
A Scalable and Adaptive Clock Synchronization Protocol for IEEE
802.11-Based Multihop Ad Hoc Networks

Dong Zhou Ten H. Lai
Department of Computer Science and Engineering

The Ohio State University
{zhoudo, lai}@cse.ohio-state.edu

Abstract

This paper studies the fundamental problem of clock
synchronization in IEEE 802.11-based multihop ad
hoc networks. Clock synchronization is important for
power saving, network throughput and many basic
operations of 802.11 protocols in a multihop ad hoc
network (MANET). The scalability problem of 802.11
timing synchronization has been studied extensively
in single hop ad hoc networks and good solutions are
available. However these solutions do not perform well
in the MANET environment. A few multihop solutions
were proposed; but the performance is still not very
good. The maximum clock offset is still over 200 µs for
these protocols. In this paper, we propose an adaptive
protocol through beacon transmission prioritization,
frequency adjustment and construction of dominating
set. The frequency adjustment is proved to be bounded.
Simulation shows that we are able to control the maxi-
mum clock offset under 50µs after protocol stabilization.
The improvement is more than 400% over the current
solutions with similar complexity. The new protocol also
shows great long-term stability.
Keywords: IEEE 802.11, ad hoc networks, scalability,
multihop, clock synchronization

1 Introduction

The IEEE 802.11 standards support the peer-to-peer
mode Independent Basic Service Set (IBSS), which is an
ad hoc network with all its stations within one another’s
transmission range. 802.11-based MANET has been pro-
posed to extend the coverage of the network. Clock syn-
chronization is important for frequency hopping, power
management and many basic operations of 802.11 net-
works.

IEEE 802.11 standard [1] specifies a Timing Synchro-
nization Function (TSF) for the ad hoc mode. 802.11
TSF in a single hop ad hoc network is not scalable [2].
The maximum clock offset between stations can be over
4000 µs for a large IBSS running the 802.11 TSF. Sev-
eral protocols have been proposed during the past few
years to resolve the scalability issue in a single hop ad
hoc network[3, 4]. TATSF was proposed in [3]. It classi-
fies the stations into multiple tiers with different bea-
con contention frequencies for stations in each of the
tiers. The maximum clock offset is contained under 125
µs. Another solution called SATSF was proposed in [4].

The maximum clock offset can be controlled under 25µs.
SATSF allows the fastest station(s) to compete every
beacon period and inhibit slower stations from beacon
contention. It achieves very accurate clock synchroniza-
tion through a bounded frequency adjustment scheme.
However these solutions cannot be adopted directly for
MANETs. Simply giving priority to the fastest station(s)
is not enough, as it may take very long time for the
fastest station’s timing information to reach remote sta-
tions. The accuracy of these types of TSFs will suffer in
multihop networks. Recently a few clock synchronization
protocols for MANETs have been proposed[5, 6]. But the
maximum clock offset is over 200 µs after protocol sta-
bilization.

In this paper, we propose a new clock synchronization
protocol in a MANET called MATSF by implementing
three strategies. Beacon transmission prioritization en-
sures good scalability. Bounded frequency adjustment
helps MATSF to achieve good accuracy and long-term
stability. The construction of dominating set allows our
protocol to converge faster than existing protocols. For
MATSF, the maximum clock offset can be controlled
within 50 µs. The improvement is more than 400% over
the current solutions of similar complexity. The protocol
converges in less than 10 seconds. It converges several
times faster than current solutions.

The rest of the paper is organized as follows. Section 2
reviews 802.11 TSF and related works. Section 3 pro-
poses a new protocol to address the scalability issue with
all the desirable requirements. We also analyze the pro-
tocol to show why it outperforms other protocols. Sim-
ulation results are discussed in section 4. Section 5 con-
cludes the paper.

2 Overview and Related Works

In 802.11 TSF, each station maintains a TSF timer
counting in increments of microseconds (µs). All sta-
tions in the IBSS compete for beacon transmission every
aBeaconPeriod second (BP). At the beginning of each
BP, there is a beacon generation window consisting of
W +1 slots. Each station calculates a random delay uni-
formly distributed in [0,W] and is scheduled to trans-
mit a beacon when the delay timer expires. If a beacon
arrives before the random delay timer has expired, the
station cancels the pending beacon transmission and the
remaining random delay. Upon receiving a beacon, a sta-
tion sets its TSF timer to the timestamp of the beacon
if the value of the timestamp is later than the station’s

TSF timer.
Several protocols for clock synchronization in a

MANET have been proposed recently. A time synchro-
nism algorithm is proposed in [7] to deal with the par-
titioning problem in sparse ad hoc networks. RBS is
presented in [8]. A reference broadcast does not contain
an explicit timestamp; instead, its arrival time is used by
the receivers as a point of reference for comparing their
clocks. RBS uses nontrivial statistical methods such as
regression to estimate the clock phase offset and clock
frequency offset of any two stations. These protocols are
interesting, but they cannot be easily implemented under
the 802.11 TSF framework.

