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Abstract: When primary resonance occurs, even a small external disturbance can abruptly excite
large amplitude vibration and deteriorate the working performance of a flexible manipulator. Most
active control methods are effective for non-resonant vibration but not for primary resonance. In
view of this, this paper puts forward a new nonlinear saturation-based control method to suppress
the primary resonance of a flexible manipulator considering complicated rigid-flexible coupling and
modal coupling. A vibration absorber with variable stiffness/damping is designed to establish an
energy exchange channel for saturation. A novel idea of modal coupling enhancement is suggested
to improve saturation performance by strengthening the coupling relationship between the mode
of the vibration absorber and the controlled mode of the flexible manipulator. Through stability
analysis on the primary resonance response of the flexible manipulator with the vibration absorber,
the saturation mechanism is successfully established and the effectiveness of the saturation control
algorithm is validated. On this basis, several important indexes are extracted and employed to
optimize saturation control. Finally, a series of virtual prototyping simulations and experiments are
conducted to verify the feasibility of the suggested saturation-based control method. This research
will contribute to the primary resonance suppression of a flexible manipulator under a complex
external excitation environment.

Keywords: flexible manipulator; primary resonance; saturation control

1. Introduction

With the rapid development of modern space technology, the flexible manipulator
plays an important role in space maintenance, machining, and assembly due to its ad-
vantages of low energy consumption and large load–weight ratio [1,2]. However, flexible
manipulators are prone to vibration due to the existence of structural flexibility. Therefore,
the vibration control problem has attracted extensive attention [3–5].

When performing some reciprocating work, such as spot welding, spray painting,
carrying, and assembly, the flexible manipulator may be subjected to periodic external
excitation. If the excitation frequency is close to the natural frequency of the flexible manip-
ulator, primary resonance will occur [6]. In this case, even a small external excitation can
abruptly excite large amplitude vibration and deteriorate working performance. Up to now,
various nonlinear characteristics and stability problems of the primary resonance have
been researched. Silva and Daqaq [7] analyzed the nonlinear vibration response of a sender
cantilever beam with constant thickness and linearly varying width when subjected to a
primary resonance excitation. Mokhtari and Jalili et al. [8] modeled a milling tool as a 3D
spinning cantilever Timoshenko beam and investigated the primary resonance and the bifur-
cation behavior during micro-milling operations. Gao and Hou et al. [9] discussed the effect
of the linear stiffness and the nonlinear stiffness of the inter-shaft bearing on the primary
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resonance and found the jump phenomenon and the resonance hysteresis phenomenon of
a dual-rotor system. Kumar and Pratiher [10] studied the primary resonance behavior of
the two-link flexible manipulator with a generic payload and constraint force through nu-
merical simulations. They found the jump phenomenon and the existence of multi-valued
solutions at pitchfork and saddle-node bifurcation points. Ding and Huang et al. [11] inves-
tigated the primary resonance of traveling viscoelastic beam under 3:1 internal resonance.
Lajimi and Heppler et al. [12] used the method of multiple scales and the shooting method
to study primary resonance of a beam-rigid body microgyroscope. Li and Yao et al. [13]
studied the effects of control gains on primary resonance properties of the beam. Bab and
Khadem et al. [14] investigated the primary resonances of a coupled flexible rotor with rigid
disk and flexible/rigid blades. Zhang and Chen et al. [15] analyzed the primary resonance
of coupled cantilevers subjected to magnetic interaction based on the distributed parameter
model. Li and Zhou et al. [16] studied the primary resonance with internal resonance of
a symmetric rectangular honeycomb sandwich panel with simply supported boundaries
along all four edges subjected to transverse excitations. Yektanezhad and Hosseini et al. [17]
investigated primary resonance of a flexible rotor levitated by active magnetic bearings
(AMBs). Gu and Zhang et al. [18] investigated the primary resonance of the functionally
graded graphene platelet (FGGP)-reinforced rotating pre-twisted composite blade under
combined external and multiple parametric excitations with three different distribution
patterns. Arena and Lacarbonara [19] implemented bifurcation analysis to investigate the
primary resonances induced by the harmonic axial excitation.

In order to deal with the vibration problems, many active control methods have been
put forward. However, most of them are effective for non-resonant vibration but not for
primary resonance. In recent years, the saturation phenomenon has attracted the attention
of many researchers. This phenomenon usually occurs in a quadratic nonlinear system
under the harmonic excitation if the ratio of two modal frequencies is 1:2 and the internal
resonance has been established between these two modes. When the excitation frequency is
close to the high-order modal frequency of the system, the higher-order modal response will
increase. When the saturation occurs, the higher modal response will no longer increase af-
ter it reaches a critical value, and the rest of vibration energy is transferred to the lower-order
mode. Nayfeh and Mook [20] first discovered the saturation phenomenon by analyzing the
coupling between the roll and pitch motion of ships. Haddow and Barr et al. [21] verified
the saturation phenomenon by the modal interaction experiment of an L-shaped beam
and suggested a saturation-based vibration absorber for controlling the primary resonance
of a flexible structure. Subsequently, Oueini and Nayfeh et al. [22] proposed an active
saturation-based method for controlling the primary resonance of a rigid and a flexible
beam, respectively, and designed an analog circuit to verify the feasibility of the suggested
method. Pai and Wen et al. [23] used PZT (lead zirconate titanate) patches as a controller
and sensor to study the nonlinear saturation control of a cantilever beam. Saguranrum
and Kunz et al. [24] numerically simulated the saturation control response and the full
mode coupling of the cantilever beam with a piezoelectric actuator. Shoeybi and Gho-
rashi [25] conducted a theoretical investigation of nonlinear vibrations of a 2-DOF system
when subjected to saturation. Li et al. [26] used the method of multiple scales to obtain
an approximate analytical solution and presented a control strategy based on nonlinear
saturation to suppress the free vibration of a self-excited plant. Zhao and Xu [27] applied
the delayed feedback control and saturation control to suppress or stabilize the vibration of
the primary system in a 2-DOF dynamical system with parametrically excited pendulum.
Eftekhari and Ziaei-Rad [28] investigated the performance of an oscillator consisting of
mass and spring at the tip of a symmetrical cantilever composite beam under chordwise
base excitation and detected saturation phenomenon in the force modulation response at
the one-to-one internal resonance. Febbo and Machado [29] studied nonlinear dynamic
vibration absorbers with a saturation. Chen and Zhang [30] investigated forced vibration
for two elastically connected cantilevers under harmonic base excitation, and the frequency
amplitude response curves revealed saturation phenomena. Zhang and Liu et al. [31] ana-
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lyzed the saturation and jump phenomena of a rotating pre-twisted laminated composite
blade subjected to a subsonic airflow excitation in the case of 1:2 internal resonance. Rocha
and Tusset et al. [32] used the piezoelectric material to harvest the energy of a portal frame
structure and found that the energy transfer efficiency can be enhanced by coupling the
PZT to the column in saturation phenomena. Bauomy and Taha [33] studied the nonlin-
ear vibrating behaviors of a nonlinear cantilever beam system (primary system) using a
nonlinear saturation absorber (the secondary system).

Although saturation-based research has been conducted, it still faces big challenges
when dealing with the primary resonance of a flexible manipulator. First, all the above
studies are focused on a flexible structure without rigid motion. For a flexible multi-body
mechanism undergoing a large overall motion, however, its dynamic model is completely
different from that of a flexible structure due to complex rigid–flexible motion coupling
and force transfer. To the authors’ knowledge, whether the saturation can be established
and utilized to suppress the primary resonance of a flexible mechanism has not been
researched. Second, most studies simplified the controlled main system as a linear vibration
system for the convenience of analysis. However, a real system is usually a nonlinear
system. Excessive neglect of nonlinear elements may lead to a mismatch with reality.
Third, the saturation depends on the coupling between the controlled main system and the
vibration absorber. However, this coupling relationship is artificially designated in most
studies for the convenience of analysis and is not derived from a rigorous kinematic and
dynamic relationship. Finally, most studies are based on numerical simulations of their
own theoretical models and have not been verified by third-party software or experiments.

