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Abstract—This paper reports a 6-to-18 GHz integrated phased-
array receiver implemented in 130-nm CMOS. The receiver is
easily scalable to build a very large-scale phased-array system.
It concurrently forms four independent beams at two different
frequencies from 6 to 18 GHz. The nominal conversion gain
of the receiver ranges from 16 to 24 dB over the entire band
while the worst-case cross-band and cross-polarization rejections
are achieved 48 dB and 63 dB, respectively. Phase shifting is
performed in the LO path by a digital phase rotator with the
worst-case RMS phase error and amplitude variation of 0.5
and 0.4 dB, respectively, over the entire band. A four-element
phased-array receiver system is implemented based on four re-
ceiver chips. The measured array patterns agree well with the
theoretical ones with a peak-to-null ratio of over 21.5 dB.

Index Terms—CMOS, concurrent, large-scale phased arrays,
multi-band, multi-beam, phased arrays, scalable, tritave.

I. INTRODUCTION

P
HASED arrays steer the beam direction electronically,

bringing many benefits such as high directivity, inter-

ference rejection, signal-to-noise ratio improvement, and fast

scanning response [1]–[4]. For this reason, phased arrays have

been extensively employed in radar and communication sys-

tems in the area of military, space, and radio astronomy since

their advent in the 1950s [5], [6]. Recently, substantial atten-

tion is also drawn in civil applications including high-speed

point-to-point communications and car radars [4], [7].

Benefits of phased arrays increase with the number of ele-

ments combined in the array. This gives rise to the desire to

make very large-scale phased arrays (up to 10 elements) for

high-precision radars, long-range sensors, or high-directivity

communication systems. One of the major obstacles in imple-

menting large-scale phased arrays lies in the high complexity

and cost to assemble the whole array system. Traditionally,

phased-array systems have been built using a module-based

approach. Most transmitter/receiver components, such as
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low-noise amplifiers (LNAs), power amplifiers, phase shifters,

attenuators, filters, mixers, and LO sources, are implemented

in separate modules and then interconnected to each other

externally [3], [6]. This approach not only increases the as-

sembly size and cost, but also degrades the system reliability

due to the complicated configuration. Furthermore, several

transmit/receive module components have been implemented

using expensive compound semiconductors such as GaAs,

which takes a substantial portion of the overall system cost [6],

[8]. Thus, the size of phased arrays has been limited to a certain

number of elements (10 or 10 at most), making it difficult to

take full advantage of very large-scale array systems.

Integrated CMOS solutions offer an opportunity for dramatic

reduction in cost and size of such systems. The high yield and

repeatability of silicon ICs allows the entire transmitter and/or

receiver to be integrated on a single chip. For example, there

have been reported a CMOS RF front-end [9], a fully integrated

Si-based phased-array receiver [10] and a CMOS phased-array

transmitter [11], all at 24 GHz and a fully integrated Si-based

phased-array transceiver at 77 GHz [12]. This single-chip ap-

proach in silicon reduces the overall system cost substantially,

compared to the conventional module-based counterpart in

compound semiconductors.

There is a trend in radar and communication systems that the

transceiver operates concurrently in multiple modes and mul-

tiple bands [13]. Furthermore, many applications require the

transceiver to operate in a wide range of RF frequencies [14].

These trends also apply to phased arrays when multiple tar-

gets must be tracked at the same time in radars and electronic

countermeasure systems or when multi-point communications

are desired at multiple frequencies in a wide bandwidth. The

high integration capability of CMOS offers a promising solu-

tion to achieve the wideband phased arrays with multiple func-

tionalities. Several wideband phased (or timed) array receivers

[15], [16] and transceiver [17] have been reported in silicon.

However, none of the previous work has implemented a con-

current multi-band multi-beam phased-array receiver operating

in a wide range of RF frequencies.

In this work, we integrated RF front-end components of a

concurrent dual-band quad-beam phased-array receiver ele-

ment on a single CMOS chip. The receiver is programmable to

concurrently receive two RF frequencies between 6 and 18 GHz

(a tritave) while forming four independently-controlled beams

with separate phase shifting operation. The receiver is also

easily scalable toward very large-scale phased arrays because

additional receiver chips can be added to increase the number
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Fig. 1. Basic phased-array receiver configuration.

of array elements with relatively lower cost and complexity. To

the authors’ best knowledge, this is the first reported concurrent

tritave phased-array receiver implemented in CMOS.

