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Abstract The emergence of cloud datacenters enhances the 

capability of online data storage. Since massive data is stored 

in datacenters, it is necessary to effectively locate and access 

interest data in such a distributed system. However, traditional 

search techniques only allow users to search images over 

exact-match keywords through a centralized index. These 

techniques cannot satisfy the requirements of content based 

image retrieval (CBIR). In this paper, we propose a scalable 

image retrieval framework which can efficiently support con

tent similarity search and semantic search in the distributed 

environment. Its key idea is to integrate image feature vectors 

into distributed hash tables (DHTs) by exploiting the property 

of locality sensitive hashing (LSH). Thus, images with similar 

content are most likely gathered into the same node without 

the knowledge of any global information. For searching se-

mantically close images, the relevance feedback is adopted in 
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our system to overcome the gap between low-level features 

and high-level features. We show that our approach yields 

high recall rate with good load balance and only requires a few 

number of hops. 

1 Introduction 

Cloud computing enables users to flexibly access 

reconfigurable computing resources without the burden of 

managing and maintaining the resources (Peng et al. 2012). 

The paradigm has brought about the essential characteristics 

including reliable and infinite storage capacity, data access 

independent of locations and time, and dynamical resources 

provision in a multi-tenant way to avoid costly wasting 

(Dikaiakos et al. 2009). Due to these features, cloud comput

ing becomes prevalent in the distributed storage and retrieval 

field. On the other hand, constructing a robust storage model 

is also a driving force for the development of cloud comput

ing. In fact, the datacenter provides a substrate for high ca

pacity storage models and modern Internet applications. From 

cloud providers’ viewpoint, datacenters provide the illusion of 

unlimited and powerful information storage, with the purpose 

of offering on-demand high quality applications, e.g. Ama

zon’s S3 and Microsoft’s SkyDrive and Live Mesh. From 

cloud consumers’ viewpoint, large datacenters can provide 

an online service running on the cloud, which permits fast 

data access. 

Cloud-based services rely on the datacenters which store 

massive data (Demirkan and Delen 2012). Therefore, it is 

important to choose appropriate topology to establish the 

high-performance datacenters which can satisfy the 
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requirements of searching and analyzing large dispersive 

datasets. The datacenter architecture is categorized into two 

models: centralized and decentralized. Most commercial 

cloud offerings are centralized. In such a model, resources in 

large datacenters are centrally managed and the management 

nodes become bottlenecks. Moreover, since datacenters scale 

exponentially with the rapid growth of data volume, a single 

point of failure may occur due to fires, power outages, natural 

disasters, etc (Yang et al. 2010). To address this problem, 

decentralized datacenters are designed according to the peer-

to-peer (P2P) paradigm, which provide better scalability and 

adaptability. The P2P based datacenters can be built by 

connecting many individual peers, without any central moni

toring or coordination components. Each peer takes charge of 

part of data and replicas to improve the clouds’ reliability. P2P 

techniques are very likely to be adopted in Clouds (Forestiero 

et al. 2010). 

Nowadays, since smart phones, tablet computers and many 

lightweight devices have been penetrating into our lives, 

millions of files including images, videos and plain texts are 

transferred into datacenters. Figure 1 shows an application 

scenario of image retrieval in the P2P datacenter. Content 

providers can be cloud providers or cloud customers. The 

content providers upload their significant resources to P2P 

cloud datacenters. In addition, cloud customers can also up

load interesting images to their Facebooks or Microblogs 

deployed in cloud datacenters. When an authorized cloud 

customer issues a query request, it is sent to the datacenter, 

which takes charge of search processing. Afterwards, query 

results are sent back to the cloud customer. However, it is 

challenging to locate files in such a distributed datacenter 

storing a large amount of files. As a case of study, we present 

this image retrieval application implemented on the P2P 

datacenter. Although throughout this paper we focus on image 

retrieval, our methods are applicable to multimedia retrieval 

domain where similarity search is performed in a P2P 

paradigm. 

Most current work about image retrieval in the P2P para

digm assumes that images are described in text by users 

(Gnutella 2000; Lv et al. 2002; Bawa et al. 2003). The 

searching of images is only based on their names and mainly 

relies on keywords matching. However, since it is difficult to 

annotate images very exactly, identifying of images in this 

way is inaccurate and cannot satisfy users’ requirement in 

some cases. In some applications, users may request inexact 

queries such as “find the top-A: images which are most similar 

to a given sample”. However, it is difficult for humans to 

describe how an image is similar to the given sample with 

keywords (Kalnis et al. 2004). The content based image re

trieval (CBIR) can find similar images through sample images 

instead of keywords. But most work in CBIR needs the global 

information in a centralized fashion, which does not scale well 

in the distributed situation (Lee and Guan 2004). Therefore, 

our objective is to design a system which can process smart 

queries and improve search performance in terms of precision 

and recall rate, without any global information. 

In this paper, we present a novel CBIR system called LSH-

based and Relevance Feedback for Image Retrieval (LRFIR) 

for the large scale P2P datacenter. LRFIR supports both con

tent similarity search and semantic similarity search, which is 

different from the keyword search used in existing systems. 

The efficient index construction service and query processing 

service are proposed for LRFIR. 

