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Abstract

We describe a scaffolding approach to the task of coreference resolution that incrementally combines statistical clas-

sifiers, each designed for a particular mention type, with rule-based models (for sub-tasks well-matched to determin-

ism). We motivate our design by an oracle-based analysis of errors in a rule-based coreference resolution system,

showing that rule-based approaches are poorly suited to tasks that require a large lexical feature space, such as re-

solving pronominal and common-noun mentions. Our approach combines many advantages: it incrementally builds

clusters integrating joint information about entities, uses rules for deterministic phenomena, and integrates rich lex-

ical, syntactic, and semantic features with random forest classifiers well-suited to modeling the complex feature

interactions that are known to characterize the coreference task. We demonstrate that all these decisions are impor-

tant. The resulting system achieves 63.2 F1 on the CoNLL-2012 shared task dataset, outperforming the rule-based

starting point by over 7 F1 points. Similarly, our system outperforms an equivalent sieve-based approach that relies

on logistic regression classifiers instead of random forests by over 4 F1 points. Lastly, we show that by changing the

coreference resolution system from relying on constituent-based syntax to using dependency syntax, which can be

generated in linear time, we achieve a runtime speedup of 550% without considerable loss of accuracy.

1 Introduction

Coreference resolution—clustering expressions that refer to the same entity in a discourse—is an impor-

tant component in most language understanding tasks, including text classification, information extrac-

tion, question answering, textual entailment, and summarization (Mitkov 2002; Steinberger et al. 2007;

Gabbard et al. 2011; Mitkov et al. 2012; Kilicoglu et al. 2013).

Recent coreference systems have drawn on two distinct paradigms for the task. One is the standard

supervised machine learning (ML) paradigm used throughout natural language processing. This has been

applied to coreference by a number of classic systems (Connolly et al. 1994; McCarthy and Lehnert 1995;

Kehler 1997; Soon et al. 2001; Ng and Cardie 2002; Rahman and Ng 2009) and more recently, enhanced

with innovative ways to make use of broader information, such as the entity-mention model of Luo et

al. (2004) and many kinds of global models (Mccallum and Wellner 2004; Daumé III and Marcu 2005;

Denis and Baldridge 2007; Haghighi and Klein 2010). More recent machine learning advances have come
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from coreference-trees (Fernandes et al. 2012), ranking models (Durrett and Klein 2013), stacking models

(Clark and Manning 2015), and neural models (Wiseman et al. 2015).

An earlier, classic line of work had focused on rule-based approaches to the special case of anaphora

(Hobbs 1978; Lappin and Leass 1994), and early in the 20th century a number of scholars suggested

that coreference might be a domain where such rule-based approaches might outperform machine learn-

ing (Stuckardt 2002; Zhou and Su 2004; Stuckardt 2005; Mitkov et al. 2007). Indeed, Haghighi and

Klein (2009) showed that a coreference system based on deterministic syntactic/semantic rules could

achieve the state of the art.

Drawing on these intuitions, Raghunathan et al. (2010) and Lee et al. (2011) and Lee et al. (2013) devel-

oped the sieve architecture, which relies on a sequence of hand-written rules (sieves), ordered from most to

least precise. Like most modern architectures, the sieve architecture draws on rich linguistic features (Lee

et al. 2013; Durrett and Klein 2013; Soon et al. 2001; Rahman and Ng 2009; Bengtson and Roth 2008)

and is entity-based (Luo et al. 2004; Yang et al. 2008; Ng 2010; Clark and Manning 2015): decisions

are made, not about mentions in the text, but about entities—clusters of mentions in the system’s model

of the world—allowing the system to reason about the properties of entities as a whole. The system’s

precision ordering allows it to first link high-confidence mention-pairs, and only later consider lower-

confidence sources of information. The sieve-based approach was the top performer at the 2011 CoNLL

challenge, and has become a component in state-of-the-art systems for many languages, including those

that performed best in the 2012 CoNLL challenge in English (Fernandes et al. 2012) and Chinese (Chen

and Ng 2012), and has been applied to various languages (Yuan et al. 2012; Zhang et al. 2012), domains

(biomedical) (Gilbert and Riloff 2013; Jindal and Roth 2013), and tasks (like joint coreference/entity

linking) (Hajishirzi et al. 2013).

Nonetheless, this rule-based sieve system, like all state of the art systems, is insufficient to address the

coreference problems that hold back true language understanding.

Our first goal in this paper is to understand why. We therefore performed a detailed error analysis of the

rule-based approach, identifying several important limitations such as poor performance on pronominal

anaphora. Anaphora resolution depends on combining many small cues from the surrounding context,

something that is hard for a rule-based system. Rule-based systems, in particular, do not deal well with rich

lexical information, since it is difficult to write rules that correctly deal in advance with all possible context

word situations. Dealing with rich lexical features is exactly where machine-learning based systems shine,

since with sufficient training data and appropriate lexical templates they can learn the fine-grained lexical

idiosyncracies that play such an important role in disambiguation in general.

Our results also show that errors pattern by mention type: linking content words depends on head-word

semantics, pronoun errors are often caused by non-referential uses of it or you, while proper noun errors

have to do with naming patterns in the real world.

Based on this error analysis, our second contribution is to explore an architecture for coreference res-

olution that maintains the scaffolding approach of the sieve architecture but integrates it with machine-

learning-based models. In doing so, we draw on previous work that proposed to integrate the sieve archi-

tecture with machine learning (Denis and Baldridge 2008; Chen and Ng 2012; Ratinov and Roth 2012).

Our hybrid architecture consists of a series of sieves, like previous work, but incorporates both rule-

based and statistical sieves trained by machine learning. Each statistical sieve is now designed around

a particular mention type (common nouns, proper nouns, pronouns) and is based on random forests.

Previous research has suggested that successful machine-learning coreference resolution is particularly

dependent on feature conjunction: individual features don’t give strong signals for coreference (Wiseman

et al. 2015). Random forests naturally model large numbers of conjoined features. Further, our approach
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trains each sieve on the output of the previous sieves, which allows each sieve to be individually optimized

on the appropriate examples in the context in which they appear. The resulting system is simple, intuitive,

global, modular, and extensible.

We perform a number of experiments exploring the characteristics of this new hybrid architecture. Is

the sieve-structured architecture better than simply throwing all the features into a single large classifier?

Is it helpful to have some deterministic (non-machine learned) sieves? Does the ordering of sieves mat-

ter? Does the architecture facilitate the creation of useful features of entire entity clusters (rather than

just features based on mentions)? Are random forests better suited for coreference resolution than linear

classifiers? We answer these questions while showing that the new system works significantly better than

previous systems.

Our third contribution is designed to address a performance problem with the sieve-based architecture:

it is extremely slow. We analyze the run time of the end-to-end coreference resolution system and show

that is dominated by the constituent-based syntactic parser, which accounts for 81% of the run time. To

address this, we converted several of our components, such as mention detection and pattern-based sieves,

to using dependency-based syntax, which can be generated in linear time (Chen and Manning 2014). We

show that the entire coreference resolution system can be sped up by 5 times, at a loss of accuracy of only

1.1 CoNLL F1 points.

2 Error Analysis by Mention Type

We begin with an error analysis, inspired by and building on a number of previous analyses of errors in

various coreference systems. For example Stoyanov et al. (2009) analyzed the performance of an early

coreference resolution system by resolution classes. They found that proper nouns were easier to resolve

than common nouns, that third person ungendered pronouns (it and they) were the most difficult to resolve,

and that the accuracy of mention detection played a huge role in system performance.

