
A scalable approach for content based image retrieval in cloud

datacenter

Jianxin Liao & Di Yang & Tonghong Li & Jingyu Wang &

Qi Qi & Xiaomin Zhu

Abstract The emergence of cloud datacenters enhances the

capability of online data storage. Since massive data is stored

in datacenters, it is necessary to effectively locate and access

interest data in such a distributed system. However, traditional

search techniques only allow users to search images over

exact-match keywords through a centralized index. These

techniques cannot satisfy the requirements of content based

image retrieval (CBIR). In this paper, we propose a scalable

image retrieval framework which can efficiently support con­

tent similarity search and semantic search in the distributed

environment. Its key idea is to integrate image feature vectors

into distributed hash tables (DHTs) by exploiting the property

of locality sensitive hashing (LSH). Thus, images with similar

content are most likely gathered into the same node without

the knowledge of any global information. For searching se-

mantically close images, the relevance feedback is adopted in

J. Liao : D. Yang (*) : J. Wang : Q. Qi : X. Zhu

State Key Laboratory of Networking and Switching Technology,

Beijing University of Posts and Telecommunications,

P.O. Box 296, Beijing 100876, China

e-mail: yangdi.bupt@gmail.com

D. Yang

e-mail: yangdi@ebupt.com

J. Liao

e-mail: liaojx@bupt.edu.cn

J. Wang

e-mail: wangjingyu@bupt.edu.cn

Q. Qi

e-mail: qiqi8266@bupt.edu.cn

X. Zhu

e-mail: zhuxm@bupt.edu.cn

our system to overcome the gap between low-level features

and high-level features. We show that our approach yields

high recall rate with good load balance and only requires a few

number of hops.

1 Introduction

Cloud computing enables users to flexibly access

reconfigurable computing resources without the burden of

managing and maintaining the resources (Peng et al. 2012).

The paradigm has brought about the essential characteristics

including reliable and infinite storage capacity, data access

independent of locations and time, and dynamical resources

provision in a multi-tenant way to avoid costly wasting

(Dikaiakos et al. 2009). Due to these features, cloud comput­

ing becomes prevalent in the distributed storage and retrieval

field. On the other hand, constructing a robust storage model

is also a driving force for the development of cloud comput­

ing. In fact, the datacenter provides a substrate for high ca­

pacity storage models and modern Internet applications. From

cloud providers’ viewpoint, datacenters provide the illusion of

unlimited and powerful information storage, with the purpose

of offering on-demand high quality applications, e.g. Ama­

zon’s S3 and Microsoft’s SkyDrive and Live Mesh. From

cloud consumers’ viewpoint, large datacenters can provide

an online service running on the cloud, which permits fast

data access.

Cloud-based services rely on the datacenters which store

massive data (Demirkan and Delen 2012). Therefore, it is

important to choose appropriate topology to establish the

high-performance datacenters which can satisfy the
T. Li

Department of Computer Science, Technical University of Madrid,

Madrid 28660, Spain

e-mail: tonghong@fi.upm.es

mailto:yangdi.bupt@gmail.com
mailto:yangdi@ebupt.com
mailto:liaojx@bupt.edu.cn
mailto:wangjingyu@bupt.edu.cn
mailto:qiqi8266@bupt.edu.cn
mailto:zhuxm@bupt.edu.cn
mailto:tonghong@fi.upm.es

requirements of searching and analyzing large dispersive

datasets. The datacenter architecture is categorized into two

models: centralized and decentralized. Most commercial

cloud offerings are centralized. In such a model, resources in

large datacenters are centrally managed and the management

nodes become bottlenecks. Moreover, since datacenters scale

exponentially with the rapid growth of data volume, a single

point of failure may occur due to fires, power outages, natural

disasters, etc (Yang et al. 2010). To address this problem,

decentralized datacenters are designed according to the peer-

to-peer (P2P) paradigm, which provide better scalability and

adaptability. The P2P based datacenters can be built by

connecting many individual peers, without any central moni­

toring or coordination components. Each peer takes charge of

part of data and replicas to improve the clouds’ reliability. P2P

techniques are very likely to be adopted in Clouds (Forestiero

et al. 2010).

Nowadays, since smart phones, tablet computers and many

lightweight devices have been penetrating into our lives,

millions of files including images, videos and plain texts are

transferred into datacenters. Figure 1 shows an application

scenario of image retrieval in the P2P datacenter. Content

providers can be cloud providers or cloud customers. The

content providers upload their significant resources to P2P

cloud datacenters. In addition, cloud customers can also up­

load interesting images to their Facebooks or Microblogs

deployed in cloud datacenters. When an authorized cloud

customer issues a query request, it is sent to the datacenter,

which takes charge of search processing. Afterwards, query

results are sent back to the cloud customer. However, it is

challenging to locate files in such a distributed datacenter

storing a large amount of files. As a case of study, we present

this image retrieval application implemented on the P2P

datacenter. Although throughout this paper we focus on image

retrieval, our methods are applicable to multimedia retrieval

domain where similarity search is performed in a P2P

paradigm.

Most current work about image retrieval in the P2P para­

digm assumes that images are described in text by users

(Gnutella 2000; Lv et al. 2002; Bawa et al. 2003). The

searching of images is only based on their names and mainly

relies on keywords matching. However, since it is difficult to

annotate images very exactly, identifying of images in this

way is inaccurate and cannot satisfy users’ requirement in

some cases. In some applications, users may request inexact

queries such as “find the top-A: images which are most similar

to a given sample”. However, it is difficult for humans to

describe how an image is similar to the given sample with

keywords (Kalnis et al. 2004). The content based image re­

trieval (CBIR) can find similar images through sample images

instead of keywords. But most work in CBIR needs the global

information in a centralized fashion, which does not scale well

in the distributed situation (Lee and Guan 2004). Therefore,

our objective is to design a system which can process smart

queries and improve search performance in terms of precision

and recall rate, without any global information.

In this paper, we present a novel CBIR system called LSH-

based and Relevance Feedback for Image Retrieval (LRFIR)

for the large scale P2P datacenter. LRFIR supports both con­

tent similarity search and semantic similarity search, which is

different from the keyword search used in existing systems.

The efficient index construction service and query processing

service are proposed for LRFIR.