In the index construction service, LRFIR leverages an 

image feature extraction algorithm called multi-texton histo

gram (MTH) (Liu et al. 2010), which combines the texture and 

Content providers 

Fig. 1 Image retrieval in the P2P datacenter 



color feature. Thus, each image’s content can be represented 

as a feature vector from which the content similarity can be 

measured quantitatively. Accordingly, we employ a set of 

locality sensitive hashing (LSH) functions (Indyk and 

Motwani 1998; Datar et al. 2004), which convert feature 

vectors of similar images to the same hash value with high 

probability, owing to the locality-preserving property. The 

hash value denoted by an integer vector is mapped to a 

resource ID without destroying the locality-preserving prop

erty. In this way, the indexes of similar images are more likely 

published into the same node in the DHT layer with high 

probability. When a query is issued, the query processing 

service produces a set of resource IDs from the query’s feature 

vector by using the same LSH functions. Query messages are 

then forwarded to the nodes responsible for the IDs. To 

support semantic search, the relevance feedback technique 

(Zhou and Huang 2003), originated from information retrieval 

technique, is adopted to overcome the gap between low-level 

features and high-level features. It allows users to iteratively 

refine the result by marking a set of relevant and non-relevant 

images so that LRFIR can learn the semantics of the query 

image. Finally, we implement a prototype system based on 

Next Generation Service Overlay Network (NGSON) (Liao 

et al. 2012), in which different functional overlays can sys

tematically be coordinated with each other. It is used to 

evaluate the performance of our algorithm in two image 

datasets, i.e., Corel 10000 (Liu et al. 2010) and the subset of 

Catltech 101 Object Categories (Li et al. 2007). The experi

ments show that our algorithm achieves high recall rate and 

precision with only a small number of lookup hops. Moreover, 

query results can be further improved by using the relevance 

feedback technique. 

In this paper, our main contributions are as follows: (1) the 

image feature vector is integrated into DHT for implementing 

an efficient indexing and locating approach. The index con

struction is based on the image content represented by the 

feature vector instead of keywords; (2) the characteristic of 

LSH is exploited to place the similar images to the same node 

without any global information, and the query is only sent to 

the nodes which are more likely to answer it. In this way, the 

communication cost is reduced while the result accuracy is 

guaranteed; (3) we introduce the relevance feedback to the 

P2P model with the purpose of supporting semantically close 

image search. This approach allows users to interact with 

LRFIR to refine the query vector; (4) we evaluate our ap

proach using two real-world image datasets and demonstrate 

that LRFIR is very effective. 

The rest of this paper is organized as follows. Section 2 

shows an overview of related work. Section 3 presents the 

framework of LRFIR. Section 4 describes the index construc

tion service and the query processing service. Section 5 eval

uates the performance of LRFIR. Finally, Section 6 concludes 

our discussion. 

2 Related work 

The P2P network is categorized into three models: unstruc

tured, hybrid and structured. The organizing structures and 

routing mechanisms for information retrieval in the P2P net

work are also applied to the image retrieval. 

Searching over unstructured P2P system like Gnutella 

(2000) relies on flooding queries to all neighbor nodes. Lv 

et al. (2002) propose random walks to improve the search 

performance of flooding. At each step, random walks random

ly choose one of neighbor nodes to forward query messages, 

without considering the resource statistical information of 

neighbor nodes. To overcome the blind search, the concept 

of “Routing Indexes” is introduced by Crespo and Garcia-

Molina (2002). Its basic idea is that query messages are 

forwarded to the neighbor nodes that are more likely to have 

the required answers. To avoid the search to be trapped around 

the local optimum, Gaeta & Sereno (2011) choose the neigh

bor node to forward the query, according to the probability 

functions of the number of connections and the distance from 

the query originator. However, these algorithms do not guar

antee the lookup time and consume too much network re

sources. They are only suited for the multimedia retrieval 

based on the name or short textual description. Therefore, 

the search accuracy is limited to the accuracy of text tags 

and the content of the multimedia is ignored. 

Since unstructured P2P has little control over network 

topology, the hybrid infrastructures are proposed, which gath

er peers storing relevant files in the same community to reduce 

the unnecessary traffic. There are many methods employing 

this model, such as SETS (Bawa et al. 2003), metric space 

(Vlachou et al. 2012), interesting-based location solution 

(Sripanidkulchai et al. 2003), DISCOVIR (King et al. 2004), 

P2P-CBIRM (Chen et al. 2008), and SWIM (Androutsos et al. 

2006). Bawa et al. (2003) propose a topic-segmented overlay 

which assigns nodes with similar content (topic) to the same 

group. But this method needs center nodes to manage topics 

segment and suffers from the single point of failure. Vlachou 

et al. (2012) propose that peers sharing similar data are linked 

to the same super node, while super nodes are organized as an 

M-Tree structure. But it still needs centralized management 

within the community. The decentralized interesting-based 

location solution loosely organizes the peers into interesting-

based structure for fast content location, where each peer 

creates an interesting-based shortcut to another peer with 

interested content. But it still relies on message flooding when 

there is no shortcut available. DISCOVIR links peers with 

similar data using attractive connections, which is indepen

dent of message flooding. However, when a new peer joins 

DISCOVIR, it has to broadcast its signature messages through 

attractive connections to find out peers sharing the similar 

content with the new one. P2P-CBIRM adopts the similar 

way of grouping peers, but extends DISCOVIR to support 



the capability of knowledge discovery and image data mining. 