The difficulty of pronouns has been confirmed by a number of previous analyses. Kummerfeld and

Klein (2013) analyzed missing or extra mentions and mis-clustered entities, showing, e.g., the important

role of pleonastic pronouns (you, it) in errors. Martschat and Strube (2014, 2015) propose a framework for

comparing coreference errors, and evaluate such errors for entity-pair systems, finding that pronouns, and

especially third-person genderless pronouns (it, they) are a particularly large sources of errors. Wiseman

et al. (2015) also found that pleonastic pronoun mentions constitute a particularly large source of errors.

Other error analyses have pointed to large number of errors in common nouns. Recasens et al. (2013)

showed that a particularly large source of error is caused by trying to link common noun mentions that

do not have overlapping head words, e.g., app and software, a finding replicated also by Wiseman et al.

(2015).

In this section we categorize errors by mention type, following these previous models, but focusing on

a state-of-the-art sieve approach, and using an oracle method to investigate which words and situations

are most problematic for each type of mention. An analysis by type has a particular advantage in our work

because, unlike for most of the other systems previously analyzed, it aligns directly with our system com-

ponents; e.g., many errors coming from resolving second person pronouns would suggest improvements

in the pronoun-resolution component.

We investigate the following types of errors (examples in Table 1):

• Mention Detection: Errors in detecting correct mention spans or referentiality, including false posi-

tives that are singletons (whether non-referential or just mentioned once in the document), and false

negatives (missed mentions) that are mention recall errors.
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Type mention detection recall error

Text “. . . a security guard at the intersection of the road towards Disney . . . ”

Note Correct mention in bold; the system selects the whole text due to incorrect syntax.

Type mention detection: singleton

Text “. . . no cars can enter unless they have special permission . . . ”

Note The pronoun is generic and should not be considered as a mention.

Type proper - proper

Text . . . people of the DPRK will be focused on inflicting the bitterest disasters upon the

United States of America,” the statement read. . . . Reports recently surfaced that the

U.S. was willing to consider bilateral talks . . .

Note Missed coreference link between United States of America and the U.S. (recall error)

Type common - common

Text “Right now, there should be seven main types of pipes buried underground. They

include those like you just mentioned, as well as pipes like those for heating and

communication, among others. Truly, these pipes are closely linked to the lives of

citizens.”

Note System incorrectly linked these pipes to the second, rather than the first, bold mention.

Type proper - common

Text Barack Obama yesterday outlined plans to close a loophole that lets companies ...

avoid paying taxes on overseas profits. The US President used the Budget for 2016 . . .

Note Missed link between Barack Obama and the US president.

Type list - list

Text “The blood of goats and bulls and the ashes of a cow were sprinkled on those who

were no longer pure enough to enter the place of worship. The blood and ashes made

them pure again – but only their bodies.”

Note Missed link between the two mentions in bold.

Type anytype - pronoun

Text “Uh now look Lanny Davis Sixty Minutes gave Bill Clinton one hour last year ... He

criticized people. He criticized Ken Starr. They didn’t have Ken Starr on to rebut.”

Note They incorrectly linked to people instead of Sixty Minutes.

Table 1. Examples of coreference resolution errors, by type.

• Proper-Proper: Errors when both mention and correct antecedent are proper nouns.

• Common-Common: Errors between two common-noun mentions.

• Proper-Common: Errors between a proper-noun antecedent and common-noun mention.

• List-List: Missing or incorrect links between mentions in lists or enumerations.

• AnyType-Pronoun: Pronoun resolution errors, with any type of antecedent. This includes errors in

detecting generic pronouns.
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Prior error analyses have generally drawn conclusions by studying the frequency of errors of different

types. But in many coreference systems, and especially in entity-based systems like ours, errors influence

each other; fixing one type of error could thus change the proportions of other errors. We therefore propose

to directly study the impact of different errors on final system performance by using a partial oracle

system. The partial oracle maintains the same sieves as the actual system, except the component being

analyzed, which is replaced with perfect decisions.

We compare the best rule-based system (Lee et al. 2013), which serves as the starting point of our

proposal, against these partial oracle systems. For example, to analyze proper-common errors, this oracle

replaces system decisions with gold (perfect) decisions when resolving a common-noun mention with a

proper-noun antecedent. This comparison lets us quantify “missed opportunities” from each component,

and, consequently, the upper limit of coreference performance if the component had been perfect.1

System CoNLL F1 diff

Rule-based system 56.08 -

Partial Oracle

Mention Detection 74.58 18.5

→ Singleton Detection 68.35 12.27

→ Mention Recall 59.35 3.27

Proper-Proper 59.36 3.28

Proper-Common 57.77 1.69

Common-Common 62.36 6.28

List-List 56.19 0.11

AnyType-Pronoun 70.33 14.25

→ I 56.78 0.7

→ You 57.16 1.08

→ He 57.49 1.41

→ She 56.53 0.45

→ It 59.36 3.28

→ We 57.22 1.14

→ They 59.05 2.97

Table 2. Error analysis of the rule-based system showing performance increase of the partial oracle. The

score difference indicates the upper limit of improvement we can achieve by fixing the corresponding error

type. The → indicates a subclass of the error type listed immediately above. The last rows containing

pronoun types include all wordform variants with the same lemma, including accusative and reflexive

pronouns. For example, the I row includes also my, me and myself.

We perform this error analysis on the development partition of the CoNLL 2012 Shared Task

1 This partial oracle also captures dependencies between components, e.g., fixing the common-common sieve might
improve pronominal resolution. We ran a second version of an oracle experiment to isolate components, comparing
perfect output against a second partial oracle, where only the sieve under investigation uses the actual resolution
algorithm and all other sieves use oracle decisions. The results of this experiment led to the same importance
ranking of components as the experiment we report here, and hence is not presented.
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dataset (Pradhan et al. 2012). This data is a combination of newswire, broadcast news, weblog, telephone

conversation, etc. The number of tokens in the development dataset is 160K (222 documents).

Table 2 lists the result of this experiment, from which we draw the following observations:

1) The most significant errors come from mention detection, followed by pronoun and common-common

errors, consistent with previous error analyses. We discuss each below.

2) The mention detection oracle has a considerably higher score than the current system, consistent with

the results of Stoyanov et al. (2009) and others. This is because the mention detection oracle solves two

difficult tasks: (a) identifying correct mention spans (requiring perfect parses), and (b) determining ref-

erentiality of mentions. To understand the distribution of these errors, we conducted two further oracle

experiments. In the mention recall experiment we added all mentions missed by the system (this fixes

error type (a) above). In the singleton detection experiment we used gold data to mark a mention as sin-

gleton or not, since singleton mentions are not coreferent with any other mentions in the corresponding

document (this fixes error type (b)). We found significantly more errors for error type (b), highlighting

the difficulty of detecting referentiality; indeed, this is actually a good part of the coreference resolution

problem itself, and previous error analyses have emphasized its importance (Wiseman et al. 2015). Men-

tion recall errors are largely caused by parsing errors (Kummerfeld and Klein 2013). The fact that the

performance improvement for this oracle is low indicates that parsing is already robust enough for this

task. All in all, this clearly shows that mention detection is not a trivial task, and there is clear room for

improvement.

3) As mentioned, pronominal resolution errors are the dominant error in coreference linking. The need for

improvements in pronominal resolution has been reported for earlier systems and is a consistent theme in

other analyses. The dominant pronominal error are the third person it and they mentions. The it errors are

mainly due to failures of detecting pleonastic it pronouns, suggesting that the pleonastic pronoun detection

in the deterministic system— a set of syntactic and lexical patterns drawing on earlier sets of patterns for

pleonastic detection like Lappin and Leass (1994)— has insufficient accuracy. The they errors are caused

by the ambiguity in gender and animacy of the pronoun they, which can corefer with most plural nouns,

or (singular or plural) organizations.

