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ABSTRACT 

 

 

The overall goal of this research is to study the performance of Savonius wind tur-

bine. Some of the advantages of a Savonius wind turbine include simple construction, good 

startup characteristics, low noise, and reduced wear. The applications of this type of wind 

machine include water pumping and small scale electricity generation. In the present re-

search, an experimental model of the Savonius wind turbine is studied including the for-

mulation of a mathematical model. The mathematic model for the torque acting on the 

Savonius rotor has been developed and the permanent magnet synchronous generator 

(PMSG) model has been simulated using the d-q synchronous reference frame theory. 

In the present research, the mathematic model of the wind turbine system has been 

simulated in MATLAB/Simulink environment. The model includes the wind turbine model 

and the permanent magnet synchronous generator (PMSG) model. The wind turbine pa-

rameters of the experimental system have been used for the simulation purpose. A 1kW 

PMSG has been coupled with the wind turbine to study the dynamic performance of the 

wind turbine system. The system response and performance have been evaluated at 3 dif-

ferent wind speeds of 16.9 m/sec, 19.8 m/sec, and 21.9 m/sec corresponding to the wind 

speeds of the blower used for experimental system. 

The experimental Savonius wind turbine has been developed to compare the nu-

merical and experimental results. The experimental system includes Savonius rotor, 

PMSG, charge controller and rectifier, current and voltage transducers, frequency to analog 

converters, electrical load, and a National Instruments Data Acquisition Device (NI DAQ). 

The current and voltage transducers are used to measure the current and voltage in the 
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system and the outputs are connected to the NI DAQ. The frequency to analog converters 

are used to measure the rpm of the rotor and the anemometer. The charge controller is 

meant for battery charging applications of the system. 

The numerical and experimental results have been obtained at three different wind 

speeds (16.9 m/sec, 19.8 m/sec, and 21.9 m/sec). The maximum value of the electric power 

generated is 2.7 Watts at a wind speed of 21.9 m/sec. Comparison of experimental and 

numerical results at the wind speed of 21.9 m/sec shows there is an approximate difference 

of 16%, 11%, 61% and 4% for the angular velocity, voltage, current, and electrical power 

generated, respectively. The difference in the values may be attributed to the fact that the 

mathematical model does not include the three-dimensional (3D) fluid effects and environ-

mental factors. 
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CHAPTER ONE 

 

INTRODUCTION 

 

 

A brief overview of the energy crisis and how renewable energy sources are a so-

lution to this global problem will be presented in this chapter. The chapter also provides 

some data on the energy usage and the potential for energy that can be produced by renew-

able energy sources. Finally, a brief introduction on Savonius wind turbine and the past 

investigations on the wind turbine under study in this thesis will be offered. 

 

Renewable Energy 

The long term energy crisis is one of the biggest issues of this century that needs to 

be tackled to ensure a prosperous future for coming generations. The consumption rate of 

the non-renewable sources of energy such as oil, natural gas and coal for the year 2014 was 

92.086 Million barrels/day, 3393 Billion cubic meters, and 3881.8 Million tonnes oil equiv-

alent, respectively to cater to the energy requirements of the public and private sectors 

(Source: BP Statistical Review of World Energy, June 2015). The non-renewable sources 

of energy are the fossil fuels such as coal, petroleum, and natural gas that were formed in 

the earth’s crust over a span of millions of years. These fossil fuels are a combination of 

carbon compounds that have a very high specific energy which makes them suitable for 

energy needs across the globe. The use of fossil fuels increases the level of carbon dioxide, 

CO2, in the atmosphere accompanied by the other pollutants including carbon monoxide, 

CO, and nitrous oxides, NOx. The increase in the level of CO2 impacts the greenhouse 
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effect, the process responsible for keeping heat locked in the earth’s atmosphere. The im-

balance caused in the greenhouse effect has resulted in global warning leading to increase 

in earth’s temperature and other unfavorable changes. The world energy usage for the year 

2014 is shown in Figure 1.1. 

 

Figure 1.1: World Energy Consumption 2014, (BP Statistical Review of World Energy, 

2015). 
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To deal with the energy crisis, the most promising solution is the use of renewable 

sources of energy. These include wind energy, solar energy, geothermal energy, tidal en-

ergy, biofuel, biomass, and hydro power. Another solution to the problem is the usage of 

regenerative power supplies (Ali et al., 2015). Countries across the world have been trying 

to tap these resources and extensive research is being done on how to utilize these resources 

efficiently. Since the renewable sources of energy are inexhaustible, efforts need to be 

made in order to exploit these energy sources as much as possible. Out of these energy 

sources, wind and solar energy are the most promising sources of energy that can certainly 

help in dealing with energy crisis and help in restoring the earth’s greenhouse effect bal-

ance (Cultura II and Salameh, 2011). 

Wind Energy 

Wind energy is the kinetic energy stored in the wind. Heating of the earth’s at-

mosphere by the sun and earth’s rotation are responsible for causing the winds to flow.  

Table 1.1: Wind Energy Production in 2015 (Global Wind Energy Council, 2015). 

 Country Capacity in 2015 (MW) 

China 145,104 

United States  74,471 

Germany  44,947 

India  25,088 

Spain 23,025 

United Kingdom 13,603 

Canada 11,200 

France 10,358 

Italy  8,958 

Brazil 8,715 

Rest of the world 66,951 
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According to a survey in 2006, the potential for wind energy production across the world 

was 686.1 PWh (Lu et al., 2009). Since then every country has been trying to focus on the 

wind energy production to match up to the energy needs. Wind energy is also the world’s 

fastest growing industry in electricity generation (Rahman et al., 2009). From Figure 1.2 

and Table 1.1, the total wind energy produced across different countries add upto 432,420 

MW which is avery less portion of the potential energy. If the potential capacity is reached, 

then the energy crisis can be dealt with very easily. 

 

Figure 1.2: Cumulative Wind Energy Production Capacity of the World – 2015 (Global 

Wind Energy Council, 2015). 
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History of Wind Turbines 

The use of wind energy dates back to 5,000 BC for propelling the boats across the 

Nile River (Wind Energy Foundation). The Persians and Chinese utilized wind power for 

pumping water and grinding grains during 200 BC (Wind Energy Foundation). With the 

improvements in technology, new uses of wind power realized in the 11th century. The 

Dutch used it for pumping out water of the lakes by making certain changes to the wind 

mill configuration. By the 19th century, wind power was used for generating electric power. 

Wind mills existed in European countries, especially in Denmark until the 1950s, when 

they were edged out due to the cheap oil and energy prices (Wind Energy Foundation). In 

1970s due to the fear of oil shortage in the US, extensive research was done to improve the 

wind turbine technology. Since then, the government has been encouraging the use of re-

newable energy sources to avoid potential energy crisis. The present day wind turbine tech-

nology has improved a lot in terms of efficiency, ease of operation, and price. 