The paper is organized as follows. Section II briefly reviews

phased arrays and a conventional approach to implement large-

scale phased arrays. Section III presents a proposed concurrent

array system architecture as well as the associated advantages.

In Section IV, the architecture and frequency plan of the CMOS

phased-array receiver chip is described. Section V presents the

detailed circuit block design. Section VI provides the exper-

imental results of the receiver chip and a four-element array

system that combines four receiver chips.

II. PHASED ARRAYS

A. Overview

Phased-array receivers consist of multiple antenna elements

spaced with a certain distance and a following separate

phase shifter per each element for the electronic beamforming

at a given incident angle in space (Fig. 1). When a RF wave

arrives at the antenna elements, the arrival time of wavefront is

different between two adjacent elements by

(1)

where is the speed of light. In the narrowband circumstances,

the arrival time difference results in a phase delay of the received

signal between two adjacent elements, given by

(2)

where is the wavelength of the incoming wave. Thus, the fol-

lowing phase shifter adjusts the phase delay in such a way that

output signals from each element are all in-phase with one an-

other. By summing the signals from each element, a coherent

output signal can be obtained with a large array gain. On the

other hand, other incoming waves at different incident angles

will not be summed coherently and thus will be significantly at-

tenuated at the array output.

B. Benefits of Phased Array

Since a phased array combines several in-phase signals co-

herently at the array output, it can achieve an effectively higher

gain than a single element receiver. When the signals are com-

bined in the amplitude domain (current or voltage) with a same

output load, the array gain is given by

(3)

where is the gain of each single element and is the

number of array elements. Again, undesired signals such as the

interference or jammers arriving at other incident angles are in-

herently rejected according to the established array pattern.

Furthermore, the signal integrity is enhanced at the array

output through an effective improvement of the output

signal-to-noise ratio (SNR) by a factor of .

This is because noise generated from each element is uncor-

related with one another while the desired signal is combined

coherently [10].

Finally, since phase arrays steer the beam direction electron-

ically, it is able to receive multiple beams arriving at different

incident angles simultaneously. Also, the beam can be steered

in a faster and more reliable way than that of a mechanically

steered antenna system.

C. Large-Scale Phased-Array System

The benefits of phased arrays given in Section II-B are more

noticeable as we increase the number of array elements. For in-

stance, if we combine the signals from one million el-

ements without any loss and phase distortion, then the array

gain given in (3) and the output SNR will be improved by a

factor of 120 dB and 60 dB, respectively. Although the improve-

ment factor will be degraded in a practical array system due to

the non-ideal signal distribution and combining, it will enhance

the sensitivity of the receiver to a substantial degree. The capa-

bility of rejecting undesired signals will also be reinforced with

a larger number of elements because the main beam narrows

and a more number of null positions are presented in the array

pattern.

In spite of the apparent advantages of large-scale phased ar-

rays, their applications have been limited due to several dif-

ficulties, mainly, the prohibitive complexity and cost. Fig. 2

shows one of the conventional ways of building a large-scale

phased-array receiver system. In order to combine a very large

number of elements efficiently, several elements are grouped to-

gether into a sub-array, and then several sub-arrays are com-

bined by a RF distribution network to present a single output

for down-conversion. It is noteworthy that for active phased ar-

rays [1], every single element contains an independent receiver

module which includes a filter, a LNA, a phase shifter, and an

attenuator. Usually, these receiver components are implemented

in separate chips or packages, interconnected to each other, and

then assembled into a sub-array system by external transmission

lines such as microstrips, cables, or waveguides. Therefore, as

the number of array elements increases, the cost and complexity

will also rise dramatically to assemble these components into a

system. Furthermore, the design of the low-loss RF distribution

network will be challenging with a large number of elements

for two reasons. The first reason is that the number of sub-ar-

rays is also increased accordingly, which requires more depth

of the signal distribution (or combining) network. The other is
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Fig. 2. A conventional way of building a large-scale phased-array receiver
system (in the active array configuration) that supports multiple beams.

that the signal is distributed (or combined) in the RF domain

before down-conversion, which gives rise to higher loss than if

the distribution (or combining) were to be performed in the IF

or baseband domain.

Another challenge in large-scale phased arrays is the high

cost of active circuit components, most of which are fabricated

usually in expensive compound semiconductors such GaAs.