A protocol called ASP is proposed in [5] for time syn-
chronization in 802.11-based multihop ad hoc networks.
The basic idea of the protocol is to adjust clocks’ frequen-
cies. But it does not address the scalability problem fully.
The maximum clock offset is still over 200µs. The reason
is that ASP trusts the face value of the timestamp of the
beacon from the sending station. The result is that the
slower station may over-adjust its clock frequency and
becomes faster than the original fastest station. This
process may keep repeating that the frequencies of the
clocks get faster and faster and eventually out of bound
(i.e. beyond the 802.11 specified ±0.01%).

Another protocol called MTSF is proposed in [6] for
802.11 MANETs. The basic idea is to create a spanning
tree rooted at the fastest station. Each station selects
the fastest neighbor as its “parent”. Once the tree is con-
structed, the station schedules its beacon transmission in
a way so that it competes in a beacon period only if its
parent does not compete. A problem with this solution
is that its beacon transmission schedule relies heavily on
the spanning tree. When the fastest station moves to
another location, the tree needs to be reconstructed and
the schedule will be messed up in the process. Another
issue with the protocol is that the maximum clock offset
is still quite large (over 200 µs) after stabilization.

3 Our Solution: MATSF

In this section, we will propose a multihop adaptive tim-
ing synchronization function called MATSF. First let us
briefly analyze the reasons behind the poor scalability of
802.11 TSF, and then we will show how MATSF resolves
these issues.

3.1 Root Cause of Scalability Problem

• Beacon collision: Large number of stations contend
for beacon generation within a small contention win-
dow.

• Diverse clock frequencies: The IEEE 802.11 spec-
ifications only require clock accuracy to be within
±0.01%. There are several elements that con-
tribute to the inaccuracy of clocks [9]: starting fre-
quency offset (due to frequency calibration error),
frequency drift (due to aging) and oscillator phase
noise/offset/drift. Given the typical operating envi-
ronment and short life span of an 802.11 MANET,
frequency drift and oscillator phase errors are negli-
gible compared to the starting frequency offset.

• Inaccurate timestamp: It takes time for a beacon
to travel from the sender’s MAC layer (which sets
the value of the timestamp on the beacon) to the
receiver’s MAC layer (which uses the timestamp).
Thus, when the receiver synchronizes its clock ac-
cording to the timestamp’s value, the latter is al-
ready different from the sending TSF timer’s actual
value as of that moment. To mitigate this problem,
according to the 802.11 standard, a station sending
a beacon shall set the value of the beacon’s times-
tamp so that it equals the value of the station’s TSF
timer at the time that the first bit of the times-
tamp is transmitted to the PHY plus the transmit-
ting station’s delays through its local PHY from the
MAC-PHY interface to its interface with the wireless
medium. This mechanism maintains the value of the
beacon and the value of the sending TSF timer to
be within 4 µs plus the maximum propagation delay
of the PHY, which adds up to about ±5µs.

3.2 Overview of our Protocol

Before presenting our protocol, we list the desirable re-
quirement for a good MANET TSF first. In our opinion,
an acceptable solution to the 802.11 TSF’s scalability
problem must be accurate, low cost, scalable, and able
to handle mobility.

Given the reasons of asynchronism (as discussed in
Section 3.1), three strategies suggest themselves as natu-
ral approaches to improving the 802.11 TSF’s scalability.
The first strategy is to reduce the number of stations
competing for beacon generation. The second strategy
is to adjust clock frequencies so that all clocks in the
MANET have about the same accuracy. The third strat-
egy is to establish a path for each station to reach the
fastest station(s) quickly through beacon exchange. This
can be achieved through the construction of a dominating
set.

Beacon transmission prioritization

To implement strategy 1, we classify the stations into
two tiers according to their frequencies. It is hard and
unnecessary to obtain a precise ranking; an estimate is
sufficient for our purpose. Each station divides the time
line into observation periods, each period consisting of
OBS BPs, where OBS is a pre-specified integer. In each
observation period, each station i computes the number
of different stations from which i has received at least
one faster beacon. We declare a beacon faster only if the
timestamp minus the maximum estimation error (5 µs)
is larger than i’s current TSF timer value. We record this
number as ahead(i). If ahead(i) < THD, then station i
competes in every beacon period.

Bounded frequency adjustment

To implement strategy 2, we need the following defini-
tions.

Definition 1 Clock i’s native frequency, denoted as
fn(i), is the number of ticks the clock accumulates per
second driven by its oscillator.

Note that each 802.11 timer has a native frequency
within the range of (1 ± 0.01%) mega hertz (MHz).

(Each timer ticks once per microsecond, but there is an
inaccuracy of up to ± 0.01%.)

Definition 2 Clock i’s frequency adjustment, denoted as
fa(i), is the number of extra ticks per second that is
added to the clock.

Definition 3 The sum adj freq(i) = fn(i)+fa(i) is the
adjusted frequency of clock i.