In the index construction service, LRFIR leverages an

image feature extraction algorithm called multi-texton histo­

gram (MTH) (Liu et al. 2010), which combines the texture and

Content providers

Fig. 1 Image retrieval in the P2P datacenter

color feature. Thus, each image’s content can be represented

as a feature vector from which the content similarity can be

measured quantitatively. Accordingly, we employ a set of

locality sensitive hashing (LSH) functions (Indyk and

Motwani 1998; Datar et al. 2004), which convert feature

vectors of similar images to the same hash value with high

probability, owing to the locality-preserving property. The

hash value denoted by an integer vector is mapped to a

resource ID without destroying the locality-preserving prop­

erty. In this way, the indexes of similar images are more likely

published into the same node in the DHT layer with high

probability. When a query is issued, the query processing

service produces a set of resource IDs from the query’s feature

vector by using the same LSH functions. Query messages are

then forwarded to the nodes responsible for the IDs. To

support semantic search, the relevance feedback technique

(Zhou and Huang 2003), originated from information retrieval

technique, is adopted to overcome the gap between low-level

features and high-level features. It allows users to iteratively

refine the result by marking a set of relevant and non-relevant

images so that LRFIR can learn the semantics of the query

image. Finally, we implement a prototype system based on

Next Generation Service Overlay Network (NGSON) (Liao

et al. 2012), in which different functional overlays can sys­

tematically be coordinated with each other. It is used to

evaluate the performance of our algorithm in two image

datasets, i.e., Corel 10000 (Liu et al. 2010) and the subset of

Catltech 101 Object Categories (Li et al. 2007). The experi­

ments show that our algorithm achieves high recall rate and

precision with only a small number of lookup hops. Moreover,

query results can be further improved by using the relevance

feedback technique.

In this paper, our main contributions are as follows: (1) the

image feature vector is integrated into DHT for implementing

an efficient indexing and locating approach. The index con­

struction is based on the image content represented by the

feature vector instead of keywords; (2) the characteristic of

LSH is exploited to place the similar images to the same node

without any global information, and the query is only sent to

the nodes which are more likely to answer it. In this way, the

communication cost is reduced while the result accuracy is

guaranteed; (3) we introduce the relevance feedback to the

P2P model with the purpose of supporting semantically close

image search. This approach allows users to interact with

LRFIR to refine the query vector; (4) we evaluate our ap­

proach using two real-world image datasets and demonstrate

that LRFIR is very effective.

The rest of this paper is organized as follows. Section 2

shows an overview of related work. Section 3 presents the

framework of LRFIR. Section 4 describes the index construc­

tion service and the query processing service. Section 5 eval­

uates the performance of LRFIR. Finally, Section 6 concludes

our discussion.

2 Related work

The P2P network is categorized into three models: unstruc­

tured, hybrid and structured. The organizing structures and

routing mechanisms for information retrieval in the P2P net­

work are also applied to the image retrieval.

Searching over unstructured P2P system like Gnutella

(2000) relies on flooding queries to all neighbor nodes. Lv

et al. (2002) propose random walks to improve the search

performance of flooding. At each step, random walks random­

ly choose one of neighbor nodes to forward query messages,

without considering the resource statistical information of

neighbor nodes. To overcome the blind search, the concept

of “Routing Indexes” is introduced by Crespo and Garcia-

Molina (2002). Its basic idea is that query messages are

forwarded to the neighbor nodes that are more likely to have

the required answers. To avoid the search to be trapped around

the local optimum, Gaeta & Sereno (2011) choose the neigh­

bor node to forward the query, according to the probability

functions of the number of connections and the distance from

the query originator. However, these algorithms do not guar­

antee the lookup time and consume too much network re­

sources. They are only suited for the multimedia retrieval

based on the name or short textual description. Therefore,

the search accuracy is limited to the accuracy of text tags

and the content of the multimedia is ignored.

Since unstructured P2P has little control over network

topology, the hybrid infrastructures are proposed, which gath­

er peers storing relevant files in the same community to reduce

the unnecessary traffic. There are many methods employing

this model, such as SETS (Bawa et al. 2003), metric space

(Vlachou et al. 2012), interesting-based location solution

(Sripanidkulchai et al. 2003), DISCOVIR (King et al. 2004),

P2P-CBIRM (Chen et al. 2008), and SWIM (Androutsos et al.

2006). Bawa et al. (2003) propose a topic-segmented overlay

which assigns nodes with similar content (topic) to the same

group. But this method needs center nodes to manage topics

segment and suffers from the single point of failure. Vlachou

et al. (2012) propose that peers sharing similar data are linked

to the same super node, while super nodes are organized as an

M-Tree structure. But it still needs centralized management

within the community. The decentralized interesting-based

location solution loosely organizes the peers into interesting-

based structure for fast content location, where each peer

creates an interesting-based shortcut to another peer with

interested content. But it still relies on message flooding when

there is no shortcut available. DISCOVIR links peers with

similar data using attractive connections, which is indepen­

dent of message flooding. However, when a new peer joins

DISCOVIR, it has to broadcast its signature messages through

attractive connections to find out peers sharing the similar

content with the new one. P2P-CBIRM adopts the similar

way of grouping peers, but extends DISCOVIR to support

the capability of knowledge discovery and image data mining.

The small world indexing mine (SWIM) creates a small world

network for images which are connected according to MPEG-

7 descriptor similarities. However, due to the lack of global

information, it is difficult for these methods to discover the

new topics that do not belong to the current topic clusters,

without broadcasting signature messages to the overall

network.

Regarding information retrieval in the decentralized struc­

tured P2P paradigm, there are many studies in this issue,

such as MCAN (Falchi et al. 2005), M-Chord (Novak and

Zezula 2006), Psearch (Tang et al. 2003), Prism (Sahin et al.

2005) and iDISQUE (Zhang et al. 2010b). MCAN using

CAN as the underlying structure adopts a pivot technique to

map data objects to N-dimensional vectors . But the chosen

pivots are preprocessed in a centralized fashion, and then

distributed to peers. M-Chord takes the advantage of the

iDistance which maps objects into one-dimensional space.

But its data clustering and mapping are still completed in a

centralized model. In Psearch, the Latent Semantic Indexing

(LSI) is used to generate a semantic space. Then, this space

is mapped to a multi-dimensional CAN which has the same

dimension as the data space. However, different overlays

may have different dimensionalities, since the dimensional­

ity of CAN depends on the dimensionalities of various

datasets. And LSI still works in a centralized fashion. In

Prism, it stores multiple indexes for one object in many

Chord peers based on the distances between the object’s

vector and the reference vectors, so that the indexes of

similar object are clustered to the same peer. But reference

vectors are still chosen in a centralized fashion, which is not

well suited for large datasets. Zhu and Hu (2007) generate

the same index for semantically close files by using LSH

and Vector Space Model (VSM), with the purpose of an­

swering queries by only visiting a small number of nodes.