Types of Wind Turbines 

The wind turbines can be broadly classified in to two categories, Horizontal axis 

(HAWT) and Vertical axis (VAWT) in accordance with the alignment of the axis of rota-

tion of the rotor with respect to the ground. The horizontal axis (HAWTS) wind turbines 

have their axis of rotation parallel to the ground and the vertical axis (VAWTs) wind tur-

bines have their axis of rotation perpendicular to the ground. The wind turbines can also 

be categorized on the basis of the major force responsible for rotation, i.e., lift force or drag 

force. In this section we will give a brief overview of the HAWTs and VAWTs. 
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The horizontal axis (HAWT) wind turbine is an improved version of the old wind 

mill where the propeller is made up of blades and spins in the horizontal axis and hence 

the name, horizontal axis. The main rotor shaft and the electric generator are placed on top 

of the tower. All the mechanical systems including the gearbox, motors, etc. are packed 

inside a metal cover called the nacelle. The HAWT should always be pointed towards the 

wind direction so, a wind sensor along with a servo motor is used to move the turbine rotor 

in the wind direction. A gearbox is coupled between the rotor shaft and the generator shaft 

in order to turn the generator shaft at much higher speed than the rotor shaft for efficient 

production of electricity. Some of the advantages include; the tall tower provides access to 

stronger winds, and very high efficiency in comparison to other types of wind turbines. 

The disadvantages include: a strong tower is required to support the massive components, 

it’s difficult to raise the heavy components to such a height, and these require additional 

yawing and braking mechanisms. These extra mechanisms including the gearbox make the 

wind turbine heavier and also expensive. The height also makes maintenance difficult. 

In case of a vertical axis (VAWT) wind turbine, the rotor shaft is placed perpendic-

ular to the ground. This type of configuration does not require any heavy tower so, the 

generator and other important components can be placed close to the ground. Due to the 

vertical configuration, the VAWTs don’t have to be face the wind direction at all times. 

The two most famous horizontal axis wind turbines are the Darrieus wind turbine and the 

Savonius wind turbine. 

Some of the advantages of vertical axis configuration are: no yawing mechanism 

required, light, cheap and easy to maintain, lower start up speeds, and can be installed on 
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rooftops of buildings and houses. The VAWTs have some disadvantages they are as fol-

lows: reduced efficiency due to drag forces, and due to lower height, they cannot utilize 

the strong winds. 

 

Figure 1.3: Typical Horizontal Axis Wind Turbine ((Golden, Colorado); courtesy of 

DOE/NREL, credit – Dennis Schroeder, PIK # 25907) 

www.nrel.gov. 
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Figure 1.4: Savonius and Darrieus Wind Turbines. 

Savonius Wind Turbine 

Savonius wind turbine is a drag based vertical axis wind turbine. It was invented 

by a Finnish engineer S.J. Savonius in the year 1922. It is one of the simplest types of wind 

turbine with the rotor made up of two or three scoops. The top view of a conventional 

Savonius rotor looks like an ‘S’ shape. When the air hits any of the scoops, a pressure 

differential is created across the surface of each scoop which results in a drag force that 

makes the rotor spin.  
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Figure 1.5: Top and Front View of a Savonius Wind Turbine. 

 

Related Work 

 

Researchers have been exploring methods to improve the starting characteristics of 

the Savonius rotor and investigating the feasibility of Savonius wind turbine for power 

generation. Hayashi et al. (2005) designed a three stage Savonius rotor with a 120-degree 

bucket phase shift between adjacent stages. Khan (1978) tested a similar design with a two 

stage rotor with a 90-degree phase shift. The three stage and two stage rotors slightly im-

proved the starting characteristics by reducing the torque variation and range of negative 

starting torque. Another effort to improve the starting characteristics of the Savonius ro-

tor was made by Ali (2013) by comparing a conventional two blade rotor and a three blade 

rotor. The results show that the two blade rotor is more efficient than the three blade rotor, 

reason being the increase in number of blades increases the negative torque significantly 
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due to increased projected area. Kamoji et al. (2008) tested single stage, two stage and three 

stage Savonius rotor with multiple aspect ratios. The study revealed a reduction in perfor-

mance by increasing the number of stages, keeping the aspect ratio same. Saha et al. (2008) 

performed a similar study with semicircular and twisted blades. Multiple experiments were 

carried out to optimize parameters including number of stages, number of blades and ge-

ometry of blades. Farsaie et al. (1984) studied the performance of Savonius rotor in hori-

zontal and vertical orientation with varying the pitch, angle of incidence and rotor position. 

Saha and Rajkumar (2006) have investigated a three blade rotor system with twisted blades. 

The experiments show an increase in the efficiency and self-starting capability, in compar-

ison to the conventional rotor and also, the optimum angle of twist for maximum perfor-

mance. Sharma et al. (2005) tested three designs of Savonius rotor with different material 

and overlap ratios. A detailed study has been performed by Akwa et al. (2012) on numerous 

possible configurations of the rotor including varying the bucket spacing, overlap, shape, 

profile, number and thickness. Performance gains of up to 50% were reported in the study. 

An extensive study was performed by Modi and Fernando (1989) on assessing the influ-

ence of different parameters on the Savonius rotor performance. The study reported a 100% 

increase in the efficiency by providing an optimum configuration. Reupke and Probert 

(1991) tested the conventional Savonius rotor with a rotor with  

Past investigations on the Savonius rotor have been conducted using wind tunnel 

tests, field experiments, and numerical investigations utilizing commercial computational 

fluid dynamics software like FLUENT, ANSYS, etc. Hassan et al. (2010) presented a CFD 

analysis of a twisted Savonius rotor using Flow-3D software with a 180-degree twist in the 
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blade configuration. Deb et al. (2013) performed a similar analysis using FLUENT 6.2 

with a 45-degree twist angle in the rotor blades. Another interesting analysis was performed 

by D’Alessandro et al. (2010) employing FLUENT coupled with MATLAB. The CFD data 

was imported to MATLAB and the angular velocity was calculated and then fed back to 

the CFD code. The mathematical model was validated by comparing the results with the 

Environmental Wind Tunnel Laboratory at Polytechnic University of Marche with their 

testing of a Savonius rotor. El-Aksary et al. (2015) analyzed three different designs of 

guide plates using FLUENT 6.3 for improving the performance of Savonius rotor. Fujisawa 

and Gotoh (1992) studied the pressure on the blade surface for investigating the power 

mechanism of a Savonius rotor. The study found a low pressure region on the convex side 

of the advancing blade that contributes to the power production. Altan and Atilgan (2008) 

performed a study for improving the performance of the Savonius rotor by designing a 

curtain for the convex side of the rotor. Studies show a considerable increase in the output 

by using the curtain. Wakui et al. (2005) tested two hybrid configurations of Darrieus and 

Savonius rotors. Results show that the configuration with Savonius rotor inside Darrieus 

rotor is an effective configuration for small scale systems. 