For each station i, we will calculate a frequency adjust-
ment fa(i), such that fn(i)+fa(i) ≈ fn(fastest station).
The basic idea behind the calculation of frequency ad-
justment is as follows. Suppose station i receives two
beacons from station j, say, at times t1 and t2, respec-
tively. From the timestamps on the beacons, station j’s
TSF timer values as of time t1 and t2 can be estimated
— let them be TS1(j) and TS2(j), respectively. If it can
be ensured that j’s timer had never been synchronized
between the times it sent the two beacons. Then from
the values TS1(j) and TS2(j), station j’s clock frequency
can be estimated. If this estimated frequency is higher
than station i’s own clock frequency, then i’ adjusts its
frequency to match j’s. This way, all stations can even-
tually have their adjusted frequency matching the fastest
station’s clock frequency.

There are two design issues in the above frequency
adjustment mechanism. First, how to ensure that j’s
clock had not been synchronized between the times it
sent the two beacons? It can be resolved by attaching
a sequence number field at the end of the beacon frame.
The sequence number is incremented each time a station
is synchronized by another station. If the sequence num-
bers are the same, then the station is not synchronized
by other stations. The second issue is that when station
i adjusts its clock frequency to match j’s, it is important
to ensure that i does not overdo it. That is, i’s adjusted
frequency must not be higher than j’s frequency.

We overcome this problem by taking into consideration
the inaccuracy of timestamps on beacons. According to
the 802.11 specifications, the timing information carried
by the timestamp may be inaccurate by as much as ±5µs.
Thus, denoting by T 1(j) and T 2(j) station j’s actual
timer values as of times t1 and t2, respectively, where t1
and t2, as before, are the times when j’s two consecutive
beacons arrive at a station, we have |T 1(j)−TS1(j)| ≤ 5
µs and |T 2(j)−TS2(j)| ≤ 5 µs. To avoid over-adjusting a
station’s frequency, we will estimate station j’s frequency
conservatively by

(TS2(j)− δ)− (TS1(j) + δ)
t2 − t1

≤ T 2(j)− T 1(j)
t2 − t1

= adj freq(j) (1)

where δ = 5µs. By adjusting i’s clock frequency to this
conservatively estimated frequency of j, we guarantee the
i will never over-adjust its frequency.

Construction of dominating set

To implement strategy 3, we try to construct a dom-
inating set for the stations in the MANET. We put the
fastest station(s) into the dominating set, we also put

gateway stations and selected bridge stations (to be de-
fined later) into the dominating set and let them compete
for beacon transmission every BP; while the rest of the
stations compete only once in a while. The timing infor-
mation of the fastest node will be propagated through the
MANET very quickly along a path of dominating nodes.
Collision is reduced due to the fact that nodes not in
the dominating set compete for beacon transmission less
frequently.

Represent the MANET as an undirected graph, G =
(V,E). Let DS be any subset of V . Relative to this set,
a node u in V is defined to be inDS, covered (by DS),
uncovered (by DS), a bridge, or a gateway as follows:

• inDS: if u ∈ DS;

• uncovered: if u /∈ DS and there is no edge joining u
to any node in DS;

• covered: if u /∈ DS and there is an edge (u, v) ∈ E
for some v ∈ DS;

• bridge: if u is covered and has at least one uncovered
neighbor;

• gateway: if there are two connected components
in G(DS), say, C1 and C2, such that hop(u, C1) +
hop(u, C2) ≤ 3, where G(DS) denotes the subgraph
induced by DS, and hop(u, C1) denotes the (mini-
mum) number of hops between u and C1.

We try to construct a dominating set starting with
one node in the DS (for example, the initiator of the
MANET), and adding bridge/gateway nodes into the
DS. The following lemmas will guide our protocol de-
sign.

Lemma 1 DS becomes a dominating set whenever
there is no bridge in G.

Proof. It follows directly from the definition of domi-
nating set.

Lemma 2 A dominating set in G is connected iff there
is no gateway in G.

Proof. (⇒) If DS is connected, G(DS) has only one
connected component and, therefore, no node can be a
gateway.

(⇐) Now suppose DS is a disconnected dominating
set. By definition, There are no uncovered nodes in G.
Let S1 and S2 be two “nearest” connected components
of DS; i.e., the hop number between S1 and S2 is small-
est among all pairs of connected components. The hop
number between S1 and S2 is either two or three. (For
if the hop number is less than two, S1 and S2 would be
connected; if it is more than three, there would be un-
covered nodes.) The one or two nodes on the shortest
path between S1 and S2 are gateways.

We add to the beacon frame a 3-bit field, called status,
for the sender to indicate its present status.