But these hash values are directly used as resource keys,

which destroy the load balance of Chord. In iDISQUE

framework, the data on each peer is clustered, and then

LSH functions only map cluster centers to Chord resource

keys. The key of a cluster center represents the data in the

cluster. However, the hash values of queries may be not

equal to these of cluster centers.

Considering the relevance feedback, originated from the

well-known information retrieval, Lee and Guan (2004) use

Gaussian-shaped radial-basis function network (RBFN) as a

feedback model. And peers with the similar image are gath­

ered into the same community. Meanwhile, images in each

community are needed to input RBFN for determining wheth­

er images are relevant to the query. This approach is less

practical in decentralized networks, since every community

must keep the same RBFN model which can be improved in

each feedback iteration. In MURK (Zhang et al. 2010a),

relevance feedback is also used to improve the efficiency,

where peers are organized as the Kd-tree structure that does

not scale well when data dimensions are high.

3 System framework

In this section, we present an overview of LRFIR framework.

It is expected that the novel framework should support CBIR

in P2P datacenters storing a large number of data. Under such

an environment, the simple solution of traversing all the

participating nodes for an image query is impractical, due to

the high communication cost. Similarly, establishing and

maintaining a central index of all the shared images can lead

to scalability and reliability concerns (Sahin et al. 2005).

Hence we propose a scalable scheme that distributes the

indexes of content similar images to the same node and returns

approximate answers by only visiting a small number of

nodes. Besides, relevance feedback technique is also adopted

to support semantic search.

In the underlying DHT layer of LRFIR, the participating

nodes are organized into a structured P2P network, Chord

(Stoica et al. 2001), without loss of generality, which also

natively offers node join and leave mechanisms. Therefore,

LRFIR can support efficient routing, due to the DHT layer.

The index publishing and query routing are automatically

accomplished by Chord. For each image, LRFIR constructs

a few index messages, each of which contains the resource ID,

the image feature vector and the IP address of the data owner.

Since only feature vectors whose dimensionalities are not very

high are added to the indexes, each index will not cause

significant storage overhead to the nodes. Given a query

message, it is only forwarded to a few particular nodes which

are likely to store indexes of similar images. To achieve the

objective of efficiently searching similar images for the query,

the index construction and query processing should satisfy the

following requirements: (1) the index of content similar im­

ages should be stored at the same peer; (2) the semantic search

should be supported with the help of users.

To satisfy these requirements, LRFIR constructs indexes

based on the image feature vectors and further improves the

results by using the relevance feedback. To meet the first

requirement, a set of LSH functions are employed to produce

the image indexes. At the time of the system start, these hash

functions are generated and used in all nodes. Due to the

locality sensitive property of LSH, it is more likely that the

feature vectors of content similar images have the same hash

values. Then these hash values denoted by the integer vectors

are mapped to resource IDs. Therefore, if two images are

similar, they may share the same resource ID. On the other

hand, considering load balance, these indexes are distributed

as evenly as possible. To satisfy the second requirement and

improve the retrieval performance, LRFIR employs the rele­

vance feedback by leveraging the information retrieval

technique, which can narrow the gap between low-level con­

cepts and high-level features. In addition, the human can

interact with LRFIR to help refine the query. LRFIR can learn

the semantics of query images through iterative feedback and

query refinement.

The interactions among key components of LRFIR are

illustrated by Fig. 2. LRFIR is located between the user and

the DHT layer, which contains two services of index construc­

tion and query processing. We first discuss the index construc­

tion service. Each node has a local image database, where

images are shared with others. In addition, each node also has

an image feature extractor which consists of a set of feature

extractors specific to different image formats. The image

feature extractor accesses each image in the local database,

which adopts MTH algorithm to analyze the image’s texture

feature and compute its feature vector. For the feature vector, a

set of LSH functions are adopted to compute the hash values

and determine the number of indexes for each image. For each

hash value, the index construction generates the resource ID

and publishes the index message to the DHT layer. Once

receiving an index message from the DHT layer, the node

inserts it in the index storage according to the resource ID. In

addition, the image indexes in the local database are refreshed

after a period of time to ensure the validity of resources.

The query processing service adopts the similar way to

generate the resource ID and the query message. Then the

query message is routed through the underlying DHT layer

using the resource ID as the destination. Once receiving the

query message, the destination node invokes the local search

method which checks the local index storage according to the

resource ID and then returns the top T indexes. After the user

surface of the query node merges all the results obtained from

the participating nodes, the final results are shown to the user.

Furthermore, the query refinement method is used for rele­

vance feedback. The query refinement re-computes the query

vector according to the relevant images the user chooses. And

the new query message is generated and routed through the

DHT layer again. The relevance feedback iteration stops when

the user ends it.

4 DHT-based CBIR approach

In this section, we describe in details our index construction

service and query processing service designed for CBIR.

4.1 Image features extraction

When a node wants to share an image, the feature vectors of

the image are automatically extracted. LRFIR adopts Motion

Picture Experts Group-7 (MPEG-7) descriptors, which repre­

sent visual contents with feature values. The MPEG-7 stan­

dard provides the multimedia content description interface,

which includes a set of descriptors, such as color, shape and

texture descriptors, to support image retrieval (Datta et al.

2008). These visual descriptors represent human visual per­

ception as feature vectors to evaluate the similarity of two

Fig. 2 Interactions between key

components of LRFIR

images in appearance. The index construction is based on the

visual feature space.

In LRFIR, texture descriptors are used to extract the visual

feature of an image. The texture describes the granularity and

repetitive patterns of surfaces within an image (Datta et al.

2008). A novel and efficient method called MTH (Liu et al.

2010) is adopted to represent the texture feature. MTH explores

the spatial correlation between neighboring colors and the one

between neighboring texture orientations. Then it takes advan­

tage of the histogram and co-occurrence matrix to improve the

texture features. Compared with MTH, other approaches such

as machine learning techniques (Datta et al. 2008; Liu et al.

2010) generally train some examples to learn a classifier which

should be kept consistency in all the nodes. So these approaches

are impractical in the distributed environment.

For a color image, its texture orientation is firstly detected,

which can be used to estimate the shape of the textured

Where P1=(x1, y1) and P2=(x2, y2), P1 and P2 specify

two neighboring pixels whose distance is D. The texton image

T(x,y)atP1 and P2 is denoted as T(P1)=w1 andr(P2)=w2,

respectively. The angle at P1 and P2 is denoted as 0(P1)=v1

and #(P2)=v2 in the texture orientation image 8 (x, y), re­

spectively. TV denotes the co-occurring number of v 1 equal to

v2,andAf denotes the co-occurring number of w1 equal tow 2.