Learning Objectives 

A series of student learning objectives in the undergraduate laboratory can be iden-

tified to consider when teaching about the general operation of a vertical axis Savonius 

wind turbine.  

• Development of mathematical models for the different parts of the wind turbine 

system can provide insight into the aerodynamics and mechanics of the Savonius 
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rotor, as well as the dynamics of a permanent magnet synchronous generator 

(PMSG).  

• Computer simulation of the integrated Savonius rotor and PMSG in the 

MATLAB/Simulink environment to study the behavior of the system under differ-

ent wind speeds.  

• Data collection using National Instruments (NI) based on the experimental Savo-

nius wind turbine introduces sensors and actuators. A virtual instrument (VI) is 

created in NI LabView software to process the test data.  

• Comparisons between the experimental and numerical results can lead to suggested 

improvements in both the test platform and the mathematical model for greater 

power generation and more accurate results.  

• Empowerment of students to design renewable energy systems for residential and 

commercial applications.  
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CHAPTER TWO 

SAVONIUS WIND TURBINE: MODEL 

 

System Overview 

The Savonius wind turbine is a vertical axis wind turbine which derives its power 

form drag force on its rotor surface. The conventional shape of a Savonius rotor is a “S-

shape” that is created by two semi-circular buckets. The top view of the rotor is shown in 

Figure 2.1. The blades can be made out of plastic or aluminum sheets and bent into a semi-

circular shape.  

 
Figure 2.1: Top View of a Savonius Rotor with Characteristic “S” Shape. 

 

A gearbox which takes the low rotational speed of the rotor shaft and increase it to 

the desired level, in order to get the generator to produce required power. The optimum 

gear ratio can be achieved by a combination of gears like planetary, helical, spur or worm 

gears. 
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The rotational mechanical energy of the turbine rotor is converted to electrical en-

ergy by the generator. The generator work on the Faraday’s law of electromagnetic induc-

tion, according to which a conductor moving in a magnetic field produces an induced emf. 

Generators can be used to generate AC or DC current as the application requires. 

 

Dynamic Equations 

A mathematical model for the Savonius rotor subject to an external wind with speed 

u∞, will be derived to evaluate the torque acting on the rotor. A lumped parameter analysis 

allows application of Newton’s and Kirchhoff’s laws. 

Aerodynamics 

Wind power is a function of the mass flow rate per unit time and the kinetic energy 

per unit area which is given by 

                                     31

2
wP Auρ ∞=                                                    (2.1) 

The swept area A H D= ∗ is dependent on the rotor height, H, and the rotor diame-

ter, D (Hayashi et al., 2005). 

The tip speed ratio λ, is defined as the ratio of the peripheral velocity of the Savo-

nius rotor to the free stream velocity so that 

                                     rotoru

u
λ

∞

=                (2.2) 

The peripheral velocity of the Savonius rotor is the product of the angular velocity, ω, and 

the rotor radius, R, such that urotor = ωR. 
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 The Savonius rotor torque is the product of the moment of inertia of the rotor and 

the angular acceleration of the rotor, or T Jα= . 

The efficiency of a wind turbine is measured by the amount of power harnessed by 

the wind turbine. The efficiency is measured by Coefficient of power, Cp, which is defined 

as the ratio of the power extracted by the wind turbine to the available wind power so that 

                                      t
p

w

P
C

P
=           (2.3) 

Mechanics 

The power extracted by the Savonius rotor is given by  

                                       tP Tω=               (2.4)  

A mathematical model has been formulated using the basic definition of torque, T 

= Force × Distance, to evaluate the power of a two-bucket Savonius rotor with zero over-

lap ratio (e/D=0)(refer to Appendix B).  

The total torque is given by 

                               

/2

0

2 cos sin ( + )dwT rF

π

θ θ φ θ= ∫                                   (2.5) 

where r is the bucket radius, Fw is the wind force, respectively. 

The wind force is given by 

                                                             21

2
w dF Au Cρ ∞=                                (2.6) 

where A is the swept area of the rotor (A=4rH), ρ is the free stream air density, u∞ is the 
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free stream velocity, and dC  is the coefficient of drag. The coefficient of drag for the re-

treating and the advancing blades are given by dMC  and dDC , respectively. 

 

Figure 2.2: Savonius Rotor Schematic with Angle of Attack, ϕ. 

Using equations (2.5) and (2.6), the estimated mechanical torque, Tm, is 

                        ( ) ( )
/2

2

0

cos sin ( + )m mech dT u C r d

π

η ρ θ θ φ θ∞= ∫                                     (2.7)   

where ϕ is the angle of attack as can be seen in Figure 2.2 and ηmech is the mechanical 

efficiency. From the above equation it can be concluded that the total torque is a function 

of the angle of attack which varies from 0 to 2π. According to the Newton’s Law of Rota-

tion, the net external torque is proportional to the angular acceleration. The rotation of the 

Savonius rotor is about a single principal axis therefore, the relation is given by 

                                      
total

d
T T J J

dt

ωα= = =∑                                                  (2.8) 

Using the above relation, the mechanical equation of the system is derived as 
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                                                + m e

d
J B T T

dt

ω ω = −                                                       (2.9)            

where B is the generator damping coefficient, J is the combined moment of inertia of the 

system and Te is the electromagnetic torque developed by the generator and is given by 

equation (2.11)(Ahmed et al., 2013). 

Generator (Permanent Magnet Synchronous Generator) 

 The voltage equations for a permanent magnet synchronous generator (PMSG) in 

the dq- frame are given by 

                                       

     ds
ds s ds r q qs d

qs

qs s qs r d ds r r q

di
v R i L i L

dt

di
v R i L i L

dt

ω

ω ω λ

= − + −

= − − + −
                                    (2.10) 

where vds and vqs are d- and q- axis stator voltages, ids and iqs are the d- and q-axis stator 

currents, ωr is the generator shaft speed, Rs is the stator resistance, Ld and Lq are the d- and 

q-axis inductances, and λr is the rotor flux linkage (El-Saady et al., 2013).  

  
The electromagnetic torque developed can be calculated by 

                                             ( )3
( )

2
e qs r d q ds qs

P
T i L L i iλ= − −                                          (2.11) 

where P is the number of pole pairs of the generator (Khater et al., 2014). 