4) Common-common errors are the third most dominant error type. This is due to the high frequency of the

common-common coreferential links. But these errors are important also because these links likely require

semantics for correct resolution, to understand, e.g., that victim and casualty are synonyms (Recasens et

al. 2013).

5) While there are fewer errors involving proper-nouns than those involving common-nouns, consistent

with all previous research, there are still enough that need to be addressed.

6) A few rule-based sieves—such as the speaker-based sieve, which focuses on first and second-person

pronouns that appear in dialogue—work very well. For example, we generally solve first and second-

person pronouns within 1 F1 point of the oracle system. This highlights that rule-based methods are not

to be ignored: they perform very well when they need to manage few features and when the context can

be modeled deterministically (e.g., speaker turns in dialogue).

In summary, the analysis suggests that while rule-based sieves perform well in certain situations, they

have strong limitations when they need to manage a large lexical feature space, which is required for a

better mention detection or pronominal resolution. This larger message hints towards a hybrid solution,



A Scaffolding Approach to Coreference Resolution 7

which combines machine learning for scenarios that require many features with rule-based components

for scenarios that may be complex but can be unambiguously modeled by a domain expert.

In the next section, we describe such a hybrid approach, implemented in the same sieve architecture

which offers the right balance of simplicity (sieves can be independently constructed by different re-

searchers), and power (incrementally building entity clusters allows the extraction of complex, global

features patterns).

3 The Hybrid Architecture

The architecture of our model draws on the sieve architecture of Lee et al. (2013), with the goal of main-

taining the elements that made that architecture successful while incorporating machine learning to ad-

dress the problems identified in the error analysis above.

Like the Lee et al. (2013) model, we apply a series of resolution models sequentially, ordering the

models so as to keep the precision in the earlier sieves as high as possible. while injecting the maximum

amount of information on entities as early as possible. This strategy allows this model to incrementally

gather reliable information about the entities in text and use it to guide future decisions. 2

Our hybrid architecture consists of a series of seven sieves. Drawing on the insights of Chen and Ng

(2012), we combined both rule-based and statistical sieves. Our final system combines two rule-based

sieves and five statistical sieves trained by supervised machine learning, as shown in Figure 1. This archi-

tecture is simpler than the one proposed by Lee et al. (2013) (it has seven sieves, whereas Lee et al.’s has

10), yet, as we show later, it performs considerably better.

The five statistical sieves are each designed around a particular mention type: proper nouns, common

nouns, mixes of the two, lists, and pronouns. Thus the proper-proper sieve is dedicated to resolv-

ing links from proper-noun mentions to proper-noun antecedents. The idea for this modular architecture

comes from Ratinov and Roth (2012), who, drawing on the earlier work of Denis and Baldridge (2008),

suggested that re-organizing sieves according to mention type allows them to differently weight features

that may behave very differently for each type. Our results support Ratinov and Roth’s finding; as we

will see, lexical semantic features like word vectors are important for common nouns, while grammatical

structure and morphological attributes are more important for pronouns.

Although our work thus draws heavily on the Ratinov and Roth (2012) statistical sieve models and

other early work, we do explore some new architectural elements.

One is the classifiers themselves. Our approach is a hybrid one, combining rule-based and ML-based

sieves, whereas the Ratinov and Roth model, for example, focuses on ML models alone. As we show

below in our ablation study, combining rule- and ML-based components yields the best overall perfor-

mance. We also used random forests for all the statistical classifiers, unlike earlier models which tend to

use linear classifiers. Previous research has suggested that successful machine-learning coreference res-

olution is particularly dependent on feature conjunction: individual features don’t give strong signals for

coreference (Wiseman et al. 2015); this may explain the strong performance of deterministic systems, in

which rule-writers can build rules that explicitly conjoin large numbers of features. Random forests, like

all classifiers built on decision trees, very naturally model very larger numbers of conjoined features. Our

2 As much as possible, we kept the sieve order from the deterministic model by aligning the sieves in the two
approaches, e.g., the new “proper – proper” sieve approximately corresponds to the old “string match” one in (Lee
et al. 2013). the goal of maximizing early information led us to change the original ordering in one situation: we
placed the detection of appositives (Pass 2) before the “proper – proper” sieve due to the additional information it
detects, despite its lower precision.
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Fig. 1. Proposed hybrid architecture combining deterministic and statistical sieves.

experiments validate this observation: the approach that relies on random forests outperforms considerably

the approach where the statistical classifiers are implemented using linear classifiers.

Our model incorporates a different decision model than that of Ratinov and Roth (2012). Similar to Lee

et al. (2013), our model commits to decisions at the end of sieves, while Ratinov and Roth allow early

decisions to be overridden by following sieves. Our model is thus less powerful, but has the advantage of

less complicated bookkeeping. As we show, our approach achieves state-of-the-art performance despite

the simpler model. Similar to Ratinov and Roth (2012) our hybrid model creates training data for a given

sieve from the output of the previous sieves. This approach thus allows each sieve to be individually

optimized on the appropriate examples in the context in which they appear in an actual disambiguation

scenario. Similar to previous work, we found that this paradigm yields better performance.

Finally, we augmented the mention detection component of the new system, since we found that men-

tion detection is one of the biggest sources of errors. We introduce a novel hybrid mention detector, which

uses a rule-based component to propose mention candidates, and a ML component to disambiguate be-

tween multiple spans that share the same headword.

We note that our strategy that focuses on decomposing the task into simpler subtasks and using decision

trees or deterministic models to address them differs considerably from recent trends in using neural

networks for coreference resolution. For example, Wiseman et al. (2016) use recurrent neural networks to

capture global representations of entity clusters directly from their mentions. Clark and Manning (2016)

use a deep reinforcement learning approach to directly optimize a neural mention-ranking model for

coreference resolution. Clark and Manning (2016) currently obtain the best performance on the English

and Chinese portions of the CoNLL 2012 dataset. However, while neural-network approaches tend to

perform well, they produce models that are hard to interpret, which increases their long-term maintenance

cost (Sculley et al. 2014). Our approach mitigates this cost by producing a series of simpler models that
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are easier to interpret, as they rely either on deterministic approaches, or on decision trees that can be

analyzed by human domain experts.

In the following subsections we describe our mention detection strategy, followed by details of our

proposed sieves.

3.1 Mention Detection

As we have shown in §2, mention detection is the most significant source of errors in the rule-based

system. Mention detection is complicated by the following two issues.

First, identifying singleton mentions improves the system’s performance considerably, as shown in

Table 2. However, in practice, few coreference resolution approaches identify singleton mentions ahead of

time, because this is a complex task that is nearly identical to the complete coreference resolution problem,

i.e., it requires the exploration of all possible antecedents, just not the selection of one. Following previous

work, we also defer this decision to the subsequent sieves (see below).

Second, identifying correct mention spans is complicated by the imperfect syntax produced by existing

parsers. For example, in the text the car was stopped by [[a security guard] at the intersection of the road

towards Disney], the parser incorrectly attached the PP at the intersection of the road towards Disney to

the NP a security guard, instead of the verb. The mention detection component thus had difficulty deciding

the end boundary for the mention headed by guard (see the two closing brackets). Choosing the wrong

boundary is a considerable error, because it generates both a false positive (the longer mention) and a false

negative (the shorter mention).

We propose a hybrid approach for mention detection that addresses the above issues with a combination

of deterministic rules (driven by syntax) and statistical decisions to handle ambiguities. Our approach

starts by marking most noun phrase constituents, named entities, and pronouns as mention candidates.

We filter these candidates using a minimal set of exclusion rules: (a) following the OntoNotes annotation

guidelines (Pradhan et al. 2007; BBN Technologies 2006), we discard adjectival forms of nations or

nationality acronyms (e.g., American, U.S., U.K.); and (b) we remove the following stop words: there,

etc., ltd., ’s, hmm, mm, ahem, um.