Although the cost of monolithic microwave integrated circuits

(MMICs) in GaAs decreased recently due to the process matu-

rity, it still takes a large portion of the total array system cost

[6], [8], making a very large-scale array practically difficult to

implement.

Even more challenge arises when the array must receive mul-

tiple beams at the same time. Since each beam requires a sep-

arate receiver module and a distribution network for the inde-

pendent beamforming capability, the associated complexity and

cost will be further exacerbated.

III. PROPOSED LARGE-SCALE PHASED-ARRAY

SYSTEM ARCHITECTURE

To deal with the challenges discussed in Section II-C, we pro-

pose an efficient way of building large-scale phased-array re-

ceiver systems, as shown in Fig. 3. With a single CMOS chip (a

shaded block in Fig. 3), we integrate all receiver module com-

ponents on the same die except for the antenna and front-end

LNA. The CMOS receiver includes the tunable concurrent am-

plifiers (TCAs), down-conversion mixers, phase shifters, fre-

quency synthesizers, and baseband buffers [18]. This integrated

solution avoids the costly large number of separate component

modules and their complicated interconnection for large-scale

arrays, which results in a dramatic cost reduction. More impor-

tantly, the chip is implemented in CMOS, which will bring an-

other substantial cost reduction compared with its compound-

semiconductor counterpart.

The CMOS receiver has two input ports to receive two dif-

ferent polarization signals fed from an active antenna module,

i.e., horizontal polarization (HP) and vertical polarization (VP),

Fig. 3. A proposed 6–18 GHz phased-array receiver system that receives four
beams at two frequencies concurrently and is easily scalable toward a very large-
scale array.

respectively. On the other hand, each input port is able to re-

ceive a dual-band signal containing two different frequencies

concurrently, one in the low band (LB) from 6 to 10.4 GHz

and the other in the high band (HB) from 10.4 to 18 GHz. The

dual-band signal is then split into two separate signals on-chip,

one for each band. Subsequently, each signal is down-converted

with the independent phase-shifting operation to provide sep-

arate beamforming. Therefore, the proposed array system can

receive and steer four different beams at two different frequen-

cies concurrently.

The baseband outputs from each array element are combined

off-chip in the current domain, providing the back-end proces-

sors with one combined baseband signal per beam. Since the

signal combining is performed at the baseband rather than the

RF frequency, it alleviates the difficulty in designing a low-loss

combining network for large-scale arrays.

It is also noteworthy that the only feed signal which needs

to be distributed among the elements other than DC supplies is

a 50 MHz reference signal for on-chip frequency synthesizers.

Due to its low frequency, the reference can be simply distributed

without adding extra complexity. It also makes the proposed

array architecture easily scalable.

The LO signals generated by the on-chip frequency synthe-

sizers may have relatively higher phase noise than those pro-

vided by off-chip low-noise sources. However, when combining

elements (or chips) in the array, the phase noise origi-

nating from the on-chip components of each element is uncor-

related with one another and thus adds up in power. On the

other hand, the carrier signal is combined in amplitude in the

current domain. Therefore, the phase-noise performance at the

array output improves by a factor of as long

as the phase noise is dominated by on-chip sources, not by an

off-chip reference signal. This improvement also makes the in-

tegrated solution including on-chip frequency synthesizers suit-

able for large-scale phased arrays without degrading the array

performance.
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Fig. 4. Architecture of the tunable concurrent dual-band quad-beam phased-array receiver in CMOS.

In the complete array system, a separate active antenna

module, consisting of a broadband antenna and a GaN LNA,

will be employed in front of the CMOS receiver.

IV. CMOS PHASED-ARRAY RECEIVER ELEMENT

In this section, the architecture and frequency plan of the

CMOS concurrent phased-array receiver element is discussed

in detail. It should be noted that a single receiver chip operates

as one receiver element in the array system, as shown in Fig. 3.

A. Receiver Architecture

A block diagram of the receiver architecture is presented in

Fig. 4. Since it is a concurrent dual-band receiver, the incoming

RF signal contains two frequencies at LB and HB respectively,

and feeds a front-end tunable concurrent amplifier (TCA). The

TCA amplifies, filters, and finally splits the RF signal into two

separate outputs; one at LB and the other at HB. Each of the

two signals goes through separate double down-conversion by

subsequent RF and IF mixers. The IF mixers generate the and

components of the baseband signal for digital demodulation

capability. The baseband VGAs adjust the baseband amplitude

and drive the output load differentially.