The generator mechanical speed, ω, and the generator electrical speed, ωr, are re-

lated by the relationship 

                                                           
r Pω ω=                                                                 (2.12) 
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CHAPTER THREE 

PERMANENT MAGNET SYNCHRONOUS GENERATOR 

Introduction 

The conversion of mechanical energy of the wind turbine rotor into electrical en-

ergy is done using a generator coupled with the rotor shaft. For large applications, AC 

machines are used and for small applications DC machines are preferred. The right selec-

tion of generator is very important for wind turbine applications. Some of the factors that 

need to be considered include source, type of load, and speed of the wind turbine. The most 

popular types of generators in wind turbine applications are induction and synchronous 

generators are shown in Figure 3.1. 

 

Figure 3.1: Commonly Used Electric Generators in Wind Turbine (Underlined block is 

the generator under investigation). 

 

The induction machines (refer Figure 3.2) can work both as a motor and a generator 

depending on the speed of the rotor shaft. If the shaft rotates slower than the synchronous 

speed, the machines works as a motor and if the shaft rotates faster than the synchronous 
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speed, the machine works as a generator. The main advantage of an induction machines is 

its low cost and ease of availability. The disadvantages of an induction machine are: (1) 

Need external excitation to produce a rotating magnetic field,and (2) requires a gear-train 

which is responsible for noise and high maintenance. 

Permanent magnet synchronous generators (refer Figure 3.2) do not require a gear-

train and therefore are called direct driven generators (Sankar and Seyezhai, 2013). These 

generators are more efficient and reliable than the induction type generators (Badoni and 

Prakash, 2014). This is the main reason that these generators are used for small scale ap-

plications. The permanent magnet generators have multiple poles and therefore can directly 

be connected to the rotor shaft. These type of generators have become really popular re-

cently because of the reduced price of the magnets, improved magnetic material properties, 

and reduced mass of the system (Yin et al., 2007). 

 

Figure 3.2: Permanent Magnet and Induction Type Machine Configuration. 
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In this research, the analysis of a permanent magnet synchronous generator coupled 

with a Savonius wind turbine is presented. The modelling of the wind turbine system and 

the generator is done in MATLAB/Simulink environment. 

 

Reference Frame Theory 

The reference frame theory is a very useful tool in simplification of the analysis of 

electrical machines and implementation in various simulation environments. The complex 

three-phase AC circuits are simplified using the reference frame theory by reducing the 

number of variables in the system. Let us consider three-phase electrical variables, xa, xb, 

and xc, which can represent either voltage, current, or flux linkage (El-Saady et al., 2013). 

This system can be represented by a space vector �⃗�𝑥 in the three-phase (abc) co-ordinate 

system. The space vector �⃗�𝑥 rotates at an angular speed ω with respect to abc stationary 

frame (El-Saady et al., 2013). The relationship between the space vector �⃗�𝑥 and its three 

phase values xa, xb, and xc is shown in Figure 3.3. 

The a, b, and c axes are 2π/3 out of phase and are used to calculate the three phase 

values xa, xb, and xc by projecting �⃗�𝑥 onto the corresponding axes. The magnitude of the �⃗�𝑥 

is assumed constant and hence the waveforms of xa, xb, and xc are sinusoidal with a phase 

shift of 2π/3. To simplify the three-phase model calculations, the three-phase variables in 

abc frame are transformed into two-phase variables in dq (direct-quadrature) reference 

frame where the d and q axis are perpendicular to each other. An arbitrary position is as-

sumed for the dq-axis with the abc reference frame so that the angle between a-axis and d-

axis is θ. The dq-frame rotates at an angular speed ω; where ω = dθ/dt. 
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Figure 3.3: Space Vector 𝒙𝒙��⃗  and its Three-phase Variables xa, xb, and xc. 

The transformation can be done by simply deriving the trigonometric functions of 

the orthogonal projections of xa, xb, and xc onto the dq-axis also known as Park’s Transfor-

mation (Gupta and Kumar, 2015). The sum of all the d-axis and q-axis projections can be 

expressed in a matrix form as follows: 

         
cos cos( 2 / 3) cos( 4 / 3)2

sin sin( 2 / 3) sin( 4 / 3)3

a

d

b

q

c
A axis B axis C axis

x
x

x
x

x

θ θ π θ π
θ θ π θ π

− − −

   
 − −   =     − − − − −       
  

                    (3.1) 

The transformed dq variables contain all the information of the abc variables pro-

vided the system is three-phase balanced. If two variables of a three-phase balanced system 

are known, the third one can be calculated by 
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0a b cx x x+ + =                              (3.2) 

 

Figure 3.4: Transformation of Three-phase (abc) Variables 

into Two-phase (dq) Variables. 

The abc variables can be derived from the dq variables by performing an inverse 

transformation on the matrix form equation (3.1) so that 

                              

cos sin

cos( 2 / 3) sin( 2 / 3)

cos( 4 / 3) sin( 4 / 3)

a

d

b

q

c

x
x

x
x

x

θ θ
θ π θ π
θ π θ π

−   
    = − − −          − − −   

                              (3.3) 
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Dynamic Equations 

The dynamic modeling of the PMSG is done using the equivalent circuits of the 

reduced dq-axis circuits (Weisgerber et al., 1997). The reduced equivalent circuits of the 

d-axis and q-axis circuits in the rotor-field synchronous reference frame are shown below, 

is valid for both salient- and non-salient pole synchronous generators. The transformation 

can be done by simply deriving the trigonometric functions of the orthogonal projections 

of xa, xb, and xc onto the dq-axis. 

 

 
 

Figure 3.5: Simplified dq-axis Model of PMSG in Rotor-field Synchronous Reference 

Frame. 

 

The stator voltage equations for the above system of PMSG can be calculated by 

 

                                               ds
ds s ds r q qs d

di
v R i L i L

dt
ω= − + −                                         (3.5a) 

                                          
qs

qs s qs r d ds r r q

di
v R i L i L

dt
ω ω λ= − − + −                                  (3.5b) 

The electromagnetic torque developed by the PMSG is given by 

 

                                               
3

( ( ) )
2

e r qs d q ds qs

P
T i L L i iλ= − −                                          (3.6) 

The rotor speed ω is given by equation (2.9). 
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To implement the dynamic model of the PMSG and study the dynamic simulation, 

equation (3.5) can be written as 

                                           

1
( ) /

1
( ) /

ds ds s ds r q qs d

qs qs s qs r d ds r r q

i v R i L i L
S

i v R i L i L
S

ω

ω ω λ

= − − +

= − − − +
                            (3.7) 

 

From the above equations, the block diagram of the PMSG can be developed and 

the dynamic behavior can be studied. The mechanical torque, Tm, the rotor flux linkage, λr, 

and the dq-axis stator voltages vds and vqs are the input variables and the electromagnetic 

torque, Te, the rotor mechanical speed, ω, and the dq-axis stator currents ids and iqs are the 

outputs. 

The magnitude of stator current and voltage can be calculated using the following 

equations. 