In view of this, this paper aims to put forward a new nonlinear saturation-based
control method to suppress the primary resonance of the flexible manipulator undergoing
a large overall motion. The rest of the paper is organized as follows. In Section 2, a
controlled flexible manipulator is described. In Section 3, a new primary resonance control
scheme is designed and a saturation-based control model of the vibration absorber is put
forward. The dynamic equations of the flexible manipulator with the saturation-based
vibration absorber are derived in Section 4. Because the saturation depends on the internal
resonance, Section 5 investigates the establishment of the internal resonance. Section 6
reveals the saturation principle. Section 7 presents the method of absorber configuration
to optimize saturation control. On this basis, a series of virtual prototyping simulations
and experiments are conducted to verify the feasibility of the suggested saturation-based
control method in Sections 8 and 9. Section 10 explains the inaccurate correspondence of
theory, prototype simulation, and experiment results. Finally, Section 11 summarizes the
conclusions of this study.

2. Description of Flexible Manipulator

As shown in Figure 1, the flexible manipulator consists of a base, a rigid arm, and

a flexible arm. The expression O
→
e0

1

→
e0

2 is the inertial coordinate system fixed on the base;

O
→
e1

1

→
e1

2 and A
→
e2

1

→
e2

2 are the moving coordinate systems attached to the rigid and flexible arms,
respectively. The rigid arm OA is hinged to the driving joint O, whose angular displacement
is denoted by θ1(t), where t is time. The flexible arm AD is hinged to the driving joint A at
the end of the rigid arm, whose angular displacement is denoted by θ2(t).

Due to the large span-to-height ratio, the flexible arm is regarded as a uniform Euler–

Bernoulli beam. Only the transverse deformation of the flexible arm in A
→
e2

1

→
e2

2 is considered,

which is denoted by w(x, t), where x denotes the length measured along A
→
e2

1. Using the
assumed mode method [3], the deformation w(x, t) is discretized as

w(x, t) =
n

∑
i=1

φi(x)qi(t), (1)
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where n is the number of the flexural degrees of freedom, φi(x) is the ith order model shape,
and qi(t) is the ith mode coordinate.

Figure 1. Simplified model of flexible manipulator.

Because the fundamental mode usually plays a major role in the dynamic responses
of the flexible arm, only the fundamental mode is considered. Therefore, Equation (1) is
rewritten as

w(x, t) ≈ φ1(x)q1(t). (2)

When the flexible manipulator is subjected to the external excitation F = F0 cos (ωt + ϕ)
at the same frequency as its natural frequency, the primary resonance will occur. It may
excite large amplitude in a short time and thus deteriorate the working performance and
lead to system damage. Therefore, it is necessary to suppress the primary resonance. In
view of this, a saturation-based control method is put forward in this paper to suppress the
primary resonance of the flexible manipulator.

3. Control Model of Saturation-Based Vibration Absorber

Among various nonlinear interactions, saturation is a special energy exchange mecha-
nism of a multiple degrees-of-freedom nonlinear system. Its generation depends on the
establishment of the 1:2 internal resonance. When the saturation phenomenon occurs in a
nonlinear system excited at a frequency near its high-order modal frequency, the primary
resonance response of the high-order mode will be restricted to a small ceiling, and the
rest of the vibration energy will be transferred to the low-order mode with the help of an
energy exchange channel provided by the internal resonance.

Inspired by the working principle of the saturation, a new primary resonance control
scheme is put forward, as shown in Figure 2. A saturation-based vibration absorber is
designed and mounted at the flexible manipulator to suppress the primary resonance. For
the purpose of establishing an energy exchange channel for the saturation, 1:2 internal
resonance is constructed between the mode of the vibration absorber and the controlled
mode of the flexible manipulator. Moreover, a novel idea of modal coupling enhance-
ment is proposed to improve saturation control performance by strengthening coupling
relationship between the mode of the vibration absorber and the controlled mode of the
flexible manipulator.
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Figure 2. Primary resonance control scheme.

As shown in Figure 3, the suggested vibration absorber is mounted at point B of the

flexible manipulator, where B
→
e3

1

→
e3

2 is its moving coordinate system. The vibration absorber
is composed of a rigid rod, a mass block, and a servomotor. The rigid rod is installed on
the output shaft of the servomotor, whose angular displacement is denoted by β. The mass
block is fixed at the end of the rigid rod to provide additional inertia. The servomotor plays
an important role in the vibration absorber, whose control model is designed to establish
the saturation by constructing 1:2 internal resonance and enhancing modal coupling.

Figure 3. Control model of saturation vibration absorber.

To construct 1:2 internal resonance, the control torque signal τ3 of the servomotor is
designed as

τ3 = kp

(
βd − β

)
+ kd

(
.
β

d
−

.
β

)
, (3)
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where βd and
.
β

d
denote the desired angular displacement and the desired angular velocity

of the rigid rod, respectively; kp and kd denote the position feedback gain coefficient and
the speed feedback gain coefficient, respectively.

In order to work as a torsional vibration system, both βd and
.
β

d
are designated as zero.

Therefore, Equation (3) becomes

τ3 = −kpβ− kd
.
β. (4)

Through adjusting kp and kd, both the frequency and the damping of the vibration
absorber are controlled to satisfy the requirement for establishing the saturation under 1:2
internal resonance.

Furthermore, for enhancing the modal coupling relationship between the vibration
absorber and the flexible manipulator, a new nonlinear coupling term is constructed and
introduced into the control torque signal τ3, i.e.,

τ3 = −kpβ− kd
.
β + e1

..
q1β, (5)

where e1 denotes the coupling gain coefficient used to adjust coupling strength, and
..
q1

denotes the controlled modal coordinate acceleration of the flexible manipulator.

4. Dynamic Equations of Flexible Manipulator with Saturation-Based
Vibration Absorber

In this study, θ1(t) and θ2(t) are predefined and implemented by joint servomotors.
Therefore, the controlled mode coordinate q1 of the flexible manipulator and the angular
displacement β of the vibration absorber are considered as the generalized coordinates.
Using Kane’s method [3] and the Taylor expansion, the dynamic equations of the flexible
manipulator with the suggested saturation-based vibration absorber are derived:

..
q1 + 2ζ̂1ω1

.
q1 + ω2

1q1 =
( .

θ1 +
.
θ2

)2
q1 −Q1

( ..
θ1 +

..
θ2

)
−Q2

( .
θ1

2θ2 +
..
θ1

)
+

Q3

[
β
( ..

θ1 +
..
θ2

)
+
( .

θ1 +
.
θ2

)2
+

..
ββ +

.
β

2
+ 2

.
β
( .

θ1 +
.
θ2

)]
+ F∗0 cos (ωt + ϕ),

(6)

..
β + 2ζ̂2ω2

.
β + ω2

2 β = −
( ..

θ1 +
..
θ2

)
+ P1

[
β
( ..

θ1 +
.
θ1

2θ2

)
−

.
θ1

2 +
..
θ1θ2

]
+

P2

[
β

..
q1 − 2

.
q1

( .
θ1 +

.
θ2

)
− q1

( ..
θ1 +

..
θ2

)
− βq1

( .
θ1 +

.
θ2

)2
]
+

P3

[
β
( ..

θ1 +
..
θ2

)
−
( .

θ1 +
.
θ2

)2
]
+ e1

..
q1β/mCl2

3 ,

(7)

where ω2
1 = H22

L+mCφB1
2+mBφB1

2 ; ω2
2 =

kp

mC l2
3
; 2ζ̂1ω1 = f1

L+mCφB1
2+mBφB1

2 ; 2ζ̂2ω2 = kd
mC l2

3
;

Q1 = F+(mB+mC)φB1xB
L+mCφB1

2+mBφB1
2 ; Q2 = mBφB1l1+L0l1+mCφB1l1

L+mCφB1
2+mBφB1

2 ; Q3 = mCφB1l3
L+mCφB1

2+mBφB1
2 ;

F∗0 = F0φD1
L+mCφB1

2+mBφB1
2 ; P1 = l1

l3
; P2 = φB1

l3
; P3 = xB

l3
; H22 =

∫ l2
0 EI d4φ1

dx4 φ1dx; L0 =
∫ l2

0 ρφ1dx;

L =
∫ l2

0 ρφ2
1dx; F =

∫ l2
0 ρφ1xdx; f1 is the natural damping of the flexible arm; ω1, ω2 and ω

denote the frequencies of the flexible arm, the vibration absorber, and the external excita-
tion, respectively; l1, l2, and l3 denote the lengths of the rigid arm, flexible arm, and rigid
rod, respectively; mB and mC denote the masses of the joint B and mass block, respectively;
ρ is the mass per length of the flexible arm; xB denotes the distance between B and A in

the direction of
→
e2

1 in the A
→
e2

1

→
e2

2; φB1 and φD1 are obtained when point B and point D are
separately substituted into the controlled mode shape function φ1; and EI is the flexural
rigidity of the flexible arm.

