
A Scalable and Distributed
Dynamic Formal Verifier for MPI Programs

Anh Vo,
Sriram Aananthakrishnan,

and Ganesh Gopalakrishnan
School of Computing

University of Utah
Salt Lake City, Utah 84112-9205

Email: {avo,sriram,ganesh}@cs.utah.edu∗

Bronis R. de Supinski,
Martin Schulz,

and Greg Bronevetsky
Center for Applied Scientific Computing

Lawrence Livermore National Lab
Livermore, California 96678-2391

Email: {bronis,schulzm,bronevetsky1}@llnl.gov∗

Abstract—Standard testing methods of MPI programs do
not guarantee coverage of all non-deterministic interactions
(e.g., wildcard-receives). Programs tested by these methods can
have untested paths (bugs) that may become manifest unex-
pectedly. Previous formal dynamic verifiers cover the space
of non-determinism but do not scale, even for small applica-
tions. We present DAMPI, the first dynamic analyzer for MPI
programs that guarantees scalable coverage of the space of
non-determinism through a decentralized algorithm based on
Lamport-clocks. DAMPI computes alternative non-deterministic
matches and enforces them in subsequent program replays.
To avoid interleaving explosion, DAMPI employs heuristics to
focus coverage to regions of interest. We show that DAMPI can
detect deadlocks and resource-leaks in real applications. Our
results on a wide range of applications using over a thousand
processes, which is an order of magnitude larger than any
previously reported results for MPI dynamic verification tools,
demonstrate that DAMPI provides scalable, user-configurable
testing coverage.

I. INTRODUCTION

Almost all high-performance computing applications are
written in MPI, which will continue to be the case for at
least the next several years. Given the huge (and growing)
importance of MPI, and the size and sophistication of MPI
codes, scalable and incisive MPI debugging tools are essential.
Existing MPI debugging tools have, despite their strengths,
many glaring deficiencies. While existing tools include many
detailed debugging and stack viewing features, they often fail
to provide the needed insight into the error’s root cause.

Errors in parallel programs are often non-deterministic,
arising only infrequently (e.g., Heisenbugs [1]). MPI seman-
tics encourage the creation of these errors through features
such as MPI_ANY_SOURCE (wildcard, or non-deterministic)
receives and non-deterministic probes. Existing tools and
testing methodologies often provide little assistance in locating
these errors [2]. Further, a given MPI implementation on any
particular system tends to bias execution to towards the same
outcomes for non-detemrinistic operations, which can mask

∗This work was partially performed under the auspices of the U.S.
Deparment of Energy by Lawrence Livermore National Laboratory under
contract DE-AC52-07NA27344. (LLNL-CONF-442475). The work of the
Utah authors was partially supported by Microsoft.

errors related to them. Thus, these errors often only become
manifest after moving to a new system or MPI implementation
or even after making an apparently unrelated change to the
source code. While random delays/sleeps inserted along com-
putational paths can help improve fairness [3], these delays
primarily modulate the time of that MPI calls are issued and
provide no guarantees of increased coverage of the possible
non-deterministic outcomes.

Our previous work achieves non-deterministic behavior cov-
erage through an active testing or dynamic formal verification
tool called ISP [4], [5], [6], [7], [8]. ISP uses the MPI profiling
interface [9] to intercept MPI operations and to enforce partic-
ular outcomes for non-deterministic operations. In particular,
the ISP scheduler employs an MPI-semantics aware algorithm
that reorders or rewrites MPI operations before sending them
into the MPI runtime. Thus, ISP can discover the set S of
all sends that can match a non-deterministic receive. ISP then
determinizes the MPI receives with respect to each s ∈ S, and
then issues the MPI send and the determinized MPI receive
into the MPI runtime so that they must be matched. Thus, ISP
fully explores the range of non-deterministic outcomes for a
given input, although the control flow decisions related to that
input still limit overall testing coverage.

Using ISP, we successfully verified many MPI applications
of up to 14K LOC for a few dozen processes, which is often
sufficient to locate Heisenbugs. However, ISP’s centralized
scheduling algorithm is non-scalable and applying it to signif-
icantly larger process counts is infeasible. Further, ISP must
delay non-deterministic outcomes even at small scales, which
leads to long testing times. In effect, its scheduler poorly
exploits the parallelism offered by the cluster on which the
MPI program is being dynamically verified.

Not only do we need faster dynamic verification tools for
modest scales, but many reasons motivate scalable tools:

• MPI programs often require at least some scale in order to
run certain inputs due to memory sizes and other limits;
how to modify the inputs for smaller scale runs is at
best unclear (e.g., if M is reduced, should N be reduced
logarithmically?);

• Some bugs are only manifest when a problem is run

c©2010 IEEE Personal use of this material is permitted. However, permission to reprint/republish this material for advertising or promotional purposes or for
creating new collective works for resale or redistribution to servers or lists, or to reuse any copyrighted component of this work in other works must be
obtained from the IEEE.
SC10 November 2010, New Orleans, Louisiana, USA 978-1- 4244-7558-2/10/$26.00

at scale: some buffer overflows or some index exceeds
a memory range; testing with equivalent smaller scale
inputs cannot locate these errors;

• While user-level dynamic verification resolves significant
non-determinism, testing at smaller scales may mask
similar system-level errors, such as bugs in the MPI
implementation.

We make the following contributions in this paper:

• The first dynamic MPI verifier to scale meaningfully:
users can verify MPI codes within the parallel environ-
ment in which they develop and optimize them;

• A scalable algorithm based on Lamport clocks that cap-
tures possible non-deterministic matches;

• A characterization of the additional coverage of MPI
patterns that rarely occur that we could achieve with a
less scalable algorithm based on vector clocks;

• A loop iteration abstraction heuristic that allows pro-
grammers to indicate to the DAMPI scheduler which MPI
loops contain non-deterministic operations;

• Another powerful heuristic, bounded mixing, that exploits
our intuition that the effect of each non-deterministic MPI
operation does not last long along the code path by using
a series of overlapping finite height windows;

• Extensive demonstration of the DAMPI algorithm’s guar-
anteed coverage on medium to large benchmarks.