Each station, i, continuously observes the beacons re-
ceived in the past OBS beacon periods. #inDS bcn(i)
and #uncovered bcn(i) are the number of inDS beacons
and the number of uncovered beacons, respectively, re-
ceived by i in the past OBS beacon periods. At the end of

DS1 DS2

u

v

Figure 1: It is difficult to recognize gateways.

each beacon interval, If status(i) is not inDS or gateway,
it updates its status as follows:

status(i) :=

uncovered if (#inDS bcn(i) = 0)

covered if (#inDS bcn(i) > 0) and
(#uncovered bcn(i) = 0)

bridge if (#inDS bcn(i) > 0) and
(#uncovered bcn(i) > 0)

(2)
To help speed up the process of recognizing bridges,

an uncovered node competes for beacon transmission ev-
ery interval. To avoid adding too many bridge nodes into
the DS, the following equation is used to calculate when a
bridge station enters DS (after bridge T BPs). bridge T
is recalculated whenever the number of uncovered neigh-
bors changes.

bridge T (i) =
Tmax

number of uncovered neighbors of i
(3)

Gateways are considerably harder to recognize. For
example, consider the situation as illustrated in Fig. 1,
where suppose DS1 and DS2 are two disjoint sets of inDS
nodes, node u is not inDS, and node v may or may not be
inDS. By definition, u is a gateway iff v is not inDS. A
challenging question is, without knowing v’s status, can
u determine its own status? We develop a heuristic for a
gateway to recognize its gateway status.

Recall that in our timing synchronization protocol, sta-
tions in DS generate beacons far more frequently than
those not in DS (except for uncovered nodes). Thus, in
Fig. 1, if v is in DS, it is supposed to transmit beacons
frequently enough to synchronize DS1 with DS2. On the
other hand, if v is not in DS, it is possible that DS1 and
DS2 be getting out of synchronization. We use this dif-
ference as a heuristic for u to determine whether it is a
gateway. Thus, we adopts the following heuristic.

A covered station regards itself as a gateway if it re-
ceives a beacon with a timing “considerably” earlier than
the station’s own timer. (A practical definition of “con-
siderably earlier” which we used in our simulation is,
timing t1 is said to be considerably earlier than t2 if
t1 < t2−80%∆, where ∆ is the maximum time difference
between clocks that one wishes to achieve. ∆ = 50µs in
our simulation.) Our heuristic may not recognize every
gateway node. For example, if we have a graph with 3
nodes in a line. The middle node has the slowest fre-
quency. The node to the left and the node to the right
have the same fast frequencies. We will not be able to
detect the middle node as the gateway. However, it will
not impact the accuracy of our timing synchronization
protocol. We fail to detect some gateway nodes only if
their clocks are already synchronized very accurately.

3.3 A Scalable Solution for Clock Syn-
chronization: MATSF

Now we are ready to introduce a new scheme by inte-
grating the three strategies to meet all the requirements
of clock synchronization for an 802.11 MANET.

We first define the terms and variables to be used the
protocol, and then describe the protocol MATSF itself.

• T (i): TSF timer value of station i.

• NT (i): native timer value of station i based on the
oscillator.

• SK(i): clock frequency adjustment for station i.
The amount SK(i) ∗ 106 is an estimate of fa(i), and
will be added to T (i) per second.

• TS(j): the adjusted timestamp value obtained from
the beacon sent by j and received by i. It is the sum
of the timestamp value in the beacon plus the re-
ceiving PHY layer delay and the time since the first
bit is received at the receiver’s PHY/MAC interface.

• seq(j): the sequence number obtained from the bea-
con sent by j and received by i.

• ahead(i): number of stations from which faster bea-
cons have been received by i during an observation
period.

• ±δ: the maximum error that may occur when we
estimate the value of T (j) by TS(j). That is, |T (j)−
TS(j)| ≤ δ µs at the time when j’s beacon arrives
at the receiving station’s MAC layer.

• ∆NT (i)(j): the amount of time (i’s native time)
since the last time station i received a beacon from
station j with a faster timestamp.

• last NT (i)(j): the native timer value of station i the
last time it received a beacon from station j with a
faster timestamp.

• last sync T (i)(j): the timer value of station i the
last time it was synchronized by a faster beacon from
station j.

• last seq(i)(j): the sequence number station of j the
last time when station i received a beacon from sta-
tion j with a faster timestamp.

• BC(i): station i competes for beacon generation
once every BC(i) beacon periods.

• C(i): counter of beacon periods.

• status(i): 3-bit addition to the beacon representing
the dominating set status. The value can be inDS,
covered, uncovered, a bridge, or a gateway.

• bridge T (i): number of BPs for a bridge node to
wait before entering DS.

Now we present MATSF in Fig. 2. In this algorithm,
we update three variables under the proper conditions
to meet our design requirements. We change the TSF
timer value of the receiving station i (T (i)) when we are
sure the clock time difference is out of the margin of

MATSF: Multihop Adaptive Timing Synchro-
nization Function

1. Initially, when station i joins the MANET,
if station i is the initiator of the MANET, let

NT (i)← T (i)← 0, status(i)← inDS, BC(i)← 1
else if i joins in by hearing a beacon from station j,

NT (i)← T (i)← TS(j)− δ,
if status(j) = inDS, then

status(i)← covered, BC(i)← Imax

else status(i)← uncovered, BC(i)← 1.
In both cases, let SK(i)← 0, C(i)← rand(1, BC(i)),
and start an observation period of OBS.