The small world indexing mine (SWIM) creates a small world 

network for images which are connected according to MPEG-

7 descriptor similarities. However, due to the lack of global 

information, it is difficult for these methods to discover the 

new topics that do not belong to the current topic clusters, 

without broadcasting signature messages to the overall 

network. 

Regarding information retrieval in the decentralized struc

tured P2P paradigm, there are many studies in this issue, 

such as MCAN (Falchi et al. 2005), M-Chord (Novak and 

Zezula 2006), Psearch (Tang et al. 2003), Prism (Sahin et al. 

2005) and iDISQUE (Zhang et al. 2010b). MCAN using 

CAN as the underlying structure adopts a pivot technique to 

map data objects to N-dimensional vectors . But the chosen 

pivots are preprocessed in a centralized fashion, and then 

distributed to peers. M-Chord takes the advantage of the 

iDistance which maps objects into one-dimensional space. 

But its data clustering and mapping are still completed in a 

centralized model. In Psearch, the Latent Semantic Indexing 

(LSI) is used to generate a semantic space. Then, this space 

is mapped to a multi-dimensional CAN which has the same 

dimension as the data space. However, different overlays 

may have different dimensionalities, since the dimensional

ity of CAN depends on the dimensionalities of various 

datasets. And LSI still works in a centralized fashion. In 

Prism, it stores multiple indexes for one object in many 

Chord peers based on the distances between the object’s 

vector and the reference vectors, so that the indexes of 

similar object are clustered to the same peer. But reference 

vectors are still chosen in a centralized fashion, which is not 

well suited for large datasets. Zhu and Hu (2007) generate 

the same index for semantically close files by using LSH 

and Vector Space Model (VSM), with the purpose of an

swering queries by only visiting a small number of nodes. 

But these hash values are directly used as resource keys, 

which destroy the load balance of Chord. In iDISQUE 

framework, the data on each peer is clustered, and then 

LSH functions only map cluster centers to Chord resource 

keys. The key of a cluster center represents the data in the 

cluster. However, the hash values of queries may be not 

equal to these of cluster centers. 

Considering the relevance feedback, originated from the 

well-known information retrieval, Lee and Guan (2004) use 

Gaussian-shaped radial-basis function network (RBFN) as a 

feedback model. And peers with the similar image are gath

ered into the same community. Meanwhile, images in each 

community are needed to input RBFN for determining wheth

er images are relevant to the query. This approach is less 

practical in decentralized networks, since every community 

must keep the same RBFN model which can be improved in 

each feedback iteration. In MURK (Zhang et al. 2010a), 

relevance feedback is also used to improve the efficiency, 

where peers are organized as the Kd-tree structure that does 

not scale well when data dimensions are high. 

3 System framework 

In this section, we present an overview of LRFIR framework. 

It is expected that the novel framework should support CBIR 

in P2P datacenters storing a large number of data. Under such 

an environment, the simple solution of traversing all the 

participating nodes for an image query is impractical, due to 

the high communication cost. Similarly, establishing and 

maintaining a central index of all the shared images can lead 

to scalability and reliability concerns (Sahin et al. 2005). 

Hence we propose a scalable scheme that distributes the 

indexes of content similar images to the same node and returns 

approximate answers by only visiting a small number of 

nodes. Besides, relevance feedback technique is also adopted 

to support semantic search. 

In the underlying DHT layer of LRFIR, the participating 

nodes are organized into a structured P2P network, Chord 

(Stoica et al. 2001), without loss of generality, which also 

natively offers node join and leave mechanisms. Therefore, 

LRFIR can support efficient routing, due to the DHT layer. 

The index publishing and query routing are automatically 

accomplished by Chord. For each image, LRFIR constructs 

a few index messages, each of which contains the resource ID, 

the image feature vector and the IP address of the data owner. 

Since only feature vectors whose dimensionalities are not very 

high are added to the indexes, each index will not cause 

significant storage overhead to the nodes. Given a query 

message, it is only forwarded to a few particular nodes which 

are likely to store indexes of similar images. To achieve the 

objective of efficiently searching similar images for the query, 

the index construction and query processing should satisfy the 

following requirements: (1) the index of content similar im

ages should be stored at the same peer; (2) the semantic search 

should be supported with the help of users. 

To satisfy these requirements, LRFIR constructs indexes 

based on the image feature vectors and further improves the 

results by using the relevance feedback. To meet the first 

requirement, a set of LSH functions are employed to produce 

the image indexes. At the time of the system start, these hash 

functions are generated and used in all nodes. Due to the 

locality sensitive property of LSH, it is more likely that the 

feature vectors of content similar images have the same hash 

values. Then these hash values denoted by the integer vectors 

are mapped to resource IDs. Therefore, if two images are 

similar, they may share the same resource ID. On the other 

hand, considering load balance, these indexes are distributed 

as evenly as possible. To satisfy the second requirement and 

improve the retrieval performance, LRFIR employs the rele

vance feedback by leveraging the information retrieval 



technique, which can narrow the gap between low-level con

cepts and high-level features. In addition, the human can 

interact with LRFIR to help refine the query. LRFIR can learn 

the semantics of query images through iterative feedback and 

query refinement. 