Our loop iteration abstraction heuristic prevents naı̈ve explo-
ration of loops that can cause an unsustainably large number of
paths through various non-deterministic choices. Instead, we
allow the programmer to focus testing costs. Bounded mixing
covers the whole MPI execution from MPI_Initialize
to MPI_Finalize. We allow interactions only between
non-deterministic commands within the same window. Thus,
DAMPI can explore the MPI application state space over a
summation of small exponentials of paths – and not all paths
in the application which is an unimaginably large exponential.

Our benchmarks include the NAS Parallel Benchmarks
(Fortran) and SpecMPI2007 (C/C++/Fortran), many of which
contain a high degree of non-determinism. We also provide
results for a new work-sharing library called ADLB [10]. This
library from Argonne is loosely coupled, and aggressively
employs non-deterministic commands. DAMPI is essential
for ADLB, for which its non-deterministic commands are
very difficult to control through all possible outcomes during
conventional testing. Overall, DAMPI substantially increases
the scale and applications to which we can practically apply
dynamic MPI verification.

After providing background on Lamport clocks and the rare
MPI patterns that they miss, we present the DAMPI algorithm
in Section II, and results on a collection of real MPI parallel
programming patterns in Section III. Section III-B. discusses
our new complexity bounding approaches in DAMPI along
with experiments.

II. DISTRIBUTED ANALYZER FOR MPI (DAMPI)
A. Background: Verifying MPI Programs with ISP

At a high level, ISP works by intercepting the MPI calls
made by the target program and making decisions on when
to send these MPI calls to the MPI library. It has two main
components: the Interposition Layer and the Scheduler.
The Interposition Layer: The interception of MPI calls is
accomplished by compiling the ISP interposition layer together
with the target program source code. The interposition layer
makes use of the MPI profiling interface. It provides its own
version of MPI f for each corresponding MPI function f .
Within each of these MPI f , the profiler communicates with
the scheduler using Unix sockets to send information about
the MPI call that the process is about to make. It then waits
for the scheduler to decide whether to send the MPI call to the
MPI library or to postpone it until later. When the permission
to fire f is granted from the scheduler, the interposition layer
issues the corresponding PMPI f to the MPI run-time.
The ISP Scheduler: The ISP scheduler executes the central
algorithm of ISP, which detects and enforces different out-
comes of non-deterministic MPI events. The scheduler detects
possible outcomes of non-deterministic events by fine-grain
interaction with the MPI processes. Specifically, each MPI
call involves a synchronous communication between the MPI
process and the scheduler to enable the scheduler to impose
a different issuing order of MPI calls (while still respecting
MPI semantics). Thus, in effect, the scheduler can discover all
possible outcomes resulting from one particular program run.
The synchronous communication and the interception layer
then dynamically convert each non-deterministic MPI call into
its deterministic equivalents. For example, if the scheduler de-
termines that an MPI_Recv(MPI_ANY_SOURCE can match
sends from both P1 and P2 then it instructs the MPI process to
issue the call into the MPI runtime as MPI_Recv(0) during
the first interleaving, and MPI_Recv(1) during the second.

While the centralized scheduler easily maintains a complete
global picture that facilitates the state space discovery process,
it limits scalability. When the number of MPI calls become
sufficiently large, the synchronous communication between
the scheduler and the MPI processes becomes an obvious
bottleneck. An early experimental version of ISP was devel-
oped in which MPI processes would be launched on different
hosts and communicate with the scheduler through TCP sock-
ets. This architecture removes the resource constraints faced
by launching all MPI processes within one single machine.
Nonetheless, all processes still synchronously communicate
with the centralized scheduler. Figure 5 presents ISP overhead
verifying ParMETIS [11] for different number of processes. As
shown by the figure, the verification time under ISP quickly
increases as the number of processes become larger which
makes it infeasible to apply ISP to verification larger than a
few hundred processes.

B. DAMPI: Rethinking ISP for the Distributed Setting
The key insight that allows us to design DAMPI’s decen-

tralized scheduling algorithm is that each non-deterministic

Executabl
e

Proc1
Proc2
……

Procn

Poten&al	
Matches	

Run

Na&ve	 MPI	

MPI	 Program	

DAMPI-‐PnMPI	
modules	

Schedule	
Generator	

Epoch	
Decisions	

Rerun

Fig. 1. DAMPI Framework

(ND) operation such as MPI_Irecv(MPI_ANY_SOURCE)
or MPI_Iprobe(MPI_ANY_SOURCE) represents a point on
the timeline of the issuing process when it commits to a
match decision. We can naturally think of each such event
as starting an epoch – an interval stretching from the current
ND event up to (but not including) the next ND event. All
deterministic receives can be assigned the same epoch within
which they occur. Even though the epoch is defined by one
ND receive matching another process’s send, we can determine
all other sends that can match it by considering all possible
sends that are not causally after the ND receive (and subject
to MPI’s non-overtaking rules). We determine these sends
using Lamport clocks [12] Based on these ideas, DAMPI’s
decentralized and scalable scheduling algorithm (demonstrated
for a thousand processes) works on unmodified C/Fortran MPI
programs as follows (also see Figure 1 and § II-E):

• All processes maintain “time” or “causality” through
Lamport clocks (which are a frequently used optimization
in lieu of the more precise but expensive Vector Clocks
(we explain Lamport clocks in § II-C).

• Each MPI call is trapped (using PNMPI instrumentation)
at the node at which the call originates. For deterministic
receive operations, the local process updates its own
Lamport clock; for deterministic sends, it sends the latest
Lamport clock along with the message payload using
piggyback messages. All Lamport clock exchanges occur
through piggyback messages.

• Each non-deterministic receive advances the Lamport
clock of the local process. During execution, this receive
matches one of the MPI sends targeting this process (or
else we detect a deadlock and report it). However, each
send that does not match this receive but impinges on
the issuing process is analyzed to see if it is causally
concurrent (computed using Lamport clocks). If so, we
record it as a Potential Match in a file.