2. If C(i) < BC(i), station i will not compete for
beacon transmission.

3. If C(i) ≥ BC(i), C(i)← 0, station i is ready to
compete.

4. At each TBTT each station that wants to compete
for beacon transmission calculates a random delay
uniformly distributed in the range [0, w].

5. The station waits for the period of the random delay.
6. When the random delay timer expires, if the medium

is idle, the station transmits a beacon with a
timestamp; else if it receives a beacon before its
random delay timer expiration, it cancels the pending
transmission and the remaining random delay.

7. Upon receiving a beacon from station j, a station i
performs:
if status(j) = inDS and status(i) = uncovered

status(i) = covered.
if status(j) = uncovered and status(i) = covered

status(i) = bridge, calculate bridge T (i).
if status(i) = covered and T (i) > T (j) + δ + 0.8∆

status(i) = gateway.
if T (i) ≤ TS(j)− δ then

seq(i)← seq(i) + 1
T (i)← TS(j)− δ
∆NT (i)(j)← NT (i)− last NT (i)(j)
tmp← TS(j)− last sync T (i)(j)−

∆NT (i)(j)− 3δ
if seq(j) = last seq(i)(j) and tmp ≥ 0

SK(i)← max{SK(i), tmp/∆NT (i)(j)}
last NT (i)(j)← NT (i)
last sync T (i)(j)← TS(j)− δ
last seq(i)(j)← seq(j)

8. If SK(i) > 0, station i increments T (i) by 1 every
d1/SK(i)e µs (in terms of station i’s native time).

9. At the end of a beacon period, C(i)← C(i) + 1,
if bridge T (i) > 0, bridge T (i)← bridge T (i)− 1.
update status(i) using Eq. 2.
if status(i) = bridge & bridge T (i) = 0

status(i)← inDS.
if status(i) = gateway, status(i)← inDS.
if status(i) = inDS or status(i) = uncovered

BC(i)← 1
else BC(i)← Imax, C(i)← rand(1, BC(i)).

10. At the end of observation period:
if ahead(i) < THD, then status(i)← inDS.
Reset ahead(i), #inDS bcn(i), #uncovered bcn(i).

11. NT (i) increments by 1 whenever station i’s
oscillator ticks.

Figure 2: Algorithm MATSF

error. We modify the BC value to control how often
a station competes for beacon transmission. We reset
frequency adjustment (SK) only when we are sure the
sender’s clock frequency is faster.

When station i receives a beacon from station j, it
first checks whether TS(j) − δ ≥ T (i). If that is true,
i knows that station j’s clock value is definitely larger
than its own timer and i will adjust its TSF timer
value. To make sure that j’s clock was not reset be-
tween these two beacons, the protocol further checks
whether the sequence number in the beacon from j is
the same as the sequence number recorded when the
last time station i received a faster beacon from j. If
TS(j)− last sync T (i)(j)−∆NT (i)(j) ≥ 3δ, we are sure
station j advances faster than station i’s native clock (we
will prove it in Theorem 1), then SK(i) is re-calculated.

BC(i) is used to decide how often a station competes
for beacon transmission. A station competes for beacon
transmission every BC BPs. BC(i) is 1 for inDS and
uncovered stations; BC(i) is set to Imax for other sta-
tions.

3.4 Analysis of the protocol

We will first prove that our frequency adjustment is
bounded, and then analyze how quickly a station can
recognize its status. The latter analysis will give us some
guidance on how to set some parameters used in MATSF.

3.4.1 Bounded frequency adjustment

Suppose that station i synchronizes its timer, T (i), on
receiving another station j’s beacon. We show in the
following lemma that at the moment right after the syn-
chronization (i.e., when T (i) is updated to TS(j)− δ in
step 7 of the algorithm), the values of the two stations’
timers are related by T (i) ≤ T (j) ≤ T (i) + 2δ.

Lemma 3 If station i synchronizes its clock with station
j, then at the moment right after the synchronization, it
holds that T (i) ≤ T (j) ≤ T (i) + 2δ.

Proof. At the moment of synchronization, it is known
by assumption (or by the definition of δ) that

|T (j)− TS(j)| ≤ δ. (4)

During synchronization, station i sets its timer as

T (i) := TS(j)− δ. (5)

The lemma follows directly from Eqs. 4 and 5.

Lemma 4 For each station i, fa(i) = fn(i) ∗SK(i) and
adj freq(i) = fn(i) + fn(i) ∗ SK(i).

Proof. Based on the calculation of SK(i), SK(i) is the
adjustment per microsecond in terms of station i’s native
time. fn(i) is the number of native microseconds per
reference time second. fn(i) ∗ SK(i) is the number of
ticks added per reference time second. Therefore, fa(i) =
fn(i) ∗ SK(i) and, thus, adj freq(i) = fn(i) + fn(i) ∗
SK(i).

The following theorem shows that the adjusted fre-
quency of each station is bounded by the frequency of
the station with the highest native frequency.

