (m) - Point " " 

Distance to airport (m) - Point " " 

Distance to nearest major 

road 

- Point " " 

Distance to nearest minor 

road 

- Point " " 

Airport (present/not 

present) 

- Buffer " " 

Major road (m) - Buffer PSMA Australia Transport and Topography product 

Minor road (m) - Buffer " " 

Industrial point source 

PM2.5 emissions (kg/yr) 

- Buffer Australia National Pollutant Inventory 

Time (Julian month) - Point ArcGIS geoprocessing tools 

Population density 

(person/km2) 

1 × 1 km2  Point Australian Bureau of Statistics 

Land use by type (% 

area)b 

Mesh blockc Buffer Australian Bureau of Statistics 

 

Elevation (m) 30 m Point U.S. Geological Survey 

Normalized difference 

vegetation index 

1 × 1 km2 Point Terrestrial Ecosystem Research Network, Australian 

Bureau of Meteorology, AusCover project and  NASA 

NOAA satellite 

Mean daily maximum 

temperature (°C) 

5 × 5 km2 Point Australian Bureau of Meteorology 

Mean daily minimum 

temperature (°C) 

5 × 5 km2 Point " " 

Rainfall (mm) 5 × 5 km2 Point " " 

Humidity (hPa) 5 × 5 km2 Point " " 

Solar exposure (MJ/m2) 6 × 6 km2 Point " " 

Planetary boundary layer 

height (m) 

3 × 3 km2 Point Derived from Weather Research and Forecasting model 

U-component of wind 

speed (m/s) 

3 × 3 km2 Point " " 

V-component of wind 

speed (m/s) 

3 × 3 km2 Point " " 

Wind speed (m/s) 3 × 3 km2 Point " " 

Wind direction (Degrees) 3 × 3 km2 Point " " 
a 22 Circular buffers were generated with radii of 50 m, 100 m, 200 m, 300 m, 400 m, 500 m, 600 m, 700 m, 800 m, 900 m, 1000 m, 1200 m, 220 

1500 m, 1800 m, 2000 m, 2500 m, 3000 m, 3500 m, 4000 m, 5000 m, 7500 m, and 10,000 m (Novotny et al., 2011). 221 

b Four different land use classes were investigated including industrial, commercial, residential, and open space (which contains the 222 
agricultural land, parks, and water bodies (Rose et al., 2010)). 223 

c Mesh Block is the smallest geographic unit defined by the Australian Statistical Geography Standard for which the Census data is available 224 
(Australian Bureau of Statistics, 2011), and can be variable in size. 225 

 226 

 227 
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2.4. Meteorological Data 228 

We obtained surface meteorological parameters including mean maximum and minimum 229 

temperature, rainfall, and humidity from high-quality spatial climate data-sets developed by 230 

BoM which provides gridded climatological maps for each  month of the year (Jones et al., 231 

2009). In addition, monthly solar exposure maps are also obtained from BoM during the study 232 

period.  233 

Planetary boundary layer height (PBLH), wind direction (WD) and wind speed (WS) can play 234 

a critical role in the transport and dilution of PM2.5 (Harrison et al., 1997); hence, special 235 

attention was paid to these parameters in this study. The Weather Research and Forecasting 236 

model (WRF) was used to calculate these parameters as at 2:00 pm local time at a spatial 237 

resolution of 3 km to match the over-pass time of the Aura satellite. Details on the WRF 238 

configuration are provided in the supplement (page S3-S7). 239 

2.5. Modelling approach 240 

Following similar studies (Knibbs et al., 2014; Novotny et al., 2011), 22 circular buffers were 241 

created around each monitoring site to obtain local and more remote sources of PM2.5 (Table 1). 242 