Equation (6) describes the forced vibration of the flexible manipulator, indicated by the
controlled mode coordinate q1 and the external excitation F∗0 cos (ωt + ϕ). If the external
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excitation frequency ω falls into the neighborhood of the controlled modal frequency ω1
of the flexible manipulator, the primary resonance will occur and lead to a sharp increase
in amplitude of the flexible manipulator. Because there is nonlinear coupling between q1
and β, the vibration absorber can be used to suppress the primary resonance of the flexible
manipulator. However, it should be noted that there is nonlinear coupling between flexible
motion (indicated by q1) and rigid motion (indicated by θ1 and θ2). Therefore, in the case
of complex rigid–flexible motion coupling, whether the saturation can be established and
utilized to suppress the primary resonance should be investigated.

Equation (7) describes the torsional vibration of the vibration absorber, indicated by
the angular displacement β of the vibration absorber. In Equation (7), the frequency ω2 of
the vibration absorber can be adjusted by the position feedback gain coefficient kp. This
feature will be used to establish the internal resonance between the flexible manipulator
and the vibration absorber. Similarly, the damping ζ̂2 of the vibration absorber can be
adjusted by the speed feedback gain coefficient kd. This feature will be used to control
the primary resonance of the flexible manipulator. In addition, e1 will be used to adjust
coupling strength between the mode β of the vibration absorber and the controlled mode
q1 of the flexible manipulator for improving saturation control performance.

5. Internal Resonance Analysis

Because the saturation depends on the internal resonance, this section investigates
the establishment of the internal resonance. For convenience of internal resonance anal-
ysis, the dimensionless parameters and scaling factor 0 < ε << 1 are introduced into
Equations (6) and (7) (See Appendix A). After omitting the higher-order terms containing
ε2, Equations (6) and (7) become

..
q̂1 + 2εζ̂1ωS1

.
q̂1 + ω2

S1q̂1 = −N1

( ..
θ1 +

..
θ2

)
− N2

..
θ1+

N3ε

[
β
( ..

θ1 +
..
θ2

)
+
( .

θ1 +
.
θ2

)2
+

..
ββ +

.
β

2
+ 2

.
β
( .

θ1 +
.
θ2

)]
+

ε f ∗0
l1ω2

1
cos (ωS3τ + ϕ),

(8)

..
β + 2εζ2ωS2

.
β + ω2

S2β = −
( ..

θ1 +
..
θ2

)
+ S1ε

[
β

..
θ1 −

.
θ1

2 +
..
θ1θ2

]
+

S2ε
[

β
..
q̂1 − 2

.
q̂1

( .
θ1 +

.
θ2

)
− q̂1

( ..
θ1 +

..
θ2

)]
+ S3ε

[
β
( ..

θ1 +
..
θ2

)
−
( .

θ1 +
.
θ2

)2
]
+

εe1 l1
..
q̂1 β

mc l2
3

,
(9)

where (˙) and (¨) denote the first-order and second-order derivatives concerning the
dimensionless time τ.

To seek the first-order approximate solutions of Equations (8) and (9), applying method
of multiple scales [10] (see Appendix B) and separating the equations for each order of ε up
to one yield:

Order (ε0):
D2

0u0 + ω2
S1u0 = −N1

(
D2

0θ1 + D2
0θ2

)
− N2D2

0θ1, (10)

D2
0 β0 + ωS2

2β0 = −
(

D2
0θ1 + D2

0θ2

)
. (11)

Order (ε1):

D2
0u1 + ω2

S1u1 = N3β0

(
D2

0θ1

)
+ N3β0

(
D2

0θ2

)
+ N3(D0θ1)

2 + 2N3(D0θ1)(D0θ2) + N3(D0θ2)
2 + N3

(
D2

0 β0

)
β0+

N3(D0β0)
2 + 2N3(D0β0)(D0θ1) + 2N3(D0β0)(D0θ2)− 2ζ1ωS1D0u0 − 2D1D0u0 +

f ∗0
l1ω2

1
cos (ωS3T0 + ϕ),

(12)

D2
0 β1 + ω2

S2β1 = S1

[
β0D2

0θ1 +
(

D2
0θ1

)
θ2 − (D0θ1)

2
]
+ S3

[
β0

(
D2

0θ1 + D0
2θ2

)
− (D0θ1 + D0θ2)

2
]
+

S2

[
β0D2

0u0 − u0

(
D2

0θ1 + D2
0θ2

)
− 2(D0u0)(D0θ1 + D0θ2)

]
− 2ζ2ωS2D0β0 − 2D0D1β0 +

(
e1l1

mCl2
3

)(
D2

0u0·β0

)
.

(13)
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The expressions D2
0θ1 and D2

0θ2 in Equations (10) and (11) are linear in T0, so the
solutions of Equations (10) and (11) are expressed as

u0 = A1eiωS1T0 + A1e−iωS1T0 − (N1 + N2)D2
0θ1 − N1D2

0θ2, (14)

β0 = A2eiωS2T0 + A2e−iωS2T0 −
(

D2
0θ1 + D2

0θ2

)
, (15)

where A1 and A2 are complex functions of T1, respectively; A1 and A2 are the conjugate of
A1 and A2, respectively; and all of them are determined by the conditions of eliminating
secular terms.

Substituting Equations (14) and (15) into Equations (12) and (13) can obtain solutions
as follows:

D2
0u1 + ω2

S1u1 = −2iζ1 A1ω2
S1eiωS1T0 − 2iA′1ωS1eiωS1T0 − 2A2

2N3ω2
S2e2iT0ωS2 +

1
2

Aei(ωS3T0+ϕ) + cc + NST, (16)

D2
0 β1 + ω2

S2β1 = −2iζ2 A2ω2
S2eiT0ωS2 − 2iA′2ωS2eiT0ωS2 + S1 A2eiT0ωS2

(
D2

0θ1

)
+ S3

[
A2eiT0ωS2

(
D2

0θ1

)
+ A2eiT0ωS2

(
D2

0θ2

)]
+S̃2

[
−A1 A2ω2

S1eiT0ωS1−iT0ωS2−A2N1eiT0ωS2
(

D4
0θ1

)
− A2N2eiT0ωS2

(
D4

0θ1

)
− A2N1eiT0ωS2

(
D4

0θ2

)]
+ cc + NST,

(17)

where cc denotes the complex conjugate of the preceding term, and NST denotes secular
term, ()′ ≡ ∂()/∂T1,

A =
f ∗0

l1ω2
1

, (18)

S̃2 = S2 +

(
e1l1
mcl2

3

)
. (19)

In order to obtain the solutions of Equations (16) and (17), the solvability conditions
are determined. Due to the primary resonance, the external excitation frequency is equal to
the controlled modal frequency of the flexible manipulator, i.e., ωS3 = ωS1. In addition, 1:2
internal resonance condition is analyzed, because there are second-order nonlinear terms
in Equations (8) and (9). Therefore, the detuning parameters σ1 and σ2 are introduced, i.e.,

ωS2 = 0.5ωS1 + εσ1, ωS3 = ωS1 + εσ2. (20)

Substituting Equation (20) into Equations (16) and (17) extracts the factors of eiT0ωS1

and eiT0ωS2 , respectively. The solvability conditions can be obtained after eliminating the
secular terms as follows:

2iζ1 A1ω2
S1 + 2iA′1ωS1 + 2N3 A2

2ω2
S2e2iσ1T1 − 1

2
Aei(σ2T1+ϕ) = 0, (21)

S1 A2D2
0θ1 − S̃2 A1 A2ω2

S1e−2iσ1T1 − S̃2N1 A2D4
0θ1 − S̃2N2 A2D4

0θ1 − S̃2N1 A2D4
0θ2

+S3 A2
[
D2

0θ1 + D2
0θ2
]
− 2iζ2 A2ω2

S2 − 2iA′2ωS2 = 0.
(22)

For convenience, A1 and A2 in Equations (21) and (22) are rewritten in the form of
polar coordinates as