There are two sets of RF input (HP RF input and VP RF input

in Fig. 4) which are down-converted by two same sets of the

RF signal-path circuitry, respectively. Therefore, the receiver

presents a total of eight differential baseband outputs, one for

each combination of two different polarizations (HP and VP),

two different frequency bands (LB and HB), and and .

The receiver includes two on-chip programmable frequency

synthesizers in order to support the separate down-conversion

of the LB and HB signals, respectively. The frequency synthe-

sizers generate the first LO LO signal between 5–7 GHz for

LB and between 9–12 GHz for HB with a frequency step of

200 MHz. The LO signal drives the RF mixers for two po-

larizations. The second LO LO signal, driving the phase ro-

tators and IF mixers, is generated by three static divide-by-2

dividers and a 2:1 multiplexer. According to the receiver fre-

quency scheme discussed in Section IV-B, the LO frequency

is selected as either one half or one eighth of the LO frequency

by the multiplexer. The LO signal carries the and com-

ponents separately to feed the phase rotators in quadrature. A

50 MHz reference signal for the phase-locked loops (PLLs) is

generated by an off-chip crystal oscillator.

The LO phase-shifting architecture is adopted in this phased-

array receiver in order to circumvent the challenge of designing

high-resolution wideband phase shifters in the RF signal path

[19]. The phase shifting is performed in the LO signal by a

10-bit digital phase rotator. Each IF mixer is driven by a separate

phase rotator to maximize the flexibility of the receiver. This

not only provides the independent beamforming capability to

the signals of different bands and polarizations, but also helps

to minimize the and mismatch of the quadrature baseband

outputs.

The receiver includes an on-chip digital serial-bus control

unit that programs 170 bits to configure the dual RF frequen-

cies, LO frequencies, phase-shifting angles, baseband gains, and
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Fig. 5. Frequency scheme.

Fig. 6. Schematic of the TCA with a single input and a dual output.

other functionalities of the receiver. Bias voltages are generated

by on-chip bandgap reference circuitry.

B. Receiver Frequency Scheme

The receiver supports a concurrent dual-band RF signal, such

that two receive frequencies are tunable simultaneously and in-

dependently, one from 6 to 10.4 GHz (LB) and the other from

10.4 to 18 GHz (HB). As shown in Fig. 5, each band is further

divided into two sub-bands depending on the corresponding IF

frequency. Accordingly, the LO frequency switches between

1/2 and 1/8 of the LO frequency. For instance, a RF signal be-

tween 5.625–7.875 GHz is down-converted to the IF between

0.625–0.875 GHz by the LO between 5–7 GHz. The LO is

then selected as 1/8 of LO to down-convert the IF to the base-

band. On the other hand, for a RF signal between 7.5–10.5 GHz,

the LO is selected as 1/2 of LO to down-convert the IF be-

tween 2.5–3.5 GHz to the baseband. In this way, the entire RF

frequencies for LB (6–10.4 GHz) are covered without disconti-

nuity and so are those for HB as well.

With the dual-IF frequency scheme, the required VCO tuning

range is reduced from 54% to 33% and 29% for LB and HB, re-

spectively. This relaxed tuning range enables us to further opti-

mize the other VCO performance such as phase noise and power

consumption [20].

The RF channel spacing depends on which LO frequency

scheme is selected at the given LO frequency step (200 MHz).

The channel spacing is 225 MHz when operating in the 1/8 LO

scheme and 300 MHz in the 1/2 LO scheme.

V. CIRCUIT IMPLEMENTATION

The detailed circuit design of the CMOS receiver is presented

in this section. Most circuit blocks including the mixers, base-

band VGAs, VCOs, LO distribution buffers, and phase rota-

tors use differential signaling while the TCA amplifies a single-

ended signal.

A. Tunable Concurrent Amplifier (TCA)

Since the incoming concurrent dual-band signal is split

on-chip before the down-conversion, the front-end TCA must

provide a single input and a dual output. Important design

parameters in the TCA are the wideband input matching,

noise figure, frequency tunability, and isolation between two

different outputs. The single input port should provide a good

input matching performance over the entire tritave, from 6 to

18 GHz. The two output ports present two separate signals well

filtered at the desired frequencies that should be tunable over

the entire LB and HB frequencies, respectively. Also, good

isolation is needed between the two output ports in terms of
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Fig. 7. Schematic of the RF mixer and IF buffer for (a) LB and (b) HB.

signal and noise. Note that the noise figure requirement of the

TCA is relaxed to a significant degree due to the low-noise

active antenna module that will be deployed in front of the

CMOS receiver in the array system (Fig. 3).