The interactions among key components of LRFIR are 

illustrated by Fig. 2. LRFIR is located between the user and 

the DHT layer, which contains two services of index construc

tion and query processing. We first discuss the index construc

tion service. Each node has a local image database, where 

images are shared with others. In addition, each node also has 

an image feature extractor which consists of a set of feature 

extractors specific to different image formats. The image 

feature extractor accesses each image in the local database, 

which adopts MTH algorithm to analyze the image’s texture 

feature and compute its feature vector. For the feature vector, a 

set of LSH functions are adopted to compute the hash values 

and determine the number of indexes for each image. For each 

hash value, the index construction generates the resource ID 

and publishes the index message to the DHT layer. Once 

receiving an index message from the DHT layer, the node 

inserts it in the index storage according to the resource ID. In 

addition, the image indexes in the local database are refreshed 

after a period of time to ensure the validity of resources. 

The query processing service adopts the similar way to 

generate the resource ID and the query message. Then the 

query message is routed through the underlying DHT layer 

using the resource ID as the destination. Once receiving the 

query message, the destination node invokes the local search 

method which checks the local index storage according to the 

resource ID and then returns the top T indexes. After the user 

surface of the query node merges all the results obtained from 

the participating nodes, the final results are shown to the user. 

Furthermore, the query refinement method is used for rele

vance feedback. The query refinement re-computes the query 

vector according to the relevant images the user chooses. And 

the new query message is generated and routed through the 

DHT layer again. The relevance feedback iteration stops when 

the user ends it. 

4 DHT-based CBIR approach 

In this section, we describe in details our index construction 

service and query processing service designed for CBIR. 

4.1 Image features extraction 

When a node wants to share an image, the feature vectors of 

the image are automatically extracted. LRFIR adopts Motion 

Picture Experts Group-7 (MPEG-7) descriptors, which repre

sent visual contents with feature values. The MPEG-7 stan

dard provides the multimedia content description interface, 

which includes a set of descriptors, such as color, shape and 

texture descriptors, to support image retrieval (Datta et al. 

2008). These visual descriptors represent human visual per

ception as feature vectors to evaluate the similarity of two 

Fig. 2 Interactions between key 

components of LRFIR 



images in appearance. The index construction is based on the 

visual feature space. 

In LRFIR, texture descriptors are used to extract the visual 

feature of an image. The texture describes the granularity and 

repetitive patterns of surfaces within an image (Datta et al. 

2008). A novel and efficient method called MTH (Liu et al. 

2010) is adopted to represent the texture feature. MTH explores 

the spatial correlation between neighboring colors and the one 

between neighboring texture orientations. Then it takes advan

tage of the histogram and co-occurrence matrix to improve the 

texture features. Compared with MTH, other approaches such 

as machine learning techniques (Datta et al. 2008; Liu et al. 

2010) generally train some examples to learn a classifier which 

should be kept consistency in all the nodes. So these approaches 

are impractical in the distributed environment. 

For a color image, its texture orientation is firstly detected, 

which can be used to estimate the shape of the textured 

Where P1=(x1, y1) and P2=(x2, y2), P1 and P2 specify 

two neighboring pixels whose distance is D. The texton image 

T(x,y)atP1 and P2 is denoted as T(P1)=w1 andr(P2)=w2, 

respectively. The angle at P1 and P2 is denoted as 0(P1)=v1 

and #(P2)=v2 in the texture orientation image  8 (x, y), re

spectively. TV denotes the co-occurring number of v 1 equal to 

v2,andAf denotes the co-occurring number of w1 equal tow 2. 

H(T(P 1)) represents the spatial correlation between neighbor

ing texture orientations by using the color information. 

H(8(P1)) represents the spatial correlation between neighbor

ing colors by using the texture orientation information. So the 

image’s feature vector fv is defined as: 

fv = H(T(P1))QH(8(P1)) (3) 

where 0 means the join operation. 

Therefore, the similarity between image a and b is defined by 

Si(x,y) = \\fM-fv{b)V (4) 

where  \\fv\\ denotes the Euclidean 2-norm off,,. 

4.2 LSH based index construction 

After image features are extracted, the question is how to 

construct resource IDs for images and answer the query effi

ciently. To improve the search efficiency, the content-based 

similar images measured in Euclidean space should share the 

images. Sobel operator is applied as the gradient operator, 

which returns two gradient images, i.e., the image along 

horizontal and the one along vertical. Sobel operator is used 

to the red, green and blue channel. And then texture orienta

tion image θ (x, y) is obtained. 

Secondly, in the RGB color space, R, G and B are respec

tively quantized into 64 colors, for simplification. And the 

quantized image is denoted by C (x, y). 

Thirdly, four different texton templates are designed to 

detect texture in C (x, y), and each of them is a 2×2 grid. In 

the color image, the grid is moved from left-to-right and top-

to-bottom with 2 pixels in one step. If a texon is found, the 

original pixel values in the grid are kept unchanged. Other

wise, they become zero. In the end, we obtain a texton image, 

T (x, y). Finally, the image features presented by MTH de

scriptor is defined as: 

same resource ID. The resource identifier space of Chord is 

one-dimension, while the dimension of feature vectors may be 

very high. To overcome the problem, the locality sensitive 

property of/"-stable LSH is exploited (Haghani et al. 2009). 

m×k hash functions are generated, which map the feature 

vector to m integer vectors. And each of the mapping is 

denoted as: Rd^>Zk. Next, each integer vector is mapped to 

one resource ID, denoted as: Z —>N, without destroying the 

locality sensitive property of LSH. For each image, after the 

resource ID is constructed, an index message is sent to the 

node responsible for the ID through the DHT layer. 