A1 =
1
2

a1eiα1 , A2 =
1
2

a2eiα2 , (23)

where a1 and a2 denote the modal amplitudes of the flexible manipulator and the vibration
absorber, respectively; α1 and α2 denote the phase angles; a1, a2, α1, and α2 are the real
functions of T1.
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Substituting Equation (23) into Equations (21) and (22), then separating the result into
real and imaginary parts, the steady-state solutions are obtained as follows:

a′1 = − 1
2ωS1

N3a2
2ω2

S2 sin γ1 − ζ1a1ωS1 +
1

2ωS1
A sin γ2, (24)

a′2 =
1

4ωS2
S̃2a2a1ω2

S1 sin γ1 − ζ2a2ωS2, (25)

a1α′1 =
1

2ωS1
N3a2

2ω2
S2 cos γ1 −

1
2ωS1

A cos γ2, (26)

a2α′2 = 1
4ωS2

S̃2a2a1ω2
S1 cos γ1 +

1
ωS2

(
− 1

2 S1a2D2
0θ1 − 1

2 S3a2D2
0θ1 − 1

2 S3a2D2
0θ2

)
+ 1

ωS2

(
1
2 S̃2N1a2D4

0θ1 +
1
2 S̃2N2a2D4

0θ1 +
1
2 S̃2N1a2D4

0θ2

)
,

(27)

where
γ1 = 2σ1T1 + 2α2 − α1, (28)

γ2 = σ2T1 + ϕ− α1. (29)

According to Equations (26)–(29), one obtains

γ′1 = 2σ1 +
1
2

S̃2a1ω2
S1 cos γ1

ωS2
−

S1D2
0θ1

ωS2
−

S3D2
0θ1

ωS2
−

S3D2
0θ2

ωS2
+

S̃2N1D4
0θ1

ωS2

+
S̃2N2D4

0θ1

ωS2
+

S̃2N1D4
0θ2

ωS2
− 1

2a1ωS1
N3ω2

S2a2
2 cos γ1 +

1
2a1ωS1

A cos γ2,

(30)

γ′2 = σ2 −
1

2a1ωS1
N3ω2

S2a2
2 cos γ1 +

1
2a1ωS1

A cos γ2. (31)

Because the internal resonance is an internal channel used to exchange energy between
the flexible manipulator and the vibration absorber, both the external excitation and the
modal damping are not considered when analyzing the establishment of the internal
resonance, i.e., F = 0, A = 0, and ζ1 = ζ2 = 0. In this case, dividing Equation (24) by
Equation (25) obtains

a1a′1 = −v · a2a′2, (32)

where

v =
2N3ω3

S2

S̃2
. (33)

The integral of Equation (32) is

a2
1 + va2

2 = E, (34)

where E is a constant of integration, which is proportional to the initial energy of the system;
a2

1 and a2
2 represent the vibration energy of the flexible manipulator and the vibration

absorber, respectively.
Substituting N3 and S̃2 into Equation (33), one obtains

v =
2N3ω3

S2

S̃2
=

2ω3
S2mCφB1l2

3(∫ l2
0 ρφ2

1dx + mCφB1
2 + mBφB1

2
)(

φB1 +
e1

mC l3

)
l2
1

. (35)

If v > 0, a1 and a2 are negatively correlated, as shown in Equation (34). It indicates
that the internal resonance has been successfully established and the vibration energy is
exchanging between the controlled mode of the flexible manipulator and the mode of the
vibration absorber.
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To realize v > 0, e1 in Equation (35) is solved and should satisfy the following
condition:

{e1|e1 > −φB1mcl3, e1 ∈ R}. (36)

Through the above analysis, the generation condition of the internal resonance has
been obtained. Based on 1:2 internal resonance, the saturation will be researched in the
Section 6 for suppressing the primary resonance of the flexible manipulator.

6. Saturation Analysis
6.1. Steady-State Solutions of Primary Resonance

To reveal the saturation principle, the steady-state solutions of Equations (24) and (25),
(30) and (31) need to be analyzed under the primary resonance and 1:2 internal resonance.
Therefore, let the modal amplitude ai and the phase angle γi in Equations (24) and (25),
(30) and (31) no longer change with time (i.e., a′1 = a′2 = 0, γ′1 = γ′2 = 0).

Depending on whether the amplitude a2 of the vibration absorber is zero, the steady-
state solutions of a1,a2, γ1, and γ2 are divided into the following two cases: linear solutions
and the nonlinear solutions.

Case 1 (linear solutions): a1 6= 0 and a2 = 0, i.e.,

a1 =
A

2ωS1

√
1

ζ2
1ω2

S1 + σ2
2

, (37)

a2 = 0, (38)

tan γ2 = − ζ1ωS1

σ2
, (39)

γ1 = arbitrary value. (40)

Equations (37) and (38) show that the primary resonance amplitude a1 of the flexible
manipulator is linearly monotonically increasing with the amplitude A of the external
excitation, whereas the vibration absorber is not working. In this case, the saturation has
not yet been established.

Case 2 (nonlinear solutions): a1 6= 0 and a2 6= 0, i.e.,

a1 = a∗1 = 2

√√√√( (Λ1 + 2σ1 − σ2)(ωS2)

S̃2ω2
S1

)2

+

(
2ζ2ω2

S2

S̃2ω2
S1

)2

=

∣∣∣∣∣ 2ωS2

S̃2ω2
S1

∣∣∣∣∣((Λ1 + 2σ1 − σ2)
2 + (2ζ2ωS2)

2
)1/2

, (41)

a2 =

√
1
2

(
−Γ1 ±

√
Λ2

2 − Γ2
2

)
, (42)

tan γ1 = − 2ζ2ωS2

Λ1 + 2σ1 − σ2
, (43)

tan γ2 = −
2a2

2ζ2N3ω4
S2 + a2

1ζ1S̃2ω4
S1

a2
1σ2S̃2ω3

S1 + a2
2N3ω3

S2(Λ1 + 2σ1 − σ2)
, (44)

Λ1 = −
S1D2

0θ1

ωS2
−

S3D2
0θ1

ωS2
−

S3D2
0θ2

ωS2
+

S̃2N1D4
0θ1

ωS2
+

S̃2N2D4
0θ1

ωS2
+

S̃2N1D4
0θ2

ωS2
, (45)

Λ2 =
2A

N3ω2
S2

, (46)

Γ1 =
8
(
Λ1σ2 − σ2

2 + 2σ1σ2 + 2ζ1ζ2ωS1ωS2
)

N3S̃2ωS1ωS2
, (47)

Γ2 =
8(ζ1(−Λ1)ωS1 + ζ1(σ2 − 2σ1)ωS1 + 2ζ2σ2ωS2)

N3S̃2ωS1ωS2

. (48)
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Equations (41) and (42) show that the vibration absorber is working, and the primary
resonance amplitude a1 of the flexible manipulator is not affected by the amplitude A of
the external excitation. It means that the primary resonance amplitude a1 of the flexible
manipulator will no longer increase with external excitation but maintain a constant value
a∗1 ; the rest of primary resonance energy will be transferred to the vibration absorber. These
conclusions demonstrate the occurrence of saturation. In addition, a∗1 denotes the primary
resonance amplitude of the flexible manipulator when the saturation occurs, and thus is
called the saturation amplitude in this study. A smaller a∗1 means more primary resonance
energy has been transferred to the vibration absorber via the internal resonance. Therefore,
a∗1 is an important index evaluating saturation control performance.

It should be noted that the amplitude a2 of the vibration absorber in Equation (42) is
not unique, and is determined by Λ2 and Γ1. To ensure a2 has real solutions, two critical
values of Λ2 are obtained by the following boundary conditions:

Λ2−1 = |Γ2|, Λ2−2 =
√

Γ2
1 + Γ2

2. (49)

From Equation (49), the critical values of f ∗0 are derived, i.e.,

f ∗0 = ξ1 =
ω2

2 N3l1
2
|Γ2|, f ∗0 = ξ2 =

ω2
2 N3l1

2

∣∣∣Γ2
1 + Γ2

2

∣∣∣1/2
, (50)

where ξ2 > ξ1.
Depending on Γ1 ≥ 0 or Γ1 < 0, the real solutions of a2 associated with different

external excitation f ∗0 are discussed as follows.
For Γ1 ≥ 0, if f ∗0 > ξ2, then a2 has one nonlinear solution:

a2 =

√
1
2

(
−Γ1 +

√
Λ2

2 − Γ2
2

)
. (51)

For Γ1 < 0, if ξ1 < f ∗0 < ξ2, then a2 has two nonlinear solutions:

a2 =

√
1
2

(
−Γ1 +

√
Λ2

2 − Γ2
2

)
, (52)

a2 =

√
1
2

(
−Γ1 −

√
Λ2

2 − Γ2
2

)
. (53)

For Γ1 < 0, if f ∗0 > ξ2, then a2 has one nonlinear solution:

a2 =

√
1
2

(
−Γ1 +

√
Λ2

2 − Γ2
2

)
. (54)

There are no solutions in other cases.