Through an in-depth investigation of several potential topolo-

gies, the TCA is implemented in a parallel cascode configura-

tion with an active termination [21], as shown in Fig. 6. The

cascode amplifiers not only enhance the isolation between the

two output signals, but also minimize the crosstalk of noise pro-

duced by the active blocks.

The wideband input matching to 50 is achieved by an ac-

tive termination with shunt resistive feedback and an impedance

transformation network. The active termination contributes less

noise to the subsequent blocks than a simple shunt resistive ter-

mination [22].

Fig. 8. Baseband VGA.

Fig. 9. Schematic of the wideband VCO.

The RF signals at two frequencies are then selectively am-

plified by two separate cascode amplifiers – , –

that have tunable LC output loads. A 3-bit switched capacitor

bank at each output load is tuned to cover the entire LB and

HB frequencies. This allows for the digital tuning of the ampli-

fier so that it can provide the maximum gain at the desired fre-

quency while attenuating out-of-band signals prior to the first

down-conversion.

B. Mixers

Four different mixer designs are presented in the receiver; RF

and IF mixers, each for LB and HB, respectively. The current-

commutating double-balanced topology is adopted for all the

mixers in order to minimize the LO-to-IF feedthrough. Fig. 7(a)

shows the schematic of the RF mixer and IF buffer for LB. A

shunt-peaking inductor (3.3 nH) is used to extend the IF 3-dB
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Fig. 10. Block diagram of the programmable PLL.

Fig. 11. LO distribution and buffers.

bandwidth up to over 3.5 GHz. Since the TCA provides a single-

ended RF signal to the differential RF mixers, one RF input

terminal is terminated to a bias voltage by a 2-k resistor and a

bypass capacitor.

The HB RF mixer employs a tunable LC load with a 3-bit

switched capacitor bank at the IF output, as shown in Fig. 7(b).

The resonant frequency of the LC load is tuned in such a way

that the conversion gain is maximized at the desired IF fre-

quency. The common-mode feedback circuitry ensures a given

bias voltage set for the subsequent buffer block.

The schematic of the IF mixers for LB and HB are similar to

that of the LB RF mixer. The difference is that the IF mixers em-

ploy no shunt-peaking inductors and are degenerated by source

resistors to improve linearity of the baseband signal.

C. Baseband Variable-Gain Amplifier (VGA)

The VGA combines five transconductance amplifiers in the

current domain with digitally switched bias voltages (Fig. 8).

and , and are identical pairs that con-

stitute current-commutating cells by digital switches (

and ). Each transconductance amplifier has a differential

common-source topology with resistive degeneration. Since the

output port is configured with open drains, the output signals

from each array element can be easily combined in the current

domain using a passive network which imposes little additional

impact on the nonlinearity performance. The open-drain output

requires an external DC supply of 1.5 V. The VGA achieves a

nominal gain of 7 dB with a 11 dB gain variation in five steps

when driving a 100- differential output load.

D. Voltage-Controlled Oscillator (VCO)

Two separate LC VCOs are implemented to generate the LO

signals for LB and HB, respectively. The schematic is shown

in Fig. 9. A cross-coupled PMOS pair ( and ) is used

to improve the phase noise performance in the region. In

order to accomplish a wideband tuning range with relatively low

VCO gain (resulting in low phase noise), a two-step frequency

tuning mechanism is adopted [23]. The first coarse tuning is

fulfilled by 2-bit binary-weighted MIM capacitors ( and
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) in the LC tank. Then, MOS varactors are used

for the further fine and continuous frequency tuning.

The bias current is controlled digitally – to ensure that

the VCO operates in the current-limited regime over the wide-

band tuning range. This is beneficial for further improvement of

phase noise [24]. The simulated phase noise ranges from 112

to 103 dBc/Hz and from 108 to 94 dBc/Hz at 1-MHz offset

for the LB and HB VCOs, respectively.