Theorem 1 For all stations i in the MANET,
adj freq(i) is non-decreasing as a function of time. Fur-
thermore, adj freq(i) ≤ fn(s0) for all i, where s0 is the
station with the highest native frequency that has ever
joined the MANET. (Note that s0 may still be in the
MANET or may have left).

Proof. Since SK(i) := max{SK(i), ...}, SK(i) is obvi-
ously non-decreasing as a function of time. It then follows
from Lemma 4 that adj freq(i) is also non-decreasing.

To establish the bound adj freq(k) ≤ fn(s0) for all k
during the life-span of the MANET, it suffices to show the
following: (1) the bound holds at the MANET’s incep-
tion, which is obviously true, and (2) if the bound holds
up to the time when a station is about to update its SK,
then after the update the bound is still valid. To prove
the latter statement, consider the event that station i ad-
justs SK(i) upon receiving a beacon from station j. As
the induction hypothesis, assume adj freq(k) ≤ fn(s0)
for all k (in particular, adj freq(j) ≤ fn(s0)) before the
SK(i) update. Since adj freq(j) does not change dur-
ing the event, it is sufficient for us to show adj freq(i) ≤
adj freq(j) after the SK(i) update.

According to the protocol, station i may adjust its SK
only if i’s timer has been synchronized twice by station
j with the same sequence number and

TS(j)− last sync T (i)(j)−∆NT (i)(j) ≥ 3δ (6)

Let t1 be the time (of a reference clock) of the last timing
synchronization and t2 be that of this timing synchro-
nization. Let T 1(j) and T 2(j) be the values of T (j) (j’s
TSF timer) as of t1 and t2, respectively. TS(j) in Eq.6 is
the timestamp value at t2. We denote it as TS2(j). Let
∆t = t2 − t1.

During the period (t1, t2), station j’s clock has never
been synchronized by other stations. This is due to the
fact that j’s sequence number has not changed. Thus,
over the period (t1, t2), timer T (j) has been ticking at its
adjusted frequency, adj freq(j), and has advanced from
T 1(j) to T 2(j). Therefore,

adj freq(j) =
T 2(j)− T 1(j)

∆t
. (7)

By Lemma 3, T 1(j) ≤ last sync T (i)(j) + 2δ. By Eq. 4,
T 2(j) ≥ TS2(j)− δ. Substituting these into Eq. 7 yields

adj freq(j) ≥ TS2(j)− last sync T (i)(j)− 3δ

∆t
. (8)

On the other hand, adj freq(i) can be computed as fol-
lows. Station i’s native clock advances ∆NT (i)(j) be-
tween time t1 and t2. Therefore,

adj freq(i) =
∆NT (i)(j) + ∆NT (i)(j)/(1/dSK(i)e)

∆t

≤ ∆NT (i)(j) + ∆NT (i)(j) ∗ SK(i)
∆t

(9)

By definition,

SK(i) =
TS2(j)− last sync T (i)(j)−∆NT (i)(j)− 3δ

∆NT (i)(j)

Substituting this into Eq. 9, we obtain

adj freq(i) ≤ TS2(j)− last sync T (i)(j)− 3δ

∆t
(10)

Eqs.8 and 10 together imply adj freq(i) ≤ adj freq(j).

3.4.2 Probability of recognizing a bridge within
OBS beacon periods

Consider a bridge B. We are interested in estimating the
amount of time it would take for B to recognize its bridge
status.

Let M be the number of stations in the (1-hop) neigh-
borhood of B — M1 of them are black and M2 are
white — which are contending for beacon transmission
in slot window [0,W]. Let E′(m1,m2, w, s) denote the
event that exactly s slots in [0, w − 2] are busy, that
slot w − 1 is idle, and that m1 black and m2 white sta-
tions remain to contend for beacon transmission (i.e., the
random numbers picked by these stations are all in the
range [w − s,W]). Denote by p(m1,m2, w, s) the condi-
tional probability that given E′(m1,m2, w, s) at least one
of the m1 black stations successfully transmits a beacon.

Lemma 5 Given M stations in the (1-hop) neighbor-
hood of B — M1 of them are black and M2 are white —
the probability that at least one black station successfully
sends a beacon within a window is p(M1,M2, 0, 0), which
can be calculated recursively as in the proof below.

Proof. Given E′(m1,m2, w, s), let E be the event that at
least one of the m1 black stations successfully transmits
a beacon. Event E can be partitioned into four disjoint
sub-events — E1, E2, E3, E4 (as specified below) — and
therefore,

p(m1,m2, w, s) = p1 + p2 + p3 + p4 (11)

where pi, as specified below, denotes the conditional
probability of event Ei given E′(m1,m2, w, s).
• E1: There is no beacon transmission in slot w, but at

least one successful black beacon transmission in window
[w+1,W]. This event occurs iff all the m stations, where
m = m1 +m2, picked a random number in [w−s+1,W]
and at least one of the black stations succeeds. Thus, the
probability of its occurrence (given E′(m1,m2, w, s)) is

p1 =
(

W − w + s

W − w + s + 1

)m

p(m1,m2, w + 1, s) (12)