6.2. Saturation Principle

According to Section 6.1, the steady-state solutions of the primary resonance consist of
the linear solutions and nonlinear solutions. The former indicates that the saturation has not
been established, and the latter indicates that the saturation has been established. Whether
the saturation can be successfully established depends on the stability of these solutions.
Therefore, the saturation principle is revealed in this section by way of stability analysis.
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For this purpose, the determinant of the Jacobian matrix [J] (See Appendix C for the
process) is

|J| =

∣∣∣∣∣∣∣∣∣∣∣

−ζ1ωS1 −σ2
1

ωS1
N3ω2

S2y2
1

ωS1
N3ω2

S2x2

σ2 −ζ1ωS1 − 1
ωS1

N3ω2
S2x2

1
ωS1

N3ω2
S2y2

− 1
4ωS2

S̃2ω2
S1y2

1
4ωS2

S̃2ω2
S1x2 A33 A34

− 1
4ωS2

S̃2ω2
S1x2 − 1

4ωS2
S̃2ω2

S1y2 A43 A44

∣∣∣∣∣∣∣∣∣∣∣
, (55)

where 

A33 = −ζ2ωS2 +
1

4ωS2
S̃2ω2

S1y1

A34 = 1
2 (Λ1 − σ2 + 2σ1)− 1

4ωS2
S̃2ω2

S1x1

A43 = − 1
2 (Λ1 − σ2 + 2σ1)− 1

4ωS2
S̃2ω2

S1x1

A44 = −ζ2ωS2 −
1

4ωS2
S̃2ω2

S1y1.

(56)

For the linear solutions, the eigenvalues of |J| are obtained as follows:

λ1,2 =
−4ζ2ω2

S2 ±
√

S̃2
2ω4

S1a2
1 − 4(Λ1 + 2σ1 − σ2)

2ω2
S2

4ωS2
, λ3,4 = −ζ1ωS1 ± i|σ2|. (57)

The linear solutions are stable if the real parts of Equation (57) are negative. Thus, the
stable condition of the linear solutions is

a1 < a∗1 =

∣∣∣∣∣ 2ωS2

S̃2ω2
S1

∣∣∣∣∣((Λ1 + 2σ1 − σ2)
2 + (2ζ2ωS2)

2
)1/2

. (58)

Equation (58) indicates that the linear solutions are stable if the primary resonance
amplitude a1 of the flexible manipulator is less than the saturation amplitude a∗1 . In this
case, the vibration absorber is not working, and the saturation is not established.

For the nonlinear solutions, the characteristic equation of the Jacobian matrix |J| is
defined as

λ4 + δ1λ3 + δ2λ2 + δ3λ + δ4 = 0, (59)

where λ denotes the eigenvalue of |J|; δ1, δ2, δ3, and δ4 denote the factors of the characteristic
equation as shown in Appendix D.

Based on the Routh–Hurwitz criterion [27], the nonlinear solutions are stable under
the following conditions: 

δ1 > 0

δ1δ2 − δ3 > 0

δ3(δ1δ2 − δ3)− δ2
1δ4 > 0

δ4 > 0.

(60)

In this case, the vibration absorber is working, and the saturation is established.
From Equations (A14)–(A17), it can be seen that the stability of the nonlinear solutions

is affected by several important parameters, including σ1, σ2, kd, e1, Λ1, a1, and a2. Therefore,
Equation (60) will be used to search a reasonable range of these parameters for establishing
the saturation.

Above stability analyses on the steady-state solutions of the primary resonance have
revealed the saturation principle. In the Section 6.3, a numerical example will be used to
verify the saturation principle.

6.3. Verification of Saturation Principle

In this section, an example is used to verify the saturation principle. The damping
coefficient of the flexible manipulator is ζ̂1 = 0.0005; kp = 0.67 is determined according to
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the internal resonance relationship (w1 : w2 ≈ 2 : 1); kd = 0.0005 and e1 = 0 are selected
according to Equation (60). The other structural parameters of the flexible manipulator and
the vibration absorber are listed in Table 1.

Table 1. Structural parameters of the flexible manipulator and vibration absorber.

Components Parameters

Rigid arm Length l1 = 0.4 m, Section width b1 = 0.07 m, Section height h1 = 0.05 m, Mass m1 = 2.8 kg

Flexible arm
Length l2 = 0.8 m, Section width b2 = 0.005 m, Section height h2 = 0.03 m,
Density ρ1 = 7.8× 103 kg/m3, Linear density ρ = 1.17 kg/m,
Polar moment of inertia I = 3.125× 10−10 m4, Modulus of elasticity E = 2.1× 1011 Pa

Joint A Mass mA = 3.55 kg
Joint B Mass mB = 0.65 kg
Rigid rod Length l3 = 0.3 m, Cross-section diameter d = 0.008 m, Density ρ2 = 7.8× 103 kg/m3

Mass block Mass mC = 0.04 kg

According to whether the primary resonance is ideally tuned, two cases are discussed.
If both the internal resonance and the primary resonance are ideally tuned, i.e., σ1 = 0
and σ2 = 0, then Γ1 > 0 in Equation (47). As shown in Figure 4a, with the increase of
the external excitation amplitude f ∗0 from zero, the controlled modal amplitude a1 of the
flexible manipulator increases linearly, whereas the modal amplitude a2 of the vibration
absorber remains at zero. This result agrees with the linear solution Equations (37) and
(38) of the primary resonance. The input energy has excited the primary resonance of the
flexible manipulator but has not been transferred to the vibration absorber. In this case, the
saturation does not occur. However, if f ∗0 > ξ2, the modal amplitude a2 of the vibration
absorber will increase, and the controlled modal amplitude a1 of the flexible manipulator
will no longer increase and maintain a constant value (i.e., the saturation amplitude a∗1).
This is because the linear solutions given by Equations (37) and (38) become unstable,
whereas the nonlinear solutions given by Equations (41) and (42) become stable. As Γ1 > 0
and f ∗0 > ξ2, Equation (42) becomes Equation (51). These results show that the saturation
has been established, and the rest of primary resonance energy has been transferred to the
vibration absorber.

Figure 4. Effect of external excitation f ∗0 on modal amplitude: (a) condition: σ1 = 0,σ2 = 0;
(b) condition: ε = 0.05, σ1 = 0, and σ2 = 0.1.

If the internal resonance is ideally tuned and the primary resonance is not ideally
tuned, such as σ1 = 0 and σ2 = 0.1, then Γ1 < 0 in Equation (47). As shown in Figure 4b,
if ξ1 < f ∗0 < ξ2, with the increase of the external excitation amplitude f ∗0 from zero, the
controlled modal amplitude a1 of the flexible manipulator increases linearly, whereas the
modal amplitude a2 of the vibration absorber remains at zero. This result agrees with



Machines 2022, 10, 284 14 of 27

the linear solution Equations (37) and (38) of the primary resonance. When f ∗0 reaches
ξ2, however, the jump phenomena will arise. The value of a1 remains the constant value
a∗1 , and a2 jumps from zero to A. Similarly, when f ∗0 decreases to ξ1, a1 jumps from C to
D, and a2 jumps from B to zero. These phenomena agree with Equations (52) and (53).
When f ∗0 > ξ2, the stable solution a1 is equal to a∗1 , which is independent of the amplitude
f ∗0 of the external excitation. It indicates that the saturation has been established. As a
result, ξ2 at which the controlled modal amplitude of the flexible manipulator reaches
saturation is called the external excitation threshold in this study. A smaller f ∗0 means that
the saturation is easier to establish. Therefore, f ∗0 is an important index for evaluating
saturation control performance.

In order to further exhibit the saturation phenomenon, numerical simulations are
conducted to show the saturation amplitudes of the flexible manipulator under external
excitations amplitudes of 0.05 N and 0.1 N, respectively. As shown in Figure 5, the steady
saturation amplitudes of the flexible manipulator under different excitations no longer
increase and remain 0.0023 m under saturation control. It indicates that saturation has been
established and primary resonance amplitude has been effectively suppressed without
increasing anymore.