2 2

s d q
i i i= +                                                          (3.8) 

2 2

s d q
V V V= +                                                      (3.9) 

The active electrical power generated is calculated using the equation: 

23r
active e s s

P T i R
P

ω
= × −                                                 (3.10) 

The total electrical power generated is calculated using the equation: 

Total gen s sP V iη=                                                         (3.11) 
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CHAPTER FOUR 

COMPUTER SIMULATION OF TUBINE AND GENERATOR 

The Savonius rotor and the PMSG are the main subsystems of the wind turbine 

system. These two subsystems can further be broken down into smaller subsystems. The 

flow diagram for the Simulink model is shown in Figure 4.1. These include the rotor dy-

namics, drive train model, stator current model, dq to abc model, voltage drop across load 

model, abc to dq model, and magnitude of stator current and voltage calculation. A com-

plete model of the Savonius wind turbine system is shown in Figure 4.2. 

 

Figure 4.1: Flow Diagram for Simulink Model of PMSG. 

Rotor Dynamics 

The input to the Savonius rotor is the wind speed and the angle of attack for the 

calculation of torque acting on the rotor. The rotor dynamics model can be seen in Figure 

4.3. The rotor shaft is directly coupled with the generator shaft hence, the generator speed 

is equal to the wind turbine rotor speed.  

Drive Train Model 

The input to the drive train model is the mechanical torque Tm, which is equal to 

the aerodynamic torque produced by the turbine blades as there is no gearbox in the system. 

The generator employed here is a non-salient pole permanent magnet synchronous gener-

ator. The drive train model is shown in Figure 4.4. 
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Figure 4.2: Simulink Model for Savonius Wind Turbine.
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Figure 4.3: Rotor Dynamics of the Savonius Rotor. 

 

Stator Current Model 

The output of the drive train model i.e. ωe, acts as an input to calculate the d and q 

components of the stator current using the equation (3.8). The load current and load volt-

ages are supplied by a three-phase balanced load connected to the PMSG (Figure 4.5). 

 

dq to abc conversion model 

The d-q components of the load current are converted to the abc (three-phase) com-

ponents using the reference frame theory. The conversion of the components is done ac-

cording to the equation (3.3) and is shown in Figure 4.6. 
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Figure 4.4: Drive Train Model. 
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Figure 4.5: Stator Current (idq) Model. 
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Figure 4.6: dq to abc Conversion Model. 
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Load Voltages and abc to dq Conversion Model 

The load voltages across the three-phase balanced resistive load are calculated us-

ing the Ohm’s law. The Simulink model of the subsystem is as follows: 

 

Figure 4.7: Voltage Drop Across Electrical Load Model. 

 

The d- and q-components of the voltage drop across the resistance is the input to 

the stator current model. So, an abc to dq conversion (Figure 4.8) is required and then the 

output are fed to the stator current model. The abc to dq conversion is done using the equa-

tion (3.1). 

The electromagnetic torque and the electrical power (Figure 4.9) generated are cal-

culated using the equations (3.6) and (3.11), respectively. Also, the magnitude of the stator 

current (Figure 4.10) and voltage (Figure 4.11) is calculated using equations (3.8) and (3.9), 

respectively. 



32 

 

 

Figure 4.8: abc to dq Conversion Model. 
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Figure 4.9: Electromagnetic Torque and Electrical Power Model.
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Figure 4.10: Stator Voltage Magnitude Model. 

 

Figure 4.11: Stator Current Magnitude Model. 
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CHAPTER FIVE 

EXPERIMENTAL WIND TURBINE SYSTEM 

The Savonius wind turbine that is used for obtaining the experimental results is 

shown in Figure 5.1. The rotor is made of stainless steel sheets that are rolled to form the 

buckets that are rigidly mounted on the wooden end plates. The rotor shaft connects the 

rotor to the generator located at the base of the rotor. The entire system is enclosed within 

a solid aluminum frame to provide stability, also, the frame is enclosed within a wire net 

to prevent any injury while operation. The wind turbine is driven by a blower placed in 

front of the turbine. 

 

Figure 5.1: Experimental Savonius Wind Turbine. 
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An anemometer is provided with the system to measure the wind speed. The wind 

speed is measured with the help of a NPN type proximity switch (Figure 5.2) by Square D 

(Class 9006 Type PJA112N Series A) and a small magnet that is fixed to the anemometer 

hub. Another proximity switch (Figure 5.2) by Square D (Class 9006 Type PJD112N Series 

A) is used to measure the rpm of the wind turbine. The sensor is attached at the base of the 

frame and a magnet is placed at the bottom of the end plate. 

  

Figure 5.2: Proximity Sensors Used for RPM Measurement. 

 

The frequencies generated by the wind speed sensor and turbine rotor sensor are 

converted to DC voltage using Frequency to Analog converters (Figure 5.3). The FACs are 

calibrated to produce an output of 0-10 VDC in proportion to the input frequency.  
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Figure 5.3: Frequency to Analog Converters. 

Table 5.1: List of Material Used for Turbine Fabrication. 

Materials Dimensions 

Aluminum sheet Thickness=0.0076 m Length=1.12 m, Width=0.58 m 

Bearings Quantity=2 

Extruded aluminum 

frame 
Length=13.10 m Height=0.0254 m 

Shaft Length=1.20 m Diameter=0.0254 m 

Stainless steel net Length=1.092 m Height=1.175 m 

Wooden sheet Thickness=0.0127 m Diameter=0.82 m 

 

A permanent magnet alternator is used as the generator in the system (Figure 5.4). 

The Wind Blue DC-540 (Wind blue power, June 2015) is a low wind generator which is 

used in areas that experience low wind speeds. The 3-phase AC voltage output of the gen-

erator is converted to DC voltage using a rectifier and charge controller (Figure 5.5). The 

charge controller is used to prevent any overload on the system by braking the voltage at 

15 V.  



38 

 

 

Figure 5.4: Permanent Magnet Alternator. 

 

Figure 5.5: Rectifier and Charge Controller. 
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Figure 5.6: Voltage and Current Transducers. 

The voltage and current in the system are measured across a load using a DC volt-

age transducer and DC current transducer respectively shown in Figure 5.6. Two 12 VDC 

fans (Figure 5.7) and a LED are the load on the system. The LED is used for a visual 

detection of the power being produced by the system.  

National Instruments USB-6001 is the data acquisition device used to acquire the 

signals from the sensors and the generator Figure 5.8. LabView software is used for creat-

ing a virtual instrument (VI) on a PC for acquiring data from the DAQ (Koch-Ciobotaru, 

2010). A complete list of materials and components used are shown in Table 5.1 and Table 

5.2. The block diagram of the experimental system below (refer to Figure 5.10) shows all 

the connections and devices used for data analysis and obtaining results. 
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Table 5.2: List of Components Used for Obtaining Results. 