Certain variables were calculated within a buffer (e.g., land use type, road length) while others 243 

were extracted at each monitoring site (e.g., wind speed, humidity, temperature). In total, 194 244 

independent variables were obtained including 18 point variables and 176 buffer variables (8 245 

variables calculated at 22 buffers each). 246 

2.6. Statistical analysis 247 
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In this study, there were 194 predictor variables to choose from, hence choosing the optimum 248 

subset was a complicated process and needed to be carefully conducted. In many soft computing 249 

and data mining tasks, there can be some irrelevant variables which may affect the derived 250 

statistical relationship between the dependent variable and the other relevant predictors. A 251 

common solution to overcome this problem is to use a variable selection process which can help 252 

to select a subset of the most relevant and representative predictors from input predictors. The 253 

Least Absolute Shrinkage and Selection Operator (Lasso) is a well-known method which is 254 

widely used to suppress or shrink variables to select the most relevant predictor variable set. 255 

Lasso-type variable selection method was used in this study since it was successfully adopted in 256 

many applications (Hu et al., 2015; Li and Shao, 2015; Tibshirani, 2011).  257 

Following Beelen et al. (2013), we only included potential predictor variables with less than 258 

10% null values and centred and standardised some independent variables to improve model 259 

convergence and make the parameter estimates more interpretable. Subsequently, all remaining 260 

predictor variables were evaluated, and variables with p-value greater than 0.10 or variance 261 

inflation factor (VIF) greater than 6 were removed in order to avoid multicollinearity (see Table 262 

S2). As suggested by other studies (Beelen et al., 2013; Henderson et al., 2007; Novotny et al., 263 

2011; Vienneau et al., 2013), if two buffer sizes of a particular variable were found to be 264 

collinear, donut ring buffers (so called concentric adjacent rings) were replaced with original 265 

circular buffers and the analysis was redone. Ring buffers (i.e., annulus) were calculated by 266 

differencing the circular buffers. 267 

In this study, we employed the soft computing techniques ANFIS, BPANN and SVM. The soft 268 

computing techniques employed here are explained in the supplement, page S8-S17. The input 269 

variables were composed of different types of data, including land use, meteorological, and 270 
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satellite data. We matched the selected variables with the PM2.5 measurements at 8 monitoring 271 

sites during the study period (72 months) which resulted in more than 550 observation sets in 272 

total.  These observations were divided into training, validation, and test subsets. The majority of 273 

the observations (70%) were used for training the models. In order to avoid over-training, 15% 274 

of the observations were used for validation and checking the model’s generalisation (Wu et al., 275 

2012). Finally, the remaining 15% of the observations were employed as the test subset to 276 

estimate the PM2.5 concentration by the models. 277 

In this study, 10-fold cross validation (CV) method was applied to evaluate the performance of 278 

the BPANN, ANFIS, and SVM models and identify the optimal model for estimating the PM2.5 279 

concentration. This method has the ability to examine the model’s predictive ability (Beckerman 280 

et al., 2013a). This examination was accomplished by randomly splitting the data into 10 equal-281 

sized folds. Subsequently, one of the folds was used to test the model and the remaining 9 folds 282 

were used to train the model (Kim, 2009; Refaeilzadeh et al., 2009). This process was repeated 283 

10 times for each candidate model while all folds were used as the test subset and the 10 results 284 

were averaged to obtain the overall CV-R2 and CV-RMSE. The best predictive model was 285 

selected from those with the smallest CV-RMSE and highest CV-R2 (Dirgawati et al., 2015). 286 

Bland-Altman plot was also used to examine the agreement between the observations and 287 

predictions. In this plot, X axis shows the average of the model predictions and observations, and 288 

Y axis represents the difference between these values. Bland-Altman plot also provides statistical 289 

limits by calculating the average and mean and the standard deviation (sd) of the differences 290 

between observations and predictions (Giavarina, 2015). These limits were used to evaluate the 291 

agreement between observations and model predictions. For more explicit information on Bland-292 
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Altman plot see Giavarina (2015). Figure 1 illustrates the overall research process used in this 293 

study. 294 

 295 

Figure 1. General research process for estimating PM2.5 concentration. 296 

We used R v.3.2.3 (R Foundation for Statistical Computing, Vienna, Austria) and MATLAB 297 

R2014b (MathWorks Inc., Natick, USA) for all statistical and soft computing analyses and 298 