• At the end of the initial execution, DAMPI’s scheduler
computes the Epoch Decisions file that has the informa-
tion to force alternate matches. DAMPI’s scheduler then
implements a depth-first walk over all Epoch Decisions
(successively force alternate matches at the last step;
then at the penultimate step; and so on until all Epoch
Decisions are exhausted).

C. Background: Vector Clocks and Lamport Clocks

In the vector clock approach to keeping logical time, the
current time of each process i in an N process system is
maintained as an N -vector V C[i]. The jth component of
V C[i], denoted V Cj [i], is process i’s knowledge of j’s time.
Initially, all V C[i]s are zero vectors. Whenever process i
performs a visible operation, its local time increases – i.e.,
V Ci[i] is incremented. Whenever process j sends a message
to process i, it ships the current V C[j] along with the message.
Whenever process i receives a message from process j, V Ck[i]
is set to the maximum of V Ck[j] and V Ck[i] for every
k ∈ {1 . . . N}. Clock vectors are compared component-wise.
If for all k Ck[i] < Ck[j] then we say C[i] < C[j], and in this
case the event associated with C[i] is before that associated
with C[j]. Incomparable vector clocks (where < does not hold
either way) represent concurrent events.

Vector clocks are not scalable. Many researchers, such as
Flanagan and Freund [13], have investigated scalable opti-
mizations. However, these optimization tend to exploit domain
knowledge. A common approach to scalability (at the expense
of loss of precision) is to use Lamport clocks. We can think
of Lamport clocks as a single integer approximating a vector
clock, with similar update rules. If we maintain time using
both vector and lamport clocks and we denote the Lamport
clock of process i (j) by LCi (LCj), then C[i] < C[j]
implies LCi < LCj . However, LCi < LCj does not imply
C[i] < C[j] – that is, Lamport clocks may order concurrent
events.

Given all this, if a non-deterministic receive is associated
with Lamport clock value b whereas an incoming send from
process j impinges on process i with a Lamport clock a, we
can say that the event associated with a is not causally after
that associated with b (so a is causally before or concurrent
with b). We call these sends late arriving (late). DAMPI’s
approach is to consider the earliest late send from each
process as the potential alternate matches. This choice enforces
MPI’s message non-overtaking rule that requires messages sent
between two processes with the same communicator and tag to
arrive in the same order [14], as Figure 2 illustrates. The figure
shows a wildcard receive event e in process R that has already
been matched. The red arrows are the late messages with
respect to e – hence, potential matches. Piggyback messages
flow in at different real times (as shown by the dotted edges).
The curved line termed the causal line helps visualize late
messages. The causal line defines a frontier of events such
that any event before it is not causally after any event on or
subsequent to it.

In § II-E, we present the DAMPI algorithm in in its entirety
and sketch its correctness. Correctness consists of two parts:
(i) Soundness: it will not find any ineligible matches, and
(ii) Completeness: that it will find all potential matches. We
discuss a rare class of patterns for which completeness is not
obtained in § V.

P

Q

R

S

Late

Late

e

Fig. 2. Causal Line and Late Messages

D. Piggyback Messages

Piggyback data is sent along with regular messages to
convey auxiliary information to the receiving process. In
DAMPI, the piggyback data is the Lamport clock value of
the process. The receiving process must match the piggyback
data correctly with the associated regular message. We can use
several mechanisms to communicate piggyback data including
data payload packing, datatype packing, or the use of separate
messages [15]. To ensure simplicity of implementation without
sacrificing performance, DAMPI uses the separate message
piggyback mechanism. Under this scheme, everytime a process
sends a message m, a piggyback message mp is sent (either
before or after m); similarly, a process preparing to receive
m must also post a receive for mp. To ensure that the
receiving processes can correctly associate m and mp, DAMPI
creates a shadow piggyback communicator for each existing
communicator in the MPI program.
Receiving Wildcard Piggybacks: Receiving the piggyback
for a wildcard receive is more complicated than for a de-
terministic receive, particularly for a non-blocking receive
(MPI_Irecv), since the source is not known when the wild-
card receive m is posted. We would often receive the wrong
piggyback message (resulting in a tool-induced deadlock) if
we blindly posted a wildcard receive to receive mp subsequent
to posting m. The DAMPI piggyback module addresses this
problem by only posting the receive call for mp after the
completion of m (i.e., when MPI_Wait or MPI_Test is
posted for the original MPI_Irecv). At that point, since
we know the source of m, we can deterministically post the
receive for mp, thus ensuring receipt of the correct piggyback.

E. DAMPI Algorithm

The DAMPI algorithm (Algorithm 1) describes what each
process Pi does in response to each message type m. We only
show the pseudocode for MPI_Irecv, MPI_Isend, and
MPI_Wait since they are the best candidates to represent the
key ideas of the algorithm. We briefly discuss other MPI oper-
ations, including MPI collectives, MPI_Test, MPI_Probe
and their variants, at the end of this section.

Initially, all processes automatically run through the whole
program in “self-discovery” (SELF RUN) mode; that is,
we allow the MPI runtime to determine the first matching

Algorithm 1 Pseudocode of Pi handling a message m
MPI Init(argc,argv):

if ExistSchedulerDecisionF ile() then
mode← GUIDED RUN
importEpochDecision()

end if
MPI Irecv(m,src,req,comm):

if LCi > guided epoch then
mode← SELF RUN

end if
if src = MPI ANY SOURCE then

if mode = GUIDED RUN then
PMPI Irecv(m,GetSrcFromEpoch(LCi), req,

comm)
else

PMPI Irecv(m, src, req, comm)
RecordEpochData(LCi, src, req, comm)

end if
LCi ++

else
PMPI Irecv(m, src, req, comm)
CreatePBReq(req)

end if
if src 6= MPI ANY SOURCE then
PMPI Irecv(m.LC, src,GetPBReq(req),

GetPBComm(comm))
end if

MPI Isend(m,dest,req,comm):

PMPI Isend(m, dest, req, comm)
CreatePBReq(req)
PMPI Isend(LCi, dest,GetPBReq(req),

GetPBComm(comm))

MPI Wait(req,status):
PMPI Wait(req, status)
if req.type = ISEND then
PMPI Wait(GetPBReq(req),

MPI STATUS IGNORE)
else

MPI Status status2;
if req.src 6= MPI ANY SOURCE then
PMPI Wait(GetPBReq(req), status2)

else
PMPI Recv(m.LC, status.MPI SOURCE,

GetPBComm(comm))
end if
LCi = max(LCi,m.LC)
if req.LC > m.LC then

FindPotentialMatches(status, req.comm,
req.LC,m.LC)

end if
end if

send for each wildcard receive. We associate the current
LC of Pi, namely LCi, with each wildcard receive e that
Pi encounters through the RecordEpochData routine. This
information helps to associate possible late messages with
e. LCi is then incremented, thus associating each wildcard
receive with a unique LCi value.