H(T(P 1)) represents the spatial correlation between neighbor­

ing texture orientations by using the color information.

H(8(P1)) represents the spatial correlation between neighbor­

ing colors by using the texture orientation information. So the

image’s feature vector fv is defined as:

fv = H(T(P1))QH(8(P1)) (3)

where 0 means the join operation.

Therefore, the similarity between image a and b is defined by

Si(x,y) = \\fM-fv{b)V (4)

where \\fv\\ denotes the Euclidean 2-norm off,,.

4.2 LSH based index construction

After image features are extracted, the question is how to

construct resource IDs for images and answer the query effi­

ciently. To improve the search efficiency, the content-based

similar images measured in Euclidean space should share the

images. Sobel operator is applied as the gradient operator,

which returns two gradient images, i.e., the image along

horizontal and the one along vertical. Sobel operator is used

to the red, green and blue channel. And then texture orienta­

tion image θ (x, y) is obtained.

Secondly, in the RGB color space, R, G and B are respec­

tively quantized into 64 colors, for simplification. And the

quantized image is denoted by C (x, y).

Thirdly, four different texton templates are designed to

detect texture in C (x, y), and each of them is a 2×2 grid. In

the color image, the grid is moved from left-to-right and top-

to-bottom with 2 pixels in one step. If a texon is found, the

original pixel values in the grid are kept unchanged. Other­

wise, they become zero. In the end, we obtain a texton image,

T (x, y). Finally, the image features presented by MTH de­

scriptor is defined as:

same resource ID. The resource identifier space of Chord is

one-dimension, while the dimension of feature vectors may be

very high. To overcome the problem, the locality sensitive

property of/"-stable LSH is exploited (Haghani et al. 2009).

m×k hash functions are generated, which map the feature

vector to m integer vectors. And each of the mapping is

denoted as: Rd^>Zk. Next, each integer vector is mapped to

one resource ID, denoted as: Z —>N, without destroying the

locality sensitive property of LSH. For each image, after the

resource ID is constructed, an index message is sent to the

node responsible for the ID through the DHT layer.

4.3 Rd->Zk

In this process, LSH is the core of the mapping. The key idea

of LSH is that the close feature vectors with small Euclidean

distance are hashed into the same value with high probability

(Indyk and Motwani 1998). That is, the collision probabilities

for the feature vectors close to each other are much higher than

those far apart. Thus, a LSH family is defined as: a family

H={h :S—>U} is called (r1, r2,/>1,/>2)-sensitive for any two

points q,v e S:

If dist(q, v)<r1 thenPrf{(h(q) = h(v))>p1 (5)

ifdist(q, v) > r2 thenPrH(h(q) = h(v))<p2 (6)

H{T{PX)) = N\8{P1) = V1A8(P2) = v2 \P1~P2\ = D^where8{P1) = 8{P2)

H(0{Pi)) = N{T(P1) = w1KT{P2) = w2 \P1~P2\ = D\whereT{P1) = T(P2)

v1 = v2

= W1 = w2

(1)

(2)

where S specifies the domain of points, dist is the distance

metric used in this domain and Pr is the collision probability.

If r1<r2 and p1<p2, these functions have the property that

close feature vectors are more likely to be mapped to the same

hash value than those far apart. In practice, several hash

functions are built to increase the collision probability.

In this paper, we employ the family functions of p-stable

LSH (Datar et al. 2004), which exists for p ∈ (0,2]. Since

Euclidean distance is supposed to be the most widely used

distance metric, the Gaussian distribution working for the

Euclidean distance is defined as the 2-stable distribution.

The hash function ha,b is defined as follow:

ha,b(v) = (a'v + b)/ (7)

Where a is a J-dimensional vector whose elements are

chosen independently from the 2-stable distribution. b, a real

number, is randomly selected from the range [0, W]. Each

hash function ha b(v):Rd
^>Z maps a d-dimensional vector v

to an integer.

In particular, the gap between the “high” probability p 1 and

the “low” probability/"2 is amplified through constructing m

hash tables G— {gi,..-,gm}, where m is randomly chosen.

Each hash table is defined as k independent hash buckets

g(y)=(h 1(v),. ..,hk(v)), and each table G ={g :R —>Z } maps

a d-dimensional vector to a A:-dimensional integer vector, i.e.,

the hash value. In this way, if the number of hash tables is large

enough, close feature vectors have a greater chance to have the

same hash value at least in one hash table gt, where i =1,...,m.

4.3.1 Z —>N

As a result, an integer vector Z is obtained from one hash table

gi(y), where i =1,...,m.In the next step, the A;-dimension space

is transformed to the one-dimension space, i.e., Z —>N, with­

out destroying the locality sensitive property. On the other side,

the load, defined as the number of indexes on a node, should be

kept balanced as much as possible. To construct a resource ID

i.e., resID, the mapping function J (v) is defined as:

resIDj = I [/] ._ 1hi (vyd i) , where hegjandj = 1, ...,/w.(8)

dt is a randomly chosen integer. J function is denoted as

the consistent hash function SHA-1.

Obviously, as discussed in the previous section, similar vectors

should have the same resID after this mapping, without

destroying the locality sensitive property. Given two similar vec­

tors V] and v2, we would have gi(y1)=gi(y2), where i =1,...,m.

Ift(v)='£i =1hi(v)-di=gi(v)-[d1,d2, • ­­4k] . Then we have:

\t{v{]-t{v2)\ =g1(v)-[d1d2, ...,dk}
T-g2(v)-[d1,d2,...,dk}

T

= (g1(v)-g2(v))-[d1,d2,...,dk]
T.

In this way, we have t(v1)=t(v2), i.e., if two similar

vectors have the same hash value in a hash table, they will

have the same resID. Note that function does not destroy the

locality sensitive property of LSH.

On the other side, in order to fully utilize the Chord ID space

and keep the load balanced, the consistent hash function SHA-1

is employed to distribute indexes as symmetrically as possible.

4.3.2 Index construction service

The purpose of this service is to generate the same resIDs for

the similar images with high probability, and then publish the

indexes to particular nodes through the DHT layer. That is

different from the traditional location approach, where DHTs

access an image through the hash key of the image name

annotated by the human. Thus, the indexes of the similar

images are randomly distributed across the DHT. As a result,

it is difficult to guarantee the search accuracy. In this paper, we

propose the Index Construction Service (ICS) which adopts p-

stable LSH to preserve the locality sensitive property and

distributes the indexes to the Chord as evenly as possible.