E. Phase-Locked Loop (PLL)

Two fully-programmable PLLs are implemented to indepen-

dently synthesize the LO frequencies for the two different bands

[25]. Fig. 10 presents a block diagram of the PLL circuitry com-

monly used for both LB and HB. The programmable dynamic

divider takes one quarter of the VCO output frequency and pro-

vides a further division ratio between 16 and 63. The divided

output is retimed to the dynamic divider input for noise improve-

ment and feeds the phase-frequency detector (PFD). To reduce

the output jitter, a dead-zone elimination (DZE) circuitry is em-

ployed, followed by a charge-pump and a third-order loop filter

to feed the VCO control voltage. The core PLL circuitry draws

34 mA at 1.2 V DC.

F. Multiplexer

As the receiver has a dual-IF frequency scheme discussed in

Section IV-B, the LO frequency needs to switch between 1/8

LO and 1/2 LO of the LO frequency by a 2:1 mul-

tiplexer. Two cascode transconductance stages, each driven by

either LO or LO , are combined in the current domain.

Then, the output signal is selected between the two by comple-

mentary switches that turn on or off the bias current of each

transconductance stage. Two separate multiplexers are used for

the and components of the LO signal.

G. LO Distribution and Buffers

The LO and LO signals generated from the frequency syn-

thesizers are distributed to the RF mixers and the phase rota-

tors, respectively, as shown in Fig. 11. Due to the high-level

of integration in the single receiver chip, the LO distribution

length becomes as long as 3.7 mm in the worst case (the LO

distribution for LB). The LO buffers need to compensate for

the insertion loss and bandwidth limitation caused by the long

signal distribution. Each path of the LO distribution includes a

two-stage buffer, which is a self-biased cascode as the first stage

followed by a common-source amplifier with shunt peaking.

The shunt-peaking inductance is carefully chosen, such that the

3 dB bandwidth is higher than the maximum LO frequency in

the distribution without raising a significant gain peaking and

instability issue [26].

The transmission line used for the LO distribution is imple-

mented by a grounded differential coplanar waveguide (CPW)

structure, shown in Fig. 11. In order to minimize the insertion

loss, the top thick metal layer (4- m aluminum) is used for the

signal lines ( and ). The simulated insertion loss of the

CPW with is 0.35 dB per mm at the highest LO

frequency, i.e., 12 GHz. The side and bottom ground planes im-

prove the isolation between adjacent LO signals in distribution

[27].

Fig. 12. (a) Block diagram of the 10-bit digital phase rotator. (b) Unit current-
commutating cell.

H. Phase Rotator

A block diagram of the digital linear phase rotator is shown

in Fig. 12(a). It takes the and components of the LO signal

as an input and applies a different gain ( and ) indepen-

dently to each of them using two digitally-controlled VGAs

[28]. By adding the two VGA outputs in the current domain,

the desired phase and amplitude can be inter-

polated in the Cartesian coordinates of the and outputs.

Each VGA is implemented by combining five binary-weighted

current-commutating cells. Fig. 12(b) shows the schematic of

a unit current-commutating cell. – are transconductance

transistors with identical dimensions. The output signal (

and ) changes its polarity depending on the bias control

bit . This full-scale current-commutating scheme makes

the phase interpolating performance less vulnerable to the PVT

(process, voltage, and temperature) variations.

Since five bits are assigned to each VGA, the phase rotator is

able to interpolate 1024 (2 ) different points over all the four

Authorized licensed use limited to: CALIFORNIA INSTITUTE OF TECHNOLOGY. Downloaded on January 9, 2009 at 13:22 from IEEE Xplore.  Restrictions apply.



2668 IEEE JOURNAL OF SOLID-STATE CIRCUITS, VOL. 43, NO. 12, DECEMBER 2008

Fig. 13. Chip micrograph.

quadrants of the output Cartesian coordinate. The scheme brings

in theory an rms phase error of 0.3 with sufficiently large am-

plitudes to drive the switching mixers, regardless of the oper-

ating frequency.

VI. EXPERIMENTAL RESULTS

The phased-array receiver element is implemented in a

130-nm CMOS process. It provides eight metal layers in-

cluding top two thick metal layers of 4- m aluminum and

3- m copper. Fig. 13 shows a die micrograph of the imple-

mented chip that occupies an area of 3.0 5.2 mm .

In this section, the experimental results of the receiver ele-

ment are presented. Then, followed is the measured array pat-

tern of a four-element phased-array system that is implemented

using four receiver chips as a feasibility demonstration toward

very large-scale arrays.

For the measurement of the receiver element, a printed circuit

board (PCB) is designed on a Duroid substrate of a 0.254-mm

thickness. The PCB provides the traces for the DC supplies, ref-

erence signal, digital signals, and differential baseband outputs.