The second component of our mention detection algorithm deploys a statistical classifier to identify

correct mention boundaries when there are multiple mention candidates sharing the same headword, e.g.,

as in the security guard example above. In this situation, a binary classifier is deployed to select a single

mention from all candidates sharing the same head word. Table 3 lists the features used by this classifier.

Our mention candidate list is by design over-inclusive. We let the following coreference resolution

sieves handle the incorrect mentions in this candidate list by eventually marking them as singletons (i.e.,

by not linking them with any other mentions), which are removed from the output in a post-processing

step.

3.2 Rule-based Sieves

Following mention detection, our approach deploys two rule-based sieves in succession, adapted from

our previous work (Lee et al. 2013). These sieves capture complex patterns that yield deterministic res-

olution decisions. The Speaker Identification sieve links all first person pronouns to the speaker of the

corresponding utterance. The Precise Constructs sieve identifies coreference relations that are driven
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Named entity type

Words immediately preceding/following the mention

First/last word in the mention

Part-of-speech of the words in the above two feature groups

Whether this candidate is the larger NP or smaller NP

Whether another named entity with the same text exists in the same document

Whether or not the mention is the full span of a named entity

Table 3. Features used by mention span classifier.

by the following strong syntactic patterns: appositive, predicate nominative, role appositive, relative

pronoun, acronym, and demonym3.

These two sieves are deployed on all mention types (common nouns, proper nouns, pronouns), and are

executed first because they are highly precise. Although they only capture a small subset of the existing

coreference relations, the precise information these sieves extract about the entities can be exploited by

the later statistical sieves.

3.3 Statistical Sieves

Motivated by the sieve architecture of Ratinov and Roth (2012) and our error analysis, we introduce five

statistical sieves. Each error class from §2 corresponds to a distinct statistical sieve (or pass) in Figure 1.

As Ratinov and Roth (2012) and Denis and Baldridge (2008) propose, designing sieves by mention class

allows us to incorporate different knowledge into each sieve that is specifically useful for resolving men-

tions of that types. For example, linking common nouns requires synonym information that is computable

from word vectors, whereas finding the antecedent of a pronoun requires information on attributes like

animacy. We detail next the resolution algorithm, i.e., deciding if two given mentions belong to the same

cluster or not at prediction time, followed by the training process for the statistical sieves, and the features

used.

Resolution

Figure 2 illustrates the resolution algorithm that is used for all statistical sieves. When resolving a mention,

(e.g., his in the example in the figure), the sieve attempts to link the mention to all possible antecedents

within a certain sentence range. The sentence range may be different between sieves (di indicates the

sentence-distance range for the i-th pass). Antecedents that are out of range are not considered. The an-

tecedent candidate that yields a coreference link generated with the highest confidence (the president in

the second sentence in Figure 2) is selected as the antecedent. We control for link over-generation by im-

posing a minimal confidence threshold, that, again, is specific to each sieve (ti: merging threshold for i-th

pass). If no confidence value is larger than ti, then no coreferent antecedent is selected for the correspond-

ing mention, i.e., the mention is currently considered a singleton (this state may change in the subsequent

3 Demonyms are not annotated in OntoNotes. However, we found them to be useful as they help construct a richer
entity context, which is used by the following sieves. The actual demonyms are discarded in a post-processing step
that follows all sieves.
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Fig. 2. Resolution in a statistical sieve, with mention subscript indices (and different colors) indicating current

mention clusters. The example—the resolution of his in line 3— shows the classification of potential antecedent The

question. The system ultimately chooses the higher confidence answer (the president).

sieves). All di and ti hyper-parameters are tuned on the OntoNotes development set. Importantly, we use

both mention-pair and cluster-pair features for all statistical sieves (see §3.4).

Training

Each statistical sieve trains on the output produced by the previous sequence of sieves on the training data.

Thus, at each pass, a sieve is exposed to a list of mentions and a set of (partial) clusters that group the

mentions according to decisions of the previous sieves. From this data, for each mention, we extract at

most one positive (coreferent) and possibly multiple negative (non-coreferent) training data points con-

sisting of the pair of the corresponding mention and one antecedent, where the antecedent must appear

within the sentence range for this sieve.

For the coreference resolution task, the number of negative training examples is considerably larger

than the number of positive examples (the former is quadratic in the number of mentions in a document,

whereas the latter is linear). To mitigate excessive training times and to guarantee that the task fits in

memory, we implemented a subsampling process for negative examples. We deploy this subsampling

component for the sieves where the number of negative examples is excessive (currently the proper–

proper and common–common sieves). The subsampling process is the following:

(1) We start by training a classifier for the relevant sieve using all positive examples gathered for all

mentions in the training dataset, and a random subsample of 20% of the negative examples.

(2) We then inspect the classifier confidence values (estimated probabilities) for all the negative exam-

ples, and keep only the top 20% most-ambiguous negative examples, i.e., whose confidence values for
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belonging to the positive class is high. We train the final classifier using these more informative negative

examples and all positive examples.

This method is conceptually similar to methods that favor training examples near the class bound-

aries (Burges 1998).

All classifiers are implemented using random forests (Breiman 2001). The only hyper-parameters tuned

were the percentage of features to be used for each split point, and the number of individual decision

trees4.

Example Document

[Russian Foreign Minister Igor Ivanov]1 congratulated Kostunica2 on [[his]2 election victory]3
He1 also gave him? a letter from Russian President Vladimir Putin.

E/ M Example value Feature

M 1 Sentence distance between the two mentions
M 2 Mention distance between the two mentions based on antecedent ordering. The value is 2 because is the second

antecedent considered.
E 1 Minimum sentence distance between any two mentions from each cluster. In the example, the cluster2:

{Kostunica, his} and cluster?: {him} have sentence distances 1 and 1, with the minimum 1

M - Clause distance – # of clauses (“S*” constituents in parse tree) between two mentions when they occur in the

same sentence
- No Document type: is this document conversational text?
- “cnn” Document source: the example is from CNN
M “narrator” Who is the speaker of the anaphor mention?
M 1 / 1 the (antecedent / anaphor) mention length
M No Is length of antecedent (2 in example) longer than the length of the anaphor mention (1 in example)?
E 2 / 1 How many mentions are currently in the (antecedent / anaphor)’s cluster?
M “dobj” / “iobj” / ”dobj-iobj” What is the role (subject or object) of the (antecedent / anaphor), and their combination?
M “antecedent starts with definite arti-

cle = No”

The (antecedent / anaphor) starts with (definite / indefinite) article (’the’ / ’a’, ’an’)

M “mention is an indefinite pronoun =

No”

The (antecedent / anaphor) (is/starts with) an indefinite pronoun (anybody, something, etc.)

M “antecedent is a reflexive pronoun =

No”

The (antecedent / anaphor) is a reflexive pronoun (herself, etc.)