4.3 Rd->Zk 

In this process, LSH is the core of the mapping. The key idea 

of LSH is that the close feature vectors with small Euclidean 

distance are hashed into the same value with high probability 

(Indyk and Motwani 1998). That is, the collision probabilities 

for the feature vectors close to each other are much higher than 

those far apart. Thus, a LSH family is defined as: a family 

H={h :S—>U} is called (r1, r2,/>1,/>2)-sensitive for any two 

points q,v e S: 

If dist(q, v)<r1 thenPrf{(h(q) = h(v))>p1 (5) 

ifdist(q, v) > r2 thenPrH(h(q) = h(v))<p2 (6) 

H{T{PX)) = N\8{P1) = V1A8(P2) = v2 \P1~P2\ = D^where8{P1) = 8{P2) 

H(0{Pi)) = N{T(P1) = w1KT{P2) = w2 \P1~P2\ = D\whereT{P1) = T(P2) 

v1 = v2 

=  W1  = w2 

(1) 

(2) 



where S specifies the domain of points, dist is the distance 

metric used in this domain and Pr is the collision probability. 

If r1<r2 and p1<p2, these functions have the property that 

close feature vectors are more likely to be mapped to the same 

hash value than those far apart. In practice, several hash 

functions are built to increase the collision probability. 

In this paper, we employ the family functions of p-stable 

LSH (Datar et al. 2004), which exists for p ∈ (0,2]. Since 

Euclidean distance is supposed to be the most widely used 

distance metric, the Gaussian distribution working for the 

Euclidean distance is defined as the 2-stable distribution. 

The hash function ha,b is defined as follow: 

ha,b(v) = (a'v + b)/ (7) 

Where a is a J-dimensional vector whose elements are 

chosen independently from the 2-stable distribution. b, a real 

number, is randomly selected from the range [0, W]. Each 

hash function ha b(v):Rd
^>Z maps a d-dimensional vector v 

to an integer. 

In particular, the gap between the “high” probability p 1 and 

the “low” probability/"2 is amplified through constructing m 

hash tables G— {gi,..-,gm}, where m is randomly chosen. 

Each hash table is defined as k independent hash buckets 

g(y)=(h 1(v),. ..,hk(v)), and each table G ={g :R  —>Z } maps 

a d-dimensional vector to a A:-dimensional integer vector, i.e., 

the hash value. In this way, if the number of hash tables is large 

enough, close feature vectors have a greater chance to have the 

same hash value at least in one hash table gt, where i =1,...,m. 

4.3.1 Z —>N 

As a result, an integer vector Z is obtained from one hash table 

gi(y), where i =1,...,m.In the next step, the A;-dimension space 

is transformed to the one-dimension space, i.e., Z —>N, with

out destroying the locality sensitive property. On the other side, 

the load, defined as the number of indexes on a node, should be 

kept balanced as much as possible. To construct a resource ID 

i.e., resID, the mapping function J (v) is defined as: 

resIDj = I [ / ] ._ 1hi (vyd i ) , where hegjandj = 1, ...,/w.(8) 

dt is a randomly chosen integer. J function is denoted as 

the consistent hash function SHA-1. 

Obviously, as discussed in the previous section, similar vectors 

should have the same resID after this mapping, without 

destroying the locality sensitive property. Given two similar vec

tors V] and v2, we would have gi(y1)=gi(y2), where i =1,...,m. 

Ift(v)='£i =1hi(v)-di=gi(v)-[d1,d2, • 4k] . Then we have: 

\t{v{]-t{v2)\ =g1(v)-[d1d2, ...,dk}
T-g2(v)-[d1,d2,...,dk}

T 

= (g1(v)-g2(v))-[d1,d2,...,dk]
T. 

In this way, we have t(v1)=t(v2), i.e., if two similar 

vectors have the same hash value in a hash table, they will 

have the same resID. Note that function does not destroy the 

locality sensitive property of LSH. 

On the other side, in order to fully utilize the Chord ID space 

and keep the load balanced, the consistent hash function SHA-1 

is employed to distribute indexes as symmetrically as possible. 

4.3.2 Index construction service 

The purpose of this service is to generate the same resIDs for 

the similar images with high probability, and then publish the 

indexes to particular nodes through the DHT layer. That is 

different from the traditional location approach, where DHTs 

access an image through the hash key of the image name 

annotated by the human. Thus, the indexes of the similar 

images are randomly distributed across the DHT. As a result, 

it is difficult to guarantee the search accuracy. In this paper, we 

propose the Index Construction Service (ICS) which adopts p-

stable LSH to preserve the locality sensitive property and 

distributes the indexes to the Chord as evenly as possible. 

For each image in the local database, the image feature 

extractor is firstly invoked to extract its visual feature fv, and 

then ICS maps fv into m resource IDs φm={resID 1,resID 2 ,…, 

resID m } , where resID i = (fv), through m p-stable LSH tables. 

After the resource IDs φm of an image is obtained, ICS 

constructs indexes in the form of <resIDi , fv, IP> where i = 

1…m, IP is the IP address of the object owner. For each 

index, ICS sends an index message through the underlying 

Chord network, which forwards the message to the node 

responsible for the resID, as shown in Fig. 3. Once a node 

receives the index message from the DHT layer, ICS inserts 

this message in the index storage. The indexes with the same 

resID in the index storage are gathered into the same list to 

facilitate the localization of local indexes. 