For each image in the local database, the image feature

extractor is firstly invoked to extract its visual feature fv, and

then ICS maps fv into m resource IDs φm={resID 1,resID 2 ,…,

resID m } , where resID i = (fv), through m p-stable LSH tables.

After the resource IDs φm of an image is obtained, ICS

constructs indexes in the form of <resIDi , fv, IP> where i =

1…m, IP is the IP address of the object owner. For each

index, ICS sends an index message through the underlying

Chord network, which forwards the message to the node

responsible for the resID, as shown in Fig. 3. Once a node

receives the index message from the DHT layer, ICS inserts

this message in the index storage. The indexes with the same

resID in the index storage are gathered into the same list to

facilitate the localization of local indexes.

The number of hash tables, m, is a system parameter. For

ICS, it also represents the number of indexes for an image and

has an impact on the query efficiency and communication

cost. As above discussed, more hash tables can provide better

chance of finding the images that are similar to the query.

However, more hash tables means more index messages to be

published and requires more storage. So we should make a

tradeoff between m and the query efficiency.

The number of buckets in each hash table, k, is another

system parameter. It impacts not only the query efficiency but

also the load of nodes. Fewer k means that more images are

clustered to the same hash value, i.e., the same resID. This can

lead to fewer clusters and accordingly each cluster has more

images. Once a resID is located, more relevant images can be

obtained. On the other side, the node in charge of the resID

stores more indexes, if k is too small.

All the images of the local database in the node are

reevaluated periodically, e.g., once a week or a month. If an

Fig. 3 Publishing the indexes and the query image

image is added or deleted, its indexes are constructed or

removed. Depending on the similarity between the modified

image and the original one, we can determine whether or not

the indexes should be reconstructed. If the similarity between

these two versions is less than the threshold, the indexes

remain unchanged. Otherwise, the ICS is invoked to re­

construct the indexes.

4.4 Relevance feedback query processing

In this section, the query processing service (QPS) is

discussed, supposing that all the image indexes are published

into the DHT layer. When a node issues a query, QPS is

invoked and the content-based similar images are retrieved.

The objective of this service is to answer a query effectively.

Search effectiveness is measured by the quality of search

result, i.e., recall rate and precision. Furthermore, once the

query iteration is completed, the user interacts with LRFIR to

help improve the search result through the relevance feedback

technique. After several iterations, the search accuracy can be

significantly improved.

4.4.1 Query processing

When the node issues a query, QPS is invoked. It converts the

query image to a set of resIDs, and then sends the query

messages to the particular nodes. The query processing is

similar to the index construction. As above described, the

feature vector fq of the query image is firstly extracted by

the image feature extractor. Then fq is transformed into a set of

resource IDs φ m ={resID 1,resID2,…,resID m } , where

resID i = (fq), by m ×k p-stable LSH function. Note that

the set of hash functions used in QPS are the same as these

in ICS. Afterwards, the node sends the query messages in the

form of <resID i, fq, IP> where i =1…m, and IP is the IP

address of the query node. However, the query message is

only forwarded to the nodes responsible for the resIDs. There­

fore, if the images satisfy the requirement of the query, they

are more likely to be retrieved due to the same resIDs. In this

way, the query cost is controlled and the search efficiency is

guaranteed.

Once receiving a query message from the DHT layer, the

node checks the local index storage to find if there exists the

same resID as it receives. To reduce the network transmission

cost, it only returns the top T indexes sorted in terms of the

distance from the query, defined in (4).

Similar to ICS, the number of query messages also depends

on the number of hash tables m. if m increases, more query

messages need to be published, which causes high query cost.

But increasing m also increases the probabilities of finding the

images similar to the query. In contrast, if m is too small, the

query cost is reduced while the accuracy might also be

decreased.

After the query node receives all the results, it merges the

results before showing them to the user. The merging process­

ing contains two steps. First, it eliminates the duplicates. If

two indexes have the same fv, we consider that they might

represent the same image and one of them will be randomly

selected. Second, all the results are sorted in terms of the

distance defined in (4), and the top T indexes are chosen.

Then connections are established between the query node and

data owners, and images can be transmitted to the query node.

Finally, the top T most similar images are showed to the user.

4.4.2 Relevance feedback

Relevance feedback technique, originated from the informa­

tion retrieval, is employed in LRFIR to narrow the gap be­

tween low-level features and high-level ones. The features

extracted from an image are low-level features, such as color,

shape and texture, while high-level features are human per­

ception of images, i.e., semantics. However, low-level fea­

tures cannot fully represent the high-level semantic concepts.

Moreover, there is no direct link between these two level

features (Datta et al. 2008).

Relevance feedback intends to model the high-level image

semantics through iterative feedback and query refinement.

Humans are engaged in this alternative search process and

help LRFIR to learn the semantics of query images. When one

search iteration is completed, the user picks up relevant im­

ages and non-relevant images to update the previous query

vector. In LRFIR, we choose Rocchio’s formula (Zhou and

Huang 2003) shown in (9), where the image’s semantics is

captured by a set of weights. The latest query vector Q can be

refined by assigning higher weights to the relevant terms and

lower weights to the non-relevant terms. It provides a query

point movement approach, which moves the query point

towards positive samples and away from negative ones in

the vector space.

Q =
 aQ + P

1

feZ)',

D i

1

feZ)'„

D (9)

Where a+/3+7 =1,a,/3 and 7 are weights for the original

query, relevant terms and non-relevant terms, respectively. DR

and DN are denoted as the feature vector of relevant images

and non-relevant images, respectively. NR and N^ represent

the number of images in DR and D^, respectively.

In LRFIR, relevance feedback is incorporated to further

improve the retrieval performance. To simplify the procedure,

non-relevant images are ignored. In each iteration, after the

user marks a set of relevant images that are semantically close

to the query, the query refinement is executed according to the

feature vectors of relevant images. Based on the user’s feed­

back, Eq. 9 is used to modify Q. After the new query vector

Q' is generated, the QPS is invoked again. QPS produces the

query messages for Q' as above described. Then the new

query message is sent to the DHT layer.

In addition, although the resIDs of the new query Q' may be

equal to these of the previous query Q, query messages con­

taining the same resIDs are still sent. And the query processing

is the same as above described. After the query vector is refined,

the image feature vectors close to the new query vectors are

retrieved. They are semantically closer to the query image.