M No The headword is the last word of the anaphor mention
M No The anaphor has a Wh- or that- phrase after the headword
M “mention doesn’t have indefinite ar-

ticle nor post phrase”

The combination of definiteness of the anaphor mention and post-headword phrase above

E “P-Pr” / “Pr” The list of mention types for the mentions in the (antecedent / anaphor) cluster: (C)ommon, (P)roper, (Pr)onoun
M “S-VP-NP-NNP” / “S-VP-NP-

PRP”

The path in the parse tree from the root to the (antecedent / anaphor)

E 5 / 7 The sentence # that includes the first mention in the (antecedent / anaphor) cluster
M “antecedent is bare plural = No” Whether the (antecedent / anaphor) is (bare plural / quantifier / partitive / % / demonym / ’etc.’)
M No Whether the later mention is pleonastic it
M No Whether the antecedent or anaphor have negation modifier: e.g., no books
M singular, male, animate, unk, per-

son / singular, male, animate, third,

other

The number, gender, animacy, person, named entity type attributes of (antecedent / anaphor)

M singular-singular, animate-animate,

male-male, unk-third, person-other

The combination of the attributes of antecedent and anaphor

E singular, male, animate, unk, per-

son / singular, male, animate, third,

other

The number, gender, animacy, person, named entity type attributes of the (antecedent / anaphor) cluster

M, E all agree Whether each attribute agrees
E No Any mention in the anaphor cluster has i-within-i relation with any mention from the antecedent cluster
M No Antecedent is the speaker detected for the anaphor
M Yes (narrator) The speaker of antecedent and anaphor are the same
M No Antecedent and anaphor are subject and object of the same sentence
E No Any mention from the antecedent cluster and any mention from the anaphor cluster have subject-object relation
M No Person attributes disagree but speakers are identical
E No The strings of any two mentions from the antecedent and anaphor clusters are identical. Similar to ExactString-

Match in Lee et al. (2013)
E No The strings of any two mentions from the antecedent and anaphor clusters, after removing any Wh- or that-

phrases that follow the headwords, are the same. Similar to RelaxedExactStringMatch in Lee et al. (2013)
M No Headwords are identical

continued. . .

4 We used the default value, unlimited-depth, for the maximum depth of the decision trees.
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Example Document

[Russian Foreign Minister Igor Ivanov]1 congratulated Kostunica2 on [[his]2 election victory]3
He1 also gave him? a letter from Russian President Vladimir Putin.

E/ M Example value Feature

M No Headwords are identical, and both are proper mentions
E No Any two mentions from each cluster have the same headword
E No Any two mention from each cluster have the same headword, and both are proper mentions
M No The anaphor mention has a proper noun which is not in antecedent
E No Both clusters have at least one proper mention
M No Anaphor and antecedent mentions contain different location named entities (LOC)
E No Each cluster has at least one incompatible modifier with mentions in the other cluster
E No Any mention in the anaphor cluster is an acronym of another mention from the antecedent cluster
M No The anaphor and antecedent are in the (appositive / predicate nominative / role appositive) relation. Similar to

PreciseConstruct in Lee et al. (2013)
M No The anaphor mention contains a number, which is not found in the antecedent mention
E No Any word in a mention span from the anaphor cluster appears in the antecedent cluster
M - The number of elements if the anaphor is an enumeration.
M 3rd person pronoun The type of the pronoun (masculine pronoun, ’you’, possessive, etc.)
M VBD The preceding and following word or part-of-speech tag of you know
M No The anaphor and antecedent mentions are both (’I’ / ’you’)
M No The anaphor and antecedent are an ’I’ and its speaker relation
M No The anaphor mention is a reflexive pronoun and the antecedent is its subject
M No The anaphor and antecedent have different speakers and they are: ’I’, ’you’, ’we’
M No The (antecedent / anaphor) is ’you’ in ’you know’
M “mHeadPOS-PRP” / “mHeadword-

him” etc

The (part-of-speech/lexical) feature of (headword / first / last / preceding / following word) of (antecedent /

anaphor mention)
E “him” / “him” The (headwords / words) in the anaphor cluster which are not a (headword / word) of any mention in the an-

tecedent cluster
M 0.089 The Euclidean distance between the two headwords in their corresponding word vectors
M 0.089 / 0.089 / 0.249 / 0.301 The distance between the two first / last / preceding / following words in their word vectors
M 0.089 The distance between the two aggregate vectors (the sum of all word vectors in the mention)
M 0.089 The average distance between any two word vectors from each mention

Table 4: Features (using entity (E) or mention (M) information) that compare an anaphor mention with

a candidate antecedent; showing in the second column sample features extracted between Kostunica and

him in the given example document.

3.4 Features

We list in Table 4 the features used by all statistical sieves. As the table shows, features may exploit

information that is local to the mention (M), or that is global, from the currently available cluster of

mentions pointing to the same entity (E). For example, one feature aggregates gender information from

all the mentions in the antecedent’s cluster.

We incorporated all the features used by the rules in Lee et al.’s system (2013), plus part-of-speech

and lexical features from Durrett and Klein’s system (2013) and word-embedding features from Mikolov

et al. (2013) to model semantic similarity. The vectors were generated with the skip-gram model using

200 dimensions over the English Gigaword dataset (LDC2011T07). The features that use these vectors

include the Euclidean distance between the vector representations of headwords, first and last words in

mention/antecedent, immediately preceding and following words, and average distances of all words in

both mentions.

Importantly, each statistical sieve uses a selected subset of this feature space, only retaining features

that occur at least 20 times in the training data and have a pointwise mutual information (between feature

and corresponding class) over 0.0001 (chosen by coarse tuning on the development dataset). As we show

in the next section, the sieves adapt to their corresponding tasks by choosing very different features.
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3.5 Coreference Resolution Using Dependency-based Syntax

The proposed coreference system (similar to most others) uses a constituent parser for several purposes.

These include extracting noun phrases for mention detection, finding headwords that are required by

various sieves, and finding syntactic relations such as apposition, which are used in the precise syntactic

constructions sieve.

Our analysis of the run time of the end-to-end coreference resolution system revealed that the syntactic

parser dominates the execution time: on average, 81% of the run time is spent on constituent parsing.

This is because the constituent-based syntactic parser used in our system (Klein and Manning 2003)

relies on probabilistic context free grammars (PCFG), which are applied using a chart-based dynamic

programming algorithm with a runtime complexity of O(N3), where N is the number of words per

sentence. By contrast, the actual coreference resolution algorithm has a theoretical runtime complexity of

O(M2), where M is the number of mentions in a document, because a mention could be linked to any

other mention in the document. Furthermore, in practice this is O(M), because we constrain the search

for antecedents to a small number of preceding sentences.

While there are more efficient algorithms for constituent parsing (Petrov and Klein 2007; Roark and

Hollingshead 2008; Yi et al. 2011), in general dependency parsing is faster (Cer et al. 2010). Unlike the

constituent-based representation, the dependency-based representation is flat, i.e., each node (or word) is

connected to other nodes by a directed grammatical relation such as nominal subject. An example con-

trasting the two syntactic representations is shown in Figure 3. Because of this simpler representation,

dependency parsers using the shift-reduce algorithm achieve state-of-the-art performance at a run time

linear in the sentence length (Chen and Manning 2014). Previous work has shown that, despite their sim-

plicity, these dependency parsers perform similarly with constituent parsers for more complex language

processing tasks such as discourse parsing (Surdeanu et al. 2015).

3.5.1 Using a dependency parser instead of a constituency parser

While the above analysis of run times is good motivation for switching to dependency-based syntax,

this implies several nontrivial changes throughout the coreference resolution system. We discuss them

below. We chose the Stanford dependency representation (de Marneffe and Manning 2008) as our new

syntactic representation. We generate it in two different ways. For the runtime analysis, we generate

Stanford dependencies directly by replacing our original constituent parser (Klein and Manning 2003)

with the dependency parser of Chen and Manning (2014). For the qualitative comparison against other

systems that evaluated on the CoNLL 2012 shared task data (Pradhan et al. 2012), we start with the

constituent parse trees that are included in the dataset and were used by all previous work, and convert

them to Stanford dependencies using software included in the CoreNLP toolkit (Manning et al. 2014).

Mention detection: One of the main reason the constituent syntax is widely used for coreference reso-

lution is due to mention detection. Our coreference resolution system (similarly to most others) considers

noun phrases, named entities, and pronouns as mentions to resolve. Out of these, noun phrases require

parsing to be identified. As shown in Figure 3, noun phrases (NP) can be trivially extracted from con-

stituent trees, but they are not explicitly marked in dependency trees.