ArcGIS version 10.2 (ESRI Inc., Redlands, USA) for spatial data processing and map creation. 299 

3. Results 300 

3.1. Modeling results and evaluation 301 

In this study, a wide range of ground-based PM2.5 measurements, land use, meteorological, and 302 

remotely-sensed AOD data were employed to estimate the PM2.5 concentration using soft 303 

computing techniques. In following section, the agreement between predicted and observed 304 

PM2.5 concentration is evaluated. 10-fold cross validation is also used to compare the potential of 305 

different algorithms for estimating PM2.5 concentration. 306 

The variable selection results showed that 16 variables were the most effective predictors of 307 

PM2.5 concentration. The variables most correlated with the outcome were firstly humidity, 308 

followed by maximum temperature, AOD and then the length of the major roads. The results of 309 

the variable selection process are provided in the supplement (Table S2). 310 

Using the testing dataset for each of the developed models, PM2.5 concentrations were then 311 

predicted. A summary of the observed and predicted PM2.5 concentrations is presented in Fig. 2. 312 
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The mean observed PM2.5 concentration for the testing dataset is 6.77 µg/m3. All three models 313 

approached this value within a numerical range of -0.02 to +0.38 µg/m3. The non-parametric 314 

Wilcoxon test was performed to check if there was any significant difference between the 315 

predicted and observed mean PM2.5 concentrations of each model. The test on all models yielded 316 

p-values greater than 0.01, showing an insignificant difference between the predicted and 317 

observed PM2.5 concentration at 1% significant level. A comparison of the predicted values 318 

demonstrated that the ANFIS model predicted values were slightly closer to the full range of the 319 

observed monitoring data than the SVM and BPANN models. In general, Fig. 2 shows that all 320 

models reliably calculated the average and range of PM2.5 concentration; therefore, predicted-321 

observed plots are used to evaluate the predictive abilities of the models (Fig. 3). 322 

 323 

 324 

Figure 2. Summary of PM2.5 model predictions on the testing dataset.  325 

We compared the observed PM2.5 concentrations to the predicted values of the ANFIS, SVM, 326 

and BPANN models. The ANFIS’s predicted-observed plot indicates that the values are more 327 

equally scattered across the line of agreement at the low and high PM2.5 concentrations whereas 328 
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the SVM model under-predicts and over-predicts these values, respectively. In addition, the 329 

predicted-observed plot shows relatively weak correlation between the BPANN’s predictions and 330 

actual observations.  331 

 332 

Figure 3. Scatter plots of observed vs. predicted PM2.5 for the optimal model fitting on the testing 333 

dataset using ANFIS, SVM, and BPANN, respectively. Blue line indicates the line of agreement 334 

(y = x). 335 

Table 2 compares the R2 and RMSE for model fitting and cross validation. For the model fit 336 

the R2 values are 0.61, 0.73, and 0.84 for the BPANN, SVM and ANFIS models, respectively. 337 

The RMSE values are 1.57 μg/m3, 1.36 μg/m3, and 0.94 μg/m3 for the BPANN, SVM, and 338 

ANFIS models, respectively. Comparing the model fittings and cross validation, CV-R2 339 

decreases by just 0.03 and CV-RMSE increases by 0.85 μg/m3 for the ANFIS model indicating 340 

negligible model overfit. The CV-R2 of the SVM and BPANN decreased by 0.06 and 0.07, 341 

respectively indicating both models overfit more than ANFIS. 342 

 343 

 344 

 345 

 346 
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Table 2. R-squared and RMSE for model fittings vs. cross validation 347 

 R2 RMSE 

(μg/m3) 

CV-

R2 

CV-RMSE 

(μg/m3) 

ANFIS 0.84 0.94 0.81 1.79 

SVM 0.73 1.36 0.67 2.02 

BPANN 0.61 1.57 0.54 2.11 

 348 

Our findings demonstrated that the CV-R2 of the ANFIS (0.81) was higher than that of the 349 