Part Manufacturer Part Number Specs 

Alternator Wind Blue DC 540 3 phase AC 

Blower Triple S Mach III 
1 HP, 4100 CFM, 

110 VAC 

Current Transducer CR Magnetics CR5200-2 
0-2 ADC, 0-5 VDC, 

24 VDC 

DAQ card (ADC) 
National  

Instruments 
USB 6001 USB powered 

Frequency to Analog 

Converter (Quantity = 2) 

Red Lion  

Controls 
IFMA0035 

1 Hz - 25 kHz, 0-

10VDC, 24 VDC 

Power Supply CR Magnetics CRPS24VDC-120 24 VDC, 110 VAC 

Proximity Sensor 1 Square D 
Class 9006 Type 

PJA112N 
9-32 VDC 

Proximity Sensor 2 Square D 
Class 9006 Type 

PJD112N 
9-32 VDC 

Rectifier Misol WDT-FW-1203-1 
300 W 12, 15 V 

Brake Voltage 

Voltage Transducer CR Magnetics CR5310-50 
0-50 VDC ,0-5 

VDC, 24 VDC 

 

 

Figure 5.7: Two 12 VDC Fans Used as Electrical Load. 
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Figure 5.8: National Instruments Data Acquisition System. 

 

Figure 5.9: Blower Used for Wind Turbine. 
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Figure 5.10: Block Diagram of the Experimental System.
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Figure 5.11: Electrical Schematic Diagram of the System.
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CHAPTER SIX 

DISCUSSION OF EXPERIMENTAL AND NUMERICAL RESULTS 

This chapter contains all the results acquired from the experimental setup and the 

simulation. NI data acquisition device has been used to extract the data from the various 

sensors and transducers in LabView software. The simulation has been performed in 

MATLAB/Simulink environment. 

The experimental and numerical results have been acquired to make a comparison 

between the two results. The experimental results have been acquired at three different 

wind speeds (16.9 m/sec, 19.8 m/sec, and 21.9 m/sec), corresponding to the three levels on 

the blower. The outputs have been recorded using an electrical load of two 12 VDC fans. 

The mathematical model was developed in MATLAB/Simulink using the equations per 

Appendix B. The numerical results have been acquired using the parameters from the Ex-

perimental Savonius rotor (Table D.3) and 1 kW Permanent Magnet Synchronous Gener-

ator as per Table D.3. From the testing performed in this study, the proposed mechanical 

efficiency is 70% considering the weight and instability of the experimental system, and 

the generator has an efficiency of 33% from the data provided by the manufacturer. 

In Figures 6.1a and 6.1b, the experimental results for the voltage and current are 

plotted against the wind speed corresponding to the three blower speed levels, respectively. 

Figure 6.1 shows the feasibility of generating measurable power from the experimental 

system. It can be concluded that power generated is low but, it provides a starting point for 

further investigation.  
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Figure 6.1: Experimental Results versus Blower Level: a) Voltage, and b) Current. 

 

Figures 6.2a, 6.2b, and 6.2c shows the dynamic data for the voltage, current, and 

power generated by the experimental system at different blower levels and wind speeds, 

respectively. The experimental system has been run for a total of 30 minutes, 10 minutes 

at each blower setting/ wind speed. It can be observed that the system stabilizes in a short 

time and the power output has a maximum value of 2.7 Watts at a wind speed of 21.9 

m/sec. The signals also have some chattering which is due to the environmental factors. 

Looking at the data sheet provided by the manufacturer of Wind Blue DC-540, we should 

be generating 4.5 W but, we are only producing 2.7 W electrical power. In order to generate 
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the desired power, the rpm needs to be increased from 115 to 500 rpm by using a gear train 

in the system. 

 

 

 
 

Figure 6.2: Experimental Results with measured: a) Voltage, b) Current, and c) Power 

versus time for three wind speeds. 
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The numerical results from the MATLAB/Simulink simulation are shown below. 

The numerical results are obtained at a wind speed of 21.9 m/sec. Figures 6.3a and 6.3b 

show the three-phase electrical voltage and current produced by the PMSG. The three-

phase electrical voltage and current reach a steady state value around 10 sec but the re-

sponse has been plotted for only 2 sec to provide a clearer look at the oscillations of the 

outputs. The voltage and current values are in pu (per-unit) and plotted versus time. The 

comparison of the following results with the paper by El-Saady et al., 2013, show similar 

result profiles but the magnitudes differ due to different generator parameters.  

 

 
 

Figure 6.3: Simulation Results for the Permanent Magnet Electric Generator - a) Three-

phase Voltage; and b) Three-phase Current. 



48 

 

The direct and quadrature components of the voltage and current are shown in 

Figures 6.4a and 6.4b, respectively. The magnitude of the voltage produced is also shown, 

denoted by Vs (6.4a) and the magnitude of current is denoted by Is (6.4b). It can be ob-

served that after t = 20 sec, the d-axis components of voltage and current become zero and 

therefore the magnitude becomes equal to the q-axis component. The outputs values are in 

pu (per-unit) system and are converted to absolute values later for comparison. Similar 

validation process has been followed for the direct (d-axis) and quadrature (q-axis) com-

ponents of the voltage and current as for the three-phase electrical voltage and current. 

 

 

Figure 6.4: Numerical Results for Generator Model - a) Direct and Quadrature 

Component, and Magnitude of Voltage, and b) Direct and Quadrature Component, and 

Magnitude of Current. 
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Figure 6.5: Numerical Results for the: a) Angular Velocity of the Rotor, b) Mechanical 

and Electromangentic Torque Generated, and c) Total Electrical Power Generated by 

Wind Turbine. 
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Figure 6.6: Comparison of Experimental and Numerical Results at Three Different Wind 

Speeds: a) Voltage, b) Current and c) Total Electrical Power Generated. 
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Figure 6.5a shows the angular velocity of the wind turbine rotor. From the response 

it is evident that it is a second order system and finally settles at a 96 rpm at t = 20 sec. 

Figure 6.5b shows the input mechancal torque to the generator, and the electromagnetic 

torque developed by the generator. Since, the mechanical torque (Equation (7)) is a func-

tion of sin and cos, the result is oscillatory and the value oscillates between 0-35 Nm. It 

can be observed that the generated electromagnetic torque follows the rotor angular veloc-

ity profile and settles at 20 Nm. The rotor angular velocity drives the generator and elec-

tromagnetic torque is a result of generator motion. The generator electrical power generated 

is depicted in Figure 6.5c. The generated electrical power is sufficient to run a LED and 

two 12 VDC fans connected in parallel but, we want to generate more power for battery 

charging and running electrical devices.  