Whenever process Pi receives a message m sent to it by
some other process, Pi extracts the LC field of m from the
piggyback message mp and compares the Lamport clock in mp

to LCi. Message m is classified as late if m.LC is less than
LCi. In this case, m will be matched against existing local
wildcard receives (whose clocks are greater than m.LC) to
see if they can be potential matches (they are actually matched
according to tag, communicator, and also based on the MPI
non-overtaking semantics mentioned earlier).

During subsequent replays (detected by the processes
through the presence of the Epoch Decisions file), the program
is run under guided mode (GUIDED RUN), in which all
matching sends up until the LC value guided epoch are forced
to be as per the information in the Epoch Decisions file,
which is read by the GetSrcFromEpoch routine. After crossing
guided epoch, the execution reverts back to the SELF RUN
mode, which allows the algorithm to retrace previous matching
decisions up to the guided epoch and discover new non-
deterministic possibilities. Our example in Figure 10 will
clarify these ideas further.
MPI Iprobe and MPI Probe: Probes present another
source of non-determinism because they can also accept
MPI_ANY_SOURCE as the source argument. Thus, we treat
wildcard probes just like wildcard receives for the purposes
of matching late messages. The only difference is that we
do not receive the piggyback messages, since probes do not
remove any message from the incoming message queues. We
only record a non-blocking probe (MPI_Iprobe) if the MPI
runtime sets its flag parameter to true, which indicates that an
an incoming message is ready to be received.
MPI Collectives: For each MPI collective operation such
as MPI_Barrier, MPI_Allreduce, and MPI_Bcast,
we update the LC of each participating process based
on the semantics of the operation. For example, at
an MPI_Allreduce, all processes will perform an
MPI_Allreduce with the reduce operation MPI_MAX on
their Lamport clock values. This choice reflects that ev-
ery process effectively receives from all processes in the
communicator. In contrast, at an MPI_Bcast, all processes
receive (and incorporate) the Lamport clock of the root of the
broadcast. While MPI semantics require that all processes in
the communicator participate in the collective call, it does not
require their synchronous completion. Handling the collective
in this fashion ensures that we cover the widest range of MPI
collective behaviors that the MPI standard allows.
MPI Test: Upon the completion of the communication re-
quests (signaled through a boolean flag), we treat MPI_Test
and its variants similarly to MPI_Wait
Illustrative Example: The example in Figure 3 illustrates how
DAMPI discovers errors through replay. In the initial execution

P0 P1 P2
Isend(to:1,22) Irecv(*,x) Isend(to:1,33)

if(x==33) error

P0

P1

P2

*

0

0

0 0

1

“late”
0

P0

P1

P2

0

0

0 0

1

“late”

SELF_RUN GUIDED_RUN

*

Fig. 3. Simple Example Illustrating How DAMPI Works

P0 P1 P2 P3
Isend(to:1) Irecv(*) Irecv(*) Isend(to:2)
.

Isend(to:2) Isend(to:1)

Fig. 4. Simple Example Illustrating Incompleteness Due to Lamport Clocks

in the SELF RUN model, P0’s send matches P1’s wildcard
receive, with P2’s send coming in late. With respect to this
log file, DAMPI does a depth-first unwinding of alternate
matches. Then in the GUIDED RUN mode, the resulting
epoch decisions file forces P2 and P1 to match (shown by
the heavy arrow), and the error is caught.
Correctness: The soundness of this algorithm follows from
the background discussion of Lamport clocks. In particular,
the FindPotentialMatches function is invoked under the correct
circumstances when the Lamport clocks guarantee that it is a
potential match (the send is not causally after the receive).
The algorithm is also complete except for imprecision due to
Lamport clocks, as we discuss next.

F. Imprecision of Lamport Clocks

Figure 4 discusses the situation in which Lamport clocks
are not precise enough to guarantee completeness. In this
figure, four processes are “cross coupled” in terms of non-
determinism. Specifically, initially, both the wildcard receives
(Irecv(*)) in P1 and P2 find only one matching send each
(the first can match the send from P0 while the second can
match the send from P3). Suppose we proceed with the P0 to
P1 match. We then reach a state of execution in which P1’s
Isend(to:2) and P3’s Isend(to:2) both are potential matches for
P2’s Irecv(*) but we do not detect the potential match of P2’s
Isend(to:1) for P1’s Irecv(*). However if we initially proceeded
with the P2 to P3 match, we would discover the full set of
matches for P1’s wildcard receive.

With vector clocks, DAMPI would work as follows:

• In the initial execution, we would proceed with the P0/P1
match and the P2/P3 match.

• Continuing along, P1’s send would impinge on P2’s
timeline, and P2’s send would impinge on P1’s timeline.
Because of the extra precision of vector clocks, both mes-
sages would be regarded as late. In effect, the Irecv(*)s
maintain incomparable (concurrent) epoch values.

We cannot detect that the Irecv(*)s matched concurrent mes-
sages with Lamport clocks. Consequently, we record either
P1’s Isend(to:2) or P2’s Isend(to:1) as not “late.” In other
words, we must judge one of these sends as causally after
the Irecv(*) with which it could have matched. Vector clocks
would provide completeness at the cost of scalability.