All signal inputs and outputs are fed with SMA connectors. The

PCB is attached on a gold-plated brass board. Then, through a

pre-cut aperture of the PCB, the chip is mounted directly on the

brass board using silver epoxy in order to provide good substrate

grounding and heatsink. The chip pads are wire-bonded to the

PCB traces except that the ground pads are wire-bonded directly

to the brass board.

A block diagram of the measurement setup is shown in

Fig. 14. The RF input signal is fed by a coplanar GSG probe to

minimize the feed loss. Off-chip baluns convert the differential

baseband output to a single-ended one for the measurement

purpose. There are three different DC supplies applied to the

chip; 1.6 V and 2.7 V for the RF and LO circuitry and 1.5 V

Fig. 14. Receiver measurement setup.

for the baseband buffers. A temperature-compensated crystal

oscillator with phase noise of 155 dBc/Hz at 1-kHz offset

provides a 50-MHz reference signal for the on-chip PLLs.

Digital codewords of 170 bits are generated by an external

DAC board.

The measured performance of the on-chip LO generation is

shown in Fig. 15, where the LO frequency is plotted versus

the VCO control voltage for LB and HB, respectively. Each

curve represents one of the four different settings of the 2-bit

switched MIM capacitors in the VCO. As expected, the syn-

thesizers are able to generate 4.8–7.8 GHz and 8.8–12.5 GHz

of LO signals for LB and HB, respectively without any blind

spot. This result satisfies the required LO frequency range for

the down-conversion of RF signals over the entire tritave (see

Section IV-B). The phase noise of the frequency synthesizers is

below 95 dBc/Hz at an offset of 100 kHz over the entire LO
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Fig. 15. Measured performance of the on-chip frequency synthesizers: (a) LB;
(b) HB.

Fig. 16. Measured phase noise of the HB frequency synthesizer at 9.4 GHz.

frequencies of 5–7 GHz and 9–12 GHz. Fig. 16 shows the mea-

sured phase noise of the HB frequency synthesizer at 9.4 GHz.

Fig. 17 plots the measured conversion gain of the receiver.

The maximum and the minimum gains achievable with different

baseband VGA settings are shown in dashed lines. The solid

line with markers represents the nominal gain with the optimum

VGA settings, which ranges from 16 to 24 dB across the entire

Fig. 17. Measured conversion gain.

Fig. 18. Measured nonlinearity performance: input-referred IP3 and 1-dB
compression.

tritave band. The discontinuities at 7.6, 10.4, and 13.5 GHz are

due to the switching of either the frequency band or the IF fre-

quency scheme.

The measured nonlinearity performance is shown in Fig. 18.

The third-order intercept point (IP3) is measured by applying a

two-tone signal with 10-MHz spacing. The input-referred power

of IP3 and 1-dB compression does not vary with different VGA

gain settings. This is because the VGA is configured by the full-

scale current-commutating cells that keep the same nonlinearity

performance regardless of the signal polarity.

The RF input return loss is better than 9.8 dB across the entire

band as shown in Fig. 19. The input-matching performance does

not vary with different LC load settings of the TCA, due to the

high isolation between the input and the output of the cascode

stage (Fig. 6).

The noise figure is measured by a standard Y-factor method

[29]. Fig. 20 shows the measured noise figure of the CMOS re-

ceiver, which ranges from 8 to 14 dB over the entire band. How-

ever, taking into account a preceding wideband active antenna

module in the complete system (Fig. 3), the noise contribution of

the CMOS receiver to the system will be significantly reduced.

The noise figure of the complete system that includes the CMOS

receiver and the preceding module with a 2.5-dB noise figure

and a 20-dB gain is also plotted in the dashed line.

Since the receiver supports a concurrent dual-band and dual-

polarization signal, it is very important to characterize the iso-

lation performance between the two bands and between the two
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Fig. 19. Measured input matching performance with the TCA input probed
on-wafer.