The number of hash tables, m, is a system parameter. For 

ICS, it also represents the number of indexes for an image and 

has an impact on the query efficiency and communication 

cost. As above discussed, more hash tables can provide better 

chance of finding the images that are similar to the query. 

However, more hash tables means more index messages to be 

published and requires more storage. So we should make a 

tradeoff between m and the query efficiency. 

The number of buckets in each hash table, k, is another 

system parameter. It impacts not only the query efficiency but 

also the load of nodes. Fewer k means that more images are 

clustered to the same hash value, i.e., the same resID. This can 

lead to fewer clusters and accordingly each cluster has more 

images. Once a resID is located, more relevant images can be 

obtained. On the other side, the node in charge of the resID 

stores more indexes, if k is too small. 

All the images of the local database in the node are 

reevaluated periodically, e.g., once a week or a month. If an 



Fig. 3 Publishing the indexes and the query image 

image is added or deleted, its indexes are constructed or 

removed. Depending on the similarity between the modified 

image and the original one, we can determine whether or not 

the indexes should be reconstructed. If the similarity between 

these two versions is less than the threshold, the indexes 

remain unchanged. Otherwise, the ICS is invoked to re

construct the indexes. 

4.4 Relevance feedback query processing 

In this section, the query processing service (QPS) is 

discussed, supposing that all the image indexes are published 

into the DHT layer. When a node issues a query, QPS is 

invoked and the content-based similar images are retrieved. 

The objective of this service is to answer a query effectively. 

Search effectiveness is measured by the quality of search 

result, i.e., recall rate and precision. Furthermore, once the 

query iteration is completed, the user interacts with LRFIR to 

help improve the search result through the relevance feedback 

technique. After several iterations, the search accuracy can be 

significantly improved. 

4.4.1 Query processing 

When the node issues a query, QPS is invoked. It converts the 

query image to a set of resIDs, and then sends the query 

messages to the particular nodes. The query processing is 

similar to the index construction. As above described, the 

feature vector fq of the query image is firstly extracted by 

the image feature extractor. Then fq is transformed into a set of 

resource IDs φ m ={resID 1,resID2,…,resID m } , where 

resID i = (fq), by m ×k p-stable LSH function. Note that 

the set of hash functions used in QPS are the same as these 

in ICS. Afterwards, the node sends the query messages in the 

form of <resID i, fq, IP> where i =1…m, and IP is the IP 

address of the query node. However, the query message is 

only forwarded to the nodes responsible for the resIDs. There

fore, if the images satisfy the requirement of the query, they 

are more likely to be retrieved due to the same resIDs. In this 

way, the query cost is controlled and the search efficiency is 

guaranteed. 

Once receiving a query message from the DHT layer, the 

node checks the local index storage to find if there exists the 

same resID as it receives. To reduce the network transmission 

cost, it only returns the top T indexes sorted in terms of the 

distance from the query, defined in (4). 

Similar to ICS, the number of query messages also depends 

on the number of hash tables m. if m increases, more query 

messages need to be published, which causes high query cost. 

But increasing m also increases the probabilities of finding the 

images similar to the query. In contrast, if m is too small, the 

query cost is reduced while the accuracy might also be 

decreased. 

After the query node receives all the results, it merges the 

results before showing them to the user. The merging process

ing contains two steps. First, it eliminates the duplicates. If 

two indexes have the same fv, we consider that they might 

represent the same image and one of them will be randomly 

selected. Second, all the results are sorted in terms of the 

distance defined in (4), and the top T indexes are chosen. 

Then connections are established between the query node and 

data owners, and images can be transmitted to the query node. 

Finally, the top T most similar images are showed to the user. 

4.4.2 Relevance feedback 

Relevance feedback technique, originated from the informa

tion retrieval, is employed in LRFIR to narrow the gap be

tween low-level features and high-level ones. The features 

extracted from an image are low-level features, such as color, 

shape and texture, while high-level features are human per

ception of images, i.e., semantics. However, low-level fea

tures cannot fully represent the high-level semantic concepts. 

Moreover, there is no direct link between these two level 

features (Datta et al. 2008). 

Relevance feedback intends to model the high-level image 

semantics through iterative feedback and query refinement. 

Humans are engaged in this alternative search process and 

help LRFIR to learn the semantics of query images. When one 

search iteration is completed, the user picks up relevant im

ages and non-relevant images to update the previous query 

vector. In LRFIR, we choose Rocchio’s formula (Zhou and 



Huang 2003) shown in (9), where the image’s semantics is 

captured by a set of weights. The latest query vector Q can be 

refined by assigning higher weights to the relevant terms and 

lower weights to the non-relevant terms. It provides a query 

point movement approach, which moves the query point 

towards positive samples and away from negative ones in 

the vector space. 

Q =
 aQ + P 

1 

feZ)', 

D i 

1 

feZ)'„ 

D (9) 

Where a+/3+7 =1,a,/3 and 7 are weights for the original 

query, relevant terms and non-relevant terms, respectively. DR 

and DN are denoted as the feature vector of relevant images 

and non-relevant images, respectively. NR and N^ represent 

the number of images in DR and D^, respectively. 