Figure 6.6 shows the comparison between the experimental and numerical results 

of rotor angular velocity, voltage, current, and total electrical power generated at three 

different wind speeds. It can be observed that there are differences in the numerical and 

experimental results which are caused due to limitations of the mathematical model and 

experimental system. For example: there is a 16%, 11%, 61% and 4% difference between 

the simulation and test results at a 21.9 m/sec operating wind speed. The possible explana-

tion for the difference is discussed in the following paragraph. We want the difference to 

be 5-10 % for all the outputs that can be made possible by rectifying the model limitations 

and errors. 
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As can be seen from the comparison of simulation and experimental results, there 

is a difference between two. There are a number of reasons for the error. Firstly, the as-

sumptions made for the wind turbine model in the simulation, result in an approximation 

of the torque model for the Savonius rotor. Secondly, the PMSG parameters in the simula-

tion vary from the PMSG used in the experimental system the parameters for the PMSG 

used in experimental system are unknown. Thirdly, the mathematical model does not in-

clude any three-dimensional (3D) fluid effects, environmental effects, and the power loss 

through the vent between the rotor blades. The experimental system generates a very low 

power due to several reasons. First reason is the high instability of the turbine rotor due to 

the heavy weight. Second, the preventive net further reduces the efficiency of the turbine 

by reducing the net force acting on the rotor. Third, the wheels used for maintaining mo-

bility of the wind turbine add to the instability of the system as the system keep vibrating 

and displacing hence, preventing the rotor from reaching a stable rpm. 
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CHAPTER SEVEN 

CONCLUSION 

The work in this thesis presents a complete model of a Savonius wind turbine. An 

approximate lumped parameter model for the wind turbine system was developed using 

the mathematical equations for the torque acting on the Savonius rotor as per Appendix C. 

There are a number of assumptions made in the torque calculations i.e. the wind force 

acting on the rotor surface remains constant the entire time, the coefficient of drag does not 

vary with the rotation, and the rotor area exposed to the wind remains constant. Also, the 

three dimensional fluid effects are ignored to further simplify the formulation of torque 

formula. The PMSG model is developed using the simplified equations in the d-q synchro-

nous rotating reference frame. The entire wind turbine system is implemented in the 

MATLAB/Simulink environment to study the system response under different wind 

speeds. The wind turbine parameters used in the simulation are per Table D.3 and the 

PMSG parameters used are per Table D.3 (Khater et al., 1978). The results from the ex-

perimental setup were obtained using the National Instruments Data Acquisition Device. 

The outputs from the sensors and the transducers are connected to the NI DAQ device. For 

real time data acquisition process a program has been generated in the LabView software. 

The experimental and simulation data has been exported to Excel for further analysis and 

comparison. 

A comparison of the experimental and numerical results shows some differences 

which may be attributed to the fact that the mathematical model developed for torque acting 

on the Savonius rotor. An approximate model for the torque has been developed as per 
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Appendix B. The model does not account for the three-dimensional (3D) fluid effects and 

environmental effects. Also, an assumptions has been made for the PMSG parameters used 

in the simulation (refer to Table D.3) because the PMSG parameters are unknown for the 

experimental system. Considering the size of the experimental Savonius wind turbine, the 

electrical power generated is very low. There are a number of reasons for the low electrical 

power generation. First, the thickness of the aluminum sheet used for the rotor buckets is 

large and results in high system inertia. Also, the wooden end plates further add to the 

inertia of the system.  Second, the misalignment of the rotor buckets attached to the shaft 

leads to instability of the turbine rotor. Third, the protective wire mesh around the frame 

of the turbine reduces the effective wind force acting on the wind turbine rotor. Fourth, the 

wheels added to the frame for the purpose of mobility of the wind turbine, reduce the sta-

bility of the system. All of the above reasons reduce the rotor speed, therefore reducing the 

power generated by the wind turbine.  
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Appendix A 

MATLAB Code 

 

Torque Calculation 

A_t = D_t*H_t;   % area of turbine rotor (m^2) 

B = 0.0065;    % damping coefficient 

Cd1 = 2.3;    % coefficient of drag of advancing side 

Cd2 = 1.1;    % coefficient of drag of retreating side 

D_t = 0.7112;    % diameter of turbine rotor (m) 

H_s = 1.20015;  % height of the shaft (m) 

H_t = 0.5842;    % height of the turbine rotor (m) 

J = (4*rho2*H_t*t_t*r_t^3/3) + ((2*pi*r_s*H_s + 2*pi*r_s^2)*rho2*r_s^2/2)+ 

(rho3*pi*r_p^4*t_p);   % moment of inertia 

Jg = 0.026;    % moment of inertia of generator 

Je = Jg + J;   % total moment of inertia 

rho1 = 1.2754;   % density of air (kg/m^3) 

rho2 = 2700;   % density of aluminum (kg/m^3) 

rho3 = 600;                  % density of plywood (kg/m^3) 

r_p = 0.4064;   % radius of end plate (m) 

r_s = 0.0127;   % radius of the shaft (m) 

r_t= d_t/2;   % radius of turbine rotor (m) 

t_p = 0.0127;   % thickness of end plate (m) 
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t_t = 0.00762;   % thickness of turbine rotor (m) 

 

% torque calculation 

k=1; 

X = 0.5*A_t*rho1*(Cd1-Cd2)*d_t;             % constant terms in the torque integral 

syms x 

for a=0:pi/60:2*pi                                         % angle of attack varies from 0 to 2*pi   

    q = int(cos(x)*sin((a+x)) , x, 0, pi/2);       % integral varying theta from 0 to pi/2   

    Q = abs(q);                                                % absolute value of the torque   

    torque(k,1)= Q; 

    k = k+1; 

    plot(a*180/pi,Q,'*')                                    % plotting torque vs angle of attack 

    hold on 

end 

W = double(torque); 

hold off 
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Appendix B 

Torque Calculation for Savonius Rotor 

A mathematical model for the torque acting on the Savonius rotor is derived using 

the formula, Torque = Force x Distance. 

 

Figure B.1: Savonius Rotor Schematic. 

 

In Figure B.1, α is the angle of attack, θ is the angle subtended by the point of im-

pact at the center of the rotor, r is the radius of the semi-circular section of the rotor, and 

u∞ is the free stream velocity. 

1. Given : r, θ, α, A (area of rotor), ρ (free stream density), dC  (Coefficient of drag), 

u∞, and F (wind force) 

                                            21

2
dF Au Cρ ∞=                                                      (B.1) 

                                           

2. According to the definition:  Torque = Force x Distance 
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From figure B.2, we can deduce that  

                                . .sin( OAC)T OA F OA F= × = ∠                                       (B.2) 

 

Figure B.2: Savonius Rotor with Angles and Forces. 

 

3. In ∆AMB,  

 

Figure B.3: Calculating the Length, MB. 