In our experiments with medium to large benchmarks, we
have not encountered any other pattern where Lamport clocks
lose precision other than indicated in this example. In our
opinion, it is not worth switching to VCs just for the sake of
these rare patterns. Static analysis may be able to detect MPI
codes that have this pattern.

III. EXPERIMENTAL RESULTS

We compare the performance of DAMPI and ISP. We also
analyze it in terms of the state space reduction heuristics
mentioned earlier. Our evaluation uses these benchmarks:

• An MPI matrix multiplation implementation, matmult;
• ParMETIS-3.1 [11], a fully deterministic MPI based

hypergraph partition library;
• Several benchmarks from the NAS Parallel Benchmarks

(NAS-PB) 3. [16] and SpecMPI2007 [17] suites;
• Adaptive Dynamic Load Balancing (ADLB) library [10].
Our ParMETIS, NAS-PB and SpecMPI tests measure

DAMPI’s overheads and target evaluation of its local error
(e.g., request leak or communicator leak) checking capabilies.
In matmul, we use a master-slave algorithm to compute A×B.
The master broadcasts the B matrix to all slaves and then
divides up the rows of A into equal ranges and sends one to
each slave. The master then waits (using a wildcard receive)
for a slave to finish the computation. It then sends it another
range rj . This benchmark allows us to study the bounded
mixing heuristic in detail with a well-known example. We
also evaluate the bounded mixing heuristic with ADLB, a
relatively new load balancing library that has significant non-
determinism and an aggressively optimized implementation.
In our previous experiments using ISP, we could not handle
ADLB even for the simplest of verification examples. We now
discuss our results under various categories.

A. Full Coverage

Figure 5 shows the superior performance of DAMPI com-
pared to that of ISP running with Parmetis, which makes
about one million MPI calls at 32 processes. As explained
earlier, due to its centralized nature, ISP’s performance quickly
degrades as the number of MPI calls increases, while DAMPI
exhibits very low overhead. In fact, the overhead of DAMPI
on ParMETIS is negligible until the number of processes
become large (beyond 1K processes). In order to understand

4 8 12 16 20 24 28 32
0

50

100

150

200

ISP
DAMPI

Number of Processes

Ti
m

e
in

 s
ec

s

Fig. 5. ParMETIS-3.1: DAMPI vs. ISP

MPI Operation Type procs=8 16 32 64 128
All 187K 534K 1315K 3133K 7986K
All per proc. 23K 33K 41K 49K 62K
Send-Recv 121K 381K 981K 2416K 6346K
Send-Recv per proc 15K 24K 31K 38K 50K
Collective 20K 36K 63K 105K 178K
Collective per proc 2.5K 2.2K 2.0K 1.6K 1.4K
Wait 47K 118K 272K 612K 1463K
Wait per proc 5.8K 7.3K 8.5K 9.6K 11K

TABLE I
STATISTICS OF MPI OPERATIONS IN PARMETIS-3.1

the reasons behind the significant improvement of DAMPI
over ISP better, we log all MPI communication operations that
ParMETIS makes (see Table I). We do not log local MPI oper-
ations such as MPI_Type_create or MPI_Get_count).
We classify the operations as Send-Recv, Collective or Wait.
Send-Recv includes all point-to-point MPI operations; Collec-
tive includes all collective operations; and Wait includes all
variants of MPI_Wait (e.g., Waitall).

Although the total number of MPI operations grows by
a factor of 2.5 on average as the number of the processes
increases, the total number of MPI operations per process only
grows by a factor of 1.3 on average. In effect, the number of
MPI operations that the ISP scheduler must handle increases
almost twice as fast as the number of MPI operations that each
process in DAMPI nust handle as the number of processes
increases (due to the DAMPI’s distributed nature). Each type
of MPI operation behaves similarly, especially the Collectives,
for which the number of operations per process decreases as
the number of processes increases. In addition to the increasing
workload placed on the ISP scheduler, the large number of
local MPI processes also stresses the system as a whole, which
explains the switching from linear slowdown to exponential

Program Slowdown Total R* C-Leak R-Leak
ParMETIS-3.1 1.18x 0 Yes No

104.milc 15x 51K Yes No
107.leslie3d 1.14x 0 No No

113.GemsFDTD 1.13x 0 Yes No
126.lammps 1.88x 0 No No
130.socorro 1.25x 0 No No

137.lu 1.04x 732 Yes No
BT 1.28x 0 Yes No
CG 1.09x 0 No No
DT 1.01x 0 No No
EP 1.02x 0 No No
FT 1.01x 0 Yes No
IS 1.09x 0 No No
LU 2.22x 1K No No
MG 1.15x 0 No No

TABLE II
DAMPI OVERHEAD: MEDIUM-LARGE BENCHMARKS AT 1K PROCS

slowdown around 32 processes. We also experimented with
the version of ISP using TCP sockets but that version actually
performed even worse compared to the normal ISP. These data
further confirm our observation that the centralized scheduler
is ISP’s biggest performance bottleneck.

To evaluate the overhead of DAMPI further, we apply
DAMPI on a range of medium to large benchmarks, in-
cluding the NAS-NPB 3.3 suite and several codes from the
SpecMPI2007 suite. We run the experiments on an 800 node,
16 core per node Opteron Linux cluster with an InfiniBand
network running MVAPICH2[18]. Each node has 30GB of
memory shared between all the cores. We submit all ex-
perimental runs through the Moab batch system and use
the wall clock time as reported by Moab to evaluate the
performance overhead. Table II shows the overhead of running
DAMPI with 1024 processes. In Table II, the R* column
gives the number of wildcard receives that DAMPI analyzed
while C-leak and R-leak indicate if we detected any unfreed
communicators and pending requests (not completed before
the call to MPI_Finalize).

Figure 6 shows the time it takes for DAMPI and ISP to
explore through the possible different interleavings of matmul.
The experiments clearly show that DAMPI can offer coverage
guarantees over the space of MPI non-determinism while
maintaining vastly improved scalability when compared to
ISP – the current state-of-the-art dynamic formal verifier for
MPI programs. We attribute this improvement in handling
interleavings to the lack of synchronous comminucation within
DAMPI. All the extra communication introduced by DAMPI
is done through MPI piggyback messages, which has been
shown to have very low overhead [15]. However naı̈vely
approaching the exponential space of interleavings in heavily
non-deterministic programs is not a productive use of verifica-
tion resources. We now present several heuristics implemented
in DAMPI that can allow the user to focus coverage to
particular regions of interest, often exponentially reducing the
exploration state space.