In LRFIR, relevance feedback is incorporated to further 

improve the retrieval performance. To simplify the procedure, 

non-relevant images are ignored. In each iteration, after the 

user marks a set of relevant images that are semantically close 

to the query, the query refinement is executed according to the 

feature vectors of relevant images. Based on the user’s feed

back, Eq. 9 is used to modify Q. After the new query vector 

Q' is generated, the QPS is invoked again. QPS produces the 

query messages for Q' as above described. Then the new 

query message is sent to the DHT layer. 

In addition, although the resIDs of the new query Q' may be 

equal to these of the previous query Q, query messages con

taining the same resIDs are still sent. And the query processing 

is the same as above described. After the query vector is refined, 

the image feature vectors close to the new query vectors are 

retrieved. They are semantically closer to the query image. 

In practice, several iterations of feedback are needed to 

improve the search accuracy. However, more iterations would 

bring about more network hops. In Chord, searching from the 

source node to the destination node needs O (log n) network 

hops in a network of n nodes. So in our relevance feedback 

search, the lookup requires rO (log n) hops in r iterations. If r 

is large enough, the accuracy of the query can be improved 

while the network cost is also increased. In contrast, if r is too 

small, the network cost is reduced while the accuracy might 

also be decreased. So we have to make a tradeoff between the 

network cost and the search accuracy. 

The final results chosen by the user can be cached in local 

database for future query reuse. ICS can also construct indexes 

for these result images and publish them to Chord. When a 

query is issued, LRFIR first checks the caches. If there are no 

suitable answers in the caches, the QPS is invoked to publish 

query messages to Chord. On the other hand, the feedback 

process can be terminated by the user, when the results are not 

improved. In this way, the expensive cost of query processing 

can be saved. 

5 Experiments and numerical results 

We have implemented the proposed system and algorithms 

using Java 1.6. The simulation runs on a 2.83GHz Intel Core 

CPU with 2GB RAMs. 

5.1 Datasets and system settings configuration 

In our experiments, two image datasets are used: Corel 10000 

and the subset of Catltech 101 Object Categories. The Corel 

dataset commonly used, contains 10,000 images of various 

contents, such as flowers, food, wave, pills, sunset, beach, car, 

horses, fish and door, etc. It contains 100 categories and each 

category contains 100 images in JPEG format. For the second 

dataset, 1,500 images are chosen from Catltech 101 Object 

Categories. We choose 30 objects of sunflower, dollar, head

phone and faces, etc. And each object contains 50 images. In 

each category we randomly choose 5 images, so 500 queries 

are drawn from the Corel10000 and 150 queries from Catltech 

101 Object Categories, respectively. For both datasets, image 

feature vectors are extracted using MTH, as described in 

Section 4.1. 

Queries are initiated at randomly chosen peers, after all the 

peers join LRFIR. The reported results are the average values 

Fig. 4 Recall rates. a Catltech 

101 Object. b Corel10000 



Fig. 5 Effect of load on the index 

distribution. a Catltech 101 

Object. b Corel10000 

over all the queries. In the experiments, we test with different 

values of system parameters. Unless otherwise noted, the 

default values are W =2.0 for p-stable hash function and α = 

0.8, β =0.2,γ=0.0 for relevance feedback. The default net

work size is n =1,000. Besides, for the image retrieval, it is 

important to define suitable metrics for the performance eval

uation. Two metrics are used: Recall rate and Precision (Liu 

et al. 2010). Recall rate is defined as the percentage of re

trieved relevant images among all the relevant images in the 

dataset. Precision is defined as the percentage of relevant 

images among the retrieved images. 

5.2 Recall rates 

The corresponding recall rates are evaluated with different 

number of hash functions and top images, as shown in 

Fig. 4. The x-axis represents the number of top images, 

varying from 4 to 24 for both datasets. The y-axis denotes 

the recall rates measured under different number of top im

ages. m and k respectively represents the number of hash 

tables and buckets. The recall rates increase as the number 

of top images increases for both datasets. But not many 

images are returned, because only the very similar images 

are needed to return. This facilitates convenience for people 

in browsing the results for the feedback. In LRFIR, 12 top 

images are defined as the default returned number. 

The improvement in terms of recall rates is achieved by 

increasing the number of hash tables m or decreasing the 

number of buckets k, for both datasets. For Fig. 4b, m =10, 

k =15 and m =20, k =20 of LSH achieves the best recall rate 

with almost the same value. The reason is that the collision 

probability for content similar images is increased with the 

increase of m. On the other hand, decreasing k can lead to 

fewer clusters, accordingly more images are gathered into one 

cluster. Once a cluster is searched, many relevant results are 

returned. A similar observation can be made for Fig. 4a, where 

m =5, k =10 and m =15, k =20 achieves the best recall. We can 

choose m =10, k =15 for the Corel and m =5, k =10 for the 

Catltech 101 Object, since the computational overhead is 

reduced with the decrease of m. In the following experiments, 

unless specified otherwise, we choose k =15 for the 

Corel10000, and k =10 for the Catltech 101 Object. 

5.3 Load balancing 

In this section, the effectiveness of load balancing is investi

gated in two datasets. Figure 5 shows the index distributions 

for different cases. The x-axis values are the percentage of 

nodes, whose IDs are along Chord ring from small to large. 