Figure 5. Saturation amplitude under different external excitation amplitudes: (a) the external
excitations amplitude F0 = 0.05 N; (b) the external excitations amplitude F0 = 0.1 N.

In conclusion, with the increase of the external excitation amplitude f ∗0 from zero,
the controlled modal amplitude a1 of the flexible manipulator is excited and gradually
increases, whereas the modal amplitude a2 of the vibration absorber is not yet excited
and remains at zero. When f ∗0 reaches ξ2, a1 increases to the saturation amplitude a∗1 .
Subsequently, the linear solutions become unstable and the nonlinear solutions become
stable. If f ∗0 > ξ2, then the modal amplitude a2 of the vibration absorber will increase, and
the controlled modal amplitude a1 of the flexible manipulator will no longer increase but
maintain a constant value a∗1 . It means that the saturation has been established, and the rest
of primary resonance energy has been transferred to the vibration absorber.

6.4. Effectiveness Analysis of Saturation Control

As stated above, the saturation depends on the establishment of the internal resonance.
However, if the 1:2 internal resonance condition cannot be satisfied, indicated by the de-
tuning parameter σ1 in Equation (20), whether the saturation can be established should be
researched. In addition, if the external excitation frequency slightly differs from the con-
trolled modal frequency of the flexible manipulator, indicated by the detuning parameter
σ2 in Equation (20), whether the saturation can be established should be researched. For
this purpose, the effect of σ1 and σ2 on saturation control is analyzed. Let ω = 27.28 rad/s,
F0 = 0.05 N, ϕ = 0, ζ̂1 = 5× 10−4, kd = 5× 10−4, and e1 = 0.
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Case 1: 1:2 internal resonance condition is satisfied (i.e., σ1 = 0) and the primary
resonance is detuned (for example, σ2 is in [−0.6, 0.6]). As shown in Figure 6, the green and
red lines represent the controlled modal amplitude a1 of the flexible manipulator when the
vibration absorber is inactive and active, respectively; the black and blue lines represent the
modal amplitude a2 of the vibration absorber in inactive and active state, respectively; and
the solid and dotted lines represent the stable or unstable amplitude. When σ2 ∈ [Pn1, Pn2],
the nonlinear solutions are stable and the linear solutions are unstable. In this case, the
primary resonance can be suppressed by the saturation. Therefore, [Pn1, Pn2] is called the
saturation control bandwidth in this study. Obviously, increasing the saturation control
bandwidth can improve the effectiveness of the suggested saturation control method.
Therefore, the saturation control bandwidth is an important index evaluating saturation
control performance.

Figure 6. Effect of σ2 on frequency-response curves of (a) flexible manipulator and (b) vibration
absorber (when σ1 = 0).

Case 2: 1:2 internal resonance condition is not satisfied (for example, σ1 = 0.1) and
the primary resonance is detuned (for example, σ2 is in [−0.6, 0.6]). As shown in Figure 7,
when σ2 ∈ [Pn1, Nn1] or σ2 ∈ [Nn2, Pn2], the nonlinear solutions are stable and the linear
solutions are unstable. In this case, the primary resonance can be suppressed by the
saturation. However, [Nn1, Nn2] is an unstable region, within which both the nonlinear
solutions and the linear solutions are unstable. In this case, the saturation cannot be
successfully established.

Figure 7. Effect of σ2 on frequency-response curves of (a) flexible manipulator and (b) vibration
absorber (when σ1 = 0.1).
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In conclusion, when 1:2 internal resonance condition is not satisfied, the saturation
may not be successfully established in some cases. Therefore, the frequency of the suggested
vibration absorber is designed to be adjustable to satisfy the requirement for establishing
1:2 internal resonance.

7. Configuration of Saturation Vibration Absorber

According to the analysis of Section 6, saturation control performance is mainly deter-
mined by the saturation amplitude, the external excitation threshold, and the saturation
control bandwidth. For the convenience of describing the influence of the vibration absorber
configuration parameters on saturation control performance, the saturation amplitude,
the external excitation threshold, and the saturation control bandwidth are simplified
as follows:

q̂1m =

∣∣∣∣ 1
S̃2

∣∣∣∣
(((

1− ω

2ω2

))2
+ ζ̂2

2

)1/2

, (61)

F∗cr =
8ω2

2 l1
S̃2

(((
1− ωS3

2ωS2

)
εσ2 + ζ̂1ζ̂2

)2
+

(
ζ̂1

(
1− ωS3

2ωS2

)
+ ζ̂2εσ2

)2
)1/2

(62)

RS = 2

√√√√√
( S̃2F∗0

8l1ω2
2 ζ̂2

)2

− ζ̂1
2

, (63)

where q̂1m denotes the dimensionless saturation amplitude, F∗cr denotes the dimensionless
external excitation threshold, and RS denotes the saturation control bandwidth.

Obviously, smaller a∗1 , smaller ξ2, and larger RS mean better saturation control perfor-
mance. From Equations (61)–(63), it can be concluded that both the structural parameters
(i.e., l3, mC, xB) and the control parameters (i.e., kd, e1) of the vibration absorber can affect
these indexes. As the structural parameters are difficult to change, this section will discuss
how to configure the speed feedback gain coefficient kd and the coupling gain coefficient e1
of the vibration absorber to improve saturation control performance.

Let ω = 27.28 rad/s, F0 = 0.05 N, ϕ = 0, and ζ̂1 = 5 × 10−4. As shown in Figure 8a,
when e1 = 0, with the increase of kd, both q̂1m and F∗cr increase, but RS decreases. Therefore,
decreasing kd while satisfying the formula (60) can improve saturation control performance.
As shown in Figure 8b, when kd = 0.0005, with the increase of e1, both q̂1m and F∗cr decrease,
but RS increases. Therefore, increasing e1 while satisfying the Formula (60) can improve
saturation control performance.

Figure 8. Three indexes affected by (a) kd and (b) e1 (σ1 = 0, σ2 = 0.1).
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8. Virtual Prototyping Simulation

Although the above analysis conclusions are promising, they are based on our own
theoretical model. For this reason, three well-known software packages, i.e., ADAMS® (Los
Angeles, CA, USA), ANSYS® (Canonsburg, PA, USA), and MATLAB® (Natick, MA, USA),
are employed in this section to conduct a series of virtual prototyping simulations. Because
they implement dynamic modeling and vibration analysis in different ways from us, more
trusted results can be obtained to verify our work.

8.1. Simulation Model

The finite element model of the flexible arm is established using ANSYS software, as
shown in Figure 9a. With the help of ADAMS software, the multi-body dynamic model of a
two-link manipulator and a saturation-based vibration absorber is established by importing
the neutral file exported from the finite element model, as shown in Figure 9b. The detailed
parameters of the model are listed in Table 1.

The suggested saturation control model is implemented based on the ADAMS/Control
module and the MATLAB/Simulink module. As shown in Figure 10, part Iis the data
interface module used to output the displacement, the speed, and acceleration signals
measured in ADAMS software to the feedback controller module (i.e., part II) of the
vibration absorber. In part II, according to the signals of part I, both the linear and nonlinear
feedback control are realized by adjusting the position feedback gain coefficient Kp, the
speed feedback gain coefficient Kd, and the coupling gain coefficient Ke. Part III represents
the servomotor output torque modulated by part II. Part IV is the external excitation analog
signal module.

Figure 9. Simulation model of flexible manipulator: (a) the flexible arm model in ANSYS; (b) the
flexible manipulator model with vibration absorber in ADAMS.

Figure 10. Saturation control model in MATLAB/Simulink.
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8.2. Simulation Analysis on Saturation Control

The effect of the speed feedback gain coefficient Kd and the coupling gain coefficient
Ke on saturation control is researched. The simulation analysis is carried out when both
the primary resonance and internal resonance are completely tuned (i.e., σ1 = 0, σ2 = 0).
Figure 11 shows that the first-order natural frequency of the flexible arm is 4.3457 Hz.
According to Equation (20) and ω2

2 = kp/mCl2
3 , we have Kp = 670. The initial value of the

external excitation F = F0 cos (ω t + ϕ) is ω = 27.28 rad/s,F0 = 0.05 N,ϕ = 0.

Figure 11. FFT transform of the flexible arm terminal amplitude.