To identify NPs in dependency trees, we implemented the following algorithm. For all nodes whose

part-of-speech in the dependency tree is N*, PRP*, or DT*, we take the subtree of the node (i.e., all

nodes syntactically dominated by this node) as a mention, as long as the node does not serve as a deter-

miner (det) or noun modifier (nn) for another node. If the subtree contains a copular relation (cop), we
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(a) Constituency tree

(b) Dependency tree, using Stanford dependencies

Fig. 3. Parse trees for the sentence ”The Constitution does not expressly give the president such power.”

remove all words dominated by this dependency up to the governor of the copular relation. For example,

in Figure 3, there are three nouns Constitution, president, and power. The corresponding noun phrases are

created simply by taking the subtree governed by these three nouns in the dependency tree, yielding the

following three NPs: The Constitution, the president, and such power.

We show an additional, more complex example in Figure 4 (showing the constituency tree above the

text, and the dependency tree below). In this tree, there are two DTs: This and the, and three nouns (N*):

reason, price, and instability. Below we show the system decisions for each of these mentions (and other

non-mentions):

1) Mention: This — its part-of-speech is DT, and it is not in a determiner relation with another word.

2) Not Mention: the — its part-of-speech is DT, but it serves as modifier in a determiner (det) relation

with another word (reason).

3) Mention: price instability — this is a phrase covered by the subtree of the node instability, which has

an N* part-of-speech.

4) Not Mention: price — this has a N* part-of-speech, but it is in a noun modifier (nn) relation with

another word (instability).

5) Not Mention: This is the reason for price instability—this is a phrase covered by a subtree of the
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Fig. 4. An example of mention detection based on constituency tree or dependency tree

node reason, which has an N* part-of-speech. However, one of its child has the copular relation is - cop -

reason.

6) Mention: the reason for price instability — this is a phrase covered by the subtree of the node reason,

after removing all words up to the word in the copular relation (i.e., is).

Headword detection: Headword information is crucial in coreference resolution. For example, head-

word agreement is the most important feature in the resolution of proper and common noun anaphors.

For constituency syntax, there are a number of widely-used linguistic heuristics for discovering head-

words of constituent phrases (Collins 1999). For dependency syntax, by contrast, the extraction is much

simpler, because dependency relations are directed from governor (or headword) to modifier. Exploiting

this information, the headword of a sequence becomes the only word whose own head is outside of

the sequence. For example, in Figure 3, The cannot be the headword of the phrase The Constitution,

because its own headword (Constitution) is included in the sequence. On the other hand, the governor of

Constitution (give) is outside of the phrase. Thus Constitution becomes the headword for the entire se-

quence. Below are the headwords of all other mentions identified for the text in Figure 3 by this algorithm:

headword(the president) = president

headword(such power) = power

headword(This) = This

headword(price instability) = instability
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headword(the reason for price instability ) = reason

Syntactic relation detection: Particular syntactic structures like appositions or copular relations give

very strong clues for coreference (Lee et al. 2013). When we use a constituency tree for coreference, these

structures are discovered using regular expression patterns over constituent trees (Levy and Andrew 2006).

In contrast, the dependency tree labels these relations explicitly as cop and appos dependencies, so they

are trivial to extract. For example, in Figure 4, reason and This are in a copular relation. As a result, the

precise patterns sieve links the mentions the reason for price instability and This.

4 Evaluation

We evaluate our system on the English portion of the CoNLL 2012 Shared Task dataset (Pradhan et

al. 2012). This dataset is a combination of newswire, broadcast news, weblog, telephone conversation, etc.,

and contains 1.6M words and 2384 documents. Similar to the shared task, we calculate five coreference

metrics: MUC (Vilain et al. 1995), B3 (Bagga and Baldwin 1998), CEAFm, CEAFe (Luo 2005), and

CoNLL F1 (average of MUC, B3, and CEAFe), using the CoNLL 2012 scorer version 8.

4.1 Results

Table 5 compares the performance of our system under various configurations against previous work.5

The table includes three configurations of the random forest classifiers (for 100 and 1000 decision trees

trained on training set, and 1000 trees trained on train+dev dataset), three ablation experiments, where

we remove important components of our system, and two artificial configurations that analyze the impact

of the scaffolding architecture. The hyper parameters for all sieves were coarsely tuned to optimize the

CoNLL F1 score on the development set. In particular, we used a threshold of 0.2 for merging two mention

clusters for the pronoun sieve, and a threshold of 0.3 for all the other sieves (these apply over the merging

probability as produced by the RF). For the limit in sentence distance between two mentions we used: 5

sentences for the pronoun sieve, no limit for the proper – proper sieve, and 15 for all other sieves. The

feature subset size that the RF uses is: 50 features for the proper – proper sieve, and 30 for all other sieves.

All sieves used unpruned trees.

4.2 Discussion

The table shows that our best configuration (rows 9 or 10) gives comparable performance with a current

state-of-the-art system (Wiseman et al. 2015), and outperforms by nearly 8 CoNLL F1 points the rule-

based system of Lee et al. (2013), which served as the starting point of this work. This demonstrates that

it is possible to achieve roughly state-of-the-art performance while maintaining the modularity and most

of the simplicity of the original sieve architecture.

The experiments summarized in Table 5 allow us to answer several additional questions:

Are the rule-based sieves still important? The ablation experiment in row 11 shows that the rule-based

5 For all results in the table we used version 8 of the CoNLL scorer, which fixes several bugs from the version used
during the shared task. For this reason, these results are different from the ones reported in Pradhan et al. (2012).
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MUC B3 CEAFm CEAFe

System R P F1 R P F1 R P F1 R P F1 CoNLL F1

1 Lee et al. (2013) 65.08 62.41 63.72 50.23 54.08 52.08 58.45 53.95 56.11 54.01 44.27 48.65 54.82

2 Fernandes et al. (2012) 65.83 75.91 70.51 51.55 65.19 57.58 57.48 65.93 61.42 50.82 57.28 53.86 60.65

3 Durrett and Klein (2013) 66.58 74.94 70.51 53.2 64.56 58.33 59.19 66.23 62.51 52.9 58.06 55.36 61.4

4 Björkelund & Kuhn (2014) 67.46 74.3 70.72 54.96 62.71 58.58 60.33 66.92 63.45 52.27 59.4 55.61 61.63

5 Durrett and Klein (2014) 69.91 72.61 71.24 56.43 61.18 58.71 - - - 54.23 56.17 55.18 61.71

6 Clark and Manning (2015) 69.38 76.12 72.59 56.01 65.64 60.44 - - - 52.98 59.44 56.02 63.02

7 Wiseman et al. (2015) 69.31 76.23 72.60 55.83 66.07 60.52 - - - 54.88 59.41 57.05 63.39

# trees

8 100 68.55 76.03 72.10 55.56 65.63 60.18 60.99 68.82 64.66 51.60 61.83 56.25 62.84

9 This work 1000 68.82 76.02 72.24 55.75 65.69 60.32 61.29 68.89 64.87 51.94 62.02 56.53 63.03

10 1000 train+dev 68.75 76.4 72.37 55.82 65.94 60.46 61.15 69.15 64.91 51.99 62.5 56.76 63.2

11 − Rule-based sieves 100 66.68 76.59 71.29 51.52 67.10 58.28 58.09 67.32 62.37 50.66 60.55 55.17 61.58

12 − MD classifier 100 67.21 77.49 71.99 53.95 67.26 59.88 59.70 70.00 64.44 50.31 62.53 55.76 62.54

13 − Entity features 100 69.14 74.72 71.82 56.43 62.66 59.38 60.33 65.68 62.89 51.61 57.60 54.44 61.88