SVM (0.67) and BPANN (0.54) model. Also, the CV-RMSE of the ANFIS model (1.79 μg/m3) 350 

was lower than that of the SVM (2.02 μg/m3) and BPANN (2.11 μg/m3) model. Compared to 351 

SVM and BPANN models, the ANFIS model had higher accuracy without causing more overfit. 352 

Bland-Altman analysis was used to evaluate the agreement between the observation and 353 

predictions of ANFIS and SVM since both models showed promising performance in the testing 354 

stage (Figure 4). The Bland-Altman plots demonstrated low bias in both models; however, the 355 

ANFIS model had slightly tighter agreement than the SVM with fewer large residuals.  356 

 357 

Figure 4. Bland-Altman plots of predicted and observed PM2.5 concentrations (µg/m3) 358 

 359 
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(a) (b)

 

3.2. Application of the model 360 

The predicted values of PM2.5 concentration in September 2011, selected from the 6-year study 361 

period, using ANFIS model for the study area 1 km grid is presented in Figure 5a.  362 

 363 

Figure 5. a) Monthly average PM2.5 concentration in September 2011 predicted by ANFIS model 364 

b) land use map of SEQ 365 

Figure 5b illustrates land use map of SEQ. Concentrations ranged from less than 2 to 19 μg/m3. 366 

Areas with higher concentrations (7 to 19 μg/m3) corresponded to cities and major towns. Higher 367 

concentrations were predicted in locations with extensive adjacent industrial areas and major 368 

roads. This pattern was observed in all 6 cities of the study area. The highest levels were 369 
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predicted for the three largest cities: Brisbane (with 1.977 million people), Gold Coast (494,500) 370 

and Logan (287,474).  371 

4. Discussion 372 

We employed soft computing techniques to improve concentration estimates for PM2.5 using 373 

satellite, meteorological and land use predictor variables in South-east Queensland, Australia. 374 

The ANFIS model utilized in this work was the first attempt to apply it for spatiotemporal 375 

modelling of PM2.5. Using cross validation technique, the ANFIS model was found to have the 376 

best performance compared to SVM and BPANN models, and better agreement with the 377 

observed data. The results provide estimates of monthly PM2.5 concentrations for SEQ from 2006 378 

to 2011. 379 

ANFIS is a hybrid system that combines the strengths of fuzzy logic and artificial neural 380 

network (Jang, 1993; Lin and Lee, 1991), which provides a robust and accurate method for 381 

predicting PM2.5 concentration over the range of observations used in this study.  382 

In this research, WRF used to calculate PBLH, and WS. Both parameters were highly 383 

associated with PM2.5 concentration across ANFIS runs. In addition, daily maximum temperature 384 

had higher importance compared to the daily minimum temperature. This might be because daily 385 

maximum temperature is temporally coincident with the Aura satellite overpass time for the 386 

study area.  387 

Prior studies mostly considered land use parameters mainly focused on roadways and 388 

population-related data. We also evaluated industrial point source emissions, port and airport 389 

locations as potential land use predictors. Land use parameters used in our study, may not be 390 
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important predictors for short term events (e.g. bush fire episode) but our findings revealed that 391 

they are of the strong predictors for PM2.5 estimation in a long term period. 392 

Data sets with different spatial resolutions have been used in our study. The resolution of NDVI 393 

and WRF outputs for example are finer than the OMI sensor data. Individually, OMI AOD data 394 

are not spatially fine enough for estimating the PM2.5 exposure in epidemiological studies. 395 

However, method of combining different buffer sizes of land use parameters with meteorological 396 

and satellite-based data enabled the model to integrate fine and more spatially coarse data sets to 397 

estimate PM2.5 concentration and provide more informative results for epidemiological studies. 398 

Our results also corroborated with Reis et al. (2015) who suggested that the incorporation of ‘big 399 

data’ derived from different sources provides new opportunities for data-intensive models to 400 

improve the estimates of population exposures to air pollution. Another important finding was 401 

that the highest concentrations (10 to 20 μg/m3) were estimated in the Brisbane, Gold Coast and 402 