Figure 12 shows the effect of the speed feedback gain coefficient Kd on the saturation
control performance of the flexible manipulator. From Figure 12a,b, it can be seen that the
saturation has been successfully established and the primary resonance response of the
flexible manipulator has been effectively suppressed. In Figure 12c, however, excessive Kd
leads to a failure in the establishment of the saturation. Therefore, a smaller speed feedback
gain coefficient Kd can better decrease the saturation amplitude.

Figure 12. Effect of Kd on saturation amplitude of the flexible manipulator and vibration absorber.
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Figure 13 shows the effect of coupling gain coefficient Ke on the saturation control
performance of the flexible manipulator. From Figure 13a,b, it can be seen that a larger cou-
pling gain coefficient Ke can better decrease the saturation amplitude. Through comparing
Figures 12c and 13c, it is found that the system can change from the unsaturated state to
the saturated state by introducing the coupling gain coefficient Ke.

Figure 13. Effect of Ke on saturation amplitude of the flexible manipulator and vibration absorber.

Finally, a comparison of the primary resonance amplitudes of the flexible manipulator
with and without the vibration absorber is shown in Figure 14. If the vibration absorber
is not equipped, the primary resonance amplitude is approximately 18.51 mm. If the
vibration absorber is working, however, the primary resonance amplitude decreases to
10.6 mm at 10.1 s, 3.02 mm at 33 s, and 1.60 mm at 52 s. Approximately 90% of the primary
resonance amplitude has been suppressed from 52 s to 100 s. These results have verified the
effectiveness of the suggested primary resonance control method based on the saturation.

Figure 14. Comparison of primary resonance amplitude of the flexible manipulator with and without
vibration absorber.
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9. Experimental Study

In the theoretical study, Section 6 revealed the saturation principle, and Section 7
showed the vibration absorber configuration method to optimize saturation control. There-
fore, in the experimental study of this section, the primary resonance experiment of the
flexible manipulator will be first implemented to verify whether the primary resonance
occurs. Next, the effectiveness of saturation control method will be validated under the con-
dition of primary resonance. Finally, the correctness of the vibration absorber configuration
method will be verified by choosing different kd and e1.

9.1. Setup

The experimental setup is designed as shown in Figure 15. The dimensions and
saturation control schemes of the experimental model are identical to the theoretical and
virtual prototype models. The rigid arm is hinged on the base through the joints, and
its cantilever end is jointed with the flexible arm to form a 2-DOF manipulator. Through
material selection and size design, the deformation of the flexible arm only occurs in the
horizontal direction. The vibration absorber installed on the flexible arm is composed of
a swing rod and a servomotor. The PMAC (programmable multi-axes controller) motion
controller receives the feedback signal from the encoder and synchronously controls joint
B. The external excitation controller controls the motor at the end of the flexible arm to
generate an external excitation used to excite the primary resonance of the flexible arm.
The accelerometer measures the real-time acceleration at the end of the flexible arm, which
is processed by the adapter and fed back to the PMAC motion controller as the control
signal. The gyroscope attached to the end of the flexible arm collects the motion data
and transmits the signal to the upper computer through the TTL-USB module. The upper
computer signal and absorber motor encoder signal are compared to ensure the consistency
of experimental results.

Figure 15. Experimental setup for primary resonance control.

9.2. Primary Resonance Experiment

The successful establishment of the primary resonance is a prerequisite for conducting
saturation experiments. In this section, the establishment of the primary resonance is
verified by comparing the end amplitude of the flexible arm under different external
excitations. As shown in Figure 16, the natural frequency of the flexible arm with the
vibration absorber is 1.22 Hz. Therefore, the external excitation frequencies are selected as
0.70Hz, 1.22 Hz, and 2.00 Hz. All of their amplitudes are 0.5 N. The rotational speeds of
two arm joints are

.
θ1 = 0.01 rad/s and

.
θ2 = 0.01 rad/s, respectively.
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Figure 16. Frequency response curve of the flexible arm.

In Figure 17, the solid line indicates the end amplitude of the flexible arm at external
excitation frequencies of 0.700 Hz and 2.00 Hz, respectively; and the dotted line indicates
the end amplitude of the flexible arm at external excitation frequencies of 1.22 Hz. Because
the external excitation frequency of 1.22 Hz is close to the natural frequency of the flexible
arm with the vibration absorber, primary resonance occurs. However, as the other two
external excitation frequencies are far from the natural frequency of 1.22 Hz, they cannot
excite large amplitude. This phenomenon demonstrates that the primary resonance may
arise when the external excitation frequency is close to the natural frequency of the flexible
arm with the vibration absorber.

Figure 17. Responses of the flexible arm under different external excitation frequencies: (a) Com-
parison of external excitation frequency 0.7 Hz and 1.22 Hz; (b) Comparison of external excitation
frequency 2 Hz and 1.22 Hz.

9.3. Saturation Control Experiment

Sections 5 and 6 revealed the saturation principle and analyzed the effectiveness
of the saturation control. According to the theoretical analysis in Sections 5 and 6, the
experiments on the effectiveness of saturation control method are implemented by applying
external excitations with different amplitudes to the end of the flexible arm. To ensure
1:2 internal resonance, the position feedback gain coefficient kp = 0.061(Nmm/cts). The
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speed feedback gain coefficient and the coupling feedback gain coefficient are kd = 0.002
and e1 = 0, respectively. Figure 18a,b shows the amplitude of the flexible arm subjected
to the external excitation amplitude of 0.2 N and 0.5 N, respectively. Despite the change
in external excitation amplitude, the steady-state saturation amplitude of the flexible arm
remains around 0.3 m/s2. The experiment results have verified the theoretical conclusion
that the saturation amplitude is not affected by the external excitation amplitude.

Figure 18. Effect of external excitation amplitude on primary resonance response of the flexible arm:
(a) the external excitation amplitude F0 = 0.2 N; (b) the external excitation amplitude F0 = 0.5 N.

9.4. Configuration Experiment of Saturation Absorber

According to the analysis in Section 7, the configuration experiments of saturation
absorber is implemented.

First, the effect of the speed feedback gain coefficient kd on saturation control perfor-
mance is investigated. The coupling gain coefficient e1 is set to 0, and the speed feedback
gain coefficient kd is, respectively, set to 0, 0.002, and 0.008. As shown in Figure 19a, when
kd = 0, the flexible arm cannot reach the saturation state. When kd = 0.002 or kd = 0.008,
however, saturation can be successfully established. Through comparing Figure 19b,c, it
is found that the saturation amplitude of the flexible arm is smaller when kd = 0.002. It
is proven that reducing kd in a certain range can decrease the saturation amplitude. This
phenomenon agrees with the theoretical and simulation results.

Figure 19. Primary resonance response of the flexible arm with different kd: (a) kd = 0; (b) kd = 0.002;
(c) kd = 0.008.

Second, the effect of different coupling gain coefficients e1 on saturation control per-
formance is investigated under the speed feedback gain coefficient kd = 0.002. Through
comparing Figure 20a,b, it can be clearly observed that, if e1 increases from 0 to 0.01, the
time used to establish the saturation decreases from 50 s to 45 s, and the saturation am-
plitude of the flexible arm decreases as well. This phenomenon has verified our idea that
introducing modal coupling can improve saturation control performance.



Machines 2022, 10, 284 23 of 27

Figure 20. Primary resonance response of the flexible arm with different e1: (a) e1 = 0; (b) e1 = 0.01.

Finally, in order to compare the effect of saturation control, Figure 21 shows the
primary resonance amplitude of the flexible arm with and without the vibration absorber.
It can be seen that the maximal amplitude of vibration response of the flexible arm without
the vibration absorber fluctuates at 1.2 m/s2, whereas the maximal amplitude of vibration
response of the flexible arm with the vibration absorber fluctuates at 0.2 m/s2. This result
has demonstrated that the primary resonance amplitude of the flexible arm has been
effectively reduced by 83% with the help of the saturation.

Figure 21. Primary resonance response of the flexible arm with and without vibration absorber.

10. Discussion

Because the theoretical analysis method, the virtual prototyping simulation method,
and the experimental method are implemented in different ways, their research results are
somewhat different. The detailed different implementation ways are as follows:

(1) The theoretical model is derived based on the assumption mode method and Kane’s
method, whereas the prototyping simulation model is established based on the finite
element method.

(2) The method of multiple scales is used to obtain the approximate analytical solutions
of the nonlinear differential equations in the theoretical model. Due to the inherent
limitations of the method, some assumptions, such as weak nonlinearity, small damp-
ing, and small external excitation, have to be adopted to obtain approximate analytical
solutions. However, the virtual prototyping simulations and experiments have no
such limitations.