250 500 750 1000
0

600

1200

1800

2400

3000

3600

4200

4800

5400

6000

ISP
DAMPI

Number of Interleavings

Ti
m

e
in

 s
ec

s

Fig. 6. Matrix Multiplication: DAMPI vs. ISP

B. Search Bounding Heuristics

Full coverage over the space of MPI non-determinism is of-
ten infeasible, even if desirable. Consider an MPI program that
issues N wildcard receives in sequence, each with P potential
matching senders. Covering this program’s full state space
would require a verifier to explore PN inerleavings, which is
impractical even for fairly small values (e.g., P = N = 1000).
While these interleavings represent unique message matching
orders, most cover the same (equivalent) state space if the
matching of one wildcard receive is independent of other
matches. Consider these common communication patterns:

• A master/slave computation in which the master receives
the computed work from the slaves and stores it in a
vector indexed by the slave’s rank;

• A series of computational phases in which processes use
wildcard receives to exchange data and then synchronize.

Both patterns do not require that we explore the full state
space. Clearly, the order of posting the master’s receives does
not affect the ending state of the program. Similarly, while the
order of message matching within a single phase of the second
pattern might lead to different code paths within a phase, the
effect is usually limited to that particular phase.

Recognizing such patterns is a challenge for a dynamic
verifier such as DAMPI, which has no knowledge of the
source code. Further, complicated looping patterns often make
it difficult to establish whether successive wildcard receives are
issued from within a loop. Similarly, an MPI_Allreduce
or an MPI_Barrier does not necessarily signal the end of
a computation phase. Thus, it is valuable to capitalize on the
knowledge of users who can specify regions on which to focus
analysis. Such hints can significantly improve the coverage of
interesting interleavings by a tool such as DAMPI. We now
discuss our two complementary search bounding techniques,

Fig. 7. A Simple Program Flow To Demonstrate Bounded Mixing

loop iteration abstraction and bounded mixing search.
1) Loop Iteration Abstraction: Many programs have loops

with a fixed computation pattern that a verifier can safely
ignore. By turning off interleaving exploration for non-
deterministic matches occurring within such loops, DAMPI
can explore other non-deterministic matches more thoroughly.

To use this feature in DAMPI, the user must insert
MPI_Pcontrol calls at the beginning and end of loops that
should not be explored. Upon logging these MPI_Pcontrol
calls, DAMPI pursues only the matches it discovers during
SELF RUN, and avoids exploring alternative matches. Despite
its simplicity, loop iteration abstraction can substantially re-
duce the iteration space that DAMPI must explore. In the
future we will build static analysis based instrumentation
facilities to semi-automate this heuristic.

2) Bounded Mixing: Many search bounding techniques
exist. Bounded model checking [19] unravels the state space
of a system to a finite depth. This heuristic suits hardware
systems for which reachability graphs are considerably smaller
than in software.

Context bounding [20] is much more practical in that it does
not bias the search towards the beginning of state spaces. In
effect, it runs a program under small preemption quotas. More
specifically, special schedulers allow preemption two or three
times anywhere in the execution. However, the scheduler can
only employ a small fixed number of preemptions, after which
it can switch processes only when they block.

While preemption bounding is powerful for shared memory
concurrent programs based on threads, it is only marginally
useful for message passing programs. In message passing,
simple preemption of MPI processes is highly unlikely to
expose new bugs (as explained earlier, one must take active
control over their matchings). Also most preemptions of
MPI programs prove useless since context-switching across
deterministic MPI calls does not reduce the state space. We
have invented bounded mixing, a new bounding technique that
is tailor-made to how MPI programs work.
Intuition Behind Bounded Mixing: We have observed that
each process of an MPI program goes through zones of com-
putation. In each zone, the process exchanges messages with
other processes and then finishes the zone with a collective
operation (e.g. a reduction or barrier). Many such sequential
zones cascade along – all starting from MPI_Init and ending

in MPI_Finalize. In many MPI programs, these zones
contain wildcard receives, and cascades of wildcard receives
quickly end up defining large (exponential) state spaces. Fig-
ure 7 depicts an abstraction of this pattern. In this figure, A is a
non-deterministic operation (e.g., a wildcard receive), followed
by a zone followed by a collective operation. B then starts
another zone and the pattern continues. If each zone contains
non-deterministic operations then the possible interleavings is
exponential in the number of zones (no interleaving explosion
occurs if all zones contain only deterministic operations).

We observe that zones that are far apart usually do not inter-
act much. We define the distance between two zones by the
number of MPI operations between them. The intuition behind
this statement is that each zone receives messages, responds,
and moves along through a lossy operation (e.g., a reduction
operation or a barrier). In particular, conditional statements
coming later are not dependent on the computational results
of zones occurring much earlier.

Based on these empirical observations above, bounded mix-
ing limits the exploration of later zones to representative paths
arriving at the zone instead of exploring all paths arriving at
the zone. Thus, we explore the zones beginning at C only
under the leftmost path A,B,C. We do not explore the zones
beginning at C under all four paths. This example is actually
bounded mixing with a mixing bound of k = 2 (the zones
beginning at C and E are allowed to “mix” their states, and
so do the zones beginning at C and D). We also allow the
zones beginning at B and C to mix their states. Finally, we
will allow the zones beginning at A and B to mix their states.
Thus, bounded mixing is the “overlapping windows” analogy
that we presented in § I.