• E2: There is a successful black beacon transmission
in slot w. This event occurs iff a unique black station
chooses slot w − s. Therefore,

p2 = m1

(
1

W − w + s + 1

) (
W − w + s

W − w + s + 1

)m−1

(13)
• E3: There is a successful white beacon transmission

in slot w and at least one successful black beacon trans-
mission thereafter. It’s probability can be easily calcu-
lated as

p3 = m2

(
1

W − w + s + 1

) (
W − w + s

W − w + s + 1

)m−1

p(m1,m2 − 1, w + b + 1, s + b) (14)

p(m1,m2,0,0)
 0.8
 0.7
 0.6
 0.5
 0.4
 0.3

 2
 4

 6
 8

 10
 12

 14m1 2
 4

 6
 8

 10
 12

 14

m2

 0.1
 0.2
 0.3
 0.4
 0.5
 0.6
 0.7
 0.8
 0.9

 1

p(m1,m2,w,s)

Figure 3: Probability of a successful black beacon.

where b is the beacon length in terms of slots.
• E4: There are unsuccessful (collided) beacon trans-

missions in slot w, but at least one successful black bea-
con transmission in window [w + b + 1,W].

p4 =
m∑

i=2

C m
i

(
1

W − w + s + 1

)i (
W − w + s

W − w + s + 1

)m−i

min(m1,m−i)∑
x=0

C m1
x C m2

m−i−x

C m
m−i

p(x, m− i− x,w + b + 1, s + 1)

The boundary condition is p(m1,m2, w, s) = 0 if m1 =
0, m2 < 0, w > W , or s > W .

Using the formulas developed in the proof of Lemma 5,
we can calculate p1 (resp. p2), the probability that at
least one inDS (resp. uncovered) node successfully trans-
mits a beacon in a beacon interval.

Theorem 2 Let N = OBS, the length of an observation
period. With probability p = 1 − q1

N − q2
N + q1

Nq2
N

a bridge can recognize its bridge status in a single ob-
servation period, where q1 = 1 − p1 (resp. q2 = 1 − p2)
is the probability of B not even hearing an inDS (resp.
uncovered) beacon in a beacon generation window.

Proof. Let X (resp. Y) be the number of beacon genera-
tion windows until the first successful inDS (resp. uncov-
ered) beacon transmission. Both X and Y are geomet-
rically distributed with marginal probability functions
fX(x) = p1q1

x−1 and fY (y) = p2q2
y−1, where q1 = 1−p1

and q2 = 1−p2. Let N = OBS be the length of an obser-
vation period. The probability that a bridge recognizes
its status in a single observation period is

p = P (max(X, Y) ≤ N) = 1− q1
N − q2

N + q1
Nq2

N

This theorem is useful for determining the values of
OBS and THD. In our performance studies (to be pre-
sented in Section 4), we choose N = OBS = 10. p1

and q1 can be found using Fig. 3. With this value of
OBS, the probability of recognizing a bridge in an obser-
vation period is 0.85 if there is only one inDS node and
13 uncovered nodes. The probability is 0.98 or higher
when there are 2 or more inDS nodes and 12 uncovered
nodes. In our simulations, the average number of BPs

 0

 100

 200

 300

 400

 500

 600

 700

 500 1000 1500 2000 2500 3000 3500 4000 4500 5000

m
ax

 c
lo

ck
 o

ffs
et

(u
s)

Number of BP

802.11 TSF n= 500

Figure 4: Maximum clock offset for 802.11 TSF

needed to recognize a bridge is 10.2, which amounts to
1.1 seconds.

If THD = 2, then the number of inDS nodes is at least
2. Combining this with OBS = 10, we can achieve very
high probability to recognize a bridge in an observation
period.

The probability to recognize a gateway is very hard
to analyze. But we observed through simulation that
the protocol reaches a stable state where all uncovered
nodes become covered by inDS nodes. Therefore, it is
not very critical to have an accurate analysis for gateway
recognition.

4 Simulation Study on 802.11
TSF, ASP and MATSF

In the simulation, we let the clock frequency be uniformly
distributed in the range of [−d, d]. We pick d = 0.01%.
The number of slots needed to send a beacon is called
beacon length. We run the simulation for OFDM system
with bit-rate of 54 Mbps: W = 30 and beacon length
b = 4. The MANET has n stations. We set the packet
error rate to be 0.01%. We run the simulation for 5000
BPs (500 seconds). We randomly distribute these n sta-
tions in a 1000m × 1000m region. Each station has a
transmission range of 250 meters. We adopt the same
random way-point mobility model as in [5]. The maxi-
mum speed is 5 m/s and the pause time is 50 seconds.
We show the maximum clock offset starting from beacon
period 100 to ignore the initial clock offset.

802.11 TSF is not scalable for MANETs. When n =
500, the maximum offset can be over 700µs and the av-
erage over 200µs as shown in Fig. 4.

We ran simulations for ASP with α = 3 as it is the
preferred value by [5]. Fig. 5 shows the maximum clock
offset during each beacon period for ASP when n = 500.
It shows good improvement over the 802.11 TSF but it
still has large clock offset (over 300µs). It does not ad-
dress the scalability issue completely.