(3) In the theoretical study, the position feedback gain coefficient kp, the speed feed-
back gain coefficient kd, and the coupling gain coefficient e1 are implemented by
the theoretical formulae. However, these parameters are implemented by the MAT-
LAB/Simulink software in the prototyping simulation model and implemented by
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the feedback control algorithm of the PMAC motion controller in the experiments.
Obviously, these parameters are implemented in different ways and thus cannot be
exactly the same in quantity.

(4) In the theoretical study and the virtual prototyping simulations, the vibration re-
sponses are represented in displacement. However, the displacement is difficult
to measure accurately in the experimental study. Thus, the vibration responses of
the flexible manipulator are measured by the accelerometer in the experiments and
represented in acceleration.

Despite the above differences, these research results have qualitatively verified that
the primary resonance of the flexible manipulator can be effectively suppressed by the
suggested saturation-based method, and the saturation control performance can be signifi-
cantly improved by adjusting the control parameters of the suggested vibration absorber.

11. Conclusions

In this paper, a new nonlinear saturation-based control method is put forward to sup-
press the primary resonance of a flexible manipulator. A vibration absorber with variable
stiffness/damping is designed to establish an energy exchange channel based on 1:2 inter-
nal resonance for the saturation. A novel idea of modal coupling enhancement is proposed,
and a nonlinear coupling term is constructed and introduced into the control torque for
improving saturation performance by strengthening the coupling relationship between
the mode of the vibration absorber and the controlled mode of the flexible manipulator.
Through stability analysis on the primary resonance response, the saturation mechanism
is successfully established, and the effectiveness of the saturation control algorithm is
validated. Three important indexes are extracted and used to optimize saturation control,
including the saturation amplitude, the external excitation threshold, and the saturation
control bandwidth. The virtual prototyping simulations and the experiment results are
promising and have verified the feasibility of the suggested saturation-based method for
suppressing the primary resonance of the flexible manipulator.
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Appendix A

The dimensionless parameters are

τ = ω1t, q̂1 = q1
l1

, ωS1 = ω1
ω1

= 1, ωS2 = ω2
ω1

, ωS3 = ω
ω1

, Ni =
Qi
l1
(i = 1, 2, 3),

Si = Pi(i = 1, 3), S2 = P2l1.
(A1)

The scaling factor 0 < ε << 1 is introduced into the dimensionless equations to scale
the state variables and the control variables. The transformations are performed as follows:

q̂1 → εq̂1, β→ εβ, θ1 → εθ1, θ2 → εθ2, ζ̂1 → εζ1, ζ̂2 → εζ2, F∗0 → ε2 f ∗0 . (A2)

Appendix B

The method of multiple scales [10] is adopted to seek the first-order approximate
solutions of Equations (8) and (9), and the time scales are defined as

T0 = τ, T1 = ετ. (A3)
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where T0 is a fast time scale and T1 is a slow time scale. The derivatives of the time τ can be
expressed in the form of derivatives of T0 and T1:

d
dτ

=
dT0

dτ
· ∂

∂T0
+

dT1

dτ
· ∂

∂T1
+ O

(
ε2
)
= D0 + εD1 + O

(
ε2
)

, (A4)

d2

dτ2 =
∂2

∂T02 + 2ε
∂2

∂T0∂T1
+ O

(
ε2
)
= D2

0 + 2εD0D1 + O
(

ε2
)

, (A5)

where D0 = ∂
∂T0

, D2
0 = ∂2

∂T0
2 , D1 = ∂

∂T1
, and O

(
ε2) denotes the higher-order term containing ε2.

The first-order approximate solutions of Equations (8) and (9) are expressed in the
following forms:

q̂1(τ, ε) = u0(T0, T1) + εu1(T0, T1) + O
(

ε2
)

, (A6)

β(τ, ε) = β0(T0, T1) + εβ1(T0, T1) + O
(

ε2
)

. (A7)

Equating the coefficients of the same order of ε in both sides after substituting Equa-
tions (A4)–(A7) into Equations (8) and (9), the ordinary differential equations are obtained
as shown in Equations (10)–(13).

Appendix C

In order to derive the Jacobian matrix, the steady-state solutions of a1 and a2 are
converted from the polar coordinate form to the Cartesian coordinate form, i.e.,

x1 = a1 cos (γ2 − ϕ), y1 = a1 sin (γ2 − ϕ), (A8)

x2 = a2 cos
(

γ2 − γ1 − ϕ

2

)
, y2 = a2 sin

(
γ2 − γ1 − ϕ

2

)
, (A9)

where x1, x2, y1, and y2 are real functions of T1.
Equations (24), (25), (30), and (31) are substituted into the differential of Equations

(A8) and (A9). Separating the results into real and imaginary parts obtains:

x′1 = −ζ1ωS1x1 − σ2y1 +
1

ωS1
N3ω2

S2x2y2 +
1

2ωS1
A sin ϕ, (A10)

y′1 = σ2x1 − ζ1ωS1y1 −
1

2ωS1
N3ω2

S2x2
2 +

1
2ωS1

N3ω2
S2y2

2 +
1

2ωS1
A cos ϕ, (A11)

x′2 = −ζ2ωS2x2 +
1
2
(Λ1 − σ2 + 2σ1)y2 +

1
4ωS2

S̃2ω2
S1x2y1 −

1
4ωS2

S̃2ω2
S1x1y2, (A12)

y′2 = −1
2
(Λ1 − σ2 + 2σ1)x2 − ζ2ωS2y2 −

1
4ωS2

S̃2ω2
S1x1x2 −

1
4ωS2

S̃2ω2
S1y1y2. (A13)

Corresponding to Equations (A10)–(A13), the determinant of the Jacobian matrix [J] is
obtained as shown in Equation (55).

Appendix D

δ1, δ2, δ3, and δ4 of the characteristic equation (59) are:

δ1 = 2ζ1ωS1 + 2ζ2ωS2, (A14)

δ2 =
1
2

N3S̃2a2
2ωS1ωS2 + Λ1σ1 −

Λ1σ2
2

+
Λ2

1
4

+ σ2
1 +

5σ2
2

4
− σ1σ2 −

S̃2
2a2

1ω4
S1

16ω2
S2

+ ζ2
1ω2

S1 + 4ζ1ζ2ωS1ωS2 + ζ2
2ω2

S2, (A15)
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δ3 = 1
2 ζ1N3S̃2a2

2ω2
S1ωS2 +

1
2 ζ2N3S̃2a2

2ωS1ω2
S2 + 2ζ1Λ1σ1ωS1 − ζ1Λ1σ2ωS1 +

1
2 ζ1Λ2

1ωS1 −
ζ1S̃2

2a2
1ω5

S1
8ω2

S2

+2ζ1σ2
1 ωS1 +

1
2 ζ1σ2

2 ωS1 − 2ζ1σ1σ2ωS1 + 2ζ2
1ζ2ω2

S1ωS2 + 2ζ1ζ2
2ωS1ω2

S2 + 2ζ2σ2
2 ωS2,

(A16)

δ4 = −1
2

Λ1σ3
2 +

1
4

Λ2
1σ2

2 + Λ1σ1σ2
2 + ζ2

1Λ1σ1ω2
S1 +

1
4

ζ2
1Λ2

1ω2
S1 +

σ4
2

4
− σ1σ3

2 + σ2
1 σ2

2 + ζ2
1σ2

1 ω2
S1 −

1
2

ζ2
1Λ1σ2ω2

S1

−
ζ2

1S̃2
2a2

1ω6
S1

16ω2
S2

−
σ2

2 S̃2
2a2

1ω4
S1

16ω2
S2

+
1
4

ζ2
1σ2

2 ω2
S1 − ζ2

1σ1σ2ω2
S1 +

1
4

N3Λ1σ2S̃2a2
2ωS1ωS2 +

1
2

N3σ1σ2S̃2a2
2ωS1ωS2

−1
4

N3σ2
2 S̃2a2

2ωS1ωS2 +
1

16
N2

3 S̃2
2a4

2ω2
S1ω2

S2 + ζ2
2σ2

2 ω2
S2 +

1
2

ζ1ζ2N3S̃2a2
2ω2

S1ω2
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1ζ2
2ω2

S1ω2
S2.

(A17)
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