• Case I (when 2Θ < π/2) 



60 

 

cos(2 )
MB

r
θ− =                                                                                     (B.3) 

, cos(2 )So MB r θ= −                                                                              (B.4) 

• Case II (when 2Θ > π/2) 

cos(2 )
MB

r
θ− =                                                                                     (B.5) 

, cos(2 )So MB r θ= −                                                                              (B.6) 

 

4. In ∆AMO and ∆ABO, 

 

• Case I 

 

Figure B.4: Calculating the Length, OM. 

 

OM OB BM= +                                                                                    (B.7) 

cos(2 ) r(1 cos(2 ))OM r r θ θ= + = +                                                       (B.8) 

 

• Case II 
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Figure B.5: Calculating the Length, OA. 

OM OB BM= −                                                                                     (B.9) 

cos(2 ) r(1 cos(2 ))OM r r θ θ= + = +                                                     (B.10) 

,  cos( )=
OM

Also
OA

θ                                                                             (B.11) 

cos( )

OM
OA

θ
=                                                                                         (B.12) 

2(1 cos(2 )) (1 2cos 1)
2 cos

cos( ) cos( )

r r
OA r

θ θ θ
θ θ

+ + −
= = =                              (B.13) 

5. In ∆OAC, 

 

 

Figure B.6: Calculating the Angle, OAC. 
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 OAC = ( - ( + )) π θ α∠                                                                        (B.14) 

  

6. Substituting the unknowns into the equation of torque gives ; 

 

 

. .sin( )T OA F OAC= ∠                                                                         (B.15) 

21
2 cos sin( -( + ))

2
dT r A u Cθ ρ π θ α∞

 =  
 

                                             (B.16) 

21
2 cos sin ( + )

2
d

T r A u Cθ ρ θ α∞
 =  
 

                                                   (B.17) 

  Net torque on the rotor is given by  

 

 
/2

2

0

1
2 cos sin ( + )

2
net dT r u C d

π

θ ρ θ α θ∞
 =  
 ∫                                           (B.18)                                         

( ) ( )
/2

2

0

cos sin ( + )net dT A u C r d

π

ρ θ θ α θ∞= ∫                                            (B.19) 

 

where α varies from 0 to 2π.  
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Appendix C 

Lookup Plots 

 

Figure C.1: Manufacturer’s Plots Validation (No Load Voltage). 

 

 

Figure C.2: Manufacturer’s Plots Validation (Short Circuit Current). 
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Figure C.3: Manufacturer’s Plot for No Load Voltage and Short-circuit Current. 

 

Figure C.4: Lookup Plot for Rotor RPM. 
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Figure C.5: Lookup Plot for Anemometer RPM. 
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Appendix D 

 

List of Materials and Components 

 

 

Table D.1: List of Materials. 

Materials Dimensions 

Aluminum sheet Thickness = 0.0076 m Length = 1.12 m, Width = 0.58 m 

Bearings Quantity = 2 

Extruded aluminum frame Length = 13.10 m Height = 0.0254 m 

Shaft Length = 1.20 m Diameter = 0.0254 m 

Stainless steel net Length = 1.092 m Height = 1.175 m 

Wooden sheet Thickness = 0.0127 m Diameter = 0.82 m 

 

Table D.2: List of Components. 

Part Manufacturer Part Number Specs 

Alternator Wind Blue DC 540 3 phase AC 

Blower Triple S Mach III 
1 HP, 4100 CFM, 

110 VAC 

Current Transducer CR Magnetics CR5200-2 
0-2 ADC, 0-5 VDC, 

24 VDC 

DAQ card (ADC) 
National In-

struments 
USB 6001 USB powered 

Frequency to Analog 

Converter (Quantity = 2) 

Red Lion Con-

trols 
IFMA0035 

1 Hz - 25 kHz, 0-

10VDC, 24 VDC 

Power Supply CR Magnetics CRPS24VDC-120 24 VDC, 110 VAC 

Proximity Sensor 1 Square D 
Class 9006 Type 

PJA112N 
9-32 VDC 

Proximity Sensor 2 Square D 
Class 9006 Type 

PJD112N 
9-32 VDC 

Rectifier Misol WDT-FW-1203-1 
300 W 12, 15 V 

Brake Voltage 

Voltage Transducer CR Magnetics CR5310-50 
0-50 VDC ,0-5 

VDC, 24 VDC 
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Table D.3: Summary of Model Parameters with Numerical Values and Corresponding 

Units. 

Symbol Parameter Value Units 

A Swept Area 0.4155  m2 

B Damping Coefficient 0.3 - 

D Rotor Diameter 0.7112 m 

Do End Plate Diameter 0.8128 m 

f Frequency 36 Hz 

H Rotor Height 0.5842 m 

Jg Generator Inertia 3.1053 kgm2 

Ld = Lq d-q axis Inductance 5.0 mH 

n Number of Blades 2 - 

P Pole Pairs 12 - 

Pbase Rated Power 1000 W 

Rs Stator Resistance 20 Ohm 

Tbase Rated Torque 35.37 Nm 

tp Thickness of End Plate 0.0127 m 

tt Thickness of Rotor 0.0076 m 

Vbase VoltageLine-Line 165 V 

ωbase Rated Speed 28.27 rad/sec 

λr Flux 0.60 Wb 

ηgen Generator Efficiency 33% - 

ηmech Mechanical Efficiency 70% - 

 

 

The following equation have been used in calculating the base values of parameters 

for per-unit (pu) system conversion. The dynamic equations of the PMSG have been sim-

ulated in per-unit system and the results are converted to absolute values using the follow-

ing equations. 

base base baseP T ω=                                                     (D.1) 

 ;  
3

base
base base L L

base

P
I V V

V
−= =

×
                                          (D.2) 

3

base
base

base

V
Z

I
=

×
                                                    (D.3) 
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baser base baseL Iλ =                                                       (D.4) 

,

, pu

d q

d q

base

L
L

L
=                                                        (D.5) 

pu

s
s

base

R
R

Z
=                                                         (D.6) 

2

base
base

Z
L

fπ
=                                                         (D.7) 

For instance, consider the case where the base voltage (line-line), Vbase, and the base cur-

rent, Ibase, are 165 V and 3.5 A, respectively for a 1 kW generator (refer to Table D.3). The 

base impedance, Zbase, and the base inductance, Lbase, can be calculated as 

165
27.22

3 3 3.5

base
base

base

V
Z

I
= = =

× ×
                                    (D.8) 

 
27.22

0.1204
2 2 (36)

base
base

Z
L

fπ π
= = =                                        (D.9) 

assuming a frequency of 36 Hz for the selected generator (refer to Table III). Therefore, 

the d- and q- axis inductances in per-unit (pu), Ld,q pu, can be calculated if Ld,q, = 0.005 H 

as 

,

,

0.005
0.0415

0.1204pu

d q

d q

base

L
L

L
= = =                                      (D.10) 
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