14 Single pass 100 71.87 69.08 70.42 60.03 57.16 58.49 63.92 62.61 63.24 54.09 56.60 55.31 61.41

15 Reverse ordering 100 68.39 75.79 71.90 55.32 65.22 59.86 60.71 68.23 64.25 51.76 61.06 56.03 62.60

16 Dependency tree 100 66.70 76.42 71.23 53.65 65.80 59.10 59.22 69.22 63.83 49.30 61.83 54.86 61.73

17 Logistic regression - 65.46 73.31 69.16 50.65 62.49 55.95 56.92 63.79 60.16 48.73 54.76 51.57 58.89

Table 5. Performance of our approach compared to previous work. Similarly to previous work, we used

the syntactic parse trees and named entities included in the CoNLL corpus. “# trees” is the number of

individual decision trees used by the random forest classifiers. Row 10 shows score of the model trained

on both train and development dataset. Rows 11 – 13 show three ablation experiments: “− Rule-based

sieves”: removing the first two rule-based sieves, “− MD classifier”: removing the statistical component

of the mention detection module described in Section 3.1, and “− Entity features”: removing the entity

level features (E) in Table 4. Rows 14, 15, and 16 show three different configurations. “Single pass”:

using a single statistical model with all features from Table 4 and no rule-based sieves, and “Reverse

ordering”: all sieves, both rule-based and statistical, but called in reverse order to the one in Figure 1.

“Dependency tree”: using dependency syntax instead of constituency. The dependency trees are generated

by converting the constituency tree provided with the dataset to Stanford dependencies using CoreNLP

software. All hyper parameters for rows 11 – 16 are identical to the configuration in row 8. We repeated

the comparison experiments (rows 8 and 11 – 16) 10 times and averaged the scores. A non-parametric

permutation test indicates row 8 is statistically significantly better than rows 11 – 16 (p < 0.01). Row

17 shows the performance of the best sieve architecture (row 10) but replacing each RF classifier with a

linear, logistic regression classifier. We used the CoNLL 2012 scorer version 8 for all reported scores.

sieves contribute 1.26 F1 points to the overall performance (row 8). This comes on top of statistical sieves

that contain features that capture the same information as the rules (e.g., our “narrator” feature in Table 4

captures if the current mention refers to the speaker, the same information used by the speaker detection

sieve). In the statistical sieves, these features are drowned out by many other features, which is avoided by

the deterministic process in the rule-based sieves. This result illustrates the benefit of hybrid architectures.

How important is the scaffolding architecture? The scaffolding architecture improves two aspects of

the singular classifier approach: (a) it captures (some of) the jointness of the task by incrementally con-

structing mention clusters, which are then available for the extraction of global features ((E) in Table 4),

and (b) it reduces the error rate by keeping the antecedent search space small in each sieve (e.g., only
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System CoNLL F1 with original CoNLL preprocessing Preprocessing

time

Coreference

resolution time

Total time Tokens / Sec Memory

requirement

CoNLL F1 with Stanford

CoreNLP preprocessing

Constituent 62.72 749 11 760 223 2.77G 60.5

Dependency 61.62 132 5 137 1238 2.70G 60.62

Table 6. Overall runtimes, i.e., starting from raw text, on the entire CoNLL shared task 2012 test dataset,

in seconds. We ran the two configurations on a single machine with two Intel Xeon CPUs E5-2660 @

2.20GHz (16 cores and 32 hyperthreading) and 128GB of RAM. The first CoNLL F1 reported (first col-

umn) is provided for reference from the previous table: it was measured when the system used the CoN-

LL-provided preprocessing (parser, NER, part-of-speech tagging). For the rest of the columns, we used

Stanford CoreNLP version 3.5.1 for all preprocessing. We used the CoNLL scorer version 8 for all scores.

proper nouns in the proper-proper sieve). We verified the importance of these two issues in rows 13 and

14, respectively. Row 13 shows that global (entity-based) features contribute 0.96 F1 points, whereas

solving all mentions jointly in a single classifier drops performance by 1.43 F1 points (as mentioned in

the table caption, rows 13 and 14 are compared against row 8). This demonstrates that, while joint in-

formation is indeed useful, the biggest benefit of the sieve architecture comes from the scaffolding of

components. We cannot be sure, however, what portion, if any, of this improvement is due to the fact that

having separate classifiers means we have more hyper parameters to tune (see Section 4.1). Row 17 shows

the performance of the linear classifier system with the same sieve architecture and features.

What is the impact of sieve ordering? Lee et al. (2013) show the importance of precise-first ordering

of sieves. To verify this for our hybrid approach, in row 15 we show the performance of an experiment

where all seven sieves are called in reverse order (from pronoun to speaker id). The performance drop of

0.24 F1 points indicates that sieve ordering is not crucial, even though it is statistically significant.

What is the impact of the statistical component in mention detection? The ablation experiment in

row 12 removes the statistical component of mention detection, which disambiguates between multiple

mentions with the same head word, showing this component accounts for a statistically-significant im-

provement of 0.3 F1 points. This is not a considerable contribution, but, to the best of our knowledge, our

work is the first to show that this type of mention disambiguation is beneficial to the overall task.

Is there a performance penalty when switching to dependency syntax? When we switched from the

constituent to the dependency parser, we measured a 1.11 CoNLL F1 points decrease (row 16 compared

to row 8). The performance difference is caused mainly by a weaker mention detection component and

less robust syntactic coreference patterns (e.g., appositives) when relying on dependency syntax. On the

other hand, Table 6 shows that the runtime of this configuration decreased by more than fivefold compared

to the original system that used the Stanford parser (Klein and Manning 2003). All in all, we believe that,

for most real-world applications, a 1 F1 point drop is an acceptable compromise for a speedup of fivefold.

What is the impact of the forest size? The table 5 shows minimal performance differences with different

numbers of trees (rows 8 and 9), indicating that it is possible to build good performing models with a

relatively small memory footprint. Table 6 shows that we can run this end-to-end coreference model with

3 GB of RAM.

Are random forests better than linear classifiers? We chose random forests because of their ability

to handle complex feature interactions; Wiseman et al. (2015) and others have shown that individual

features aren’t sufficiently informative for coreference. To validate this observation, we compared our

best RF-based sieve model (row 10) against a similar model, where each classifier was replaced with a
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linear, logistic regression (LR) one (row 17). This comparison show that, indeed, the LR-based model

performs over 4 F1 points worse than the corresponding RF-based model. This confirms that modeling

the non-linearity of the feature space for coreference resolution is important.

What are the random forests learning? Analyzing the trees learned by the RF classifiers, we found that

the model was indeed making use of very large conjunctions of features. Figure 5 shows decision paths

(from the root of one decision tree to the leaf) from the common-common sieve and the pronoun sieve.

The depth of these decisions are 174 and 121, meaning that the tree considers the interaction of a vast

number of features, far greater than easily possible in most other types of classifiers. Features in the first

path include the similarity of head words, definiteness, mention length, textual overlap, distance, semantic

similarity (from word vectors), etc. We observed similarly complex paths in other sieves, focusing on dif-

ferent features. For example, the pronominal resolution sieve focuses on animacy and number agreement

and context words.

the mention string from the beginning up to the headword is the same (F)

→ headwords are the same (T)

→ mention distance is less than 14.5 (i.e., there are fewer than 14.5 mentions in between) (T)

→ the part-of-speech of the first word of the mention is “DT” (T)

→ mentions have incompatible modifiers (F)

→ the mention starts with an indefinite (F)

→ antecedent starts with a definite (T)

→ aggregate difference in word vectors is larger than 0.17 (T)

→ antecedent length is smaller than 7.5 (T)

→ mention distance is larger than 6.5 (T)

→ words in mention are included in words in antecedents (T)

→ ...