Logan City which have the highest population density in SEQ (Fig. 5); hence, the increased risk 403 

of population expose to higher concentration of PM2.5. Although the average PM2.5 concentration 404 

was below the WHO guideline (25 μg/m3), epidemiological studies have demonstrated that PM2.5 405 

exposure to even lower concentrations is associated with high health risks (Burnett et al., 2014). 406 

Based on the shape of the PM2.5 exposure-response curves derived by Burnett et al. and used in 407 

the Global Burden of Disease studies (Burnett et al., 2014), characterizing with a steep slope for 408 

concentrations ranging from 10 to 20 μg/m3, exposure to PM2.5 concentration between 10 to 20 409 

μg/m3 highly increases the relative risk of stroke and chronic obstructive pulmonary disease; 410 

therefore, even PM2.5 concentration below the WHO guideline could not be considered safe. 411 

Different methodologies make it difficult to compare our results to other studies, however we 412 

have attempted to compare our results with two studies which have demonstrated the ability of 413 
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remotely sensed AOD and meteorological data to predict PM2.5 concentration (Gupta and 414 

Christopher, 2009a; Wu et al., 2012). Both studies used BPANN method to estimate the 415 

spatiotemporal variation of PM2.5, and reported R2 lower than 0.61. Our model exhibited better 416 

correlations than these models, which could be due to either: (1) the comprehensive input 417 

variables used or (2) the more robust modeling algorithms used. We also compared our 418 

methodology with a study of the global burden of disease 2013 conducted by Brauer et. al. 419 

(2016) which combined ground measurements, chemical transport model outputs, and satellite-420 

based data to provide global estimates of PM2.5 concentration. Although, chemical transport 421 

model simulations were unavailable for our study area, our model was still able to capture 81% 422 

of PM2.5 variations. 423 

Previous research demonstrated that PBLH and WS significantly affect the PM2.5-AOD 424 

relationship. Our results support these findings, but also demonstrate that incorporating other 425 

spatial and spatiotemporal data as well as road density, land use types, NDVI, and industrial 426 

point sources improves the model’s performance.  427 

5. Conclusions 428 

Three different soft computing methods were applied to develop a satellite-based model for 429 

estimating the spatiotemporal variation of PM2.5. ANFIS performed very well compared to SVM 430 

and BPANN. It exhibited satisfactory performance with CV-R2, and CV-RMSE equals to 0.81, 431 

and 1.79 μg/m3, respectively. It provides estimates of monthly PM2.5 concentrations during 2006-432 

2011. The modelling approach used in this study is highly applicable to similar settings 433 

anywhere in the world assuming that researchers have access to data sets equivalent to these used 434 

in our study. WRF, and its underlying boundary condition data, is a community model available 435 
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to the world research fraternity. The NASA Giovanni data is available to anyone in the research 436 

community who can be registered with NASA as a data user. It is expected that researchers will 437 

have access to all other similar data sets or proxies in their own national research and 438 

information collection institutions, hence this method could be applied in other regions that 439 

experience PM2.5 exposure. We hope that our approach will be beneficial for epidemiological 440 

studies and other researches seeking spatially accurate estimates of PM2.5 with few monitoring 441 

stations. It is certainly feasible to develop a model with higher spatial resolution which is a 442 

direction of our future research. Further analysis such as global sensitivity and uncertainty 443 

analyses (GSUA) can also be done to assess input factor importance and interaction (Lüdtke et 444 

al., 2008; Saltelli et al., 2008). Recently developed Unified-Weather Research and Forecasting 445 

model (NU-WRF) can be employed to obtain more accurate estimates of meteorological 446 

parameters compared to WRF model (Peters-Lidard et al., 2015). Data management remains a 447 

major challenge for empirical modelling as it requires to store, process and analyse large data 448 

sets containing different types of data from multiple sources. Recently, new information models 449 

have been developed to facilitate the data management and validation in observation-based 450 

studies (Horsburgh et al., 2016; Shu et al., 2016). 451 
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