In practice, several iterations of feedback are needed to

improve the search accuracy. However, more iterations would

bring about more network hops. In Chord, searching from the

source node to the destination node needs O (log n) network

hops in a network of n nodes. So in our relevance feedback

search, the lookup requires rO (log n) hops in r iterations. If r

is large enough, the accuracy of the query can be improved

while the network cost is also increased. In contrast, if r is too

small, the network cost is reduced while the accuracy might

also be decreased. So we have to make a tradeoff between the

network cost and the search accuracy.

The final results chosen by the user can be cached in local

database for future query reuse. ICS can also construct indexes

for these result images and publish them to Chord. When a

query is issued, LRFIR first checks the caches. If there are no

suitable answers in the caches, the QPS is invoked to publish

query messages to Chord. On the other hand, the feedback

process can be terminated by the user, when the results are not

improved. In this way, the expensive cost of query processing

can be saved.

5 Experiments and numerical results

We have implemented the proposed system and algorithms

using Java 1.6. The simulation runs on a 2.83GHz Intel Core

CPU with 2GB RAMs.

5.1 Datasets and system settings configuration

In our experiments, two image datasets are used: Corel 10000

and the subset of Catltech 101 Object Categories. The Corel

dataset commonly used, contains 10,000 images of various

contents, such as flowers, food, wave, pills, sunset, beach, car,

horses, fish and door, etc. It contains 100 categories and each

category contains 100 images in JPEG format. For the second

dataset, 1,500 images are chosen from Catltech 101 Object

Categories. We choose 30 objects of sunflower, dollar, head­

phone and faces, etc. And each object contains 50 images. In

each category we randomly choose 5 images, so 500 queries

are drawn from the Corel10000 and 150 queries from Catltech

101 Object Categories, respectively. For both datasets, image

feature vectors are extracted using MTH, as described in

Section 4.1.

Queries are initiated at randomly chosen peers, after all the

peers join LRFIR. The reported results are the average values

Fig. 4 Recall rates. a Catltech

101 Object. b Corel10000

Fig. 5 Effect of load on the index

distribution. a Catltech 101

Object. b Corel10000

over all the queries. In the experiments, we test with different

values of system parameters. Unless otherwise noted, the

default values are W =2.0 for p-stable hash function and α =

0.8, β =0.2,γ=0.0 for relevance feedback. The default net­

work size is n =1,000. Besides, for the image retrieval, it is

important to define suitable metrics for the performance eval­

uation. Two metrics are used: Recall rate and Precision (Liu

et al. 2010). Recall rate is defined as the percentage of re­

trieved relevant images among all the relevant images in the

dataset. Precision is defined as the percentage of relevant

images among the retrieved images.

5.2 Recall rates

The corresponding recall rates are evaluated with different

number of hash functions and top images, as shown in

Fig. 4. The x-axis represents the number of top images,

varying from 4 to 24 for both datasets. The y-axis denotes

the recall rates measured under different number of top im­

ages. m and k respectively represents the number of hash

tables and buckets. The recall rates increase as the number

of top images increases for both datasets. But not many

images are returned, because only the very similar images

are needed to return. This facilitates convenience for people

in browsing the results for the feedback. In LRFIR, 12 top

images are defined as the default returned number.

The improvement in terms of recall rates is achieved by

increasing the number of hash tables m or decreasing the

number of buckets k, for both datasets. For Fig. 4b, m =10,

k =15 and m =20, k =20 of LSH achieves the best recall rate

with almost the same value. The reason is that the collision

probability for content similar images is increased with the

increase of m. On the other hand, decreasing k can lead to

fewer clusters, accordingly more images are gathered into one

cluster. Once a cluster is searched, many relevant results are

returned. A similar observation can be made for Fig. 4a, where

m =5, k =10 and m =15, k =20 achieves the best recall. We can

choose m =10, k =15 for the Corel and m =5, k =10 for the

Catltech 101 Object, since the computational overhead is

reduced with the decrease of m. In the following experiments,

unless specified otherwise, we choose k =15 for the

Corel10000, and k =10 for the Catltech 101 Object.

5.3 Load balancing

In this section, the effectiveness of load balancing is investi­

gated in two datasets. Figure 5 shows the index distributions

for different cases. The x-axis values are the percentage of

nodes, whose IDs are along Chord ring from small to large.

And the number of nodes n varies from 10 to 5,000. The y-

axis values are the percentage of indexes assigned to these

nodes. Note that in both datasets, curves show much less skew

as the number of nodes increases. That means that the load is

more balanced with the increase of the number of nodes. This

is because when the number of node increases, the interval

between node IDs becomes smaller and more nodes are

Fig. 6 The index distribution per

node. a Catltech 101 Object. b

Corel10000

Fig. 7 (a) Recall vs. Feedback

No. and (b) precision vs.

Feedback No

assigned to store these indexes. Therefore, there are fewer

indexes in each node. In Fig. 5, when the number of node is

1,000 and 5,000, the load is more balanced than other cases

for both datasets. However, for the Corel10000, when n is 10,

the load is skewed and 40% of nodes stores around 60% of

indexes. The reason is that the number of nodes is so small that

the interval between node IDs becomes large. Therefore, some

nodes store much more indexes than others.

When the number of nodes is 1,000, the percentage of

indexes kept in each node is shown in Fig. 6. Obviously, some

nodes store more indexes than others. That is the reason why

the percentage of indexes in Fig. 5 does not grow very steadily

as the percentage of nodes increases. The maximum percent­

age values for both datasets are 7% and 3.5%, respectively.

Besides, the percentage of indexes kept in many nodes is very

low or close to zero.

5.4 Relevance feedback results

The effect of relevance feedback on the search performance is

measured, as shown in Fig. 7. The horizontal axis represents

the number of hash tables, m, which varies from 1 to 15 in

Fig. 7a and from 5 to 20 in Fig.7b, respectively. The vertical

axis is the average recall rate and the average precisions

measured for both datasets. In this experiment, 100 nodes

are randomly selected to issue queries. And each node needs

to issue all the queries. For both datasets, the recall rate and the

precision grows slowly as m increases, regardless of the

feedback iteration. The recall rate grows slightly when m is

greater than 5 for the Catltech 101 Object. And the precision

increases slightly as m is greater than 10 for the Corel. This is

because when m is large enough, the images with their feature

vectors similar to that of the query have already been gathered

into the same cluster. As a result, simply increasing m cannot

improve the recall and the precision.