→ mention distance is less than 14.5 (T)

→ mention length is less than 2.5 (T)

→ minimum sentence distance is larger than 2.5 (T)

→ MENTIONS ARE COREFERENT

both mention and antecedent are I (F)

→ both are animate (F)

→ the cluster of mention has inanimate attribute (T)

→ antecedent is animate, mention is inanimate (F)

→ both mention and antecedent are it (F)

→ mention is followed by ”NNS” (F)

→ antecedent is followed by ”VBD” (F)

→ number attribute agree (T)

→ antecedent cluster size is larger than 1.5 (T)

→ antecedent is followed by ”.” (F)

→ sentence distance is less than 1.5 (T)

→ ...

→ antecedent is a definite mention (T)

→ both mentions are not named entity (T)

→ MENTIONS ARE COREFERENT

Fig. 5. Part of the decision path in the common-common sieve for linking mention The industry with antecedent The

oil industry’s and the part of decision path in the pronominal sieve for linking the pronoun its with the antecedent The

company; (T) and (F) represent deciding True or False.
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Sieve Feature Wt

M
en

ti
o
n

D
et

ec
ti

o
n included in other NP 8.42

includes other NP 1.61
following word is ’of’ 1.57
preceding POS is ’NNP’ 1.51
last POS is ’NNP’ 0.78
first word is ’the’ 0.53
following word is ’.’ 0.52
first POS is ’PRP’ 0.45

P
ro

p
er

-P
ro

p
er

non-pronominal headword agreement among mentions in each cluster 0.49
mention distance 0.24
following POS of mention is ’NNP’ 0.22
mention string is exactly same 0.20
relaxed headwords agreement 0.13
antecedent cluster size 0.12
sentence distance 0.11
minimum sentence distance 0.11

C
o
m

m
o
n
-C

o
m

m
o
n non-pronominal headword agreement among mentions in each cluster 0.67

words in antecedent cluster includes all words in mention cluster 0.17
mention distance 0.15
word vector average distance between words from each cluster 0.06
mention length 0.05
mention string is exactly same 0.04
sentence distance 0.04
modifiers in mention and antecedent are incompatible 0.04

P
ro

p
er

-C
o
m

m
o
n

non-pronominal headword agreement among mentions in each cluster 0.028
mention string is exactly same 0.024
words in antecedent cluster includes all words in mention cluster 0.021
mention length 0.011
antecedent cluster size 0.008
mention cluster size 0.006
mention distance 0.005
minimum sentence distance 0.005

L
is

t-
L

is
t

word vector aggregate distance 0.087
word vector headword distance 0.06
word vector last word distance 0.043
word vector average distance 0.04
word vector first word distance 0.006
first appearance of this mention? 0.007
document source 0.007
both mentions are animate 0.007

A
n
y
T

y
p
e-

P
ro

n
o
u
n all attribute agreement 0.86

i-within-i 0.853
mention distance 0.59
antecedent cluster size 0.511
minimum sentence distance 0.392
sentence distance 0.352
person disagreement 0.158
document source 0.124

Table 7. 8 most important features of each sieve, sorted in descending order of the permutation feature

importance (Wt) assigned by the model. The permutation importance of a feature is calculated by mean

decrease in accuracy when the feature is randomly permuted (Breiman 2001).

Table 7 shows the top 8 features for each statistical sieve. The table shows that the feature space covers

lexical, syntactic, and semantic features, and, crucially, that the important features differ between sieves.

For example while proper and common nouns both rely on headword agreement among all the mentions in

the cluster, common nouns (and lists) further rely on word vector features. Pronominal anaphora resolution
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System CoNLL F1 diff

Hybrid System 63.29 -

Partial Oracle

Mention Detection 73.9 10.61

→ Singleton Detection 69.95 6.66

→ Mention Recall 64.86 1.57

Proper-Proper 66.57 3.28

Proper-Common 65.24 1.95

Common-Common 69.82 6.53

List-List 63.34 0.05

AnyType-Pronoun 74.61 11.32

→ I 63.77 0.48

→ You 64.8 1.51

→ He 64.5 1.21

→ She 63.61 0.32

→ It 66.14 2.85

→ We 64.41 1.12

→ They 65.83 2.54

Table 8. Performance increase of the partial oracle system on the development dataset. The score dif-

ference is the max improvement achievable by fixing the corresponding error type. The → indicates a

subclass of the preceding error type. Similar to Table 2, the last rows containing pronoun types include

all wordform variants with the same lemma.

relies most on agreement of attributes like person and number. This is a further argument for a modular

approach for coreference resolution.

4.3 Error Analysis

To understand the improvements that our hybrid system has over the baseline rule-based system of Lee et

al. (2013), we repeated the partial-oracle analysis described in Section 2 for the proposed hybrid system.

The results, summarized in Table 8, show improvements for both mention detection and anaphora

resolution. The performance gap in mention detection between our hybrid system and the oracle mention

detection system (10.61) is smaller than that of the rule-based system (18.5). This demonstrates that our

new mention detection algorithm, together with better coreference resolution, significantly reduces the

performance drop due to incorrect mention detection.

The gap between our system and the oracle pronominal resolution system also decreased (from 14.25 to

11.32), showing that our system successfully captures and combines the various weak signals for pronoun

resolution. For example, the oracle error for it pronouns decreases from 3.28 to 2.85. Our conjecture is that

since our model employs as a binary feature the deterministic pleonastic detection from Lee et al. (2013),

some of the improvements seen come from feature weighting and composition operations that include

this feature. Nonetheless, the high remaining error rate for this class of pronouns highlights the need for

more sophisticated models of pleonastic pronoun detection (Boyd et al. 2005; Müller 2006; Wiseman et

al. 2015; Wiseman et al. 2016).
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5 Conclusion

We describe a hybrid approach for coreference resolution, combining rule-based and machine-learning

components in a sieve architecture. Our approach maintains the modular architecture and precise-first

ordering of our prior deterministic sieve (Lee et al. 2013), but changes almost everything else.

First, drawing on the insights of Denis and Baldridge (2008) and Ratinov and Roth (2012), each sieve is

designed around a particular mention/antecedent type (e.g., common nouns, proper nouns, or pronouns).

Second, driven by thorough error analysis, we pragmatically choose the best approach for each sieve,

interleaving rule-based approaches (e.g., to handle precise syntactic constructs such as predicate nomina-

tives) with statistical models (e.g., to handle the larger context necessary for pronominal resolution). We

used the same hybrid strategy for mention detection, using patterns to propose mention candidates and a

statistical model to disambiguate between overlapping mentions.

Driven by the intuition that feature conjunctions are important for coreference, our statistical sieves

were built using random forests, allowing them to capture the complex feature interactions and rich lex-

ical features that characterize the coreference task, while maintaining the interpretability of the resulting

model. We empirically demonstrated that modeling the non-linear interactions between coreference reso-

lution features is indeed important: the approach based on random forests classifiers outperforms by more

than 4 F1 points the equivalent system where the classifiers were implemented using logistic regression.

Our approach is simple, intuitive, easy to train, modular, and extensible, yet captures the main advan-

tages of joint learning and entity-based modeling. We show that each aspect of our system contributes to

its performance: separating decision into sieves, ordering the sieves by precision, mixing rule-based and

statistical sieves, and using hybrid mention detection.

Finally, we demonstrate that the slow performance of the sieve algorithm is caused mainly by con-

stituent parsing. We show how to convert the sieve algorithm to use dependency rather than constituency

parses, resulting in a system that is 5 times faster with only a slight loss in F1 score. This speedup

is critical for real world applications. In general, we believe that the faster hybrid system for coref-

erence can play an even more central role in a wide variety of NLU applications in the future. To

encourage adoption, we are releasing our system as open-source software. The code is available at:

https://github.com/heeyounglee/hcoref.
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