Setting mixing bounds results in search complexity that
grows only as the sum of much smaller exponentials. Using
our example program with PN possible interleavings earlier,
a k = 0 setting will result in P ∗ N interleavings while
a k = unbounded setting will result in full exploration.
Bounded mixing in DAMPI provides knobs that designers can
set for various regions of the program: for some zones, they
can select high k values while for others, they can select low
values, which supports a selectively focused search.
Implementation of bounded mixing: We briefly explain how
we implemented bounded mixing in DAMPI. Suppose the
search is at some epoch s, and suppose s has several as yet
unexplored potential matches but all subsequent epochs of s
have been explored. Then, the standard algorithm will: (i) pur-
sue the unexplored option at s, and (ii) recursively explore
all paths below that option. In bounded mixing search, we
will: (i) pursue the unexplored option at s, and (ii) recursively
explore all paths below that option up to depth k. Thus, if
B’s right-hand side entry has not been explored, and if k = 2,
then we will (i) descend via the right-hand side path out of
B, and (ii) go only two steps further in all possible directions.
After those k steps, we simply let the MPI runtime determine
wildcard receive matching.
Experiments with bounded mixing: We first show the effects
of bounded mixing on our small and simple application: mat-

2 3 4 5 6 7 8
0

200

400

600

800

1000

1200

1400

1600

K = 0
K = 1
K = 2
No Bounds

Number of Processes

N
um

be
r o

f I
nt

er
le

av
in

gs

Fig. 8. Matrix Multiplication with Bounded Mixing Applied

4 8 12 16 20 24 28 32
0

10000

20000

30000

40000

50000

60000

K = 0
K = 1
K = 2

Number of Processes

N
um

be
r o

f I
nt

er
le

av
in

gs

Fig. 9. ADLB with Bounded Mixing Applied

mul. Figure 8 shows the results of applying several different
values of k. As expected, bounded mixing greatly reduces the
number of interleavings that DAMPI explores. However, our
heuristic has is another subtle yet powerful advantage: the
number of interleavings increases in a linear fashion when
k increases. Thus, users can slowly increase k should they
suspect that the reaching effect of a matching receive is further
than they initially assumed.

We also apply bounded mixing to the Asynchronous Dy-
namic Load Balancing (ADLB) library [10]. As the name
suggests, ADLB is a highly configurable library that can run
with a large number of processes. However, due to its highly

P0 P1 P2
Isend(to:1,22) Irecv(*,x) Barrier
Barrier Barrier Isend(to:1,33)
. . . if(x==33) crash . . .

Fig. 10. Example Illustrating DAMPI’s Limitations

dynamic nature, the degree of non-determinism of ADLB is
usually far beyond that of a typical MPI program. In fact,
verifying ADLB for a dozen processes is already impractical,
let alone for the scale at which DAMPI targets. Figure 9 shows
very encouraging results of verifying ADLB with various
values of k

IV. RELATED WORK

There are many conventional debugging tools for MPI
programs. Tools such as TotalView [21] and STAT [22] do
not help enhance non-determinism coverage; they are effective
but only when an error actually occurs. Tools such as Mar-
mot [23] and the Intel Message Checker [24] rely on schedule
randomization, much like our discussions earlier pertaining to
Jitterbug [3]. Another line of tools such as ScalaTrace [25] and
MPIWiz [26] record MPI calls into a trace file and use this
information to deterministically replay the program. However,
these trace-based tools only replay the observed schedule.
They do not have the ability to analyze the observed schedule
and derive from them alternate schedules that can arise if non-
deterministic matches are enforced differently. This crucial
ability of DAMPI helps explore traces that may never natively
appear on the given platform, but can suddenly show up (and
potentially result in bugs) when the code is ported to another
platform. In short, the aforementioned tools do not meet our
stated objectives of guaranteed non-determinism coverage and
scalability.

Among model checking tools, the only MPI model checker
besides our own ISP tool is the MPI-SPIN tool [27], which re-
quires users to hand-model their MPI codes in another notation
(called Promela), which severely limits its usability. Our work
on dynamic verification of MPI was inspired by Verisoft [28].
Also more recently, a dynamic verifier called CHESS [29] has
been proposed for .NET codes. Our own group has developed
a dynamic verifier called Inspect [30]. Verisoft, CHESS, and
Inspect are tailored to verify shared memory thread programs.
They do not have the instrumentation or controlled dynamic
replay capabilities needed for MPI programs. Both ISP and
DAMPI are unique in their class.

V. LIMITATIONS

One limitation of the DAMPI algorithm (beyond the impre-
cision caused by Lamport clocks) is illustrated in the example
in Figure 10. In this example, it is possible to crash the
program under some MPI runtimes because the Barriers
can be crossed by merely issuing the Isend and Irecv from
P0 and P1; this allows P2’s Isend to be a competitor for
P1’s Irecv! The reason why we can’t detect this failure
in DAMPI is because upon Irecv, we are updating the

process local Lamport clock; and Barrier propagates this
knowledge globally even though Irecv has not completed
(its Wait/Test has not been encountered).

The omission pattern can be succintly stated as follows:
if a non-deterministic Irecv is followed by any operation
(Barrier or Send) that sends the updated clock value
before a Wait/Test is seen, then the DAMPI algorithm is
vulnerable. Fortunately we can check this pattern dynami-
cally, and local to each process in a scalable manner. We
have implemented such a monitor in DAMPI and it has not
failed in all our tests. Thus, DAMPI is capable of alerting
when users encounter this pattern. We are investigating more
elaborate mechanisms to detect and to handle this pattern
correctly (basically using a pair of Lamport clocks – one for
handling wildcard receives, and the other for transmittal to
other processes). These Lamport clocks will be synchronized
when a Wait/Test is encountered.

VI. CONCLUDING REMARKS

Verifying MPI programs over the space of MPI non-
determinism is a challenging problem, especially at large
scales. Existing MPI tools either lack coverage guarantees or
do not scale well. In this paper we present DAMPI, a scalable
framework that offers coverage guarantees for programs that
use non-deterministic MPI calls. Our contributions include
a novel method for detecting different outcomes of a non-
deterministic receive without relying on a centralized pro-
cess/thread. These different outcomes can be enforced through
replays. We also present two different search bounding heuris-
tics that provide the user with the ability to limit the coverage
to areas of interests. We report our results on applying our
tools on medium to large benchmarks running with thousands
of processes, many of which make extensive use of non-
deterministic calls. DAMPI is the first (and currently only)
tool that can guarantee coverage at such scales.
Future Work:We are working on additional heuristics and
analyses that can further enhance the usability and scalability
of the tool. One current topic of interest is to recognize
patterns of MPI operations and to determine whether we can
safely ignore such regions of code during testing. Our user-
annotated loop coverage reduction strategy presented earlier is
the first step in this area. An automatic detection mechanism
will certainly make debugging MPI applications at large scales
much easier.