We ran the simulation for our new protocol MATSF
with δ = 5, Imax = 16, ∆ = 50, Tmax = 32, OBS = 10
and THD = 2.

Fig.6 shows the maximum clock offset for a MANET
with 500 stations. We can see from Fig.6 that MATSF
can synchronize the clocks very precisely. The maximum
clock offset is under 50µs.

 0

 100

 200

 300

 400

 500

 600

 500 1000 1500 2000 2500 3000 3500 4000 4500 5000

m
ax

 c
lo

ck
 o

ffs
et

(u
s)

Number of BP

ASP n= 500

Figure 5: Maximum clock offset for ASP

 0

 50

 100

 150

 200

 500 1000 1500 2000 2500 3000 3500 4000 4500 5000

m
ax

 c
lo

ck
 o

ffs
et

(u
s)

Number of BP

MATSF n= 500

Figure 6: Maximum clock offset for MATSF

MATSF can reduce the maximum clock offset to under
50µs very quickly (under 10 seconds). ASP takes 500%
more time to stabilize. We say that the TSF converges
when the maximum clock offset start to stay within a
close range and stop going up and down significantly (say
30 µs). Because of the construction of dominating set,
the timing information can be propagated to all the sta-
tions very quickly for MATSF.

MATSF also shows nice stability after the protocol
converges. The maximum offset keeps going down along
the time. Fig.6 shows the trend clearly. The reason be-
hind the improvement is that MATSF’s clock frequency
adjustment is bounded and each frequency adjustment
will bring the frequency differences smaller.

Table 1 shows the maximum clock offset comparison
between MATSF, ASP and 802.11 TSF for the number
of stations (n) ranging from 100 to 500. For MATSF,
The maximum clock offset is under 50µs. The maximum
clock offset for ASP is about 700% higher than MATSF.

Table 2 shows the average maximum clock offset com-
parison between MATSF, ASP and 802.11 TSF. The av-
erage maximum offset of ASP is about 400% higher than
that of MATSF. The reasons for ASP’s inferior perfor-
mance is that the protocol may over-adjust frequencies
and that the fastest stations may not form a dominating

n MATSF ASP 802.11
100 24 µs 270 µs 277
300 24 µs 220 µs 254
500 43 µs 313 µs 708

Table 1: Maximum clock offset of MATSF, ASP and
802.11 TSF

n MATSF ASP 802.11
100 12 µs 59 µs 127 µs
300 12 µs 62 µs 138 µs
500 16 µs 109 µs 212 µs

Table 2: Average maximum clock offset of MATSF, ASP
and 802.11 TSF

set. It may take long time for the timing information
from the faster stations to reach the slower stations.

5 Conclusion

We have studied the scalability problem of clock synchro-
nization protocols for 802.11 ad hoc networks in a mult-
hop environment. The current solutions to the scalability
problem are still short of the expectation: the maximum
clock offset is over 200µs. We proposed an adaptive pro-
tocol called MATSF that can achieve higher accuracy of
clock synchronization than any of the current solutions.
It can control the maximum clock offset under 50µs. This
is an over 400% improvement. We analyzed why the cur-
rent solutions cannot achieve the desired accuracy. We
proved that our frequency adjustment is bounded and
non-decreasing. This provides a solid foundation for good
long-term protocol stability. Our protocol also converges
several times faster than other solutions due to the use
of dominating set.

References

[1] IEEE Std 802.11. Wireless LAN Medium Access
Control (MAC) and Physical Layer (PHY) specifi-
cation, 1999 edition.

[2] L. Huang, T.H. Lai, On the Scalability of IEEE
802.11 Ad Hoc Networks, MobiHoc 2002, pp. 173-
182.

[3] D. Zhou, T.H. Lai, Analysis and Implementation of
Scalable Clock Synchronization Protocols in IEEE
802.11 Ad Hoc Networks, MASS 2004.

[4] Dong Zhou, Ten-Hwang Lai, A Compatible and
Scalable Clock Synchronization Protocol in IEEE
802.11 Ad Hoc Networks, ICPP 2005.

[5] J.P. Sheu, C.M. Chao, C.W. Sun, A Clock Synchro-
nization Algorithm for Multi-Hop Wireless Ad Hoc
Networks, ICDCS 2004, pp. 574-581.

[6] J. So, N. Vaidya, MTSF: A Timing Synchroniza-
tion Protocol to Support Synchronous Operations
in Multihop Wireless Networks, UIUC technical re-
port, 2004.

[7] K. Römer and E. Zurich, Time synchronization in
ad hoc networks, MobiHoc 2001.

[8] J. Elson, L. Girod, and D. Estrin, Fine-Grained Net-
work Time Synchronization using Reference Broad-
casts, 2002 Symposium on Operating Systems De-
sign and Implementation, pp. 147-163.

[9] S. Bregni, Synchronization of Digital Telecommuni-
cations Networks, John Wiley & Sons, 2002.