And the number of nodes n varies from 10 to 5,000. The y-

axis values are the percentage of indexes assigned to these 

nodes. Note that in both datasets, curves show much less skew 

as the number of nodes increases. That means that the load is 

more balanced with the increase of the number of nodes. This 

is because when the number of node increases, the interval 

between node IDs becomes smaller and more nodes are 

Fig. 6 The index distribution per 

node. a Catltech 101 Object. b 

Corel10000 



Fig. 7 (a) Recall vs. Feedback 

No. and (b) precision vs. 

Feedback No 

assigned to store these indexes. Therefore, there are fewer 

indexes in each node. In Fig. 5, when the number of node is 

1,000 and 5,000, the load is more balanced than other cases 

for both datasets. However, for the Corel10000, when n is 10, 

the load is skewed and 40% of nodes stores around 60% of 

indexes. The reason is that the number of nodes is so small that 

the interval between node IDs becomes large. Therefore, some 

nodes store much more indexes than others. 

When the number of nodes is 1,000, the percentage of 

indexes kept in each node is shown in Fig. 6. Obviously, some 

nodes store more indexes than others. That is the reason why 

the percentage of indexes in Fig. 5 does not grow very steadily 

as the percentage of nodes increases. The maximum percent

age values for both datasets are 7% and 3.5%, respectively. 

Besides, the percentage of indexes kept in many nodes is very 

low or close to zero. 

5.4 Relevance feedback results 

The effect of relevance feedback on the search performance is 

measured, as shown in Fig. 7. The horizontal axis represents 

the number of hash tables, m, which varies from 1 to 15 in 

Fig. 7a and from 5 to 20 in Fig.7b, respectively. The vertical 

axis is the average recall rate and the average precisions 

measured for both datasets. In this experiment, 100 nodes 

are randomly selected to issue queries. And each node needs 

to issue all the queries. For both datasets, the recall rate and the 

precision grows slowly as m increases, regardless of the 

feedback iteration. The recall rate grows slightly when m is 

greater than 5 for the Catltech 101 Object. And the precision 

increases slightly as m is greater than 10 for the Corel. This is 

because when m is large enough, the images with their feature 

vectors similar to that of the query have already been gathered 

into the same cluster. As a result, simply increasing m cannot 

improve the recall and the precision. 

Regarding the effect of relevance feedback, we take the 

Corel for an example. Catltech 101 Object has the similar 

conclusion. The retrieval rates can be improved by increasing 

the number of feedback iteration. “0-iteration” curve represents 

the average precision without any relevance feedback. “1-itera-

tion” curve represents the average precision when one feedback 

iteration is applied to improve “0-iteration” result. “2-iteration” 

curve shows the average precision when another feedback 

iteration is applied to refine “1-iteration” result. And so on. 

Obviously, we can see the improvement of “3-iteration” in 

terms of precision compared with “0-iteration” for the Corel. 

However, in Catltech 101 Object, “3-iteration” has almost 

similar recall rate as “2-iteration”. In the Corel, “3-iteration” is 

a little better than “2-iteration” in terms of precision. In short, we 

can see that the required number of feedback iteration is small. 

The effect of relevance feedback on the number of lookup 

hops is depicted in Fig. 8. The number of lookup hops is one 

Fig. 8 Lookup hops vs. Iteration 

No. a Catltech 101 Object. b 

Corel10000 



of the most critical performance parameters in the distributed 

environment. As shown in Fig. 8, the number of lookup hops 

mainly depends on the number of hash tables and the number 

of feedback iterations for both datasets. As we expect, the 

number of lookup hops increase when the number of hash 

tables increases. In addition, it increases fast as the number of 

feedback iteration increases. We can choose small m to reduce 

the number of hops in Chord as previously mentioned, i.e., 

m =5 for the Catltech 101 Object and m =10 for the Corel. 

Note that the number of lookup hops multiplies as the number 

of feedback iteration increases. For example, for the Corel 

dataset, when m is 10, the number of lookup hops for “0-

iteration” is 50, that for “1-iteration” is about 100, that for “2-

iteration” is almost 150, and that for “3-iteration” is close to 

200. So we have to make a tradeoff between the search 

accuracy and the number of lookup hops. As shown in 

Fig. 7a “3-iteration” does not improve recall rate greatly 

compare with “2-iteration”, but it causes more hops than “2-

iteration”. Therefore we can set the number of feedback 

iteration as 2. Due to the same reason, we choose “2-iteration” 

for the Catltech 101 Object. 

We can see that m =5 and “2-iteration” achieves the best 

recall rate for the Catltech 101 Object. For the Corel dataset, 

m =10 and “2-iteration” achieves the best precision. 

6 Conclusions and future work 

We propose an effective framework to support CBIR in the 

distributed cloud datacenter. LRFIR supports both content-

based similarity search and semantic search. The ICS con

structs indexes based on p-stable hash functions, where the 

content similar images are mapped into the same resource ID 

and distributed to the same Chord node, with high probability. 

The QPS not only publishes the query message, but also 

employs the relevance feedback to refine the initially query 

vector. Therefore, the gap between low-level features and 

high-level features are overcome. The experiments show that 

our approach achieves high recall rate and good load balance, 

and it only needs a small number of network hops. 

As for future work, we plan to investigate the following 

issues. Firstly, some sensitive information is being centralized 

into the cloud, so we may search over encrypted cloud data. 

Secondly, image quality may not be very high, which can be 

improved by using the image pretreatment technique before 

processing the query. Thirdly, we also plan to compare the 

performance of LRFIR against other existing systems. 
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