Regarding the effect of relevance feedback, we take the

Corel for an example. Catltech 101 Object has the similar

conclusion. The retrieval rates can be improved by increasing

the number of feedback iteration. “0-iteration” curve represents

the average precision without any relevance feedback. “1-itera-

tion” curve represents the average precision when one feedback

iteration is applied to improve “0-iteration” result. “2-iteration”

curve shows the average precision when another feedback

iteration is applied to refine “1-iteration” result. And so on.

Obviously, we can see the improvement of “3-iteration” in

terms of precision compared with “0-iteration” for the Corel.

However, in Catltech 101 Object, “3-iteration” has almost

similar recall rate as “2-iteration”. In the Corel, “3-iteration” is

a little better than “2-iteration” in terms of precision. In short, we

can see that the required number of feedback iteration is small.

The effect of relevance feedback on the number of lookup

hops is depicted in Fig. 8. The number of lookup hops is one

Fig. 8 Lookup hops vs. Iteration

No. a Catltech 101 Object. b

Corel10000

of the most critical performance parameters in the distributed

environment. As shown in Fig. 8, the number of lookup hops

mainly depends on the number of hash tables and the number

of feedback iterations for both datasets. As we expect, the

number of lookup hops increase when the number of hash

tables increases. In addition, it increases fast as the number of

feedback iteration increases. We can choose small m to reduce

the number of hops in Chord as previously mentioned, i.e.,

m =5 for the Catltech 101 Object and m =10 for the Corel.

Note that the number of lookup hops multiplies as the number

of feedback iteration increases. For example, for the Corel

dataset, when m is 10, the number of lookup hops for “0-

iteration” is 50, that for “1-iteration” is about 100, that for “2-

iteration” is almost 150, and that for “3-iteration” is close to

200. So we have to make a tradeoff between the search

accuracy and the number of lookup hops. As shown in

Fig. 7a “3-iteration” does not improve recall rate greatly

compare with “2-iteration”, but it causes more hops than “2-

iteration”. Therefore we can set the number of feedback

iteration as 2. Due to the same reason, we choose “2-iteration”

for the Catltech 101 Object.

We can see that m =5 and “2-iteration” achieves the best

recall rate for the Catltech 101 Object. For the Corel dataset,

m =10 and “2-iteration” achieves the best precision.

6 Conclusions and future work

We propose an effective framework to support CBIR in the

distributed cloud datacenter. LRFIR supports both content-

based similarity search and semantic search. The ICS con­

structs indexes based on p-stable hash functions, where the

content similar images are mapped into the same resource ID

and distributed to the same Chord node, with high probability.

The QPS not only publishes the query message, but also

employs the relevance feedback to refine the initially query

vector. Therefore, the gap between low-level features and

high-level features are overcome. The experiments show that

our approach achieves high recall rate and good load balance,

and it only needs a small number of network hops.

As for future work, we plan to investigate the following

issues. Firstly, some sensitive information is being centralized

into the cloud, so we may search over encrypted cloud data.

Secondly, image quality may not be very high, which can be

improved by using the image pretreatment technique before

processing the query. Thirdly, we also plan to compare the

performance of LRFIR against other existing systems.

Acknowledgments This work was jointly supported by: (1) the

National Basic Research Program of China (No. 2013CB329102); (2)

National Natural Science Foundation of China (No. 61372120,61271019,

61101119, 61121001, 61072057, 60902051); (3) PCSIRT (No. IRT1049);

(4) MICINN (No. TIN2010-19077); (5) CAM (No.S2009TIC-1692).

References

Androutsos, P., Androutsos, D., & Venetsanopoulos, A. N. (2006). A

distributed fault-tolerant MPEG-7 retrieval scheme based on small

world theory. IEEE Transactions on Multimedia, 8(2), 278–288.

Bawa M., Manku G., & Raghavan P. (2003). SETS: search enhanced by

topic segmentation. Proceedings of the 26th Annual International

ACM SIGIR Conference (SIGIR’03), Toronto, Canada, 306–313.

Chen, J., Hu, C., & Su, C. (2008). Scalable Retrieval and Mining With

Optimal Peer-to-Peer Configuration. IEEE Transactions on Multi­

media, 10(2), 209–220.

Crespo A., & Garcia-Molina H. (2002). Routing indices for peer-to-peer

systems. Proceedings of the 22nd IEEE International Conference on

Distributed Computing Systems (ICDCS’02), Vienna, Austria, 23-32.

Datar M., Immorlica N., Indyk P., & Mirrokni V. S. (2004). Locality-

sensitive hashing scheme based on p-stable distributions. Proceed­

ings of the 20th Annual Symposium on Computational Geometry

(SoCG’04), New York, USA, 253–262.

Datta R., Joshi D., Li J., & Wang J. Z. (2008). Image retrieval: Ideas,

influences, and trends of the new age. ACM Computing Surveys,

40(2), Article 5.

Demirkan H., & Delen D. (2012). Leveraging the capabilities of service-

oriented decision support systems: Putting analytics and big data in

cloud. Decision Support Systems.

Dikaiakos, M. D., Katsaros, D., Mehra, P., Pallis, G., & Vakali, A. (2009).

Cloud computing: Distributed Internet Computing for ITand Scien­

tific Research. IEEE Internet Computing, 13(5), 10–13.

Falchi F., Gennaro C., & Zezula P. (2005). A content-addressable network

for similarity search in metric spaces. Proceedings of the 6th Inter­

national Workshop on Databases, Information Systems and Peer-to-

Peer Computing (DBISP2P’05), Toronto, Canada, 79–92.

Forestiero, A., Leonardi, E., Mastroianni, C., & Meo, M. (2010). Self-

Chord: A Bio-Inspired P2P Framework for Self-Organizing Distrib­

uted Systems. IEEE/ACM Transaction on Networking, 18(5), 1651–

1664.

Gaeta, R., & Sereno, M. (2011). Generalized Probabilistic Flooding in

Unstructured Peer-to-Peer Networks. IEEE Transaction on Parallel

Distributed System, 22(12), 2055–2062.

Gnutella. (2000). Gnutella website. http://www.Gnutella.com

Haghani, P., Michel, S., & Aberer K. (2009). Distributed similarity search

in high dimensions using locality sensitive hashing. Proceedings of

the 12th International Conference on Extending Database Technol­

ogy (EDBT’09), Saint Petersburg, Russia, 744-755.

Indyk P., & Motwani R. (1998). Approximate nearest neighbors: towards

removing the curse of dimensionality. Proceedings of the 13th ACM

Symposium on Theory of computing (STOC’98), Dallas, Texas,

604–613.