REFERENCES

[1] J. Gray, “Why do computers stop and what can be done about it?” in
Symposium on Reliability in Distributed Software and Database Systems
(SRDS), 1986, pp. 3–12.

[2] http://www.cs.utah.edu/formal verification/ISP Tests/.
[3] R. Vuduc, M. Schulz, D. Quinlan, and B. R. de Supinski, “Improving

distributed memory applications testing by message perturbation,” in
Parallel and Distributed Systems: Testing and Debugging Workshop
(PADTAD), 2006.

[4] S. Vakkalanka, G. Gopalakrishnan, and R. M. Kirby, “Dynamic verifi-
cation of MPI programs with reductions in presence of split operations
and relaxed orderings,” in International Conference on Computer Aided
Verification (CAV), 2008, pp. 66–79.

[5] S. Vakkalanka, M. DeLisi, G. Gopalakrishnan, R. M. Kirby, R. Thakur,
and W. Gropp, “Implementing efficient dynamic formal verification
methods for MPI programs,” in EuroPVM/MPI, 2008.

[6] A. Vo, S. Vakkalanka, M. DeLisi, G. Gopalakrishnan, R. M. Kirby,
, and R. Thakur, “Formal verification of practical MPI programs,” in
ACM Conference on Principles and Practices of Parallel Programming
(PPoPP), 2009, pp. 261–269.

[7] A. Vo, S. S. Vakkalanka, J. Williams, G. Gopalakrishnan, R. M. Kirby,
and R. Thakur, “Sound and efficient dynamic verification of MPI
programs with probe non-determinism,” in EuroPVM/MPI, 2009, pp.
271–281.

[8] S. Vakkalanka, A. Vo, G. Gopalakrishnan, and R. M. Kirby, “Reduced
execution semantics of MPI: From theory to practice,” in International
Symposium on Formal Methods (FM), 2009, pp. 724–740.

[9] W. Gropp, E. Lusk, N. Doss, and A. Skjellum, “A high-performance,
portable implementation of the MPI message passing interface standard,”
Parallel Computing, vol. 22, no. 6, pp. 789–828, Sep. 1996.

[10] R. Lusk, S. Pieper, R. Butler, and A. Chan, “Asynchronous dynamic
load balancing,” http://www.cs.mtsu.edu/ rbutler/adlb/.

[11] G. Karypis, “METIS and ParMETIS,”
http://glaros.dtc.umn.edu/gkhome/views/metis.

[12] L. Lamport, “Time, clocks and ordering of events in distributed systems,”
Communications of the ACM, vol. 21, no. 7, pp. 558–565, July 1978.

[13] C. Flanagan and S. N. Freund, “FastTrack: Efficient and precise dynamic
race detection,” in ACM Conference on Programming Language Design
and Implementation (PLDI), 2009, pp. 121–133.

[14] “MPI standard 2.1,” http://www.mpi-forum.org/docs/docs.html.
[15] M. Schulz, G. Bronevetsky, and B. R. de Supinski, “On the performance

of transparent MPI piggyback messages,” in EuroPVM/MPI, 2008, pp.
194–201.

[16] http://www.nas.nasa.gov/Resources/Software/npb.html.
[17] http://www.spec.org/mpi.
[18] http://mvapich.cse.ohio-state.edu/.
[19] http://www.cprover.org/cbmc/.
[20] M. Musuvathi and S. Qadeer, “Iterative context bounding for systematic

testing of multithreaded programs,” ACM SIGPLAN Notices, vol. 42,
no. 6, pp. 446–455, 2007.

[21] T. Software, http://www.etnus.com/Products/TotalView/.
[22] https://computing.llnl.gov/code/STAT/.
[23] B. Krammer, K. Bidmon, M. S. Mller, and M. M. Resch, “Marmot:

An MPI analysis and checking tool,” in Parallel Computing 2003, Sep.
2003.

[24] J. DeSouza, B. Kuhn, B. R. de Supinski, V. Samofalov, S. Zheltov,
and S. Bratanov, “Automated, scalable debugging of MPI programs
with Intel R©message checker,” in International Workshop on Software
Engineering for High Performance Computing Applications (SE-HPCS),
2005, pp. 78–82.

[25] M. Noeth, P. Ratn, F. Mueller, M. Schulz, and B. R. de Supinski,
“ScalaTrace: Scalable compression and replay of communication traces
for high-performance computing,” Journal of Parallel and Distributed
Computing, vol. 69, no. 8, pp. 696–710, 2009.

[26] R. Xue, X. Liu, M. Wu, Z. Guo, W. Chen, W. Zheng, Z. Zhang,
and G. M. Voelker, “MPIWiz: Subgroup reproducible replay of MPI
applications,” in In Principles and Practice of Parallel Programming
(PPoPP), 2009, pp. 251–260.

[27] S. F. Siegel and G. S. Avrunin, “Verification of MPI-based software
for scientific computation,” in International SPIN Workshop on Model
Checking Software (SPIN), 2004, pp. 286–303.

[28] P. Godefroid, B. Hanmer, and L. Jagadeesan, “Systematic software
testing using VeriSoft: An analysis of the 4ess heart-beat monitor,” Bell
Labs Technical Journal, vol. 3, no. 2, April-June 1998.

[29] http://research.microsoft.com/en-us/projects/chess/.
[30] Y. Yang, X. Chen, G. Gopalakrishnan, and R. M. Kirby, “Distributed

dynamic partial order reduction based verification of threaded software,”
in International SPIN Workshop on Model Checking Software (SPIN),
2007, pp. 58–75.