Fig. 20. Measured noise figure of the CMOS receiver (solid line with markers)
and the complete system including the active antenna module (dashed line).

polarizations. For the isolation measurement, a rejection ratio

is defined as a ratio of the undesired signal power, which is

cross-coupled from different bands or polarizations, to the de-

sired signal power at the output port. For example, in order to

measure the cross-band rejection ratio at the LB output port, a

two-tone signal containing one LB tone and one HB tone is ap-

plied with the same input power level. Then, the rejection ratio

of the HB signal (the undesired cross-coupled output) is mea-

sured with reference to the LB signal (the desired output) at the

LB output port. As shown in Fig. 21, the cross-band rejection

ratio is more than 48 dB across the entire band. In addition, the

cross-polarization rejection ratio is measured to be 63 dB in the

worst case. This indicates that the rejection ratio in the entire

system will not be limited by the CMOS chip but rather deter-

mined by the preceding antenna module.

Finally, the phase-shifting performance of the receiver is

characterized. A relative delay of the down-converted baseband

signal is measured by a digital oscilloscope while varying

the LO phase with 1024 different interpolating points of the

phase rotator. Fig. 22 shows a measured constellation of the

interpolated baseband output at the RF frequency of 18 GHz.

Each single point represents an interpolated output set by each

particular phase rotator setting. The nonuniform distribution in

the constellation is due to the unavoidable and mismatch

in the LO signal and the dispersive interpolation of harmonic

Fig. 21. Measured isolation performance: Cross-band and cross-polarization
rejection ratios.

Fig. 22. Measured constellation of the interpolated baseband output at RF fre-
quency of 18 GHz.

TABLE I
MEASURED PERFORMANCE OF THE PHASE ROTATOR

components. As can be seen, it is a very dense constellation

with a small amplitude variation. When we shift the phase to

any arbitrary angle over 360 , the RMS phase error is 0.3 with

an RMS amplitude variation of 0.4 dB. The performance at

other RF frequencies is summarized in Table I. The worst-case

RMS phase error is only 0.5 . It turns out from the array mea-

surement that the fine resolution of the on-chip phase shifting

brings accurate beamforming performance.

A four-element phased-array receiver system is built by em-

ploying and incorporating four CMOS receiver chips. To char-

acterize the array performance, we adopts an electrical way of

feeding the incoming RF wave, where four external variable

phase shifters are used to emulate the incoming wavefront at

a given incident angle.
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Fig. 23. Measured array patterns of the four-element array with theoretical patterns superimposed. The antenna spacing is assumed to be a half wavelength at
each frequency.

TABLE II
MEASURED PERFORMANCE SUMMARY

The measured array patterns at 6, 10.35, and 18 GHz are

shown in Fig. 23. Four different beam-pointing angles are set

at each different RF frequency. Theoretical patterns are super-

imposed on the measured ones. It can be seen that the measured

beam patterns are well steered in excellent agreement with the

theoretical ones. The worst case peak-to-null ratio is 21.5 dB.

This good array performance is attributed to the fine resolu-

tion of the on-chip phase shifting that enables a precise digital
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array calibration. The calibration offsets the process variation

between different element chips and the inevitable systematic

skews in phase and amplitude originating from the reference and

RF signal distribution to array elements. Each element should

be calibrated once at each RF frequency. In addition, the array

beam-pointing angle can be steered with a high resolution over

the entire direction (the incident angle between 90 and 90 )

due to the low RMS error of the on-chip phase shifting (see

Table I).

Each array element draws 658 mA and 217 mA for the RF

and LO circuitry from DC supplies of 2.7 V and 1.6 V, re-

spectively. Each baseband buffer draws 34 mA from a 1.5-V

DC supply. It should be noted that this array forms four beams

concurrently over a tritave bandwidth, which demands higher

power consumption compared to other narrowband single-beam

arrays. However, the power consumption can be further reduced

by revising the LO distribution circuitry with inductorless de-

sign, which will decrease the LO distribution length and thus

the power required at the LO buffers. Table II summarizes the

measurement results of the receiver element and the four-ele-

ment phased array.

VII. CONCLUSION

In this paper, an integrated CMOS phased-array receiver that

supports concurrent dual-band and quad-beam signals from

6 to 18 GHz has been presented. Since all receiver-module

components are integrated in a single CMOS chip except for

the antenna and LNA, the receiver is easily scalable to build a

very large-scale (e.g., millions of array elements) phased-array

system with low cost, low complexity, and high reliability.

For a demonstration of the array performance, a four-element

phased-array system has been implemented using four receiver

chips. Owing to the fine resolution of on-chip phase shifting and

the precise digital calibration, we achieved the array patterns

that agree well with the theoretical ones. To the authors’ best

knowledge, this is the first concurrent multiband multibeam

phased-array receiver in a tritave bandwidth, implemented in

CMOS.
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