Kalnis, P., Ng, W. S., Ooi, B. C., & Tan, K. (2004). Answering similarity

queries in peer-to-peer networks. Information Systems, 31(1), 57–

72.

King, I., Ng, C. H., & Sia, K. C. (2004). Distributed content-based visual

information retrieval system on peer-to-peer networks. ACM Trans­

action on Information Systems, 22(3), 477–501.

Lee I., & Guan L. (2004). Semi-automated relevance feedback for dis­

tributed content based image retrieval. The 2004 I.E. International

Conference on Multimedia and Expo (ICME’04), Taipei, Taiwan,

1871-1874.

Li, F., Fergus, R., & Perona, P. (2007). Learning Generative Visual

Models from Few Training Examples: An Incremental Bayesian

Approach Tested on 101 Object Categories. Computer Vision and

Image Understanding, 106(1), 59–70.

Liao, J., Wang, J., Wu, B., & Wu, W. (2012). Toward a Multi-plane

Framework of NGSON: a Required Guideline to Achieve Pervasive

Services and Efficient Resource Utilization. IEEE Communications

Magazine, 50(1), 90–97.

http://www.Gnutella.com

Liu, G., Zhang, L., Hon, Y., Li, Z., & Yang, J. (2010). Image retrieval based

on multi-texton histogram. Pattern Recognition, 43(7), 2380–2389.

Lv Q., Cao P., Cohen E., Li K. & Shenker S. (2002). Search and

replication in unstructured peer-to-peer networks. Proceedings of

the 16th ACM Annual International Conference on Supercomputing

(ICS’02), New York, USA, 84-95.

Novak D.,& Zezula P. (2006). M-Chord: a scalable distributed similarity

search structure. Proceedings of the First International Conference

on Scalable Information System (INFOSCALE’ 06), Hong Kong,

China, Article 19.

Peng C., Kim M., Zhang Z., & Lei H. (2012). VDN: Virtual machine

image distribution network for cloud data centers. IEEE Interna­

tional Conference on Computer Communications (INFOCOM’12),

Orlando, Florida, 181-189.

Sahin O.D., Gulbeden A., Emekci F., Agrawal D., & Abbadi A.E. (2005).

PRISM: Indexing multi-dimensional data in p2p networks using

reference vectors. Proceedings of the 13rd Annual ACM Interna­

tional Conference on Multimedia, ACM Multimedia (MM’05),

Singapore, 946-955.

Sripanidkulchai K., Maggs B.M., & Zhang H. (2003). Efficient Content

Location Using Interest-Based Locality in Peer-to-Peer Systems.

Proceedings of the 22nd Annual Joint Conference of the IEEE

Computer and Communications Societies (INFOCOM’03), San,

Francisco.

Stoica I., Morris R., Karger D., Kaashoek M.F.,& Balakrishnan H.

(2001). Chord: A scalable peer-to-peer lookup service for internet

applications. The 2001 Conference on Applications, Technologies,

Architectures, and Protocols for Computer Communications

(SIGCOMM’01), San Diego, USA, 149-160.

Tang C., Xu Z., & Dwarkadas S. (2003). Peer-to-peer information re­

trieval using self-organizing semantic overlay networks. The 2003

Conference on Applications, Technologies, Architectures, and Pro­

tocols for Computer Communications (SIGCOMM’03), Karlsruhe,

Germany, 175-186.

Vlachou, A., Doulkeridis, C., & Kotidis, Y. (2012). Metric-Based Simi­

larity Search in Unstructured Peer-to-Peer Systems. Transa ctions o n

Large-Scale Data-and Knowledge-Centered Systems, 5 , 28–48.

Yang Z., Zhao B. Y., Xing Y., et al. (2010). AmazingStore: Available,

low-cost online storage service using cloudlets. Proceedings of the

9th International Workshops on Peer-to-Peer Systems (IPTPS’10),

San Jose, USA, 1–5.

Zhang L., Wang Z., & Feng D. (2010a). Efficient high-dimensional retriev­

al in structured P2P networks. The 2010 I.E. International Conference

on Multimedia and Expo (ICME’10), Singapore, 1439-1444.

Zhang X., Shou L., Tan K., & Chen G. (2010b). iDISQUE: Tuning High-

Dimensional Similarity Queries in DHT Networks. Proceedings of

the 15th International Conference on Database Systems for Ad­

vanced Applications (DASFAA’10), Tsukuba, Japan, 19-33.

Zhou, X. S., & Huang, T. S. (2003). Relevance feed-back in image

retrieval: A comprehensive review. Multi-media Systems, 8(6),

536–544.

Zhu, Y., & Hu, Y. (2007). Efficient semantic search on DHT overlays.

Journal of Parallel and Distributed Computing, 67(5), 604–616.

Jianxin Liao is presently a professor of Beijing University of Posts and

Telecommunications. He obtained his Ph.D. degree at University of

Electronics Science and Technology of China in 1996. He has published

hundreds of papers in different journals and conferences. His research

interests are mobile intelligent network, broadband intelligent network

and 3G core networks.

Di Yang is currently working toward the Ph.D. degree in computer

science and technology at Beijing University of Posts and Telecommu­

nications. Her research interests include network architecture, overlay

network, multimedia communication, next-generation networks and in­

formation retrieval.

Tonghong Li is currently an assistant professor with the department of

computer science, Technical University of Madrid, Spain. He obtained

his Ph.D. degree from Beijing University of Posts and Telecommunica­

tions in 1999. His main research interests include resource management,

distributed system, middleware, wireless networks, and sensor networks.

Jingyu Wang is an assistant professor in Beijing University of Posts and

Telecommunications, China. He obtained his Ph.D. degree from Beijing

University of Posts and Telecommunications in 2008. Now his research

interests span broad aspects of performance evaluation for Internet and

overlay network, traffic engineering, image/video coding, and multime­

dia communication over wireless network.

Qi Qi is an assistant professor in Beijing University of Posts and Tele­

communications, China. She obtained her Ph.D. degree from Beijing

University of Posts and Telecommunications in 2010. Now her research

interests include performance evaluation for service network and future

Internet, IP Multimedia Subsystem, ubiquitous services, QoS, and multi­

media communication.

Xiaomin Zhu is an associate professor in Beijing University of Posts and

Telecommunications. He obtained his Ph.D. degree from Beijing Univer­

sity of Posts and Telecommunications in 2001. Now his major is Tele­

communications and Information Systems. His research interests span the

area of intelligent networks and next-generation networks with a focus on

3G core network and protocol conversion.

